Non-quadratic Regularization of the Inverse Problem Associated to the Black-Scholes PDE UNDER CAPRICORN¹ Thanks to Antonio Leitao!!!

> V. Albani (IMPA) A. De Cezaro (FURG,Brazil) O. Scherzer (U.Vienna, Austria) Jorge P. Zubelli

> > IMPA

September 2, 2011

¹credit to Alvaro De Pierro

Outline

Intro

- 2 Motivation and Goals
- Background
- Problem Statement and Results on Local Vol Models
- 5 Main Technical Results
- 6 Numerical Examples
 - Conclusions

• Why?

Regularization of Local Vol

・ロト ・ 日 ・ ・ 正 ・ ・

• Why? HEDGING

©J.P.Zubelli (IMPA)

▶ ▲ 圖 ▶ ▲ 圖 ▶

• Why? HEDGING Risk Reduction/Protection

- Why? HEDGING Risk Reduction/Protection
- When?

-∰ ▶ < È ▶

- Why? HEDGING Risk Reduction/Protection
- When? Anytime there is uncertainty

- Why? HEDGING Risk Reduction/Protection
- When? Anytime there is uncertainty
- Who?

- Why? HEDGING Risk Reduction/Protection
- When? Anytime there is uncertainty
- Who? LOTS OF PEOPLE! (Derivative markets are bigger than the underlying ones!)
- Examples

- Why? HEDGING Risk Reduction/Protection
- When? Anytime there is uncertainty
- Who? LOTS OF PEOPLE! (Derivative markets are bigger than the underlying ones!)
- Examples
 - Fixed Income (otc, bonds, etc)
 - Insurance Markets
 - Pension Funds
 - Currency Markets

- Why? HEDGING Risk Reduction/Protection
- When? Anytime there is uncertainty
- Who? LOTS OF PEOPLE! (Derivative markets are bigger than the underlying ones!)
- Examples
 - Fixed Income (otc, bonds, etc)
 - Insurance Markets
 - Pension Funds
 - Currency Markets

Remark: Good estimation of the local volatility is crucial for the consistent pricing of other contracts (in particular exotic derivatives).

European Call Option: a forward contract that gives the holder the right, but not the obligation, to buy one unit of an underlying asset for an agreed *strike price* K on the *maturity* date T.

European Call Option: a forward contract that gives the holder the right, but not the obligation, to buy one unit of an underlying asset for an agreed *strike price* K on the *maturity* date T. Its payoff is given by

$$h(X_T) = \begin{cases} X_T - K & \text{if } X_T > K, \\ 0 & \text{if } X_T \le K. \end{cases}$$

European Put Option: a forward contract that gives the holder the right to sell a unit of the asset for a strike price K at the maturity date T. Its payoff is

$$h(X_T) = \begin{cases} K - X_T & \text{if } X_T < K, \\ 0 & \text{if } X_T \ge K. \end{cases}$$

At other times, the contract has a value known as the *derivative price*. The option price at time *t* with stock price $X_t = x$ is denoted by P(t, x).

Call and Put Payoffs

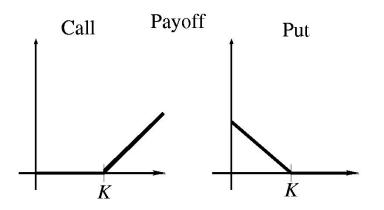


Figure: The payoff associated to call and put options

Fundamental Question: How to price such an obligation fairly given today's information?

How to address the pricing problem?

Black-Scholes Market Model

Assume two assets: a risky stock and a riskless bond.

 $\mathrm{d}X_t = \mu X_t \mathrm{d}t + \mathbf{\sigma}X_t \mathrm{d}W_t,$

where W_t is a standard Brownian Motion and volatility σ is constant

 $d\beta_t = r\beta_t dt.$

How to address the pricing problem?

Black-Scholes Market Model

Assume two assets: a risky stock and a riskless bond.

 $\mathrm{d}X_t = \mu X_t \mathrm{d}t + \mathbf{\sigma}X_t \mathrm{d}W_t,$

where W_t is a standard Brownian Motion and volatility σ is constant

 $d\beta_t = r\beta_t dt.$

Under a number of assumptions one gets: The Black-Scholes Equation

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 P}{\partial x^2} + r\left(x\frac{\partial P}{\partial x} - P\right) = 0$$
$$P(T, x) = h(x)$$

How to address the pricing problem?

Black-Scholes Market Model

Assume two assets: a risky stock and a riskless bond.

 $\mathrm{d}X_t = \mu X_t \mathrm{d}t + \mathbf{\sigma}X_t \mathrm{d}W_t,$

where W_t is a standard Brownian Motion and volatility σ is constant

 $d\beta_t = r\beta_t dt.$

Under a number of assumptions one gets: The Black-Scholes Equation

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 P}{\partial x^2} + r\left(x\frac{\partial P}{\partial x} - P\right) = 0$$
$$P(T, x) = h(x)$$

Note 1: $P = P(t, x; \sigma, r)$ for $t \leq T$.

Black-Scholes Market Model

Assume two assets: a risky stock and a riskless bond.

 $\mathrm{d}X_t = \mu X_t \mathrm{d}t + \mathbf{\sigma}X_t \mathrm{d}W_t,$

where W_t is a standard Brownian Motion and volatility σ is constant

 $d\beta_t = r\beta_t dt.$

Under a number of assumptions one gets: The Black-Scholes Equation

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma^2 x^2 \frac{\partial^2 P}{\partial x^2} + r\left(x\frac{\partial P}{\partial x} - P\right) = 0$$
$$P(T, x) = h(x)$$

Note 1: $P = P(t, x; \sigma, r)$ for $t \le T$. **Note 2:** Final Value Problem

Figure: L. Bachelier

- L. Bachelier (Paris)
- P. Samuelson
- F. Black
- M. Scholes
- R. Merton

Figure: P. Samuelson

- L. Bachelier (Paris)
- P. Samuelson
- F. Black
- M. Scholes
- R. Merton

Figure: R. Merton

- L. Bachelier (Paris)
- P. Samuelson
- F. Black
- M. Scholes
- R. Merton

Image: A matched block of the second seco

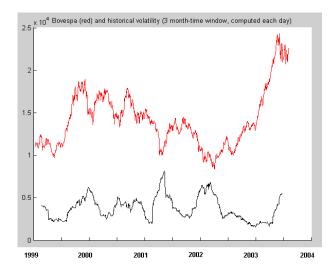


Figure: Example of Data from IBOVESPA

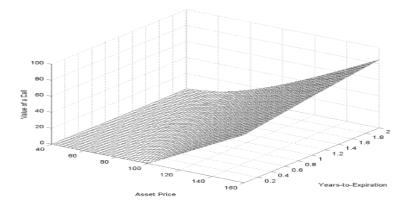


Figure: Example of the Solution to Black-Scholes

Good model selection is crucial for modern sound financial practice.

A (1) > (1) =

55

• Present a unified framework for the calibration of local volatility models

- Present a unified framework for the calibration of local volatility models
- Use recent tools of convex regularization of ill-posed Inverse Problems.

- Present a unified framework for the calibration of local volatility models
- Use recent tools of convex regularization of ill-posed Inverse Problems.
- Present convergence results that include convergence rates w.r.t. noise level in fairly general contexts

- Present a unified framework for the calibration of local volatility models
- Use recent tools of convex regularization of ill-posed Inverse Problems.
- Present convergence results that include convergence rates w.r.t. noise level in fairly general contexts
- Go beyond the classical quadratic regularization.

- Present a unified framework for the calibration of local volatility models
- Use recent tools of convex regularization of ill-posed Inverse Problems.
- Present convergence results that include convergence rates w.r.t. noise level in fairly general contexts
- Go beyond the classical quadratic regularization.

Application

Volatility surface calibration is crucial in many applications. E.G.: risk management, hedging, and the evaluation of exotic derivatives.

- Address in a general and rigorous way the key issue of convergence and sensitivity of the regularized solution when the noise level of the observed prices goes to zero.
- Our approach relates to different techniques in volatility surface estimation. e.g.: the Statistical concept of exponential families and entropy-based estimation.
- Our framework connects with the Financial concept of Convex Risk Measures.

- log-normality of asset prices is not verified by statistical tests
- option prices are subjet to the smile effects
- volatility of the prices tends fluctuate with time and revert to a mean value

Local Volatility Models

Idea: Assume that the volatility is given by

 $\sigma = \sigma(t, x)$

i.e.: it depends on time and the asset price.

Local Volatility Models

Idea: Assume that the volatility is given by

 $\sigma = \sigma(t, x)$

i.e.: it depends on time and the asset price. Easy to check that the Black-Scholes eq. holds.

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma(t,x)^2 x^2 \frac{\partial^2 P}{\partial x^2} + r\left(x\frac{\partial P}{\partial x} - P\right) = 0$$
(1)
$$P(T,x) = h(x)$$
(2)

Local Volatility Models

Idea: Assume that the volatility is given by

 $\sigma = \sigma(t, x)$

i.e.: it depends on time and the asset price. Easy to check that the Black-Scholes eq. holds.

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma(t,x)^2 x^2 \frac{\partial^2 P}{\partial x^2} + r\left(x\frac{\partial P}{\partial x} - P\right) = 0 \tag{1}$$
$$P(T,x) = h(x) \tag{2}$$

or in the case you have dividends:

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma(t,x)^2 x^2 \frac{\partial^2 P}{\partial x^2} + (r-d)x \frac{\partial P}{\partial x} - rP = 0$$

 $P(T,x) = h(x)$

Local Volatility Models

Idea: Assume that the volatility is given by

 $\sigma = \sigma(t, x)$

i.e.: it depends on time and the asset price. Easy to check that the Black-Scholes eq. holds.

$$\frac{\partial P}{\partial t} + \frac{1}{2}\sigma(t,x)^2 x^2 \frac{\partial^2 P}{\partial x^2} + r\left(x\frac{\partial P}{\partial x} - P\right) = 0$$
(1)
$$P(T,x) = h(x)$$
(2)

or in the case you have dividends:

$$\frac{\partial P}{\partial t} + \frac{1}{2} \frac{\sigma(t, x)^2 x^2}{\partial x^2} \frac{\partial^2 P}{\partial x^2} + (r - d) x \frac{\partial P}{\partial x} - rP = 0$$

 $P(T, x) = h(x)$

The Direct Problem:

Given $\sigma = \sigma(t, x)$ and the payoff information, determine $P = P(t, x, T, K; \sigma)$

Regularization of Local Vol

©J.P.Zubelli (IMPA)

Given a set of observed prices

$$\{P = P(t, x, T, K; \sigma)\}_{(T,K)\in\mathcal{S}}$$

find the volatility $\sigma = \sigma(t, x)$. The set S is taken typically as $[T_1, T_2] \times [K_1, K_2]$. **Caveat:** The data is not realistic at all!!!

Given a set of observed prices

$$\{P = P(t, x, T, K; \sigma)\}_{(T,K)\in\mathcal{S}}$$

find the volatility $\sigma = \sigma(t, x)$. The set S is taken typically as $[T_1, T_2] \times [K_1, K_2]$. **Caveat:** The data is not realistic at all!!! In Practice: Very limited and scarce data

Given a set of observed prices

$$\{P = P(t, x, T, K; \sigma)\}_{(T, K) \in \mathcal{S}}$$

find the volatility $\sigma = \sigma(t, x)$.

The set S is taken typically as $[T_1, T_2] \times [K_1, K_2]$.

Caveat: The data is not realistic at all!!!

In Practice: Very limited and scarce data

Note: To price in a consistent way the so-called exotic derivatives one has to know σ and not only the transition probabilities

© J.P.Zubelli (IMPA)

Assuming that there exists a local volatility function $\sigma = \sigma(S, t)$ for which (1) holds Dupire(1994) showed that the call price satisfies

$$\begin{cases} \partial_T C - \frac{1}{2} \sigma^2(K, T) K^2 \partial_K^2 C + r S \partial_K C = 0, \quad S > 0, t < T \\ C(K, T = 0) = (S - K)^+, \end{cases}$$

$$(3)$$

Theoretical: way of evaluating the local volatility

Assuming that there exists a local volatility function $\sigma = \sigma(S, t)$ for which (1) holds Dupire(1994) showed that the call price satisfies

$$\begin{cases} \partial_T C - \frac{1}{2} \sigma^2(K, T) K^2 \partial_K^2 C + r S \partial_K C = 0, \quad S > 0, t < T \\ C(K, T = 0) = (S - K)^+, \end{cases}$$
(3)

Theoretical: way of evaluating the local volatility

$$\sigma(K,T) = \sqrt{2\left(\frac{\partial_T C + rK\partial_K C}{K^2 \partial_K^2 C}\right)}$$
(4)

In practice To estimate σ from (3), limited amount of discrete data and thus interpolate.

Assuming that there exists a local volatility function $\sigma = \sigma(S, t)$ for which (1) holds Dupire(1994) showed that the call price satisfies

$$\begin{cases} \partial_T C - \frac{1}{2} \sigma^2(K, T) K^2 \partial_K^2 C + r S \partial_K C = 0, \quad S > 0, t < T \\ C(K, T = 0) = (S - K)^+, \end{cases}$$
(3)

Theoretical: way of evaluating the local volatility

$$\sigma(K,T) = \sqrt{2\left(\frac{\partial_T C + rK\partial_K C}{K^2 \partial_K^2 C}\right)}$$
(4)

In practice To estimate σ from (3), limited amount of discrete data and thus interpolate. Numerical instabilities! Even to keep the argument positive is hard.

- Stochastic Clock (time of trading)
- Local vol as a weighted average of the implied volatility over all possible scenarios. (IMPORTANT RESULT!!!)

$$\sigma^2(K,T,S_0) = \mathbb{E}\left[v_T | S_T = K\right] ,$$

where v_T is the implied variance.

Remark: Good estimation of the local volatility is crucial for the consistent pricing of exotics. In fact, prices of exotics based on constant volatility can lead to pretty wrong results.

Problem Statement

Starting Point: Dupire forward equation [Dup94]

$$-\partial_{T}U + \frac{1}{2}\sigma^{2}(T,K)K^{2}\partial_{K}^{2}U - (r-q)K\partial_{K}U - qU = 0, \quad T > 0, \quad (5)$$

$$\mathcal{K} = S_0 e^{\mathcal{Y}}, \, \tau = \mathcal{T} - t, \, b = q - r, \quad u(\tau, \mathcal{Y}) = e^{q\tau} U^{t,S}(\mathcal{T}, \mathcal{K}) \tag{6}$$

and

$$a(\tau, y) = \frac{1}{2}\sigma^2(T - \tau; S_0 e^y), \qquad (7)$$

Set q = r = 0 for simplicity to get:

$$u_{\tau} = a(\tau, y)(\partial_y^2 u - \partial_y u) \tag{8}$$

and initial condition

$$u(0, y) = S_0(1 - e^y)^+$$
(9)

55

Problem Statement

The Vol Calibration Problem

Given an observed set

$$\{u = u(t, S, T, K; \sigma)\}_{(T,K) \in S}$$

find $\sigma = \sigma(t, S)$ that best fits such market data

Noisy data: $u = u^{\delta}$

Admissible convex class of calibration parameters:

$$\mathcal{D}(F) := \{ a \in a_0 + H^{1+\varepsilon}(\Omega) : \underline{a} \le a \le \overline{a} \}.$$
(10)

where, for $0 \leq \epsilon$ fixed, $U := H^{1+\epsilon}(\Omega)$ and $\overline{a} > \underline{a} > 0$.

Parameter-to-solution operator

$$F: \mathcal{D}(F) \subset H^{1+\varepsilon}(\Omega) \to L^2(\Omega)$$

$$F(a) = u(a)$$

- Avellaneda et al.
 [ABF⁺00, Ave98c, Ave98b, Ave98a, AFHS97]
- Bouchev & Isakov [BI97]
- Crepey [Cré03]
- Derman et al. [DKZ96]
- Egger & Engl [EE05]
- Hofmann et al. [HKPS07, HK05]
- Jermakyan [BJ99]
- Achdou & Pironneau (2004)

- Abken et al. (1996)
- Ait Sahalia, Y & Lo, A (1998)
- Berestycki et al. (2000)
- Buchen & Kelly (1996)
- Coleman et al. (1999)
- Cont, Cont & Da Fonseca (2001)
- Jackson et al. (1999)
- Jackwerth & Rubinstein (1998)

- Jourdain & Nguyen (2001)
- Lagnado & Osher (1997)
- Samperi (2001)
- Stutzer (1997)

Hadamard's definition of well-posedness:

- Existence
- Uniqueness
- Stability

Hadamard's definition of well-posedness:

- Existence
- Uniqueness
- Stability

The problem under consideration: Ill-posed. Equation:

$$F(a) = u$$

Hadamard's definition of well-posedness:

- Existence
- Uniqueness
- Stability

The problem under consideration: Ill-posed. Equation:

$$F(a) = u$$

Need Regularization:

Requirements:

- Stability: Computed solution should depend continuously on data. Stability bounds for the solution.
- Approximation: Computed solution should be close to the solution of equation for noise-free data

© J.P.Zubelli (IMPA)

Requirements:

- Stability: Computed solution should depend continuously on data. Stability bounds for the solution.
- Approximation: Computed solution should be close to the solution of equation for noise-free data

© J.P.Zubelli (IMPA)

Nonlinear Problems: Tikhonov regularization. Classical Theory: Add a quadratic regularization term.

Theorem (Egger-Engel[EE05] Crepey[Cré03])

The parameter to solution map

$$F: H^{1+\varepsilon}(\Omega) \rightarrow L^2(\Omega)$$

is

- weak sequentialy continuous
- compact and weakly closed

Consequences:

- The inverse problem is ill-posed.
- We can prove that the inverse problem satisfies the conditions to apply the regularization theory.

Approach

Convex Tikhonov Regularization

For given convex f minimize the Tikhonov functional

$$\mathcal{F}_{eta,u^{\delta}}(a) := ||F(a) - u^{\delta}||^2_{L^2(\Omega)} + eta f(a)$$

over $\mathcal{D}(F)$, where, $\beta > 0$ is the regularization parameter.

Remark that *f* incorporates the *a priori* info on *a*.

(12)

Approach

Convex Tikhonov Regularization

For given convex f minimize the Tikhonov functional

$$\mathcal{F}_{eta,u^{\delta}}(a) := ||m{ extsf{F}}(a) - u^{\delta}||^2_{L^2(\Omega)} + eta f(a)$$

over $\mathcal{D}(F)$, where, $\beta > 0$ is the regularization parameter.

Remark that *f* incorporates the *a priori* info on *a*.

$$||\bar{u} - u^{\delta}||_{L^2(\Omega)} \le \delta, \tag{13}$$

where \bar{u} is the data associated to the actual value $\hat{a} \in \mathcal{D}(F)$.

(12)

Approach

Convex Tikhonov Regularization

For given convex f minimize the Tikhonov functional

$$\mathcal{F}_{eta,u^{\delta}}(a) := ||m{F}(a) - u^{\delta}||^2_{L^2(\Omega)} + eta f(a)$$

over $\mathcal{D}(F)$, where, $\beta > 0$ is the regularization parameter.

Remark that *f* incorporates the *a priori* info on *a*.

$$|\bar{u} - u^{\delta}||_{L^2(\Omega)} \le \delta, \tag{13}$$

where \bar{u} is the data associated to the actual value $\hat{a} \in \mathcal{D}(F)$.

Assumption (very general!)

Let $\varepsilon \ge 0$ be fixed. $f : \mathcal{D}(f) \subset H^{1+\varepsilon}(\Omega) \longrightarrow [0,\infty]$ is a convex, proper and sequentially weakly lower semi-continuous functional with domain $\mathcal{D}(f)$ containing $\mathcal{D}(F)$.

(12)

Questions:

• Does there exist a minimizer of the regularized problem?

▶ < □ ▶ < □</p>

55

Questions:

- Does there exist a minimizer of the regularized problem?
- Suppose that the noise level goes to zero... How fast does the regularized go to the true solution?

Questions:

- Does there exist a minimizer of the regularized problem?
- Suppose that the noise level goes to zero... How fast does the regularized go to the true solution?

F

Theorem (Existence, Stability, Convergence)

For the regularized inverse problem

$$F(a) = u \tag{14}$$

we have:

- \exists minimizer of $\mathcal{F}_{\beta,u^{\delta}}$.
- If $(u_k) \rightarrow u$ in $L^2(\Omega)$, then \exists a seq. (a_k) s.t.

$$a_k \in \mathit{argmin}ig\{\mathcal{F}_{eta, u_k}(a): a \in \mathcal{D}ig\}$$

has a subsequence which converges weakly to \tilde{a}

• $\widetilde{a} \in argmin ig\{ \mathcal{F}_{eta, u_k}(a) : a \in \mathcal{D} ig\}$

55

医子宫下子 医

Main Theoretical Result (cont)F(a) = u(a) (11) $\mathcal{F}_{\beta,u^{\delta}}(a) := ||F(a) - u^{\delta}||^{2}_{L^{2}(\Omega)} + \beta f(a)$ (12)

Theorem (cont.) NOISY CASE

Take $\beta=\beta(\delta)>0$ and assume

β(δ) satisfies

$$eta(\delta) o 0 ext{ and } rac{\delta^2}{eta(\delta)} o 0 \,, ext{ as } \delta o 0 \,.$$
 (15)

• The seq. (δ_k) converges to 0, and that $u_k := u^{\delta_k}$ satisfies $\|\bar{u} - u_k\| \le \delta_k$. Then,

- Every seq. (a_k) ∈ argmin 𝓕_{βk,Uk}, has weak-convergent subseq. (a_{k'}).
 The limit a[†] := w − lim a_{k'} is an *f*-minimizing solution of (11), and f(a_k) → f(a[†]).
- If the *f*-minimizing solution a^{\dagger} is unique, then $a_k \rightarrow a^{\dagger}$ weakly.

The Banks

Bregman distance

Let *f* be a convex function. For $a \in \mathcal{D}(f)$ and $\partial f(a)$ the subdifferential of the functional *f* at *a*.

We denote by $\mathcal{D}(\partial f) = \{\tilde{a} : \partial f(\tilde{a}) \neq \emptyset\}$ the domain of the subdifferential. The Bregman distance w.r.t $\zeta \in \partial f(a_1)$ is defined on $\mathcal{D}(f) \times \mathcal{D}(\partial f)$ by

$$D_{\zeta}(a_2, a_1) = f(a_2) - f(a_1) - \langle \zeta, a_2 - a_1 \rangle$$
.

Bregman distance

Let *f* be a convex function. For $a \in \mathcal{D}(f)$ and $\partial f(a)$ the subdifferential of the functional *f* at *a*.

We denote by $\mathcal{D}(\partial f) = \{\tilde{a} : \partial f(\tilde{a}) \neq \emptyset\}$ the domain of the subdifferential. The Bregman distance w.r.t $\zeta \in \partial f(a_1)$ is defined on $\mathcal{D}(f) \times \mathcal{D}(\partial f)$ by

$$D_{\zeta}(a_2, a_1) = f(a_2) - f(a_1) - \langle \zeta, a_2 - a_1 \rangle$$
.

Assumption (1)

We assume that

- \exists an *f*-minimizing sol. a^{\dagger} of (11), $a^{\dagger} \in \mathcal{D}_{B}(f)$.
- $\ \ \, @ \ \ \, \exists \beta_1 \in [0,1), \, \beta_2 \geq 0, \, \text{and} \, \zeta^\dagger \in \partial f(a^\dagger) \, \text{s.t.}$

$$\langle \zeta^{\dagger}, a^{\dagger} - a \rangle \leq \beta_1 D_{\zeta^{\dagger}}(a, a^{\dagger}) + \beta_2 \|F(a) - F(a^{\dagger})\|_L^2(\Omega)$$
 for $a \in \mathcal{M}_{\beta_{max}}(\rho)$, (16)

where $\rho > \beta_{max} f(a^{\dagger}) > 0$.

Theorem (Convergence rates [SGG⁺08])

Let F, f, \mathcal{D} , $H^{1+\epsilon}(\Omega)$, and $L^2(\Omega)$ satisfy Assumption 1. Moreover, let $\beta : (0,\infty) \to (0,\infty)$ satisfy $\beta(\delta) \sim \delta$. Then

$$D_{\zeta^{\dagger}}(a_{\beta}^{\delta},a^{\dagger}) = O(\delta), \quad \left\| F(a_{\beta}^{\delta}) - u^{\delta} \right\|_{L^{2}(\Omega)} = O(\delta),$$

and there exists c > 0, such that $f(a_{\beta}^{\delta}) \leq f(a^{\dagger}) + \delta/c$ for every δ with $\beta(\delta) \leq \beta_{max}$.

Example: The regularization functional *f* as the Boltzmann-Shannon entropy

$$f(a) = \int_{\Omega} a \log(a) dx, \qquad a \in \mathcal{D}(F),$$

Putting it all together

NOTE: We have proved

We have also proved a tangential cone condition for this problem, which implies that the Landwever iteration converges in a suitable neighborhood. Landweber Iteration [EHN96]:

$$a_{k+1}^{\delta} = a_{k}^{\delta} + cF'(a_{k}^{\delta})^{*}(u^{\delta} - F(a_{k}^{\delta})).$$
(17)

Putting it all together

NOTE: We have proved

We have also proved a tangential cone condition for this problem, which implies that the Landwever iteration converges in a suitable neighborhood. Landweber Iteration [EHN96]:

$$a_{k+1}^{\delta} = a_k^{\delta} + cF'(a_k^{\delta})^*(u^{\delta} - F(a_k^{\delta})).$$

$$(17)$$

Discrepancy Principle:

$$\left\| u^{\delta} - F(a^{\delta}_{k_{*}(\delta, y^{\delta})}) \right\| \leq r\delta < \left\| u^{\delta} - F(a^{\delta}_{k}) \right\|,$$
(18)

where

$$r > 2\frac{1+\eta}{1-2\eta}, \tag{19}$$

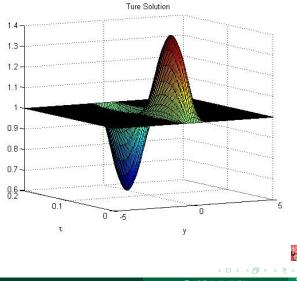
is a relaxation term.

If the iteration is stopped at index $k_*(\delta, y^{\delta})$ such that for the first time the residual becomes small compared to the quantity $r\delta$.

Description of the Examples

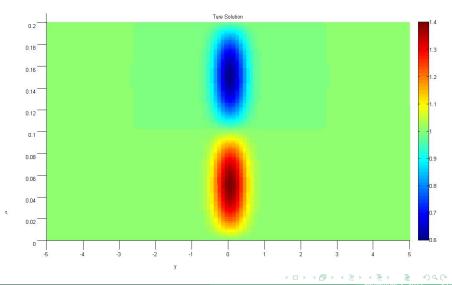
- Using a Landweber iteration technique we implemented the calibration.
- Produced for different test variances *a* the option prices and added different levels of multiplicative noise.
- The examples consisted of perturbing a = 1 during a period of $T = 0, \dots, 0.2$ and log-moneyness *y* varying between -5 and 5.
- Initial guess: Constant volatility.

Numerical Examples - Exact Solution

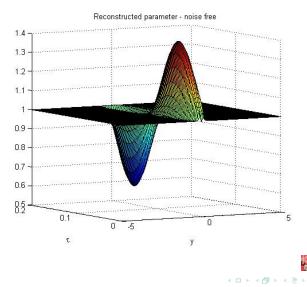


Regularization of Local Vol

Numerical Examples - Exact Solution

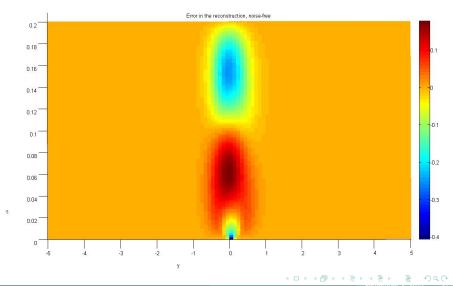


Numerical Examples 1 - noiseless - 4000 steps



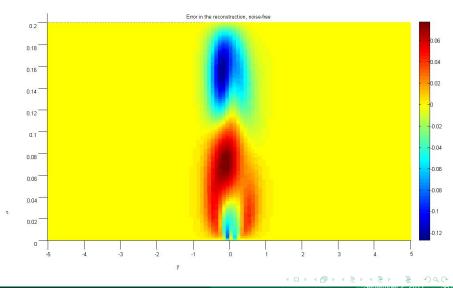
Regularization of Local Vol

Numerical Examples 1 - error - 100 steps

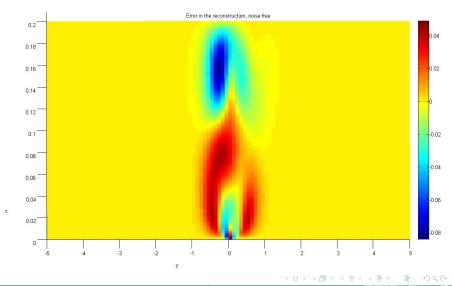


Regularization of Local Vol

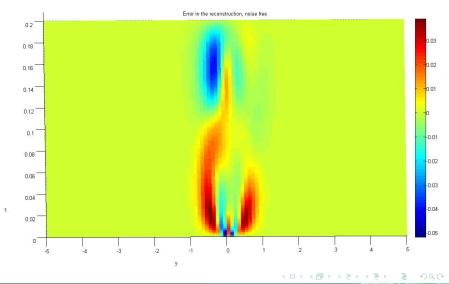
Numerical Examples 1 - error - 300 steps



Numerical Examples 1 - error - 500 steps

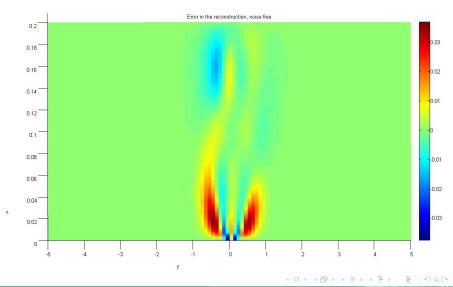


Numerical Examples 1 - error - 1000 steps



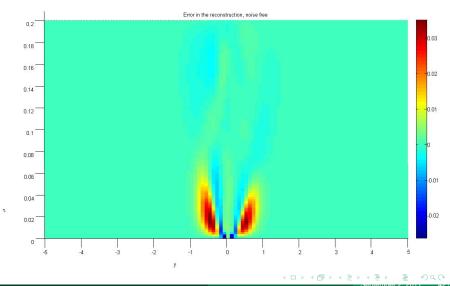
Regularization of Local Vol

Numerical Examples 1 - error - 2000 steps

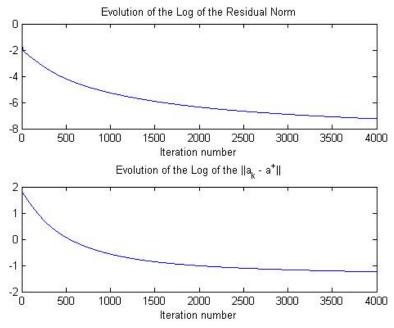


Regularization of Local Vol

Numerical Examples 1 - error - 4000 steps

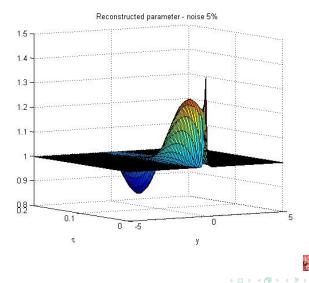


Regularization of Local Vol



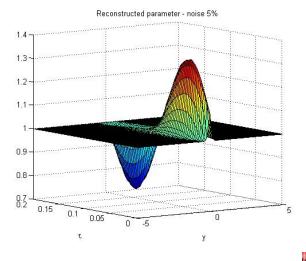
eptember 2, 2011

Numerical Examples 2 - 5% noise level - 100 steps



Regularization of Local Vol

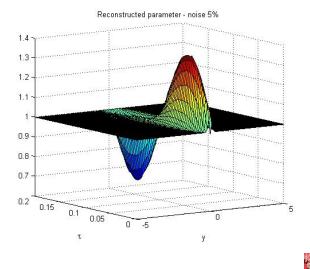
Numerical Examples 2 - 5% noise level - 200 steps



Regularization of Local Vol

Image: A matched block of the second seco

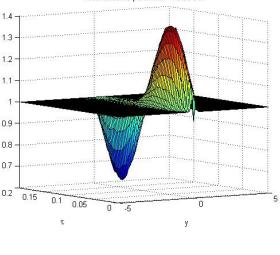
Numerical Examples 2 - 5% noise level - 300 steps



Regularization of Local Vol

Image: A math a math

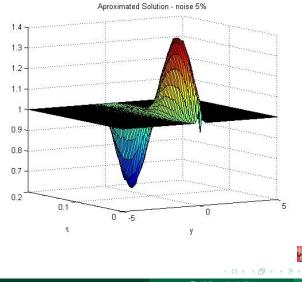
Numerical Examples 2 - 5% noise level - 400 steps

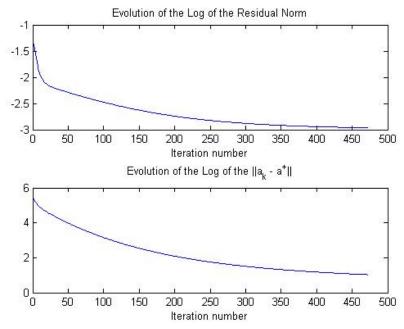


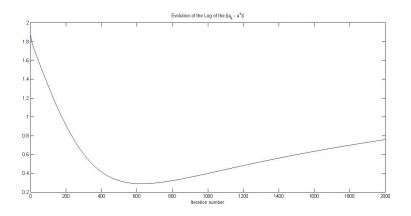
Reconstructed parameter - noise 5%

Image: A matched block of the second seco

Numerical Examples 2 - 5% noise level - Stopping criteria



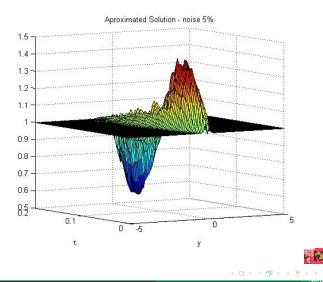




<≣> ≧

< ロ > < 回 > < 回 > < 回 > <</p>

Numerical Examples 2 - 5% noise level - 2000 iterations



Numerical Examples: with Real Data

Reconstruction of $a = \sigma^2/2$ with PBR Stock Data (implemented by Vinicius L. Albani/IMPA)

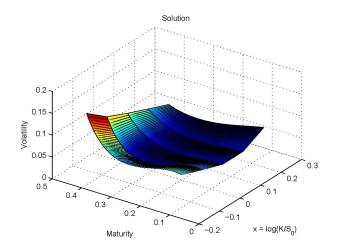


Figure: Minimal Entropy functional / Landweber Method / a priori Implie

Numerical Examples: with Real Data

Reconstruction of a with PBR Stock Data (implemented by Vinicius L. Albani/IMPA)

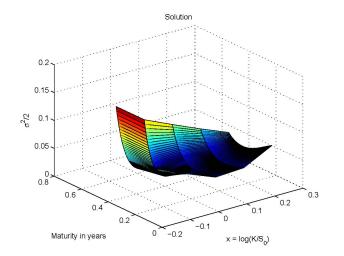


Figure: Minimal Entropy functional / Minimization (Levenberg-Marquadi) Method /

Conclusions

- The problem of volatility surface calibration is a classical and fundamental one in Quantitative Finance
- Unifying framework for the regularization that makes use of tools from Inverse Problem theory and Convex Analysis.
- Establishing convergence and convergence-rate results.
- Obtain convergence of the regularized solution with respect to the noise level in L¹(Ω)
- The connection with exponential families opens the door to recent works on entropy-based estimation methods.
- The connection with convex risk measures required the use of techniques from Malliavin calculus.
- Implemented a Landweber type calibration algorithm.

THANK YOU FOR YOUR ATTENTION!!!

Collaborators:

V. Albani (IMPA), A. de Cezaro (FURG), O. Scherzer (Vienna)

M. Avellaneda, R. Buff, C. Friedman, N. Grandchamp, L. Kruk, and

J. Newman.

Weighted Monte Carlo: A new technique for calibrating asset-pricing models.

Spigler, Renato (ed.), Applied and industrial mathematics, Venice-2, 1998. Selected papers from the 'Venice-2/Symposium', Venice, Italy, June 11-16, 1998. Dordrecht: Kluwer Academic Publishers. 1-31 (2000)., 2000.

M. Avellaneda, C. Friedman, R. Holmes, and D. Samperi. Calibrating volatility surfaces via relative-entropy minimization. *Appl. Math. Finance*, 4(1):37–64, 1997.

M. Avellaneda.

Minimum-relative-entropy calibration of asset-pricing models. International Journal of Theoretical and Applied Finance, 1(4):447–472, 1998.

Marco Avellaneda.

The minimum-entropy algorithm and related methods for calibrating asset-pricing model.

In *Trois applications des mathématiques*, volume 1998 of *SMF Journ. Annu.*, pages 51–86. Soc. Math. France, Paris, 1998.

Marco Avellaneda.

The minimum-entropy algorithm and related methods for calibrating asset-pricing models.

In *Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998)*, number Extra Vol. III, pages 545–563 (electronic), 1998.

I. Bouchouev and V. Isakov.

The inverse problem of option pricing. *Inverse Problems*, 13(5):L11–L17, 1997.

James N. Bodurtha, Jr. and Martin Jermakyan. Nonparametric estimation of an implied volatility surface. *Journal of Computational Finance*, 2(4), Summer 1999.

S. Crépey.

Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization.

SIAM J. Math. Anal., 34(5):1183–1206 (electronic), 2003.

Emanuel Derman, Iraj Kani, and Joseph Z. Zou.

The local volatility surface: Unlocking the information in index option prices.

Financial Analysts Journal, 52(4):25–36, 1996.

B. Dupire.

Pricing with a smile.

Risk, 7:18-20, 1994.

H. Egger and H. W. Engl.

Tikhonov regularization applied to the inverse problem of option pricing: convergence analysis and rates.

Inverse Problems, 21(3):1027–1045, 2005.

```
H. W. Engl, M. Hanke, and A. Neubauer.
Regularization of inverse problems, volume 375 of Mathematics and its
Applications.
```

Kluwer Academic Publishers Group, Dordrecht, 1996.

B. Hofmann and R. Krämer.

On maximum entropy regularization for a specific inverse problem of option pricing.

J. Inverse III-Posed Probl., 13(1):41-63, 2005.

B. Hofmann, B. Kaltenbacher, C. Pöschl, and O. Scherzer.
 A convergence rates result for Tikhonov regularization in Banach spaces

with non-smooth operators.

Inverse Problems, 23(3):987–1010, 2007.

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen. Variational Methods in Imaging, volume 167 of Applied Mathematical Sciences.

Springer, New York, 2008.

A (1) > (1)