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The Problem and the Model
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The Problem and the Data

» We want to reconstruct the concentration
distribution of a heavy metal (Copper, Zinc,
Iron,..), or other element like lodine, inside a
body.
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The Problem and the Data

» We want to reconstruct the concentration
distribution of a heavy metal (Copper, Zinc,
Iron,..), or other element like lodine, inside a
body.

» This concentration distribution could indicate
malignancy in a tissue, for example. Another
application is determination of 3D rock
structure in mineralogy.
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The Problem and the Data

» We want to reconstruct the concentration
distribution of a heavy metal (Copper, Zinc,
Iron,..), or other element like lodine, inside a
body.

» This concentration distribution could indicate
malignancy in a tissue, for example. Another
application is determination of 3D rock
structure in mineralogy.

» lrradiation by high intensity monochromatic

synchrotron X rays at a specific energy of the
element stimulates fluorescence emission (data).
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The Synchrotron

ersity of Campinas, Applied Mathemz  Fluorescence Tomo



n: Data Acquisition

Inside a synchrotron gate
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X-Rays Fluorescence Computed Tomography (XFCT)

Aims at reconstructing fluorescence emitted by the body when
bombarded by high intensity X-rays at a given energy.
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The Generalized Attenuated Radon Transform

And the model is
d(t,0) = Zwf(t,0) = fg F(x)W(x, 0)dx

where f(x) is the emission (fluorescence) density at x, u is the
fluorescence attenuation, A is the attenuation of the X-rays,

W(x,0) = wr(x, 0)wu(x, ),
wy(x,0) = [r e” 7P dy | and

wa(x,0) = e 7Ax0+T) Ph(x, ) = Jg h(x+q&+)dgq
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What do we know?: CT and SPECT
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X-Rays Computed Tomography (CT)

i = T
X-Ray J |

CT data collection
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SPECT Scanner

SPECT Scanner
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Detection
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SPECT detection
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SPECT

SPECT= Single Photon Emission Computed Tomography, aims at
reconstructing a tagged process inside the body, for example, blood
flow tagged with 799

DETECTOR
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Mathematically

If no attenuation is considered, the Radon Transform is the model
for both problems (CT and SPECT)

d(t,0) = Rf(t,0)= [ ., f(x)dx

x-E=t

where (t,0) € [-1,1] x (0,27), £ = £(0) is a direction vector
defined by an angle 6, £ = (cosf,sinf) and &+ is such that
£-£5=0
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The Projection Theorem and the Inversion of the Radon

Transform

R = KA

where F» and Fi stand for the two and one dimensional Fourier
Transforms.
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The Attenuated Radon Transform

d(t,0) = R,f(t,0) = fx.gzt f(x)w,u(x, 0)dx
where p is the attenuation, and
(.8 = e~ 7x)

where, as before, Zh(x,0) = [ h(x + q¢*)dq
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The Inversion of
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The Inversion of R,

Alternatives:

» Discretize and solve an optimization model. Too
computationally intensive (hours for a single
reconstruction if we regularize). Not our option.
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The Inversion of R,

Alternatives:

» Discretize and solve an optimization model. Too
computationally intensive (hours for a single
reconstruction if we regularize). Not our option.

» Approximate by a scaled Radon Inverse and
Iterate.
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The Inversion of R,

Alternatives:

» Discretize and solve an optimization model. Too
computationally intensive (hours for a single
reconstruction if we regularize). Not our option.

» Approximate by a scaled Radon Inverse and
Iterate.

» Try to find an analytic inverse, but how?, what
direction?
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lterative Inversion

Alvaro R. De Pierro, University of Campinas, Applied Mathemz  Fluorescence Tomography and the Generalized Attenuated Rad



First Option: lterated Inversion

We have a reasonable (fast, accurate if there is not too much
noise) inverse for %, so, let us try a fixed point iteration !!!!

FlH) — £(0) 4 olk) =

(I =i %w)f0 + 24

(k) — Z{d-wr)

a

And what is a?
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Iterated Inversion

Clearly, convergence depends on how close %«@_lﬂw is to the
identity, equivalently, how well Z~! approximates %’;Vl and this
depends on the attenuation. If it is too large, it will not work. To
compensate for that, Chang (IEEE TNS 78) suggested for SPECT
a reasonable value for a is the average attenuation given by

a(x) =L [Z7 W(x,0)do.

— 27 J0
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A Contraction Constant

The Contraction constant for

1

Kf = (%*1(,@—,%W)f—(1—a)f):f—gﬁflﬁwf (1)

[

is given by

1
c(ka) = sup sup |1-— [(W(u,0)+ W(u,0+m)]| (2)
ucR? 0€[0,27] 2HaHOO
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And

Sequences c(x) and c(k,) for different (increasing) values of
attenuation u, meaning that, we have a reasonable computable
value measuring convergence rate and ill-conditioning.

(@) (b)
1 > 1 >
0.9 o8
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Classical Methods in a Continuous Setting: EM

The Expectation Maximization (EM) can also be applied to the
linear part of our problem, assuming a known attenuation function.
For the EM we have the following iteration (continuous version):

By d¥)(x)
(k+1) w
) = )y
where d¥)(t,0) = d(t,0)/Zwf¥)(t,0),

Bwd(x) = [Z7 W(x,0)d(x - €,6)d0 is the attenuated
backprOJectlon ande=1inV.
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Unknown Attenuation: lteration Once Again

New Problem: Given d € V, find {f,u} € U such that
y(f,,u,):%w(u)f—dZOEV. (3)
Iterate:

FU+1) — L (d7 £, u(k)) ok — N (d, Flket1), u(k)) _

L stands for an approximate inversion of Zy given u(%) and N for
the application of (say) Newton's method to equation (1) for
f(k+1) given.
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Some Experiments: Simulated Data

Figure below shows a 32x32 representation of functions {f, 1, A}
and the simulated attenuated Radon transform with 80 projections
views and 60 rays per view.
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Simulated data for XFCT. From left to right: density function f,
fluorescence attenuation u, transmission attenuation A and
attenuated Radon transform.
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Some Experiments: Real Data

A microscopic sample with a distribution of Copper and Zinc inside.
For the Copper sample, each projection view had 23 rays, while 20
rays for the Zinc sample. The total number of views was 60 for
both samples. Figure below shows the functions {Zu, Zwf}.

ERE

Real data. From left to right: transmission data for Cu sample,
XFCT data for Cu sample, transmission data for Zn sample and
XFCT data for Zn sample.
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Some Experiments: Simulated Data

AKT x EM with © = X and for iterations {1,2,3,4,20} (left to
right). For each block, the EM reconstruction is shown in the first

row and the AKT reconstruction in the second. Simulated case
(32x32)
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Some Experiments: Real Data

AKT x EM with p = X and for iterations {1,2,3,4,20} (left to
right). For each block, the EM reconstruction is shown in the first
row and the AKT reconstruction in the second. Cu sample (60x60)

0
0.
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Some Experiments: Real Data

AKT x EM with p = X and for iterations {1,2,3,4,20} (left to
right). For each block, the EM reconstruction is shown in the first
row and the AKT reconstruction in the second. Zn sample (60x60).
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Some Experiments: Simulated and Real Data

0.10
0.05

lterates {1(9), u(MY, for AV, using AKT for f(1)_ Initial guess (%)
was obtained using FBP of transmission data.
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Analytic Approach

An Analytic Inverse
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Another Coincidence: Notices of the AMS, november 2005

About the Cover
Anew Radon transform algorithm
This month's cover was suggested by the article of Fokas and
Sung in this issue. In an article mentioned there, Fokas, Iserle
and Marinakis describe a new algorithm for computing inverse
Radon transforms, which I used to approximate the inverse
transform of a simulated X-ray of the well-known head model—
traditionally called phantom—of Logan and Shepp. For the non-
expert, what is striking about such calculations is the odd mix-
ture of science and rough guess that goes into them, made
necessary by the awkward fit between the Radon transform and
discrete approvimation. Also the somewhat scary feeling in-
volved in dealing even with phantom tumors.

—Bill Casselman, Graphics Editor

(notices-covers@ams.org)

y of Campinas, Applied Mathemz Fluorescence Tomography and the Generalized Attenuated Ra



An Analytic Inverse

Following Fokas, the spectral analysis of the differential equation:
- Vu(x) + a(x, n)u(x) = f(x)

n=n(k) € C? k€ C.

allows us to to write the solution in terms of the GART. a =0

leads to the Radon Transform, a(x) = pu(x) to the Attenuated
Radon Transform and a(x, n) will be determined for the XFCT. In

our case
1 /1 1/1
=|=(= S . 4
OB e
IInll = o(k) and each component of 7 is analytic in k with a pole
in zero.

Alvaro R. De Pierro, University of Campinas, Applied Mathemz  Fluorescence Tomography and the Generalized Attenuated Rad



An Analytic Inverse

Changing variables x — (z,z), with z € C, defined by z = v - x
and v = v(k) € C2.

(1) o-(F) (21

The previous equation can be rewriten as

(n-v)o,u+ (n-v)osu+ a(x)u(x) = f(x). (6)
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An Analytic Inverse

We choose vector {n, v} € C? such that - v = 0 and

n-v=j(A\)=detG=—v-Jv. Put v=—Jn and denote

n(x) = (c(x), b(k))", then

J(k) = c(r)b(r) = b(r)c(r) = 2iJ(k), J(x)=Imag [C(ﬁ)@} :
(7)

Choosing 1 and v so that n- v =0 and n- v = j(k) we get

J(#)0zu + a(x, n)u(x) = f(x).
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An Analytic Inverse

Multiplying by an Euler factor e9() we decouple the equation
obtaining two d-bar equations

Os (u(x)eq(X)> — @eq(X)’ d2q(x) = M

J(r)

Define the singularity set S = {k € C: j(k) =0}
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An Analytic Inverse

And we can use for each equation the following (Fokas-Iserles,
J.R.Soc.Interface, 3, 45-54, 2006.),

Lemma
For all k ¢ S, the solution of the 0zi(x) = g(x)/j(k) is given by

oo = (549) = 520 Loty
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A Riemann-Hilbert problem

What is a scalar inhomogeneous Riemann-Hilbert (RH) problem?
Given a closed contour S and Holder continuous functions f and g

on S, find a sectionally analytic function ® with finite degree at
infinity (®(z) ~ cmz™+ O(z™ 1) as z = o0, cm # 0, z ¢ S) such
that

F(t) = g(t)o(t) + f(t)

In our case g(t) = 1.
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An Analytic Inverse: a Riemann-Hilbert problem

S determines a curve, dividing the complex plane into two regions
R* and R~, where d-bar equations determine u™ for x € R*. The
solution for all « is determined by the jump J(x) = u™(x) — u™(x)
on the curve S. Since u is an analytic function of kK € S, there exist
zg € C and § > 0 such that S is homotopic to a circle centered at
7o and radius 6. Assuming without loss of generality that § = 1,

the solution of our Riemann-Hilbert problem is given by (Ablowitz)

u(x;k) = 1/| @dz

20 J|z—g|=1 Z — K

1 [ o [—1 1

- ih(x)—i—O(:z), h(

x
N
I
o\
N
3
Q
—~
x
SN
m\.
53
Q
>
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An Analytic Inverse

Therefore, from the original equation, and with the boundary
condition u(x) = O(k~!) as kK — oo, we have

1 1 1
f(x)=— -Vh - = — 00
(x) = —n(x) - Vh(x) +a(x)0 <H> +0 <ﬁ2> , K
It only remains to compute the jump function J = J(x) in order

to evaluate h in the above equation. And after many, many, .......,
many, too many, ........ calculations ..........

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-
9590.2011.00527.x/abstract
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An Analytic Inverse

2w
) = o [ i00n.&) [P m{ e, Bwf}(x 0,0) | )
= I,2wf(x) (9)

giving rise to the inverse operator Z,. Where

r

m{r,d} =e 2 {hc(r),%" (hc(r)e5d> + hs(r) (hs(r)eéd)}
(10)
where h.(r) = cos(%%r) and hs(r) = sin(3.%r), and
O(1, &) = [D(m)] - V = i[D(n)& ] V (11)
and matrix D(n) = diag (n1(k)/k, in2(k)/K).
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An Analytic Inverse

Better

1 27
(00 =3 [ 0[P micea, g} (. 0000

(12)
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Extending to XFCT. Single angle

First step is considering the case of a fixed angle and inverting the
corresponding operator % for a fixed v € I'. The inspiration is the
nonrealistic case where v = 7, the exponentials are “parallel” and
the solution of the problem is trivial, just considering

a(x,0) = A(x,0 4+ 7) + u(x,0 + m) and Fokas approach applies in a
straightforward manner. This suggests the necessity of considering
a rotation of angle v for the next step towards a generalization.
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Extending to XFCT. Single angle. Rotation

For every given point x, the line {(x,v) = {x+ sv: s > 0} can be
mapped to the line ¢(x, —v) through the rotation operator

x(y) =2x—y (13)

and also can be mapped to the line {(x, Gyv) (for a fixed angle v,
being GT (57,§L) a 2x2 rotation matrlx) through the following
rotatlon

w'y,x()/) = G’Y(y - X) + x. (14)
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Extending to XFCT. Single angle. Rotation

Uz, —v) T Lz, v) z Uz, v)
Rotations ¢, and 1 x

The attenuation that we have to consider will be derived from

3y x(¥) = A(@x(y)) + byx(y) (15)
with b, x a function defined by
byx(y) = (3. x(¥))- (16)

And after several lemmas and lots of calculations, we get the
inverse (@7—1 for a fixed angle 7.
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Series Inversion from the fixed angle approximation

Theorem

If the fluorescence attenuation map . satisfies the inequality
ma0>)< |1 — a(x,0,8%)| <1, with a defined before, the inverse
X

)

operator . is given by the Neumann series

xfct
-1 1 o R g -1
g = = > (z - — %y %Xfct> Ry (17)
k=0

with T the identity operator, 5* = %(’}’1 +v2), m =7 — 1 and
R} from before.

In practical experiments, the angle section I', is symmetrically chosen to
verify I C [0, 7]. So, the optimal angle 3* is 5 and the condition above
is always satisfied since there is a minimum in the amount of scattered
photons at 5 and therefore the total fluorescence attenuation (the
divergent beam transform of 1) is stationary at this angle.
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Series Inversion from the fixed angle approximation

Now, using the same change of variables as before, we define the
function a, for fixed but arbitrary values of x, by

a(x,m) = AM¢x(x)) + byx(x), (18)
where x = ¢,(x) and b = by «(x) such that

1 g
@bn,X(Xa 7]) =—In— eij#(X,G’yn)de) (19)
M Jr(x)

Since Y is a positive function and fr dvy e~ 7" < m, the above
logarithm is well defined, i.e., b > 0.

Alvaro R. De Pierro, University of Campinas, Applied Mathemz  Fluorescence Tomography and the Generalized Attenuated Rad



An Analytic Inverse

If (t, p) is the change of variables in x = t§ + p&l, m=~vy -7
foct(Xa 0) = e_DA(X,e—HT) / e_DM(X,&H—W)d’Y'
r

and
p(t,0) = Z\(t,0) + Zb(t,0) and Zb defined by.

Zb(x-E9,0) = —1In [12 < / e—DM(Xﬁﬂ”)dy) ( / e—Dﬂ(xﬁﬂ)dfyﬂ :
m r r

and

r

mir,d} = % {h(n) " (he(r)efd) + hs(r) 7 (h(r)eid) }
with he(r) = cos(3.#r) and hs(r) = sin(5°r). 20
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An Analytic Inverse: Finally

1 27 1

f(x) = ), Ot [mw;%t(x, 0)m {p, m%Xfctf} (x-&, 9)] @a)
1 27

- E 0 O [w;’it(x7 H)m{p, %xfctf}(x &, 9)] do (22)

= Aot (%) (23)
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Some Experiments: Simulated Data

g

Simulated data: {f1, A1, p1, Zuetfi }, (256 x 256), sinograms
obtained with M = 360 views and N = 400 rays per view.
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Some Experiments: Simulated Data

a0
o 12 3 o4 5 o 02 04 05 o 05 o 5 3

Simulated data: {f2, A2, p2, Zxsctf2}, (80 x 80), sinograms
obtained with M = 360 views and N = 400 rays per view.
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Some Experiments: Simulated Data

LRI

| I EEEE—— WU

0 02 0.4 0.6 038 1.0 1.2

xfct inversion. From left to right: true density map, ;fcltd and
(mZs+)~1d for f
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Some Experiments: Simulated Data

EEENENTT 0 T 100

0 1 2 3 4 5 6

xfct inversion. From left to right: true density map, ;fcltd and
(mZs+)~1d for f
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Some Experiments: Real Data

EEET 0000 T o
5

0 1 2 3 4

Sequence of partial sums of the approximating series for real data
using pt = .
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What is left: Too Many Things

» An extended comparison of all the methods for different types
of data (there are many combinations)
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What is left: Too Many Things

» An extended comparison of all the methods for different types
of data (there are many combinations)

» What is valid for SPECT?
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What is left: Too Many Things

» An extended comparison of all the methods for different types
of data (there are many combinations)

» What is valid for SPECT?

> A reasonable implementation of the analytic formulas. Better
filtering?
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What is left: Too Many Things

» An extended comparison of all the methods for different types
of data (there are many combinations)

» What is valid for SPECT?

> A reasonable implementation of the analytic formulas. Better
filtering?

» 3D7.
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What is left: Too Many Things

» An extended comparison of all the methods for different types
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Diffractive data (main direction now)
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Thanks
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Questions?

Sundown, Uraricoera River, North of the Amazon
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