CURSO DE C
Veremos nestas seções que ponteiros e vetores têm uma ligação muito forte.
Vamos dar agora uma idéia de como o C trata vetores.
Quando você declara uma matriz da seguinte forma:
tipo_da_variável nome_da_variável [tam1][tam2] ... [tamN];
o compilador C calcula o tamanho, em bytes, necessário para armazenar esta matriz. Este tamanho é:
tam1 x tam2 x tam3 x ... x tamN x tamanho_do_tipo
O compilador então aloca este número de bytes em um espaço livre de memória. O nome da variável que você declarou é na verdade um ponteiro para o tipo da variável da matriz. Este conceito é fundamental. Eis porque: Tendo alocado na memória o espaço para a matriz, ele toma o nome da variável (que é um ponteiro) e aponta para o primeiro elemento da matriz.
Mas aí surge a pergunta: então como é que podemos usar a seguinte notação?
nome_da_variável[índice]
Isto pode ser facilmente explicado desde que você entenda que a notação acima é absolutamente equivalente a se fazer:
*(nome_da_variável+índice)
Agora podemos entender como é que funciona um vetor! Vamos ver o que podemos tirar de informação deste fato. Fica claro, por exemplo, porque é que, no C, a indexação começa com zero. É porque, ao pegarmos o valor do primeiro elemento de um vetor, queremos, de fato, *nome_da_variável e então devemos ter um índice igual a zero. Então sabemos que:
*nome_da_variável é equivalente a nome_da_variável[0]
Outra coisa: apesar de, na maioria dos casos, não fazer muito sentido, poderíamos ter índices negativos. Estaríamos pegando posições de memória antes do vetor. Isto explica também porque o C não verifica a validade dos índices. Ele não sabe o tamanho do vetor. Ele apenas aloca a memória, ajusta o ponteiro do nome do vetor para o início do mesmo e, quando você usa os índices, encontra os elementos requisitados.
Vamos ver agora um dos usos mais importantes dos ponteiros: a varredura sequencial de uma matriz. Quando temos que varrer todos os elementos de uma matriz de uma forma sequencial, podemos usar um ponteiro, o qual vamos incrementando. Qual a vantagem? Considere o seguinte programa para zerar uma matriz:
int main () { float matrx [50][50]; int i,j; for (i=0;i<50;i++) for (j=0;j<50;j++) matrx[i][j]=0.0; return(0); }
Podemos reescrevê-lo usando ponteiros:
int main () { float matrx [50][50]; float *p; int count; p=matrx[0]; for (count=0;count<2500;count++) { *p=0.0; p++; } return(0); }
No primeiro programa, cada vez que se faz matrx[i][j] o programa tem que calcular o deslocamento para dar ao ponteiro. Ou seja, o programa tem que calcular 2500 deslocamentos. No segundo programa o único cálculo que deve ser feito é o de um incremento de ponteiro. Fazer 2500 incrementos em um ponteiro é muito mais rápido que calcular 2500 deslocamentos completos.
Há uma diferença entre o nome de um vetor e um ponteiro que deve ser frisada: um ponteiro é uma variável, mas o nome de um vetor não é uma variável. Isto significa, que não se consegue alterar o endereço que é apontado pelo "nome do vetor". Seja:
int vetor[10]; int *ponteiro, i; ponteiro = &i; /* as operacoes a seguir sao invalidas */ vetor = vetor + 2; /* ERRADO: vetor nao e' variavel */ vetor++; /* ERRADO: vetor nao e' variavel */ vetor = ponteiro; /* ERRADO: vetor nao e' variavel */
Teste as operações acima no seu compilador. Ele dará uma mensagem de erro. Alguns compiladores dirão que vetor não é um Lvalue. Lvalue, significa "Left value", um símbolo que pode ser colocado do lado esquerdo de uma expressão de atribuição, isto é, uma variável. Outros compiladores dirão que tem-se "incompatible types in assignment", tipos incompatíveis em uma atribuição.
/* as operacoes abaixo sao validas */ ponteiro = vetor; /* CERTO: ponteiro e' variavel */ ponteiro = vetor+2; /* CERTO: ponteiro e' variavel */
O que você aprendeu nesta seção é de suma importância. Não siga adiante antes de entendê- la bem.
Sabemos agora que, na verdade, o nome de um vetor é um ponteiro constante. Sabemos também que podemos indexar o nome de um vetor. Como consequência podemos também indexar um ponteiro qualquer. O programa mostrado a seguir funciona perfeitamente:
#include <stdio.h> int main () { int matrx [10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; int *p; p=matrx; printf ("O terceiro elemento do vetor e: %d",p[2]); return(0); }
Podemos ver que p[2] equivale a *(p+2).
Seguindo o raciocínio acima, nomes de strings, são do tipo char*. Isto nos permite escrever a nossa função StrCpy(), que funcionará de forma semelhante à função strcpy() da biblioteca:
#include <stdio.h> #include <string.h> void StrCpy (char *destino,char *origem) { while (*origem) { *destino=*origem; origem++; destino++; } *destino='\0'; } int main () { char str1[100],str2[100],str3[100]; printf ("Entre com uma string: "); gets (str1); StrCpy (str2,str1); StrCpy (str3,"Voce digitou a string "); printf ("\n\n%s%s",str3,str2); return(0); }
Há vários pontos a destacar no programa acima. Observe que podemos passar ponteiros como argumentos de funções. Na verdade é assim que funções como gets() e strcpy() funcionam. Passando o ponteiro você possibilita à função alterar o conteúdo das strings. Você já estava passando os ponteiros e não sabia. No comando while (*origem) estamos usando o fato de que a string termina com '\0' como critério de parada. Quando fazemos origem++ e destino++ o leitor poderia argumentar que estamos alterando o valor do ponteiro-base da string, contradizendo o que recomendei que se deveria fazer, no final de uma seção anterior. O que o leitor talvez não saiba ainda (e que será estudado em detalhe mais adiante) é que, no C, são passados para as funções cópias dos argumentos. Desta maneira, quando alteramos o ponteiro origem na função StrCpy() o ponteiro str2 permanece inalterado na função main().
Nesta seção vamos apenas ressaltar que a notação
&nome_da_variável[índice]
é válida e retorna o endereço do ponto do vetor indexado por índice. Isto seria equivalente a nome_da_variável + indice. É interessante notar que, como consequência, o ponteiro nome_da_variável tem o endereço &nome_da_variável[0], que indica onde na memória está guardado o valor do primeiro elemento do vetor.
Podemos construir vetores de ponteiros como declaramos vetores de qualquer outro tipo. Uma declaração de um vetor de ponteiros inteiros poderia ser:
int *pmatrx [10];
No caso acima, pmatrx é um vetor que armazena 10 ponteiros para inteiros.
AUTO AVALIAÇÃO
Veja como você está.
Fizemos a função StrCpy(). Faça uma função StrLen() e StrCat() que funcionem como as funções strlen() e strcat() de string.h respectivamente
Curso de C do CPDEE/UFMG - 1996 - 1999