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Options, Derivatives, Futures

Why?

HEDGING Risk Reduction/Protection

When? Anytime there is uncertainty

Who? LOTS OF PEOPLE! (Derivative markets are bigger than the
underlying ones!)
Examples

Fixed Income (otc, bonds, etc)
Insurance Markets
Pension Funds
Currency Markets

Remark: Good estimation of the local volatility is crucial for the consistent
pricing of other contracts (in particular exotic derivatives).
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Derivative Contracts

European Call Option: a forward contract that gives the holder the right, but
not the obligation, to buy one unit of an underlying asset for an agreed strike
price K on the maturity date T .

Its payoff is given by

h(XT ) =

{
XT −K if XT > K ,

0 if XT ≤ K .
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Derivative Contracts

European Put Option: a forward contract that gives the holder the right to sell
a unit of the asset for a strike price K at the maturity date T . Its payoff is

h(XT ) =

{
K −XT if XT < K ,

0 if XT ≥ K .

At other times, the contract has a value known as the derivative price. The
option price at time t with stock price Xt = x is denoted by P(t,x).
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Call and Put Payoffs

Figure: The payoff associated to call and put options

Fundamental Question: How to price such an obligation fairly given today’s
information?
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How to address the pricing problem?
Black-Scholes Market Model

Assume two assets: a risky stock and a riskless bond.

dXt = µXtdt + σXtdWt ,

where Wt is a standard Brownian Motion and volatility σ is constant

dβt = rβtdt.

Under a number of assumptions one gets: The Black-Scholes Equation

∂P
∂t

+
1
2

σ
2x2 ∂2P

∂x2 + r

(
x

∂P
∂x
−P

)
= 0

P(T ,x) = h(x)

Note 1: P = P(t,x ;σ, r) for t ≤ T .
Note 2: Final Value Problem
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Main Contributions

Figure: L. Bachelier
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Figure: R. Merton
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Figure: Example of Data from IBOVESPA
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Figure: Example of the Solution to Black-Scholes
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Motivation and Goals

Good model selection is crucial for modern sound financial practice.

Focus: Dupire [Dup94] local volatility models
Goal:

Present a unified framework for the calibration of local volatility models

Use recent tools of convex regularization of ill-posed Inverse Problems.

Present convergence results that include convergence rates w.r.t. noise
level in fairly general contexts

Go beyond the classical quadratic regularization.

Application
Volatility surface calibration is crucial in many applications. E.G.: risk
management, hedging, and the evaluation of exotic derivatives.
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Main Features

Address in a general and rigorous way the key issue of convergence and
sensitivity of the regularized solution when the noise level of the observed
prices goes to zero.

Our approach relates to different techniques in volatility surface
estimation. e.g.: the Statistical concept of exponential families and
entropy-based estimation.

Our framework connects with the Financial concept of Convex Risk
Measures.

Regularization of Local Vol c©J.P.Zubelli (IMPA)
September 2, 2011 14 /

55



Limitations of Classical Black-Scholes

log-normality of asset prices is not verified by statistical tests

option prices are subjet to the smile effects

volatility of the prices tends fluctuate with time and revert to a mean value
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Local Volatility Models

Idea: Assume that the volatility is given by

σ = σ(t,x)

i.e.: it depends on time and the asset price.

Easy to check that the Black-Scholes eq. holds.

∂P
∂t

+
1
2

σ(t,x)2x2 ∂2P
∂x2 + r

(
x

∂P
∂x
−P

)
= 0 (1)

P(T ,x) = h(x) (2)

or in the case you have dividends:

∂P
∂t

+
1
2

σ(t,x)2x2 ∂2P
∂x2 + (r −d)x

∂P
∂x
− rP = 0

P(T ,x) = h(x)

The Direct Problem:
Given σ = σ(t,x) and the payoff information, determine P = P(t,x ,T ,K ;σ)
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The Inverse Problem

Given a set of observed prices

{P = P(t,x ,T ,K ;σ)}(T ,K )∈S

find the volatility σ = σ(t,x).
The set S is taken typically as [T1,T2]× [K1,K2].
Caveat: The data is not realistic at all!!!

In Practice: Very limited and scarce data
Note: To price in a consistent way the so-called exotic derivatives one has to
know σ and not only the transition probabilities
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The Smile Curve and Dupire’s Equation

Assuming that there exists a local volatility function σ = σ(S, t) for which (1)
holds Dupire(1994) showed that the call price satisfies{

∂T C− 1
2 σ2(K ,T )K 2∂2

K C + rS∂K C = 0 , S > 0 , t < T
C(K ,T = 0) = (S−K )+ ,

(3)

Theoretical: way of evaluating the local volatility

σ(K ,T ) =

√
2

(
∂T C + rK ∂K C

K 2∂2
K C

)
(4)

In practice To estimate σ from (3), limited amount of discrete data and thus
interpolate. Numerical instabilities! Even to keep the argument positive is hard.
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Many interpretations of Local Vol Models

1 Stochastic Clock (time of trading)
2 Local vol as a weighted average of the implied volatility over all possible

scenarios. (IMPORTANT RESULT!!!)

σ
2(K ,T ,S0) = E [vT |ST = K ] ,

where vT is the implied variance.

Remark: Good estimation of the local volatility is crucial for the consistent
pricing of exotics. In fact, prices of exotics based on constant volatility can lead
to pretty wrong results.
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Problem Statement

Starting Point: Dupire forward equation [Dup94]

−∂T U +
1
2

σ
2(T ,K )K 2

∂
2
K U− (r −q)K ∂K U−qU = 0 , T > 0 , (5)

K = S0ey , τ = T − t , b = q− r , u(τ,y) = eqτU t,S(T ,K ) (6)

and

a(τ,y) =
1
2

σ
2(T − τ;S0ey ) , (7)

Set q = r = 0 for simplicity to get:

uτ = a(τ,y)(∂
2
y u−∂y u) (8)

and initial condition
u(0,y) = S0(1−ey )+ (9)
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Problem Statement

The Vol Calibration Problem
Given an observed set

{u = u(t,S,T ,K ;σ)}(T ,K )∈S

find σ = σ(t,S) that best fits such market data

Noisy data: u = uδ

Admissible convex class of calibration parameters:

D(F) := {a ∈ a0 + H1+ε(Ω) : a≤ a≤ a}. (10)

where, for 0≤ ε fixed, U := H1+ε(Ω) and a > a > 0.

Parameter-to-solution operator

F : D(F)⊂ H1+ε(Ω)→ L2(Ω)

F(a) = u(a) (11)
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Well-Posed and Ill-Posed Problems

Hadamard’s definition of well-posedness:

Existence

Uniqueness

Stability

The problem under consideration: Ill-posed.
Equation:

F(a) = u

Need Regularization:
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Regularization

Requirements:

Stability: Computed solution should depend continuously on data.
Stability bounds for the solution.

Approximation: Computed solution should be close to the solution of
equation for noise-free data

Nonlinear Problems: Tikhonov regularization.
Classical Theory: Add a quadratic regularization term.
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Approach

Theorem (Egger-Engel[EE05] Crepey[Cré03])
The parameter to solution map

F : H1+ε(Ω)→ L2(Ω)

is

weak sequentialy continuous

compact and weakly closed

Consequences:

The inverse problem is ill-posed.

We can prove that the inverse problem satisfies the conditions to apply the
regularization theory.
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Approach

Convex Tikhonov Regularization
For given convex f minimize the Tikhonov functional

F
β,uδ(a) := ||F(a)−uδ||2L2(Ω) + βf (a) (12)

over D(F), where, β > 0 is the regularization parameter.

Remark that f incorporates the a priori info on a.

||ū−uδ||L2(Ω) ≤ δ , (13)

where ū is the data associated to the actual value â ∈D(F).

Assumption (very general!)

Let ε≥ 0 be fixed. f : D(f )⊂ H1+ε(Ω)−→ [0,∞] is a convex, proper and
sequentially weakly lower semi-continuous functional with domain D(f )
containing D(F).
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where ū is the data associated to the actual value â ∈D(F).
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where ū is the data associated to the actual value â ∈D(F).
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Questions

Questions:
Does there exist a minimizer of the regularized problem?

Suppose that the noise level goes to zero... How fast does the regularized
go to the true solution?
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Main Theoretical Result
F(a) = u(a) (11) F

β,uδ(a) := ||F(a)−uδ||2L2(Ω) +βf (a) (12)

Theorem (Existence, Stability, Convergence)

For the regularized inverse problem

F(a) = u (14)

we have:

∃ minimizer of F
β,uδ .

If (uk )→ u in L2(Ω), then ∃ a seq. (ak ) s.t.

ak ∈ argmin
{

Fβ,uk (a) : a ∈D
}

has a subsequence which converges weakly to ã

ã ∈ argmin
{

Fβ,uk (a) : a ∈D
}
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Main Theoretical Result (cont)
F(a) = u(a) (11) F

β,uδ(a) := ||F(a)−uδ||2L2(Ω) +βf (a) (12)

Theorem (cont.) NOISY CASE

Take β = β(δ) > 0 and assume

β(δ) satisfies

β(δ)→ 0 and
δ2

β(δ)
→ 0 , as δ→ 0 . (15)

The seq. (δk ) converges to 0, and that uk := uδk satisfies ‖ū−uk‖ ≤ δk .

Then,
1 Every seq. (ak ) ∈ argminFβk ,uk , has weak-convergent subseq. (ak ′).
2 The limit a† := w− limak ′ is an f -minimizing solution of (11), and

f (ak )→ f (a†).
3 If the f -minimizing solution a† is unique, then ak → a† weakly.
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Bregman distance

Let f be a convex function. For a ∈D(f ) and ∂f (a) the subdifferential of the
functional f at a.
We denote by D(∂f ) = {ã : ∂f (ã) 6= /0} the domain of the subdifferential.
The Bregman distance w.r.t ζ ∈ ∂f (a1) is defined on D(f )×D(∂f ) by

Dζ(a2,a1) = f (a2)− f (a1)−〈ζ,a2−a1〉 .

Assumption (1)

We assume that
1 ∃ an f -minimizing sol. a† of (11), a† ∈DB(f ).
2 ∃β1 ∈ [0,1), β2 ≥ 0, and ζ† ∈ ∂f (a†) s.t.

〈ζ†,a†−a〉 ≤ β1Dζ†(a,a†) + β2
∥∥F(a)−F(a†)

∥∥2

L
(Ω) for a ∈Mβmax(ρ) ,

(16)
where ρ > βmaxf (a†) > 0.
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Convergence rates [SGG+08]

Theorem (Convergence rates [SGG+08])

Let F , f , D , H1+ε(Ω), and L2(Ω) satisfy Assumption 1. Moreover, let
β : (0,∞)→ (0,∞) satisfy β(δ)∼ δ. Then

Dζ†(aδ

β
,a†) = O(δ) ,

∥∥∥F(aδ

β
)−uδ

∥∥∥
L2(Ω)

= O(δ) ,

and there exists c > 0, such that f (aδ

β
)≤ f (a†) + δ/c for every δ with

β(δ)≤ βmax.

Example: The regularization functional f as the Boltzmann-Shannon entropy

f (a) =
∫

Ω
a log(a)dx , a ∈D(F) ,
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Putting it all together
NOTE: We have proved

We have also proved a tangential cone condition for this problem, which implies
that the Landwever iteration converges in a suitable neighborhood. Landweber
Iteration [EHN96]:

aδ
k+1 = aδ

k + cF ′(aδ
k )∗(uδ−F(aδ

k )) . (17)

Discrepancy Principle:∥∥∥uδ−F(aδ

k∗(δ,yδ)
)
∥∥∥ ≤ rδ <

∥∥∥uδ−F(aδ
k )
∥∥∥ , (18)

where

r > 2
1 + η

1−2η
, (19)

is a relaxation term.
If the iteration is stopped at index k∗(δ,yδ) such that for the first time, the
residual becomes small compared to the quantity rδ.
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Numerical Examples with Simulated Data
Description of the Examples

Using a Landweber iteration technique we implemented the calibration.

Produced for different test variances a the option prices and added
different levels of multiplicative noise.

The examples consisted of perturbing a = 1 during a period of
T = 0, · · · ,0.2 and log-moneyness y varying between −5 and 5.

Initial guess: Constant volatility.
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Numerical Examples - Exact Solution
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Numerical Examples - Exact Solution

Regularization of Local Vol c©J.P.Zubelli (IMPA)
September 2, 2011 35 /

55



Numerical Examples 1 - noiseless - 4000 steps
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Numerical Examples 1 - error - 100 steps
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Numerical Examples 1 - error - 300 steps
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Numerical Examples 1 - error - 500 steps
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Numerical Examples 1 - error - 1000 steps

Regularization of Local Vol c©J.P.Zubelli (IMPA)
September 2, 2011 40 /

55



Numerical Examples 1 - error - 2000 steps
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Numerical Examples 1 - error - 4000 steps
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Numerical Examples 2 - 5% noise level - 100 steps
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Numerical Examples 2 - 5% noise level - 200 steps
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Numerical Examples 2 - 5% noise level - 300 steps
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Numerical Examples 2 - 5% noise level - 400 steps
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Numerical Examples 2 - 5% noise level - Stopping criteria
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Numerical Examples 2 - 5% noise level - 2000 iterations
Too many!!!
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Numerical Examples: with Real Data
Reconstruction of a = σ2/2 with PBR Stock Data (implemented by Vinicius L. Albani/IMPA)

Figure: Minimal Entropy functional / Landweber Method / a priori Implied Vol /
maturities: 2010-11
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Numerical Examples: with Real Data
Reconstruction of a with PBR Stock Data (implemented by Vinicius L. Albani/IMPA)

Figure: Minimal Entropy functional / Minimization (Levenberg-Marquadt) Method /
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Conclusions

The problem of volatility surface calibration is a classical and fundamental
one in Quantitative Finance

Unifying framework for the regularization that makes use of tools from
Inverse Problem theory and Convex Analysis.

Establishing convergence and convergence-rate results.

Obtain convergence of the regularized solution with respect to the noise
level in L1(Ω)

The connection with exponential families opens the door to recent works
on entropy-based estimation methods.

The connection with convex risk measures required the use of techniques
from Malliavin calculus.

Implemented a Landweber type calibration algorithm.

.
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