Level-set approaches of L_2 type for recovering shape and contrast in ill-posed problems

Adriano De Cezaro (FURG - Brazil) joint work with A. Leitão (UFSC - Brazil)

Inverse Problems under Capricorn Florianópolis, September, 01 and 02 of 2011.

Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

Plans

1 Introduction

- 2 Our Approaches
 - Standard level set approach (sLS)
 - Piecewise constant level set approach (pcLS)
- 3 General Assumptions
- 4 Regularization Properties
- 5 Numerical IPP
 - Our Experiment
 - Level Set Algorithms
- 6 Conclusions and Final Remarks

Adriano De Cezaro (FURG - Brazil)

Look in the model

$$F(u) = y$$
 F operator. (1)

The direct problem:

given the parameter **u**, solve (1)

The inverse problem:

given a set of data y, recover u in (1).

- set of data y ∈ Y is obtained by indirect measurements of the parameter
- measurements \implies data corrupted by noise $y^{\delta} \in Y$ satisfying

$$\|\boldsymbol{y} - \boldsymbol{y}^{\delta}\|_{\boldsymbol{Y}} \leq \delta.$$
 (2)

Adriano De Cezaro (FURG - Brazil)

- Direct problems: are well posed → existence, uniqueness, stability.
- Inverse problem: are ill posed
- Inverse Problems call for regularization strategies !!!!!

Adriano De Cezaro (FURG - Brazil)

- Direct problems: are well posed → existence, uniqueness, stability.
- Inverse problem: are ill posed
- Inverse Problems call for regularization strategies !!!!!

Adriano De Cezaro (FURG - Brazil)

The inverse problems that we are looking ...

- Several inverse problems of interest consist of identifying an unknown physical quantity *u* ∈ *X*
- *u* represented by a piecewise constant real function over a bounded given domain $\Omega \subset \mathbb{R}^2$
- Ex: image problems (*u* represent the grey scale), EIT problems, inverse potential problems, ...
- The relation between the unknown parameter function and the problem data is described by the model

$$F(u) = y \qquad F: \mathcal{D}(F) \subset X \longrightarrow Y \tag{3}$$

Level-set approaches of L2 type for recovering shape and contrast in ill-posed problems

The inverse problems that we are looking ...

- Several inverse problems of interest consist of identifying an unknown physical quantity *u* ∈ *X*
- *u* represented by a piecewise constant real function over a bounded given domain $\Omega \subset \mathbb{R}^2$
- Ex: image problems (*u* represent the grey scale), EIT problems, inverse potential problems, ...
- The relation between the unknown parameter function and the problem data is described by the model

$$F(u) = y \qquad F: \mathcal{D}(F) \subset X \longrightarrow Y \tag{3}$$

Level-set approaches of L2 type for recovering shape and contrast in ill-posed problems

- If the unknown function u is piecewise constant distinguishing between two or several given values, level-set approaches were considered by several authors (Osher, Tai, Burger, ...)
- In this case, we only need to identify the level sets of u shape identification problem.
- If the level values of u are also unknown, the inverse problem becomes harder, since one has to identify both the level sets as well as the level values of the unknown parameter u.

Level-set approaches of L₂ type for recovering shape and contrast in ill-posed problems

Plans

Introduction

2 Our Approaches

- Standard level set approach (sLS)
- Piecewise constant level set approach (pcLS)
- 3 General Assumptions
- 4 Regularization Properties
- 5 Numerical IPP
 - Our Experiment
 - Level Set Algorithms
- 6 Conclusions and Final Remarks

Adriano De Cezaro (FURG - Brazil)

assumption that the parameter function u is a piecewise constant function assuming two distinct unknown values

•
$$u(x) \in \{c^1, c^2\}$$
 a.e. in Ω

In this case one can assume the existence of an open mensurable set D ⊂ Ω, s.t.

$$u(x) = c^1, x \in D =: D_1$$
 $u(x) = c^2, x \in \Omega/D =: D_2$

Standard level set approach (sLS)

■ consists in introducing the level set function φ ∈ L₂(Ω) that acts as a regularization in the parameter space

u can be represented as

$$u = c^2 H(\phi) + c^1 (1 - H(\phi)) =: P_s(\phi, c^j)$$

■
$$u(x) = c^{j}, x \in D_{j}$$
, where $D_{2} = \{x \in \Omega : \phi(x) > 0\}$ and $D_{1} = \{x \in \Omega : \phi(x) \le 0\}$

Some remarks:

- i) The operator P_s establishes a straightforward relation between the level sets of ϕ and the sets D_j
- ii) representing our a priori knowledge about the solution u.

Adriano De Cezaro (FURG - Brazil)

Standard level set approach (sLS)

■ consists in introducing the level set function φ ∈ L₂(Ω) that acts as a regularization in the parameter space

u can be represented as

$$u = c^2 H(\phi) + c^1 (1 - H(\phi)) =: P_s(\phi, c^j)$$

■
$$u(x) = c^{j}, x \in D_{j}$$
, where $D_{2} = \{x \in \Omega : \phi(x) > 0\}$ and $D_{1} = \{x \in \Omega : \phi(x) \le 0\}$

Some remarks:

- i) The operator P_s establishes a straightforward relation between the level sets of ϕ and the sets D_j
- ii) representing our a priori knowledge about the solution u.

Adriano De Cezaro (FURG - Brazil)

Introduction Our Approaches General Assumptions Regularization Properties Numerical - IPP Conclusions and Final Remarks
Standard level set approach (sLS)
$$F(u) = y \quad (3) \qquad ||y - y^{\delta}||_Y \le \delta \quad (2)$$

With the (sLS) approach the inverse problem (3), with data given by (2), can be written in the form of the operator equation

$$F(P_s(\phi, c^j)) = y^{\delta}.$$
 (4)

 To obtain an approximated solution of (4), we propose the minimization of the Tikhonov functional

$$\mathcal{G}_{\boldsymbol{s},\boldsymbol{\alpha}}(\boldsymbol{\phi},\boldsymbol{c}^{j}) = \|\boldsymbol{F}(\boldsymbol{P}_{\boldsymbol{s}}(\boldsymbol{\phi},\boldsymbol{c}^{j})) - \boldsymbol{y}^{\delta}\|_{Y}^{2} + \boldsymbol{\alpha}\boldsymbol{R}_{\boldsymbol{s}}(\boldsymbol{\phi},\boldsymbol{c}^{j})$$
(5)

with a TV-L2 regularization

$$R_{s}(\phi, c^{j}) := \beta_{1} |H(\phi)|_{BV} + \beta_{2} \|\phi\|_{L_{2}(\Omega)}^{2} + \beta_{2} \|c^{j}\|_{\mathbb{R}^{2}}^{2}.$$

Adriano De Cezaro (FURG - Brazil)

Piecewise constant level set approach (pcLS)

- consisting in introduce the piecewise constant level set function $\phi \in L_2(\Omega)$ such that $\phi(x) = j$ $x \in D_j$
- then define auxiliary functions ψ₁(t) = (2 − t) and ψ₂(t) = (t − 1). Hence, we represent the characteristic function of D_j as χ_{D_j}(x) = ψ_j(φ)
- the solution of (3) can be written in the form

$$u = c^{1} \psi_{1}(\phi) + c^{2} \psi_{2}(\phi) = P_{\rho c}(\phi, c^{i}).$$
(6)

Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

$$\mathcal{K}(\phi) = (\phi - 1)(\phi - 2) = 0.$$
 (7)

With this framework, the inverse problem (3), whit data given by (2), can be written as

$$F(P_{\rho c}(\phi, c^{j})) = y^{\delta},$$

$$s.t. \quad \phi \in L_{2}(\Omega) : \mathcal{K}(\phi) = 0.$$
(8)

Adriano De Cezaro (FURG - Brazil)

Piecewise constant level set approach (pcLS)

 Approximate solutions to (8) can be obtained by minimizing the Tikhonov functional

$$\mathcal{G}_{\alpha,pc}(\phi, c^{j}) = \| \mathcal{F}(\mathcal{P}_{pc}(\phi, c^{j})) - y^{\delta} \|_{Y}^{2} + \beta_{3} \| \mathcal{K}(\phi) \|_{L_{1}(\Omega)} + \alpha \mathcal{R}_{pc}(\phi, c^{j})$$
(9)

where

$$R_{\textit{pc}}(\phi, \textit{c}^{j}) := \beta_{1} |\textit{P}_{\textit{pc}}(\phi, \textit{c}^{j})|_{\textit{BV}} + \beta_{2} \|\textit{c}^{j}\|_{\mathbb{R}}^{2}.$$

Notice that the minimization of the functional $\mathcal{G}_{\alpha,pc}$ furnishes a regularized solution to the system of operator equations:

$$\left[\begin{array}{c} F(P_{pc}(\phi, c^{j}))\\ \mathcal{K}(\phi) \end{array}\right] = \left[\begin{array}{c} y^{\delta}\\ 0 \end{array}\right]$$

Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

Plans

1 Introduction

2 Our Approaches

- Standard level set approach (sLS)
- Piecewise constant level set approach (pcLS)

3 General Assumptions

- 4 Regularization Properties
- 5 Numerical IPP
 - Our Experiment
 - Level Set Algorithms
- 6 Conclusions and Final Remarks

Adriano De Cezaro (FURG - Brazil)

- (A1) $\Omega \subset \mathbb{R}^2$ is bounded with piecewise C^1 boundary.
- (A2) The operator F : D(F) ⊂ L_p(Ω) → Y is continuous on D(F) with respect to the L_p-topology, where 1 ≤ p < 2.</p>
- (A3) α , β denote positive parameters.
- (A4) Equation (3) has a solution, i.e. there exists $u \in L_{\infty}(\Omega)$ satisfying F(u) = y; there exists a function $\phi \in L_2(\Omega)$ satisfying $|\nabla \phi| \neq 0$, in a neighborhood of $\{\phi = 0\}$ such that $H(\phi) = z \in L_1(\Omega)$ and there exist constants values $c^i \in \mathbb{R}$ such that $P_s(z, c^i) = u$.
- (A4') Equation (3) has a solution, i.e. there exists $u \in L_{\infty}(\Omega)$ satisfying F(u) = y; there exists a function $\phi \in BV(\Omega)$ and there exist constants values $c^1 \neq c_2 \in \mathbb{R}$ such that $P_{pc}(\phi, c^j) = u$.

Adriano De Cezaro (FURG - Brazil)

Level-set approaches of L₂ type for recovering shape and contrast in ill-posed problems

Plans

1 Introduction

- 2 Our Approaches
 - Standard level set approach (sLS)
 - Piecewise constant level set approach (pcLS)
- 3 General Assumptions
- 4 Regularization Properties
- 5 Numerical IPP
 - Our Experiment
 - Level Set Algorithms
- 6 Conclusions and Final Remarks

Adriano De Cezaro (FURG - Brazil)

(sLS) approach

The graph of $\mathcal{G}_{\alpha,s}$ is not closed!

- We look for generalized minimizers of $\mathcal{G}_{\alpha,s}$.
- Let $\varepsilon > 0$. Define the smooth approximation of *H*

$$\mathcal{H}_{arepsilon}(t) = egin{cases} 1+t/arepsilon\,, & t\in [-arepsilon,0]\ \mathcal{H}(t)\,, & ext{otherwise}\,. \end{cases}$$

and

$$P_{\epsilon,s}(\phi) = c^1 H_{\epsilon}(\phi) + c^2 (1 - H_{\epsilon}(\phi)) \,.$$

Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

- Generalized Minimizers of $\mathcal{G}_{\alpha,s}$:
- A vector (z, φ, cⁱ) ∈ L_∞(Ω) × L₂(Ω) × ℝ² is called admissible when there exists sequences
- i) $\phi_k \in L_2(\Omega)$ with $\lim_{k \to \infty} \|\phi_k \phi\|_{L_2(\Omega)} \to 0$;
- $\text{ii)} \ \exists \ \epsilon_k \to 0^+ \text{ such that } \lim_{k \to \infty} \|H_{\epsilon_k}(\phi_k) z\|_{L_p(\Omega)} \to 0;$
- A generalized minimizer of *G*_{α,s} is considered as any admissible vector (*z*, φ, *cⁱ*) minimizing

$$G_{\alpha}(z,\phi,c^{j}) = \|F(q(z,c^{j})) - y^{\delta}\|_{Y}^{2} + \alpha R(z,\phi,c^{j}), \qquad (10)$$

where $q(z, c^j) = c^1 z + c^2(1-z)$ and

$$R(z,\phi,c^{i}) = \inf\{\liminf_{k\to\infty}(\beta_{1}|H_{\varepsilon_{k}}(\phi_{k})|_{BV} + \beta_{2}\|\phi_{k}\|_{L_{2}(\Omega)}^{2})\} + \beta_{3}\|c^{i}\|_{\mathbb{R}^{2}}^{2}.$$

Adriano De Cezaro (FURG - Brazil)

Theorem

- 1) Existence $G_{\alpha,s}$ attain a minimizer in the set of admissible vector.
- 2) Convergence for exact data $\delta = 0$ Let $(z_{\alpha}, \phi_{\alpha}, c_{\alpha}^{j}) \in \operatorname{argmin} G_{\alpha}$. If $\alpha_{k} \to 0$ than the corresponding sequence $(z_{\alpha_{k}}, \phi_{\alpha_{k}}, c_{\alpha_{k}}^{j}) \in \operatorname{argmin} G_{\alpha_{k}}$ is strongly convergent in $L_{p}(\Omega) \times L_{2}(\Omega) \times \mathbb{R}$. Moreover, the limit is a solution of (3).
- Convergence for noisy data δ ≠ 0 Let α = α(δ) satisfying α → 0 and δ²/α → 0 as δ → 0. For δ_k → 0, there exists a sequence (z_{α_k}, φ_{α_k}, c^j_{α_k}) ∈ argmin G_{α_k} is strongly convergent in L_p(Ω) × L₂(Ω) × ℝ. Moreover, the limit is a solution of (3).

Adriano De Cezaro (FURG - Brazil)

pcLS approach:

The admissible solution is not in a generalized setting!!!

Let $\tau > 0$. A pair $(\phi, c^{j}) \in L_{2}(\Omega) \times \mathbb{R}^{2}$ is called admissible if $\phi \in BV(\Omega)$ and $|c^{1} - c^{2}| \geq \tau$.

Theorem

- 1) $G_{\alpha,pc}$ attain an admissible minimizer.
- 2) Convergence for exact data $\delta = 0$
- 3) Convergence for noisy data $\delta \neq 0$

Adriano De Cezaro (FURG - Brazil)

Plans

1 Introduction

- 2 Our Approaches
 - Standard level set approach (sLS)
 - Piecewise constant level set approach (pcLS)
- 3 General Assumptions
- 4 Regularization Properties
- 5 Numerical IPP
 - Our Experiment
 - Level Set Algorithms

Adriano De Cezaro (FURG - Brazil)

The Direct Problem: solving the Poisson boundary value problem

$$\Delta w = u, \in \Omega \qquad w = 0, \in \partial \Omega, \tag{11}$$

with $u \in L_2(\Omega)$.

- The Inverse Potential Problem (IPP): consists of recovering the function *u*, from measurements of the Cauchy data of its corresponding potential *w* (the measurements are available only on the boundary of Ω).
- Operator equation

$$F: L_2(\Omega) \longrightarrow L_2(\partial \Omega) \qquad F(u) = w|_{\partial \Omega}$$

Level-set approaches of L2 type for recovering shape and contrast in ill-posed problems

Our Experiment

- $\square \Omega = (0,1) \times (0,1)$
- $\bullet \ u = 1 + \chi_D, \qquad D \subset \subset \Omega$
- For this class of parameters no unique identifiability result is known.
- Nevertheless, our methods prove the ability to detect the desired (piecewise constant) solutions.
- Remarks about the forward operator: $F : L_2(\Omega) \longrightarrow L_2(\partial \Omega)$ is continuous.

Since $u = 1 + \chi_D$ the operator *F* is continuous in $L_p(\Omega)$ for

 $1 \le p \le 2$. Therefore the assumption (A2) is satisfied.

Adriano De Cezaro (FURG - Brazil)

Level-set approaches of L2 type for recovering shape and contrast in ill-posed problems

sLS algorithm

These optimality conditions for the approximation of the Tikhonov functional *G*_{α.s} can be written in the form of the system

$$\alpha \phi = L_{\varepsilon,\alpha,\beta}(\phi, c^{1}, c^{2}) \qquad \alpha c^{j} = L^{j}_{\varepsilon,\alpha,\beta}(\phi, c^{1}, c^{2})$$
(12)

were $L_{\epsilon,\alpha,\beta}(\phi, c^1, c^2)$ and $L_{\epsilon,\alpha,\beta}^j(\phi, c^1, c^2)$ are the formal derivative of the functional $G_{\alpha,s}$ composed with H_{ϵ} .

Adriano De Cezaro (FURG - Brazil)

Level-set approaches of L2 type for recovering shape and contrast in ill-posed problems

Given a starting point (ϕ_0, c_0^j) , each step of this iterative method consists of three parts

i) Evaluate the residual

$$r_k = F(P_{s,\varepsilon}(\phi_k, c_k^1, c_k^2)) - y^{\delta} = (w_k)_{\nu}|_{\partial\Omega} - y^{\delta},$$

where w_k solves

$$\Delta w_k = \mathcal{P}_{s,arepsilon}(\phi_k, c_k^1, c_k^2)$$
 in Ω $w_k = 0 \ \partial \Omega$.

- ii) Evaluate $h_k = F'(P_{s,\varepsilon}(\phi_k, c_k^1, c_k^2))^*(r_k) \in L_2(\Omega)$ solving $\Delta h_k = 0$ in Ω $h_k = r_k$ at $\partial \Omega$
- iii) Calculete $\mu \phi_k$ and μc_k^j as in (12).

Update

$$\phi_{k+1} = \phi_k + \frac{1}{\alpha} \mu \phi_k$$
 and $c_{k+1}^j = c_k^j + \frac{1}{\alpha} \mu c_k^j$

Adriano De Cezaro (FURG - Brazil)

pcLS algorithm

- We consider an explicit iterative method based on the operator splitting technique and derived from the optimality conditions for the Tikhonov functional *G*_{α,pc}
- First $\mathcal{G}_{\alpha,pc}$ is splitted as

i)
$$G_{\alpha,pc}^{1}(\phi, c^{j}) := \|F(P_{pc}(\phi, c^{j}) - y^{\delta}\|_{Y}^{2} + \alpha\{\beta_{1}|P_{pc}(\phi, c^{j})|_{BV} + \beta_{2}\|c^{j}\|_{\mathbb{R}}\}$$

ii) $G^{2}(\phi) = \beta_{2}\|\mathcal{K}(\phi)\|_{U(\Omega)}$

$$II) \quad \mathcal{G}_{\alpha,pc}^{L}(\phi) = \beta_{3} \| \mathcal{K}(\phi) \|_{L_{1}(\Omega)}$$

Adriano De Cezaro (FURG - Brazil)

- Each step of the iterative method consists of two parts:
- i) The iterate (ϕ_k, c'_k) is updating using an explicit gradient step w.r.t. the operator $\mathcal{G}^1_{\alpha,pc}(\phi, c^j)$, i.e.,

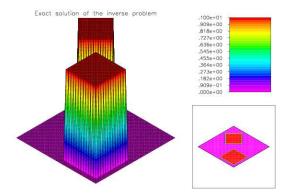
$$\phi_{k+1/2} = \phi_k - \frac{\partial}{\partial \phi} \mathcal{G}^1_{\alpha,pc}(\phi_k, c_k^j) \qquad c_{k+1/2}^j = c_k^j - \frac{\partial}{\partial c_j} \mathcal{G}^1_{\alpha,pc}(\phi_k, c_k^j).$$

ii) The obtained approximation $(\phi_{k+1/2}, c_{k+1/2}^{l})$ is improved by giving a gradient step w.r.t. the operator $\mathcal{G}^{2}_{\alpha,pc}(\phi_{k}, c_{k}^{j})$, i.e.,

$$\phi_{k+1} = \phi_{k+1/2} - \frac{\partial}{\partial \phi} \mathcal{G}^{2}_{\alpha,pc}(\phi_{k+1/2}, c^{j}_{k+1/2}) \qquad c^{j}_{k+1} = c^{j}_{k+1/2}.$$

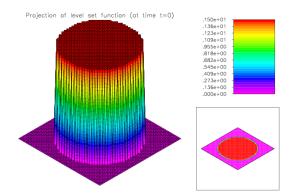
Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)



Adriano De Cezaro (FURG - Brazil)

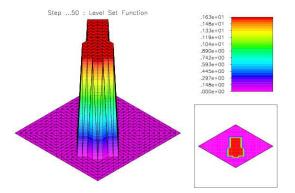
joint work with A. Leitão (UFSC - Brazil)



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

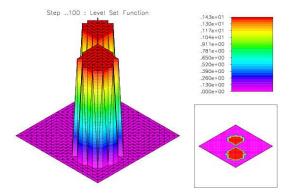
sLS iteration - $\delta = 0$



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

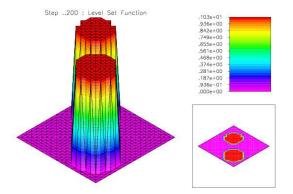
sLS iteration - $\delta = 0$



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

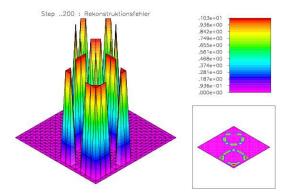
sLS iteration - $\delta = 0$



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

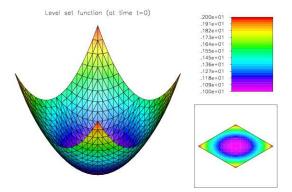
sLS iteration - $\delta = 0$



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

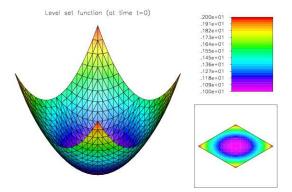
pcls iteration - $\delta = 0$



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

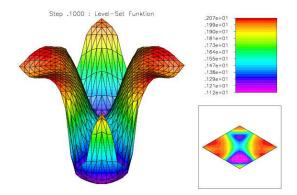
pcls iteration - $\delta = 0$



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

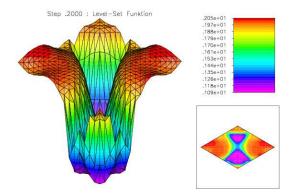
pcls iteration - $\delta = 0$



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

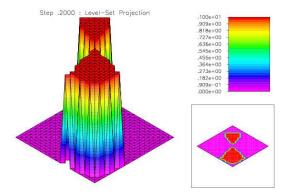
pcls iteration - $\delta = 0$



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

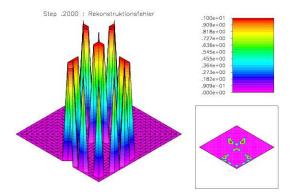
pcls iteration - $\delta = 0$



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

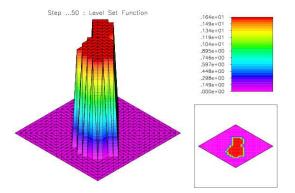
pcls iteration - $\delta = 0$



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

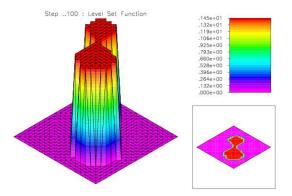
sLS iteration with random noise = 25%



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

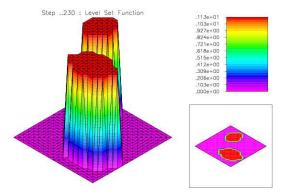
sLS iteration with random noise = 25%



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

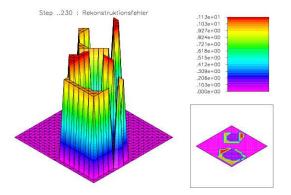
sLS iteration with random noise = 25%



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

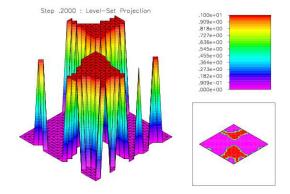
sLS iteration with random noise = 25%



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

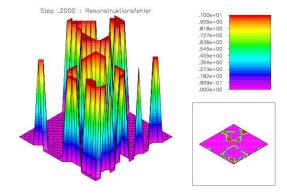
pcls iteration with random noise = 25%



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

pcls iteration with random noise = 25%



Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)

Plans

1 Introduction

- 2 Our Approaches
 - Standard level set approach (sLS)
 - Piecewise constant level set approach (pcLS)
- 3 General Assumptions
- 4 Regularization Properties
- 5 Numerical IPP
 - Our Experiment
 - Level Set Algorithms

6 Conclusions and Final Remarks

Adriano De Cezaro (FURG - Brazil)

- Two distinct level-set type approaches for solving ill-posed problems are proposed, where the level-set functions are chosen in L₂-spaces.
- Based on each one of these two level-set approaches, corresponding Tikhonov functionals are derived. We provide convergence analysis for the resulting Tikhonov regularization methods.
- About the numerical???

- What concerns the numerical implementation of the level-set method based on the pcLS approach, some facts have to be observed:
- Due to the operator splitting technique, we compute several times the step-part (i) before a single calculation of step-part (ii) is performed.
- 2) Step-part (i) aims to minimize the misfit in the iteration and is the most relevant component of the iteration step.
- Step-part (ii) aims to drag the iterate φ_k to a piecewise constant (integer valued) function. If step-part (ii) is implemented too often, all the iterates φ_k become piecewise constant functions and the misfit becomes not monotony decreasing.

- On the other hand, if step-part (ii) is implemented only seldom, the iterates φ_k become too smooth and may be trapped in some local minimizer (due to the non -uniqueness of the inverse potential problem).
- Therefore, the determination of how often the step-part (ii) should be implemented is crucial for the good performance of the algorithm. In our numerical experiments the step-part (ii) was omitted in computation of the initial 100 iterations; then we started computing the step-part (ii) after every 20 iterations. For all test problems considered in our experiments, this strategy brought good results.
- 4) The constant β_3 should be chosen in such a way that $\beta_3 << 1$ in step- part (ii). This choice guarantees that the dragging effect resulting from step-part (ii) is not enforced too strongly.

Bibliography

- De Cezaro, A. and Leitão, A. and Tai, X.-C., On multiple level-set regularization methods for inverse problems, Inverse Problems, vol. 25, (2009), pg. 035004.
- De Cezaro, A. and Leitão, A., Level-set approaches of L₂-type for recovering shape and contrast in ill-posed problems, submitted, (2011), pg. 1 25.
- De Cezaro, A. and Leitão, A. and Tai, X.-C., On level-set type methods for recovering piecewise constant solutions of ill-posed problems, LNCS vol. 5667, (2009), pg. 50–62.
- De Cezaro, A. and Leitão, A. and Tai, X.-C., Efficient implementations of piecewise constant level-set (PCLS) methods for the identification of discontinuous parameters in ill-posed problems, preprint.

Adriano De Cezaro (FURG - Brazil)

- Tai, X.-C. and Chan, T.F., A survey on multiple level set methods with applications for identifying piecewise constant functions, Int. J. Numer. Anal. Model., vol. 1, n. 1, (2004), pg. 25–47.
- Tai, X.-C. and Li, H., A piecewise constant level set method for elliptic inverse problems, Appl. Numer. Math., vol. 57, n. 5-7, (2007), pg. 686–696.
- Vese, L.A. and Osher, S.J., *Image denoising and decomposition* with total variation minimization and oscillatory functions, J. Math. Imaging Vision, vol. 20, n. 1-2, (2004), pg. 7-18.
- Wu, C. and Zhanf, J. and Tai, X.-C., Augmented lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems and Imaging, vol. 5, n. 1, (2011), pg. 237–261.

Obrigado pela atenção!

Antonio, obrigado pelo convite!

Adriano De Cezaro (FURG - Brazil)

joint work with A. Leitão (UFSC - Brazil)