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CHAPTER 1

MEASURE SPACES

1.1| o-ALGEBRAS

In this section X is a nonempty set, N = {1,2 3, ---} represents the positive integers and

No ={0,1,2,3,---} represents the nonnegative integers.

I DeriNiTION 1.1.1. An algebra of sets in X is a nonempty collection A of subsets of X
such that given A, B € A we have

AUBe A and A=X\Ae A

In other words, A is an algebra if it is closed under unions and complements.
It is clear that if A is an algebra then given A,B € A we have AN B € A, since
AN B = (A°U B°)°. Now if n is a fixed positive integer and Fi,--- , F, € A then

OEZ-EA and ﬁEZ-EA.
i=1 1=1

Moreover we have the following:
I ProrosiTioN 1.1.2. If A is an algebra in X then @ € A and X € A.

Proof. Since A is nonempty, there exists a set A € A. Therefore we have @ = AN A€ A
and also X = @° € A. [ |

I DeriNiTION 1.1.3. A 0-algebra A in X is an algebra A which is closed under countable
unions, that is, if {Ey}neny C A and E = |J E, then E € A.

n=1



Clearly a o-algebra A is also closed by countable intersections, since (| E, = (|J ES)°.

It is worth to point out that an algebra A is a o-algebra if it is closed

under disjoint unions. In fact let {E,}nen C A. Then given k € N we have

k-1 k-1

szEk\(UEn>:Ekﬂ(UEn)eA.

n=1 n=1

Hence the sequence { Fy}ren is in A, is pairwise disjoint and

CjE%iZ [j<Fk€§¢¢
n=1 k=1

I ExAMPLE 1.1.5. Given a nonempty set X, are o-algebras:
1. A={o,X}.
2. A=P(X), the collection of all subsets of X.

3. If X is uncountable:

A={FE C X: E is countable or E° is countable}.

In fact, given A, B € A then AU B is countable if both A and B are countable and
(AU B)¢ = A°N B¢ is countable if at least one of them has countable complement. Also
A® € A, thus A is an algebra. A similar argument shows that ),y En € A if E, € A
for alln € N, and hence A is a o-algebra.

This o-algebra is called the o-algebra of countable or co-countable sets.

| ProPosITION 1.1.6. Let {Ay}rca be a collection of o-algebras in X, indexed over a set
A. Then

(Y Av={ECX:E€A,foral)eA}
AEA

15 also a o-algebra in X.
Proof. 1t is straightforward. [ ]

Let £ C P(X). Then, using Proposition [I.1.6] there is a unique smallest o-algebra M (&)
which contains £, namely, the intersection of all o-algebras in X which contain £ (there is
always at least one, namely P(X)).

M(E) is called the o-algebra generated by £.

-6 -



| Levivia 1.1.7. If € € M(F) then M(E) € M(F).

Proof. Since M(F) is a o-algebra containing £, by definition, it contains M(E). |

1.2| PRODUCT o-ALGEBRAS

Let {X)}xea be a collection of nonempty sets and consider the product space

X:HXA:{f:A% UX,\ such that f(\) € X, foreach/\EA}.
AEA AEA

We denote for simplicity the function f by (x))xea, where z) = f(A) for each A € A.

Consider also for each a € A the coordinate map n,: X — X,, given by

To((Z))rer) = Za.

Now consider a o-algebra M, in X, for each A € A. For a fixed « € A and F € M,,

consider the set
T (E) = {(zA)rer: 2o € EY,

and also the collection of sets

= U =B

acN EeEM,
The o-algebra generated by £ is called the product o-algebra in X and is denoted by
QpeaMy. FA={1,--- ;n} we denote @yepMy = QL M; =M; @ M,.

I ProprosiTION 1.2.1. If A is countable, them Qxca M,y is the g-algebra generated by

]72:{ I]:EAZ E, E.A4A}.
A€EA
Proof. Given E) € M, define Eg = X for all 3 # \. Hence

T (By) = {(xp)gen: x € Ex} = [ | Es,
BEA

which means that £ C F and hence @ caMy = M(E) € M(F).
On the other hand given [[,., Ex € F we have

(*)
HEA = ﬂ T3 (Ey) € M(E) = @reaMy,

A€A A€A



where in (%) we used the fact that A is countable and ®,ca M, is a o-algebra. Hence
F C ®xeaM,, and by Lemma we obtain M(F) C ®yeaM,, which concludes the
proof. |

| PRrROPOSITION 1.2.2. Suppose that M is generated by Ex. Then

(a) ®xeaM, is generated by

a=U U ~'®.

AeAN E€&y

(b) if A is countable then @xepa M) is generated by

ﬂ:{HEA; EAES,\}.

AEA
Proof. (a). Clearly M(&;) C ®)eaM,y. For the converse, fix A € A and define the set M, as
My ={E C Xy: i, }(E) € M(&))}.
We claim that M, is a o-algebra that contains &,. In fact, if {A,}nen C M., we have
' (A,) € M(&) for each n € N,

Hence

(U ) = Ut e M),

neN neN
and also

T (AD) = (73 (A)” € M(&),

which proves that M, is a o-algebra. Now if E € &, then ' (E) € &, and hence
m {(E) € M(E,), which shows that & C My, and concludes the proof of our claim.

Now, using Lemma , we have M, C M. This proves that 7, ' (E) € M(&) for all
E € M), which means that & C M(&;), and another application of Lemma [I.1.7) gives us
®reaMy C M(&;), and proves (a).
(b). This follows from (a) as in the proof of Proposition [L.2.1] |

1.3| BOREL 0-ALGEBRAS ON TOPOLOGICAL SPACES
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I DerFINITION 1.3.1. Let (X, T) be a topological space and Bx be the o-algebra generated by
T, that is, Bx = M(1). This o-algebra is called the Borel o-algebra in X and its sets are

called Borel sets or simply borelians.

It is clear that, from the definition of o-algebra, By is also the o-algebra generated by
the closed subsets of X.

On Bx we have sets of the form:
0. all the open and closed sets of X;
1. countable intersection of open sets, which are called Gs-sets;
2. countable union of closed sets, which are called [, -sets;
3. countable union of Gg-sets, which are called G,-sets;
4. countable intersection of F,-sets, which are called Fs-sets;
5. and so on...

I PROPOSITION 1.3.2. Let (X1, 7;) be topological spaces, fori=1,--- ,n and consider the
product space H X; with the product topology. Then ®}_Bx, C Bx. Moreover, if each X

has a countable baszs for ;, then ®}_Bx, = Bx.

Proof. By Proposition item (b), we know that ®! By, is generated by the family

Fi= {HEZ E; is open in Xi},
i=1
which is a family of open sets in X with the product topology, hence ® ,Bx, C Bx.

Now assume that each X; has a countable basis &; for 7;. Hence each By, is generated
by & and again, using Proposition , Q@ By, is generated by F, = {[[_, E;: E; € &}
But an open set E in X is a set of the form £ = [[_, E;, where each E; is open in Xj.
Each F; can be written as a countable union of elements in &;, which implies that F is a
countable union of elements in F, and hence E € M(F,) = ®,By,. By Lemma 1.1.7, we
have Bx C ®!",Bx;, and we conclude the proof. |

In R with the usual topology, the Borel o-algebra By has several sets that generate it.

~ 9.



I ProrosiTioN 1.3.3. The Borel o-algebra Bg is generated by any of the following collec-

tions:
& ={(a,b): a<b}, & ={[a,b]: a<b}, & ={[a,b):a< b},

Es={(a,b]: a <b}, & ={(—00,a):ae€R}, & ={(a,00): a€R},
Er ={(—o0,a]: a € R} and & ={[a,00): a € R}.
Proof. Since each open set in R is the countable union of open intervals, we have Bg = M (&;).

We will show now that each element of the collections &;, j = 2,--- ,8, can be written using

only elements of £ and operations that are closed for o-algebras.

We have
b= (Va=Lb+3), [a.b)=a=210). (a.8]=[)(ab+3).
n=1 n=1 n=1
(—00,a) = ﬂ (—n,a), (a,00) = ﬂ (a,m)
n=[a+1] n=[a+1]
<007 _a] = m (—TL, a—+ %) and [aa OO) = ﬂ (a - %7 n)a
n=[a+1] n=[a+1]
and thus we conclude that each &; generates the same o-algebra as &, which is Bg. |

As a direct consequence of Proposition [I.3.2] we have

Ban = @ Bg. (1.3.1)

1.3.1 | THE EXTENDED REAL NUMBERS
We define the set of the extended real numbers as
R=RU{—00,00} = [~00, 0],

which is the usual real line R, together with the symbols —oo and oco.

The order in R is the usual order of R, together with the relations
—o0 < x < oo forall z € R.

As for operations, we have the usual sum (+) and product () on R, together with the
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operations

oo if z >0 or z = oo, —ooif x>0 or x = o0,
0 -T = and —o0-x =
—ooifx <0orxz=—o0. oo if x <0 or x = —o0.
Here we will set, by convention, that oo - 0 = —oo - 0 = 0. The expressions co — oo and

—o0 + oo are indeterminations.

The topology 7 in R is generated by the sets of the form [~o0o,a) and (a, oo], for each
a € R. Clearly, since (a,b) = [—00,b) N (a, 0] for a < b, we can see that each open set in R
is also open in R.

Let Bz be the Borel g-algebra of R, which is generated by the sets of the form [—oc, a)
or by the sets of the form (a, 0], with a € R. Clearly Bg C Bi. Furthermore, we have the

following:
| THEOREM 1.3.4. A € By if and only if ANR € Byg.

Proof. First note that {oo} = ()" (n,00] € By and {—oo} = () ,[—00,n) € By, and we
can decompose each subset A of R as A = (ANR) U (AN {oo}) U (AN {—oc}). Hence, if
ANR € Bg then A € Bg.

Now define

M:{ECRiEﬂRGBR}.

From the above, M C Bg. To prove the converse inclusion, we prove that M is a
o-algebra that contains all subsets of the form [—o0, a), for a € R. Thus M will contain Bg.

It is clear that [—o0,a) € M, since [—o0,a) NR = (—o0,a) € Bg. In particular, M is
nonempty. If {E;} C M, we have

(wEQmsz(@mmeB,

and this |J F; € M.
i=1
Now if £ € M, then

R\E)NR=R\E=R\ (ENR) €R,
N——

€Br

and thus R\ E € M, and concludes the proof.
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We can turn R into a metric space. The function d: R x R — [0, 00) given by
d(x,y) = | arctan(x) — arctan(y)| for all z,y € R, (1.3.2)

is a metric. Clearly, if =,y € R, then

d(z,y) < sup

Nz —yl < |z — 1.3.3
SUD lz —y| < |z — vy, (1.3.3)

using the Mean Value Theorem. If 7 the topology in R generated by the metric d, we have:
| ProrosITION 1.3.5. 7 =7, that is, the topology induced by the metric d is T.

Proof. This result follows from the fact that arctan: R — [—Z, Z] is continuous with continu-

T
' 2
ous inverse, defining obviously tan(—%) = —oo and tan(%) = oo. [ |

1.4| ELEMENTARY FAMILIES

I DeriNiTION 1.4.1. Let X be a nonempty set. A collection £ of subsets of X is called an

elementary family if it satisfies:
(i) @ €&;
(i) if E,F € E then ENF € &;
(i1i) if E € £ then E° is a finite disjoint union of elements of £.

Let £ be an elementary family in X. Define
A={AC X: Ais a finite disjoint union of elements of £}. (1.4.1)

| Levivia 1.4.2. IfA€ A and B € € then AUB € A.

Proof. We have A = Ji_, E; and B = U;nzl F; where E;, F; € £ and the unions are disjoint.
Now -
E\B=FENB°= UElﬂFJ for each i =1,--- ,n,
j=1

and therefore

n m

A\B_O(EZ-\B)_UUEiﬂFj,

i=1j=1
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which, since E; N F; € £, is a finite disjoint union of elements of £ and therefore is in A.
But AU B = (A \ B) U B, which again is a finite disjoint unions of elements of £ (recall
that B € £), and thus AU B € A. [ |

| CoroLLARY 1.4.3. If Ay,--- | A, € € then |J\_, A; € A.
Proof. Assume that the result is true for n > 2 (the case n = 2 is Lemma |1.4.2)), and we have

n+1

U A = <1:LJ1AZ> U Any1,

=1

and Lemma m proves the result, since |J;_, A; € A, by induction, and A,;; € £ by
hypothesis. |

| ProPOSITION 1.4.4. If A, B € A then AUB € A.

Proof. Write A = Ui:l,---,n E; and B = U;n:l F;, E;, F; € £ and both are disjoint unions.
Defining G, = E for k=1,--- ;nand Gy = F,_, for k=n+1,--- ,n+ m, we have

n+m

AUB=|JGreA,

k=1

by Corollary [1.4.3] since Gy € € for k=1,--- ,n+m.

[ |

| ProPOSITION 1.4.5. If A € A then A° € A.

Proof. We write A =J_, E; with E; € £ and E; N E; = @ for ¢ # j. Now we can write

Ef = U F, j where F;; € £,
j=1
and the union is disjoint. Therefore
AC:ﬂEZC: mUE’j :U{Fl,ﬁm”'ﬁFn,jn:ji: ]_, , My, 1= ]_7 ,TL},
i=1 i=1j=1
which is a finite disjoint union of elements in £, and is henceforth in A. |

With these results, the proof of the following theorem is immediate.

| THEOREM 1.4.6. Given an elementary family £, the collection A defined in (1.4.1)) is an

algebra.

- 13-



Proof. Since £ C A we have @ € A. Now Propositions and show that A is closed

under union and complements, and hence it is an algebra. |

1.5| o-RINGS

The section is the Exercise 1 in Page 24 of [I].

| DeriNiTION 1.5.1. A collection R of subsets of a nonempty set X is called a ring if given
A, B € R we have
AUBeR and A\ BeR.

| DEeErFINITION 1.5.2. A collection R of subsets of a nonempty set X is called a o-ring if it

is a ring and given {A, then C R we have

A:DA,LER.

n=1
Clearly if R is a nonempty ring, then @ € R, since given A € R we have @ = A\ A € R.

| ProrosiTION 1.5.3. Given a ring R and A, B € R we have AN B € R.

Proof. If A;B € R then A\BeRand ANB=A\(A\B)€eR. [ |

| ProPOsITION 1.5.4. If R is a o-ring and {A,}nen C R then A = Mo, A, € R.

Proof. Just write A = A; \ <UZ°:2(A1 \An)> eR. [ |

| PRrROPOSITION 1.5.5. Let R be a nonempty ring (c-ring). Then R is an algebra (o-algebra)
if and only if X € R.

Proof. 1t is clear that if X € R then for each A € R we have A°= X \ A € R and hence R
is an algebra (or o-algebra).

Now for the converse if R is a nonempty algebra (or o-algebra) we have @ € R and hence
X =0 R. [ |

I ProproOSITION 1.5.6. If R is a nonempty o-ring then the collection
M={ACX:AcR or Ac R}

1S a o-algebra.

- 14 -



Proof. First we note that @ € R, hence @ € M. Now let A,B €¢ M. If A/B € R then
AUB € R and hence AUB € M. When A® and B¢ are in R, and we get (AU B)® =
AN B¢ € R and again AU B € M. Now, for the last case, if A€ R and B € R we have
(AUB)*=A°\Be€R,andso AUB € M.

Now if A € M and A € R then (A°)° = A € R and hence A° € M. If A° € R then
directly we obtain A° € M, and hence M is a o-algebra.

Now consider a countable collection {A, },en € M. The case where all A, € R or all
Af € R is analogous to the case with only two sets. We will focus in the case where there

exists a disjoint decomposition of N into two subsequences {ny }reny and {my }ren such that
Ap, € R and A7, € R for all k. We write

(UAH)C: UA;;J\(UAW)eR,
n=1 k=1 PN k=1 J
eR eR
and therefore M is a o-algebra. [ |

| ProrosiTioN 1.5.7. If R is a nonempty o-ring then the collection
M={ACX: ANF€R foradl F e R}

1S a o-algebra.

Proof. Since R is nonempty, we have @ € R and since N F = g € R for all F € R, we
have @ € M. In this case we also have X € M, since XN F = F € F for all F' € M.
If {A,}neny € M then given F' € R we have

o0 o0

(UAn>ﬂF:U(AnﬂF)eR,

n=1 n=1 R

and hence (J~ | A, € M.
Now if A € M, we write ANF =(X\A)NF=F\(ANF) € R, since FFand ANF
are in R, hence A° € M, and concludes the proof that M is a o-algebra. |

1.6| SOLVED EXERCISES FROM [, PAGE 24]

EXERCISE 1.

- 15 -



Solution. This exercise is completely solved in Section [I.5]

EXERCISE 2.

Solution. This exercise is completely done in Proposition [1.3.3]

EXERCISE 3. In this subsection we show that if M is an infinite o-algebra then
(a) M contains an infinite sequence of nonempty disjoint sets.

(b) card(M) > c.

Solution to (a). Let {4, },en a sequence with distinct nonempty sets in M, which exist
since M is infinite.

We can assume that A, ; \ A, # &, for all n € N. In fact, if 4,1 C A,, then
An \ Apy1 # @ since otherwise we would have A, = A,;; which would contradict the

assumption that the A,’s are all distinct, and we replace A,, with A4, \ 4,11 and we have

Anpi \ (Ap \ Apy1) = A1 # 9.

Now define B, = |J_, A; for each n € N. Since M is a o-algebra, B, € M for each
n € N, and moreover B,, C B,; for each n € N, and from the previous assumption, we have
B,i1\ B, # @. Setting now C; = By and C,, = B, \ B,,_; for each n > 2. Thus C,, € M
for each n € N. Also, if x € C; N C; for i > j then we have x ¢ B,_; and x € B;, where
i —1 > j, which gives us a contradiction and proves that {C,,},en is an infinite sequence of
nonempty disjoint sets in M.
Solution to (b). Assume that M is countable. By (a), we can assume that there exists a
sequence £ = { A, }nen of disjoint nonempty elements of M.

Now we will construct the following function: given a nonempty subset J C N we define
Y(J) =] 4 e M(E) c M,
jed

and we complete the definition setting (&) = @. Thus we have constructed a function
¥: P(N) — M, and since the family £ is made of pairwise disjoint sets, we can see that 1 is
injective, which shows that card(M) > c.

ExXERCISE 4. We show that an algebra A is a o-algebra if and only if it is closed under

countable increasing unions, that is, if {E,},en € A and E,, C E, 41 for each n € N then

- 16 -



U, E, € A

Solution. In fact, is it clear that if A is a o-algebra, then it is closed by any countable
unions, and in particular, it is closed by countable increasing unions. Now for the converse,
assume that {4, },en is any countable sequence of elements in A.

Define B,, = |J;_, Ay for each n € N. Since A is an algebra, it is closed by finite unions,

and hence B,, € A for each n € N. Also, {B,, },en is an increasing sequence and we have

G A, = D B, € A,
n=1 n=1

and thus A is a o-algebra.

EXERCISE 5. Let M be the o-algebra generated by a collection £ of subsets of a nonempty
set X. Then
M = JM(F),
f

where F ranges over all countable subsets of £.

Hint: Show that the latter object is a o-algebra.
Solution. We note that since F C &, we have M(F) C M(E) = M, and hence

JM(F) cm.
>

For the converse, note that £ C |J M(F). Thus, if we prove that | M(F) is a
o-algebra, then we obtain the other inclusion.

We denote M = |JM(F). Clearly @ € M. Now if {A,},exy € M, for each n € N
there exists a countable subset F,, of £ such that A, € M(F,).

The union F = |, F,, is also a countable subset of £ and

G An € M(F),

n=1

and hence | J77 | A, € M. This shows that M is a o-algebra and completes the proof.
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CHAPTER 2

MEASURES

2.1| BASIC NOTIONS AND DEFINITIONS

Let X be a nonempty set with a o-algebra M.

I DerFINITION 2.1.1. A measure u on (X, M) (or simply on M, or simply on X if M is
understood) is a function p: M — [0, 00] such that

1. u(@)=0.

2. if {E,} is a pairwise disjoint sequence in M then
n=1 n=1

Condition (2) is called o-additivity or countable additivity. This condition implies
finite additivity:

2*. if Ey,--- , E, are pairwise disjoint sets in M then

just by taking F; = & for j > n.
A function p that satisfies (1) and (2*), but not necessarily (2), is called a finitely

additive measure.

| DEFINITION 2.1.2. If X is a nonempty set and M is a o-algebra on X, the pair (X, M)

15 called a measurable space, and the sets in M are called measurable sets.
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If 1 is a measure on (X, M), the triple (X, M, i) is called o« measure space.
Let (X, M, u) be a measure space. We say that

(a) pis finite if p(X) < oc.

(b) pis o-finite if X =J;2, E; where E; € M and pu(E;) < oo for all j.

(c) semifinite if for each £ € M with pu(E) = oo then there exists F' € M with ' C E
and 0 < pu(F) < oo.

Following item (b) of this definition, we say that a subset E of X is called o-finite for
pif B =2, Ej where Ej € M and p(Ej) < oo for all j. If p is finite then u(E) < oo for
each £ € M since u(X) = pu(E) + u(E°).

| THEOREM 2.1.3. Let (X, M, 1) be a measure space. Then
(a) (monotonicity) if E,F' € M and E C F then u(E) < pu(F).
(b) (subadditivity) if {E;} € M then (U;‘i X Ej> <X, u(E)).

Proof. (a) If E,F € M and E C F we have

p(F) = plEU(F\ E)] = u(E) + p(F\ E),

and since u(F \ E) > 0 we have u(F) > pu(E).
(b) Let F; = Ey and F; = E; \ (Ui; Ek) Then {F}} is a pairwise disjoint sequence in M,
U?L E; = UJO; Fj and

J=1

1 (U Ej) = p (U Fg) =D Wl < ZM(EJ')-
|

I PROPOSITION 2.1.4. If p is a o-finite measure on (X, M) then there exists a sequence
{F} of pairwise disjoint sets in M such that X = J;Z, F; and p(Fy) < oo for all j.

Proof. Since p is o-finite, we have X = U;’il E; where E; € M and p(E;) < oo for all j.
Now we set F}y = Ey and F; = Ej \ <Uf€;11 Ek> Then the sequence {F}} is pairwise disjoint,
Ui, £ = U2, By = X and p(F) < p(Ej) < oo by Theoremitem (a), which concludes
the proof of this result. [ |
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| ExampLE 2.1.5. Let X be a nonempty set, M = P(X) and f: X — [0,00] a function.
Consider Ay = {x € X: f(z) > 0} and construct a measure . on M as follows:

(i) :uf<®> =0;

(ii) if E € P(X) then we have two cases to consider: if E N Ay is uncountable, then
pr(E) = oo. Otherwise, we set

prB)= Y f(x).

:EGEﬂAf

To prove that py is a measure, it remains to prove the o-additivity property. To that end
consider {E;} C P(X) and E = J;Z, Ej with disjoint unions. If E; N Ay is uncountable for

some j, then E N A; is also uncountable, hence

py(E) =00 = ZM(EJ)-

Assume that E; N Ay is countable, then E N Ay is also countable, and by the absolute

convergence and rearrangements property we have

pB) = Y @) =3 Y ) =3 (B,

Z‘EEﬂAf 7=1 .’EGEjﬂAf

since {E; N A} is a pairwise disjoint sequence.

We obtain properties on the measure py if we have properties of f.
Property 1. If f(x) < oo for all x € X then uy is semifinite.

Assume that pg(E) = oo. If f(z) =0 for all x € E then pp(E) =0 by definition, which
is a contradiction. Hence there exists v € E such that f(x) > 0 and considering F = {x} we
have F C E and 0 < pp(F) = f(x) < co. Thus uy is semifinite.

Property 2. s is o-finite if and only if jv is semifinite and Ay is countable.

Assume that py is o-finite. Using Propositz'on there exists a sequence of pairwise
disjoint sets {Fj} such that ju;(Fj) < oo for all j and X = \J;Z, F;. If E is such that
pr(E) =o0. If py(ENF;) =0 for all j, then

pp(E) = pr(ENX) = py (U(E n Fj)) =Y w(ENF) =0,
j=1 =1

which is a contradcition, hence there exists j such that ps(E N F;) > 0. Setting F' = EN F;
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then FF C E and 0 < pp(F) < py(F;) < oo, which means that jiy is semifinite.

Also if Ay = U2, AN Fy and since pp(Ay N Fy) < pup(Fy) < oo we have AgN F countable
for all j. Hence Ay is countable.

For the converse, if up(X) < oo there is nothing to prove (just take Ey = X and E; = &
for j = 2). So consider that us(X) = oo. Since Ay is countable, consider Ay = {z;}
where the sequence consists of distinct elements and define F; = {x;} for all j. Then

0 < ps(Fy) = f(x;) < oo and setting Fy = AG we have py(Fy) = 0 and

X=A,045=]JF;
j=0
which shows that iy is o-finite.
Two particular cases are very important. If f(x) =1 for all x € X, then py is called
counting measure. If f(zo) =1 and f(x) =0 for x # o then uy is called point mass or

the Dirac measure.

I ExamMpPLE 2.1.6. Let X be an uncountable set and M the o-algebra of countable or

co-countable sets. Define p on M by setting

0, if E is countable,
pE) = e
1, if E¢ is countable.

We prove that p is a measure on M. Clearly (@) = 0. Now if {E;} C M and

E = U;‘;l E; with disjoint union, then if E; is countable for all j we have u(E;) =0 for all

7, E is countable and

p(E) =0=3 n(E).

On the other hand, if Ej 1is countable for some Ej, then E° = ﬂj’;l E; C E is also
countable. Since the {Ej} is a pairwise disjoint sequence \J,; E; C Ef is also countable,

hence Ej is countable for each j # jo, and we have
p(E) =1=p(E;,) =Y ulE;).
j=1

| ExaMPLE 2.1.7. Let X be an infinite set and M = P(X). Define u(E) = 0 if E is finite
and p(E) = oo if E is infinite. Then p is a finitely additive measure but not a measure.

Clearly if Ey,--- , E, is a finite sequence of subsets of X, then we have two cases: if all
E; are finite then E =], E; is also finite and hence p(E) = 0= 3", p(E;). If, however,
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one of them is infinite then E is infinite and p(E) = oo = > | u(E;). Hence p is a finitely
additive measure.
Now if {x,} is an infinite sequence of distinct elements of X then defining E, = {x,}

and E =2, E,, we can easily see that yi is not a measure.
| THEOREM 2.1.8. Let (X, M, i) be a measure space and {E,} a sequence in M.

(a) (Continuity from below) If E; C Ejy for all j then
1 (U Ej> = lim pu(E;).
j=1
(b) (Continuity from above) If E; D Ej and p(E,) < oo then

p (O Ej> = lim ju(E;).
Proof. (a) If u(E;,) = oo for some jy then p(E;) = oo for all j > jo and (Uj; Ej) =
hence g (U;’il Ej) =00 = lim;_,0 u(Ej;).

Now assume that p(E;) < oo for all j. Hence setting Ey = @& we have

p(E;) = p(E;_1) + u(E; \ Ej-1),

and hence, by the finiteness of p(E;) for all j, we have pu(E; \ E;_1) = p(E;) — p(E;—1). Thus

we have
M(UEJ‘):M<U( ) ZME\ 1) —llmZMEk\Ek 1)—hmM(E)

(b) Let F; = Ey\ Ej, then Fj C Fyyy for all j, p(Ey) = p(Fy) \ p(Ej) and U2, Fy =
E, (ﬂ;’il Ej). Using item (a) we have

1(Er) = (ﬂ E; ) + lim p(Fj) = (ﬂ E; > + lim [u(Er) — p(E;)],

Jj=1 j=1
and since pu(E)) < oo we obtain the result by subtracting u(E)) from both sides. [ |

Let (X, M, 1) be a measure space. A set E € M such that u(E) = 0 is called a null

set. If more precision is needed to specify the measure, we say a p-null set. Using the
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subadditivity property, we know that any countable union of null sets is a null set.

Let P be a property, and define P(x) as meaning: x satisfies the property P. If there
exists a p-null set N such that P(z) for all z € X \ N, we say that property P holds almost
everywhere (abbreviated by a.e.) or for almost every z. If more precision is needed for
the measure, we use p-almost everywhere.

Assume that P holds p-almost everywhere. If ~ P(z) means that x does not satisfy the
property P, we point out that F' = {z € X: ~ P(z)} doesn’t need to have zero measure,
since it is not required that F' € M. However, it does imply that F* C N for some N € M
with u(N) = 0.

If u(E) =0and F C E then u(F)=0if I € M. But this last statement does not need
to be true in general. A measure that contains all subsets of null sets is called complete.
Complete measures simplify the theoretical results, and can be always achieved by enlarging

(if necessary) the domain of the measure yu, as follows:

| THEOREM 2.1.9. Suppose that (X, M, ) is a measure space. Let N' = {N € M: u(N) =
0} and
M={EUF: E€ M and F C N for some N € N'}.

Then M is a o algebra, and there exists a unique extension Ji of ji to a complete measure

on M

Proof. We prove first that M is a o-algebra. Since @ € M and () = 0 we have M C M.
Assume that {4;} is a sequence in M with pairwise disjoint sets. Then A; = E; U Fj with

O (0o (0r). -

—_——— —
eM C U2 N
and (J;2, N; € N, by the subadditivity property.
Now if A= EUF € M with E € M and F C N € N, then considering F}, = F'\ E and
Ny =N\ E we have F; C Ny e N and A = EU F; with EN F; = @. Hence we can always
assume that FN N = & (and hence E N F = &). Thus we have

A= (EUF)*=(EUN)°U(N\ F) e M,
N e N —
emM CNeN

therefore M is a o-algebra.
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Now for A= FUF, with E € M and FF C N, where N € N, we define

First we have to prove that @ is well defined, that is, if A = F; U F} = Ey U F, where
Ei,E; e Mand F; C N; € N for i =1,2. We have E;, C E, UF, C E; U N, and hence

n(Er) < p(E2 UN2) < p(Es) + p(N2) = pi(Es).
ot

Analogously we have p(FEs) < p(F1) and therefore p(Ey) = pu(Es).

If E € M then fi(E) = u(E), hence [ is an extension of y. Now assume that {4;} is a
sequence of pairwise disjoint sets in M. Then A; = E; U F; where E; € M and F; C N,
with N; € N. Since they are disjoint, we have in particular that {E;} is a sequence of
pairwise disjoint sequences in M. Then hold and

,7<U A]-) = ( Ej> = 1(Ej) ZZﬁ(AJ)’

which shows that 7 is a measure on M.

Now we have to show that 7 is complete. Assume that A C B where B € M and fi(B) = 0.
Then B = EU F where E € M with u(E) =0 and FF C N where N € N. Since u(E) =0
we have also F € N and hence A = gU[(FUF)N A], where (EUF)NAC EUF €N,
and proves that A € M.

Finally, it remains to prove the uniqueness of . To that end, assume that v is a measure
in M which is an extension of T, that is, » = u in M. First, note that if ¥ C N € N then
F=0UF & Mand v(F) <v(N)=puN)=0. Nowif A€ M, where A = EU F with
E e M, FCNecN,and we can assume that £ N F = &. Therefore

v(A) = v(E U F) = W(E) + v(F) = u(E) = u(E) = fi(A),

which proves that v = i, and completes the proof of the theorem. |

The measure i of this previous theorem is called the completion of x, and M is called

the completion M with respect to p.

| ProposITION 2.1.10. Let (X, M, ) be a measure space and let (X, M, ) be its com-
pletion. If E € M is such that i(E) = 0 then there exists N € M with u(N) = 0 and
ECN.
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Proof. If E € M, then by definition, there exists G € M and F C N; € N with E=GUF.
Since 0 = T(E) = u(G), we also have G € N. Hence E = GUF C N := GU N; and
N eN. |

2.2| SOLVED EXERCISES FROM [, PAGE 27]

EXERCISE 6.

Solution. This is done in Theorem 2.1.9]

ExXERCISE 7. If pq,- -+, pn, are measure on (X, M) and ay,--- ,a, € [0,00) then ol ,a;u;

is a measure on (X, M).

Solution. We set v = >"""  a;u;. Clearly
W2) =3 () =0
i=1

Now if {E;} is a sequence of pairwise disjoint elements of M and E = Uj’;l FE; then

v(BE) = am(B) =Y ay p(E) =YY ayum(E)),
i=1 =1 j=1 j=1 i=1
where in the last equality we used the rearrangement properties of absolute convergence of
series, and hence

V(E) = Zy(Ej).

Jj=1

ExXERCISE 8. Definition: If {£}} is a sequence of sets in X then we set liminf F; =

Uiz Moz B and limsup B = (2, U2 En
Now if (X, M, p) is a measure space and {E;} C M then p(liminf £;) < liminf pu(E}).

Jj—00

Also p(limsup Ej) > limsup p(E;) provided that g <U;i1 Ej) < 0.

Jj—o0
Solution. Note that {()_; E,}; is an increasing sequence of sets in M. From the

continuity from below (Theorem [2.1.8] item (a)), we have

p(liminf ;) = (U N En> = lim 4 (ﬂ En> < liminf u(E;),.

j=1ln=j n=j
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since (,; En C Ej for each j.
For the other inequality, note that the sequence {{J,~; E»}; is decreasing and p (U;il Ej> <
0o. From the continuity from above (Theorem [2.1.8] item (b)) we have

p(limsup E;) = p <ﬂ U En> = le%lou (U En> > lim sup p(E;),

Jj=1ln=j n=j J—roo

since (J,_; En D Ej for each j.

EXERCISE 9. If (X, M, ) is a measure space and F, F' € M then

W(E) + w(F) = u(EUF) + w(ENF). (2.2.1)

Solution. In fact, if u(E) = oo then pu(E U F) = oo and (2.2.1)) is trivial, and the
same is true if u(F') = oco. Assume then both u(E) and p(F') are finite. Since EU F =
(E\F)U(ENF)U(F\E) we have

MEUF) = p(E\F)+u(ENFEF) 4+ p(F\ E),
but u(E\ F) = p(E) — w(ENF) and p(F\ E) = u(F) — p(E N E) and hence
W(EUF) = pu(E) + p(F) — p(ENF),

which proves the result.

EXERCISE 9. Given a measure (X, M, ) and E € M, define ug(A) = u(AN E) for each
A € M. Then ug is a measure.

Solution. Clearly pup(@) = p(AN @) = pu(@) = 0. Now if {A;} is a sequence of a

pairwise disjoint sets in M then

1E (U Aj) = p <Eﬁ UAJ) = p (U(EﬂAj)> = ZM(EQAJ‘),

Jj=1

since { N A;} is a pairwise disjoint sequence in M. Therefore ug is a measure on M.
j

EXERCISE 11. Let u be a finitely additive measure. Then
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(a) pis a measure if and only if p is continuous from below.

(b) if u(X) < oo, then p is a measure if and only if it is continuous from above.

Solution to (a) If i is a measure then the continuity from below follows from item (a)
of Theorem Now assume that y is continuous from below and let {£};} be a pairwise
disjoint sequence in M. Set F; = Ui::l E}, for each j. Then {F}} is an increasing sequence

of sets in M and by the finitely additive property of y we have

= u(Ex)
i

and N N ; N
H (jL:Jl EJ> z (jL:JlF) lim p(F) }ggo;u(Ek) ;M(E )

Solution to (b) Again, if ;1 is a measure, then it is continuous from above by item (b) of
Theorem [2.1.8, Now assume that p(X) < oo and g is a finitely additive continuous form
above measure. We will show that p is continuous from below and the conclusion will follow
from item (a).

Let {E;} be an increasing sequence of measurable sets. Then setting F; = X \ Ej for all
j we have a decreasing sequence {F;} of measurable sets, and by the continuity from above
we obtain o

m (X\jL:JlEj> =4 <QF> = lim p(Fy) = lim p(X\ ),

and since pu(X) < oo we have

]—)OO

p(X) (X\UE) = lim [6(X) = ()]

which concludes the results.

EXERCISE 12. Definition: Define EAF = (E\ F)U (F\ E) for E, F C X.
Let (X, M, u) be a finite measure space.

(a) If E,F € M and u(EAF) =0 then pu(F) = u(F).
(b) Say that E ~ F if u(EAF) = 0. Then ~ is an equivalence relation on M.
(c) For E, F € M, define p(E, F) = p(EAF). Then p defines a metric on the space M/ ~.
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Solution to (a) Note first that u(EAF) = u(E\ F) + p(F \ E) and since u(EAF) =0
we have p(E\ F) = u(F\ E) =0.
Also, writing £ = (E\ F)U(ENF)and F = (F\ E)U (FNE) we have

p(E) = p(ENF)+u(ENF) and  p(F) = p(F\ E) + u(F N E),

and hence p(E) = p(ENF) = p(F).

Solution to (b) We prove that ~ is an equivalence relation of M.
(i) (Reflexive) Since FAE = &, we have u(EAE) = 0, hence E ~ E.
(ii) (Symmetric) If £ ~ F, since EAF = FAFE then F ~ E.

(iii) (Transitive) Let E ~ F and F'~ G. Now E\G C (E\ F)U(F\G)and G\ E C
(G\ F)U(F\ E), hence
EAG © (EAF) U (FAG), (2.2.2)

and the subadditivity property of y shows that

n(EAG) < p(EAF) + p(FAG) =0,

and therefore £ ~ G.

Solution to (c) Consider the space M/ ~ of equivalence classes of ~. Clearly p(E, F) =
p(F, E) for each E, F € M.
Let us show that this metric is well defined: if Ey ~ Ey and F' € M then using (2.2.2)

we have
E\AF € (BAE) U(EBAF)  and  E,AF C (B,AE) U (EAF),
and we obtain p(FE4, F) = p(Es, F'). Now if F} ~ F, we have
p(Er, F1) = p(Es, F1) = p(E», F3),

and proves that p is well defined. The symmetric property of p follows from the symmetric
property of A. Lastly, in item (b) we have proven that u(EAG) < u(EAF) 4+ u(FAG), and
hence p satisfy the triangle property. Thus p is a metric in M/ ~.

EXERCISE 13. If pis a o-finite measure then p is semifinite.
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Solution. We know that X = (J;2, E; where {E}} is a pairwise disjoint sequence
in M with p(E;) < oo for all j (see Proposition 2.1.4). If u(E) = oo, we can write
E=FEnX = U, (FNE;), with disjoint union and hence u(E) = 3277, u(E N Ej),
with p(E N E;) < oo for all j. If w(E N E;) = 0 for all j then u(E) = 0, which is a
contradiction, therefore there exists jo such that u(E N E; ) > 0, and hence EN E; C E and
0 < u(ENE;) < oo, which means that y is semifinite.

EXERCISE 14. If u is a semifinite measure and p(FE) = oo, the for any given ¢ > 0, there
exists F' C F with ¢ < u(F') < oc.

Solution. Set J(E) = {F: F C E with 0 < u(F) < oo}. Clearly, since p is semifinite,
the set J(E) is nonempty. Take s = suppe g #(F). The result is proven if we show that
s = 00.

To that end, suppose by absurd that s < oo and choose a sequence {F;} with F; C E,
0 < u(F;) < oo and jli_)rgou(Fj) = 5. Define G = (J;2, F}, then p(G) > pu(F;) for all j and
hence u(G) > s.

If u(G) < oo then pu(E\ G) = oo and we can choose Gy C E\ G such that 0 < u(G;) < oo.
Then GUG; C E and u(GUGy) = pu(G) + pu(Gy) > s, which contradicts the fact that
8 = SUpPpe j(p) W(F), since G UGy € J(E).

If u(G) = oo, then by the continuity from below, we have

u(G) = lim 4 (U Fj) ,
j=1
and hence there exists n such that p (U;;l F]> > s, which again contradicts the fact that

§ = SUPpe gy W(F).
Thus, we must have s = oo and the result is proven.

EXERCISE 15. Given a measure space (X, M, ), define g on M by
po(E) =sup{u(F): F C E and p(F) < co}.

(a) o is a semifinite measure, called the semifinite part of p.
(b) If p is semifinite, then p = pup.

(c) There is a measure v on M (in general, not unique) which assumes only values 0 and oo

such that u = pg + v.
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Solution to (a). Let us prove first that pg is a measure on M. Clearly po(@) = 0. If
{£;} is a pairwise disjoint sequence in M and E' = |J2, E;. Let F' C E with pu(F) < oo.
Setting F; = F'N E; then FNE; C Ej and u(F N E;) < oo then p(F N E;) < po(E;) and

hence
(o)

u(F) = ZM(F NE;) < ZMO(EJ)~

Since this is true for all F' C E with pu(F) < oo then
io(B) <3 pio(Ey).
j=1

Now if Fy C Ej with p(Fy) < oo for all j, then G, = |Jj_, F; C E for each n and G,, C E
and u(G,,) < oo for alll n, thus

n

po(E) = p(Gr) = > p(Fy) for all n.

=1

Since this is true for all F; C E; with u(F;) < oo, taking the supremum of such F} for

each j =1,--- ,n we have

po(E) > Z,uo(Ej) for all n,
=1

and making n — oo we have po(E) > 372 po(E;), which concludes the proof that i is a
measure on M.

Now we prove that (i is semifinite. To that end, we first prove that if u(E) < oo then
po(E) = p(E). Clearly if u(E) < oo then u(E) < po(E). Now if FF C E then pu(F) < po(E)
and hence, taking the supremum over F', we have po(F) < p(E).

Assume that pg(E) = oo, then by definition of supremum, there exists F' C E with
0 < u(F) < oo, and since p(F') = po(F) we obtain the result.

Solution to (b). We have already proven in item (a) that p = pg for measurable sets with
finite g-measure. Now assume that p(FE) = oo. Since p is semifinite, by Exercise 14 above,
for each positive integer n, there exists F,, C F with ¢ < u(F,,) < co. Hence ug(E) > p(F,)
for all n, which implies that po(F) = oo and concludes the result.

Solution to (c). We say that a set I is o-finite for v if £ = J}Z, E; with disjoint union
and p(E;) < oo for all j. Set v on M as follows:

0, if E is o-finite for p,
v(E) =
0o, if F is not o-finite for u.
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We will prove first that if £ is o-finite for u then u(E) = po(E). If E is o-finite for p then
p(E) =Y w(E) =>> po(E;) = po(E),
j=1 j=1

since p = pg for p-finite measurable sets. Then pu(E) = po(E) = uo(E) + v(E) if E is a
o-finite sets.

Now note that E is not o-finite for pu then p(E) = oo, and hence u(E) = v(E) =
po(E) + v(E). Therefore we have u = po + v.

It only remains to prove that v is a measure on M. Clearly v(@) = 0. Now let {E};} be a
pairwise disjoint sequence on M and F = U;; E;. If E; is o-finite for p for all j then F is
also o-finite, hence .

V(E)=0=> u(E)).
j=1

Assume that Ej, is not o-finite for y for some jo and suppose that E'is. Then E = | J;—, F},
with disjoint union, Fy, € M and p(Fy) < co. Hence Ej, = E;y N E = J,—,(E;, N Fy) and

hence Ej, is o-finite for ;1 which is a contradiction, and hence £ is not o-finite for p, thus

W(E) = o0 = v(Ey) > Y v(E;) = o0,

Jj=1

hence v(E) = > v(E;), and v is a measure on M.
j=1

EXERCISE 16.  Let (X, M, u) be a measure space. A set £ C X is called locally
measurable if ENA € M for all A € M such that u(A) < co. Let M be the collection of
all locally measurable sets. We know that M C M. If M = M then p is called saturated.

(a) If p is o-finite then p is saturated.
(b) M is a g-algebra.

(c) Define ji on M by ji(E) = u(E) is E € M and ji(E) = oo otherwise. Then /i is a

saturated measure on M called the saturation of .
(d) If p is complete, so is fi.

(e) Suppose that p is semifinite. For E € M, define u(E) =sup{u(A): A€ Mand AC E}.

Then p is a saturated measure on M that extends p.
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(f) Let X;, X5 be disjoint uncountable sets, X = X; U X5 and M is the o-algebra of the
countable ou co-countable sets in X. Let y be the counting measure on P(X;) and
define 1 on M by u(E) = jio(E N X1). Then y is a measure on M, M = P(X), and
in the notation of parts (c) and (e), then i # p.

Solution to (a). Let £ be a locally measurable set. Since o-finite is X = (J;Z, £; with
disjoint union and p(E;) < oo for all j. Hence

EzEﬂXzEﬁ(GE]) UEmE M,
j=1 "
- eM

j=1

by the locally measurability of £. Hence M C M and 1 is saturated.
Solution to (b). Clearly @ € M. Now if {E;} C M and A € M with u(A) < oo then

(UEJ) nA=J(EnA4)eM
i=1 A VI

and hence | J)Z, F; € M. If E€ M and A € M with u(A) < oo then
E‘NA=A\(ENA)eM,

and hence E¢ € M. Thus M is a o-algebra.
Solution to (c). We prove now that /i is a measure on M. Let E = U2, £; with disjoint
union, with E; € M for all j.

If £ € M and p(E) < oo then, since E; € M, we have E; = E;NE € M, by definition
of M, for all j. Thus

o

i(E Z# =Y A(E)).

j=1
Now if £ € M, u(E) = oo and E; € M then ji(E;) = u(E;) and i(E) = p(E), and the
result follows in this case.
Now assume that £ € M\ M. If E; € M for all j we have £ € M, which implies that
since £ € M \ M there exists jy such that Ej, € M \ M. Therefore, in this case

UE) =00 = ju(E;,) <Y A(E)) < oo

j=1
and hence [i(E) = 0o = Z fi(E;). Therefore ji is a measure on M.
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It remains to prove that i is saturated. To this end, we show that if E € /\il then E € M.
In fact, if E € M then for each A € M with fi(A) < 0o we have ENA € M. Now if
B € M is such u(B) < oo then B € M and ji(B) = u(B) < oo, hence EN B € M and
EnB=(ENnB)NBe M.

Hence M C M and [i is saturated.

Solution to (d). Now assume that y is complete, let N € M with ji(N) = 0 and F C N.
Since i(N) = 0 < oo we have N € M, and since p is complete, F' € M. This implies that
F € M and concludes the proof.

Solution to (e). We prove first that p is a measure on M. Clearly pu(2) = 0. Now let
E =J;2, E; with disjoint union with Ej; € M for all j, F € M with F C E. If u(F) < 00
then, by definition of M, we have F'N E; € M for all j and

W F) = w(FNE) Z,uFﬂE <> uEy)

Jj=1

If u(F) = oo the exists a sequence {F, } C M such that F,, C E and n < pu(F,) < oo for

each n. Hence, for each fixed n, by the computation above, we have

n < u(Fy) <) p(E
7j=1

and making n — oo we obtain

> WE = u(F).

J=1

Joining these two cases, we can write

F) < u(E)

and taking the supremum over F' we get u(FE) < Y72, p(E)).

For the other inequality, note that if F; € M and F; C Ej for all j, then G,, = U?:l F; e
M and G,, C FE for each n, hence

S u(F) = n(Ga) < (B,
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and taking the supremum over Fj for each j =1,--- ,n we have
> uE;) < u(E),
j=1

and finally, making n — co we have > 22| u(E;) < p(E), and concludes the proof that p is a
measure on M.

Now we prove that u extends p. If £ € M, then clearly u(E) < p(FE). Now if ' € M and
F C E we have u(F) < u(E), and taking the supremum of all such F' we have u(E) < u(E).
This completes the proof that = y on M.

It remains to prove that u is saturated. Let £ be such that for all A € M with u(A) < o0
then £ N A € M. We have to show that E € M.

To that end let B € M be such that u(B) < co. Since B € M we have u(B) = u(B) < oo
and ENB e M and EN B = (ENB)N B e M, which proves that E € M and thus p is
saturated.

Solution to (f). We prove first that p is a measure. Clearly u(@) = uo(@) = 0. Now let
E = J;Z, E; with disjoint union and £; € M for all j. Then {E;N X} is a disjoint sequence
on P(X;) and hence

u(E) = po(E N X1) = pro (U(Ej N X1)> = no(B; N X0) =D p(Ey),

Jj=1 Jj=1

hence p is a measure on M.

Now fix £ C P(X) and A € M with pu(A) < oo. This implies that po(A N X;) < oo and
hence AN X is finite. But since X is uncountable, we have X; \ A uncountable, and since
X\ A D X;\ A, this implies that X \ A is uncountable. Since A € M we must have A
countable. Therefore EN A is countable, which means that ENA € M, and thus M = P(X).

Now fix 71 € X; and consider E' = {71} U X, C X. We have u(E) = 1 and thus yu(E) = 1.
But £ is neither countable nor co-countable, hence E' ¢ M and fi(E) = oo, and thus i # p.

2.3| OUTER MEASURES

| DEFINITION 2.3.1. An outer measure on a nonempty set X is a function p*: P(X) —
[0, 00] that satisfies:

-35-



(ii) u*(A) < p*(B) f A C B,

(i) 4 (U A,) <>y

| ProPosITION 2.3.2. Let £ € P(X) and p: € — [0,00] be such that @ € £, X € £ and
w(@) =0. For any A C X, define

Hlf{ZM Eeé’andACUE}

j=1
Then p* is an outer measure.

Proof. Given A C X, there exists {£;}72, C € such that A C [J;2, E; (taking F; = X for all
J, for instance), so the definition * makes sense. Obviously p*(@) = 0, just taking E; = @
for all j.

If A C B, then each cover of B by subsets of £ is also a cover of A, and hence p*(A) <

p(B).
To prove the countable subadditivity, assume that {A;}52, C P(X) and € > 0. For each
J there exists a cover {E}}7°, C & such that

o0 . €
S ulBi) <17 (A) + o

k=1

but then if A = UA then A C Ujy_, Ejx and

7=1
S uE < Y n(a) e
j=1 k=1 j=1
hence p*( Z 1 (A;) + €. Since € > 0 is arbitrary, the result is proven. |
7j=1

Given an outer measure p* on X, a set A C X is called ;/*-measurable if
p(E)=p (ENA)+p(ENA°) forall EC X.

Clearly, for all EC X we have p*(E) < p*(ENA)+p*(ENA°), hence A is p*-measurable
if and only if p*(E) > p*(ENA) + p*(E N A°), and this latter is trivial if u*(E) = co. Hence
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A C X is pu*-measurable if and only if
w(E)yZp (ENA) +up (ENA°)  forall B C X with u*(F) < 0.

I THEOREM 2.3.3 (Caratheodory’s Theorem). If u* is an outer measure on X, then the
collection

M ={AC X: A is p*-measurable},

is a o-algebra, and the restriction of u* to M is a complete measure.

Proof. We begin proving that M is an algebra. Clearly @ € M. Now let A, B € M and
E C X. Since A € M, we have

P (E) = p (ENA) +p" (BN A%,
and since B € M we have
p(ENA) =p(ENANB)+ u (ENAN B

and
p(ENAY) =p (ENA°NB)+ p (ENA°NBY,

thus

p(E)=p (ENANB)+u (ENANBY) + " (ENA°NB)+ " (ENA°N BY).

—u* (EN(AUB)°)

But AUB=(ANB)U(ANB°) U (AN B), and hence p*(EN(AUB)) < p*(ENAN
B)+ p*(ENANB°) + p*(E N A°N B), which implies that

pi(E) Z p (EN(AUB)) +p"(EN (AU B)),

and thus AU B € M, and M is an algebra.

Now let {A;} be a pairwise disjoint sequence in M and A = |J7Z, A;. Set B; = Ul_, 4
for all j, and since M is an algebra, {B,} C M.

Now, setting By = &, for each fixed j and £ C X, since A; € M, we have

W (ENBy) =p"(EN BN Aj) + p*(EN By N AS)
= p (ENA;) +p (BN Bj),
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and hence p*(E N B;) = Y24_, w*(E N Ay). Now

p(E) = p*(E N Bj) + p* (BN Bj) (BN Ag) + p* (BN BY)

J
> W (ENA) + p(En A%,

k=1
and letting n — oo, we obtain

> w(ENA) + p(E N A°)
7j=1

> (UENA)) +n(ENA) = (B0 A) + 1 (BN AY) > i (B),

which shows us that A € M. Moreover, taking F = A in the above gives us

=21 (4)

and hence p* is countably additive in M, hence p* restricted to M is a measure

To show that it is complete, note that if ©*(A) = 0 then

p(E) < p (ENA)+p (ENAY) = p'(ENA°) < p(E),

and therefore A € M, and p* is a complete measure in M. |
The first application of CarathA@odory’s Theorem is to extend measures from algebras

to o-algebras. More precisely, let A C P(X

) be an algebra. A function pg: A — [0, 00] is
called a premeasure if

L. (@) =0,

. if {A;} is a pairwise disjoint sequence of sets in A such that |J A; € A then
j=1

Mo< G Aj> - iMU(AJ)

In particular, a premeasure if finitely additive, since one can take A; = & for all but a

finite number of j. The notions of finite and o-finite premeasures are defined just as for
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measures. If 1 is a premeasure on A C P(X), it induces an outer measure on X, namely
mf{Zuo LA € A, ECUA} (2.3.1)
7j=1

| PROPOSITION 2.3.4. If ug is a premeasure on an algebra A and p* is defined as (2.3.1)),
then:

(a) p*la= po.
(b) every set in A is u*-measurable.
Proof. (a). Clearly, if E € A then p*(F) < puo(E). Now, if E € A, let {A;} be a sequence

in A with £ C J;Z, A;. Define B, = A; and B; = A4; \ ( il Ak.> for j > 1. Thus {B;} is

a pairwise disjoint sequence in A, Uj’;l B; = U;’;l A;, and we have

po(E) = MO(EOL_JB>—M0(©EQB) i/ﬁo(EﬁBj)
<ZN0(EQA Z,Uo

where in (x) we used that fact that pg is a premeasure. Since this holds for every cover of F
in A, we have ug(E) < p*(E).

(b). Let A€ A, E C X and € > 0. By definition of p*, there exists {B;} C A such that
EC U2, By with 377 po(B;) < p*(E) + e. Hence

€= mo(B;) e > [Mo(Bj N A) + po(B; N A?)
=1 ‘

J=1
o0

=Y (BN A) + > po(BjNAY) > p*(ENA) + p'(EN A,
where in (%) we used the fact that p is a premeasure in A and B;, A € A. Since € > 0 is
arbitrary, we obtain p*(E) > p*(ENA) + p*(E N A°), and thus A is pg*-measurable. [ |

| TrEOREM 2.3.5. Let A C P(X) be an algebra, o a premeasure on A, and M be the
o-algebra generated by A. Then:

(1) p= p*|m, where p* is given as in (2.3.1)) is a measure on M whose restriction to A is
Ho;
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(ii) #f v is another measure on M that extends ug then v(E) < u(E) for all E € M, with
equality when p(F) < oo;

(ii1) if po is o-finite, then p is the unique extension of py to a measure on M.

Proof. (i). Using CarathA@odory’s Theorem, p* is a measure when restricted to the o-
algebra of the p*-measurable sets. By item (b) of the previous proposition, this o-algebra
contains A and hence it contains M. Thus, the restriction of u* to M is a measure which,
by item (a) of the previous proposition, extends .

(ii). Let v be a measure on M that extends py. Then if £ € M and {A;} C A with
ECUjZ, Aj then

(UA ) <30 =3 ()
j=1 j=1

and hence v(E) < p*(F) = u(FE), since E € M.

Setting A = J;Z, A;, we have A € M and also

/)= Jim v (UA) = o (U ) = i n(U ) = )
j= j= j=

——
€A

Now let £ € M with u(F) < co. Given € > 0, there exists a pairwise disjoint sequence
{A;} C Awith EC A=72, Aj and 3277 po(Ay) < p*(E) + e = p(E) + e Thus

- ZM(AJ-) = Zuo(Aﬂ < p(E) +e

and since pu(E) < 0o, we have u(A\ FE) < e. Thus
p(E) < p(A) = v(A) = v(E) + v(A\ E) < v(E) + p(A\ E) < v(E) +¢

and since € > 0 is arbitrary, we obtain p(E) < v(E).
(iii). Suppose that pg is o-finite, that is, there exists a pairwise disjoint sequence
{A;} € A with pg(A;) < oo and X = J;Z, A;. Then if £ € M we have

o

Z,uEﬁA ;

Mg

v(ENA;) = v(E),

7=1

where in (x) we used item (ii). Hence v = u on M. [ |
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This theorem shows more than the statement: in fact, pp can be extended to a measure

on the g-algebra M* of the p*-measurable sets.

2.4| SOLVED EXERCISES FROM [, PAGE 32])

ExXERCISE 17. If p* is an outer measure on X and {A;} is a pairwise disjoint sequence of

p*-measurable sets, then

u*(Eﬂ DA]) :i,u*(EﬂAj) for any £ C X.
j=1 =1

Solution. We assume, without loss of generality, that £ C U;’;l A, (if E is not a subset of
\J A;, apply the result to F' = EN(|J A;). We thus have to prove that p*(E) = Y p*(ENA;).
j=1 j=1 j=1

Clearly, since E' = |J ENA; and p* is an outer measure, we have p*(E) < Y p*(ENA;).
j=1 j=1

J
Set B; = |J A, for each j, then B, is p*-measurable and
k=1
W (ENBj) = p(ENB;NAj)+p*(ENB;NAS) = p (ENA;) + ' (ENBj_y),
since B; N A = B;_;. Using this argument j times, we obtain
J
“(ENBj)=> p(ENA),
k=1
and hence for each j we have
J
P (E) = p(ENBj) =Y p'(ENA),
k=1

and making j — co we obtain the result.

EXERCISE 18. Let A C P(X) be an algebra. Let ug be a premeasure in A and p* the

induced outer measure.

(a) For any £ C X and € > 0 there exists A € A, with £ C A and p*(A) < p*(F) +e.
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(b) If u*(F) < oo, then E is p*-measurable if and only if there exists B € A,s with E C B
and p*(B\ E) = 0.

(c) If po is o-finite, the restriction p*(F) < oo in (b) is superfluous.

Solution to (a). By definition of p, given € > 0 there exists a sequence {4;} C A, which

we can assume without loss of generality that it is pairwise disjoint, such that ) po(A4;) <
j=1

p*(E) + e Setting A = |J A;, we have A € A, and p*(A) < > p*(A4;) = > po(A4;), since
j=1 J=1 J=1

p* extends pg. Hence p*(A) < p*(F) +e.

Solution to (b). Assume first that there exists B € A, such that £ C B and p*(B\ E) = 0.

If FCX,since FONE°C (FN(B\E))U(FnNB° we have

WH(F A ES) < (PN (B B)) + i (F 1 BY) < i (B\ E) +1°(F 1 B,
T

and since B is p*-measurable and £ C B, we have
pr(F) Z p*(F 0 B) + p(F N B 2 ' (FNE)+ p(FNE)

and hence F is p*-measurable (this implication does not make use of the fact that p*(F) < oo,
and it also holds without the assumption that B € A,s, B just need to be a p*-measurable
set).

For the converse, assume that p*(F) < oo and F is p*-measurable. For each n € N, using
item (a), there exists A, € A, with E C A, and p*(A,) < p*(E) + L. Define B = ﬁ A,.
Hence B € As,, E C B and p*(B) < p*(A,) < p*(E) + £ for each n € N. Making nn_—1> 00
we have p*(B) < p*(E). Since E C B, we have p*(E) < p*(B) and hence p*(B) = p*(E)
(until here the hypotheses that E is u*-measurable and p*(E) < oo are not necessary).

Now since E and B are p*-measurable and p* is a measure when restricted to p*-measurable

sets, we have
W (B) = 1(B) = (B \ E) + " (E),
and since p*(E) < oo, we obtain p*(B\ E) = 0.
Solution to (c). If i is ofinite, there exists a pairwise disjoint sequence {4;} in A such
that X = fj A; and po(A;) < oo for each j.
Let £ %gla p*-measurable set. For each j, E; := £ N A, is p*-measurable and p*(E;) <

p*(A;) = po(4;) < oo. From item (a), for each n € N and j there exists a set G;,, € A, such
that E; C G, and p*(G,,) < p*(Ej) + % Since p*(E;) < oo, we have u*(G,, \ Ej) < %
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Moreover, we can assume that G;, C A;, for otherwise we could consider its intersection
with A; (which is stlll in A,).
Now take H, Ung, for each n € N. Hence H,, € A, and H, \ E = U( Gin \ E,),

Jj=1 Jj=
therefore we have

p(Hn \ E) = (UGM\E)<§:M*(G].,N\E .

for each n € N.
Now take B = (| H,. We have B € A,s and

n=1

p(B\E) Cp'(Hy\ E) <

SI»—

for each n € N. Making n — oo, we obtain the result.

EXERCISE 19. Let p* be an outer measure on X induced from a finite premeasure py.
If E C X, define the inner measure of E to be u,(E) = uo(X) — pu*(E). Then E is
p*-measurable if and only if u*(F) = pu.(FE).

Hint: Use Exercise 18.

Solution. Note that p*(F) < p*(X) = po(X) < oo for all E C X.
If £ C X is p*-measurable, then we have

po(X) = (X)) = p" (X NE) + p (X NE) = ™ (E) + p*(E°),

and since p* is always finite, we have p*(F) = puo(X) — p*(E°) = u(E).

Now, if u.(F) = p*(E), we have ug(X) = p*(E) + p*(E°). We will apply the proof
of item (b) to both £ and E° to obtain By, By € A,s such that £ C By, E° C By with
p*(By) = p*(E) and p*(By) = p*(E£¢). Thus we obtain

po(X) = p*(E) + p(E°) = p*(By) + 1" (Ba).
Also, since B, is p*-measurable, we obtain
po(X) = p(Ba) + 1 (B3),

and by the finitude of u* we obtain p*(By) = u*(B ) But BS C E C By, and since B; and

) =
By are both measurable, we obtain p*(B; \ BS) =
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But By \ £ C By \ B and hence p*(By \ E) < p*(By \ BS) = 0. Hence, from item (b) of

Exercise 18, F is p*-measurable.

EXERCISE 20. Let p* be an outer measure on X, M* the o-algebra of the p*-measurable

sets, T = p*|p+, and pt the outer measure induce by 7z as in (2.3.1)) (with 7z and M* replacing
po and A).

(a) If E C X, we have p*(E) < p™(E), with equality iff there exists A € M* with E C A
and p*(A) = p*(E).

(b) If p* is induced from a premeasure, then p* = p*. (Use Exercise 18(a)).

(c) If X = {0, 1}, there exists an outer measure p* on X such that pu* # pt.

Solution to (a). Let £ C X and € > 0. By definition of u*, there exists B € M* such
that £ C B and fi(B) < pt(F) + €. Since B € M*, 1i(B) = p*(B) and hence

and since € > 0 is arbitrary, we obtain p*(E) < pt(E).
Now assume that there exists A € M* with F C A and p*(A) = p*(E), then f(A) =
p*(A) = p*(E), and since pu(E) < (A), we obtain put(F) < p*(F), and the equality holds.
Conversely, if u*(E) = p*(E) then given n € N there exists A,, € M* such that E C A,
and fi(A) < p*(E) 4+ 1/n. Setting A = (), A, we have A € M*, E C A and

1 (A) < it (A) < (A) < ' (B) < 1 (A),

and thus p*(A) = pu*(E).

Solution to (b). Assume that p* is induced by a premeasure mug on an algebra A. From
item (a), it suffices to show that for each E C X, there exists B € M* with £ C B and
p(B) = p(E).

From item (a) of Exercise 18, given £ C X and n € N, there exists A, € A, such that
p*(E) < p*(A) < p*(E) + L. Setting B = (|, A,, we have E C B, B € M* (since M*
is a o-algebra that contains A), and we have p*(E) < p*(B) < p*(A,) < p*(E) + L for all
n € N. Taking n — oo concludes the result.

Solution to (c). Let u* defined in P(X) by p*(@) = 0, p*({0}) = p*({1}) = 1 and
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p(X) = % Then p* is an outer measure on X. Now since

p(X) = 2 < 2=t ({0)) + (1),

we see that neither {0} nor {1} are p*-measurable sets and hence M* = {@, X}, (@) =0

and 71(X) = 3.

But then p*({0}) = p"({1}) = 2, and therefore p* # p.

EXERCISE 21. Let u* be an outer measure induced from a premeasure and 7z the restriction
of u* to the p*-measurable sets. Then 71 is saturated.

Hint: Use Exercise 18.

Solution. Let M* be the g-algebra of the u*-measurable sets. We need to prove that
a locally measurable set is also measurable. That is, if E N A € M* for all A € M* with
(A) < oo, then B € M*.

Now let /' C X with p*(F) < oo and € > 0. From Exercise 18 item (a), there exists
A e A, with F C A and 1i(A) = p*(A) < p*(F) + € < oo. Hence, since E is locally
measurable, E N A € M* and hence

pr(A) =p (AN(ENA) +p (AN(ENA)) =p(ENA)+ p (AN E)
Z W (FNE)+ ' (FNE),

and thus
P (F) +e>p'(A) 2 p"(FNE)+ p(FnE),

and since € > 0 is arbitrary, we obtain p*(F) > p*(F N E) + p*(F N E°), which proves that

E is p*-measurable and therefore 1 is saturated.

EXERCISE 22. Let (X, M, ) be a measure space, u* the outer measure induced by p
according to (2.3.1]), M* the o-algebra of p*-measurable sets, and 1 = p*| g+

(a) If p is o-finite, then f is the completion of u (use Exercise 18).
(b) In general, fi is the saturation of the completion of y (see Exercises 16 and 21).

Solution to (a). Let F C N where N € N (see Theorem for the notation).
Since N C M C M*, by item (b) of Exercise 18, there exists B € M with N C B and
p*(B\ N) = 0. Therefore we have

pHB\F) < p'(B\N)+p" (BN (N\F)) =0,
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since p*(B\ N) = 0 and p* (BN (N \ F)) < p*(N) = 0. Thus by Exercise 18 (b), F is
p*-measurable. This implies that M C M* (since M C M*).

Conversely, if £ € M*, then also £ € M* and from item (c) of Exercise 18, there
exist By, By € M with E C By, E° C By such that pu*(By \ E) = u*(B2 \ E¢) = 0. Now
BSC E C By and

E= BS UE\ BS.
——

~—
EM  CBi\Bj§

Since By \ BS = (B, \ E) U (E \ BS), we have

W' (B \ BS) < ' (By \ E) + 1" (B B) =0,
N———

=p* (B2\E°)

and B; \ BS € N. Thus M* C M, and proves the equality.
It remains to prove that 7 coincides with the completion of 1 in M, which we will call v.

Let £ € M*, then E € M and thus £ = AU B, where A € M and B C N, where
N € N, and without loss of generality, we can assume that AN B = & (otherwise we could
write F = (A\ N)U(BU(ANN))). By the previous computations we know that B € M*
and thus

i(E) = @ (E) = p*(A) + @ (B) = p*(A) = p(A) = v(E).

Thus & = v on M*, and concludes the result.

Solution to (b). We know that by Exercise 21, 7z is a saturated measure on M*. Now let
M be the completion of M and, as before, v be the completion of . Let E be a locally

measurable set for v, we will show that £ € M*.

Let FF C X with u*(F) < oo and € > 0. From Exercise 18 item (a), there exists A € M
with F C A and pu(A) = p*(A) < p*(F) + € < oo. Since A € M C M, v(A) = u(A) < oo
and F is locally measurable for v, we have EN A € M, and hence EN A = BU C, where
BNnC=g,Be MandCCNeN

We have

pHFNE) S (Fn(BENA) < p'(FNB)+ u*(FNC) = p*(FNB)

0

and

W(FOE) = g (F\E) = i (F\ (ENA) < j(F\ B) = u*(F 1 BY),

- 46 -



Thus, using the fact that B is y* measurable and the two previous inequalities, we have
p (F) Z p"(FNB)+p (FNBY) 2 p'(FNE)+ ' (FNE"),

which shows that £ € M*. Hence ﬁ C M*.

Now let £ € M*. We want to show that £ is locally measurable for v. To that end, we
will prove some claims first.
Claim 1: If ' C X is such that g*(F) = 0, then there exists N € N with F' C N.

In fact, if F* C X, then given n € N, using item (a) of Exercise 18, we have N,, € N with
F C N, and p(N,) < +. Then the set N = ﬁ N,, satisfies the required conditions.

n=1

Claim 2: If E € M* is such that u*(E) < oo, then E € M.

In fact, using item (b) of Exercise 18, there exists B € M with E C B and p*(B\ E) = 0.
But B\ E € M*, and using again item (b) of Exercise 18, there exists C' € M with B\E C C
and p*(C'\ (B\ E)) =0.

Let D =BNC. Since B\ E C C, we have B\ E C D and hence B\ D C E. We can
write E = (B\ D)U(E\ (B\ D)), and B\ D € M, since B,C and D are in M.

Now note that

E\(B\D)=EN(BND)=EN(B°UD)=ENDCENCCC\(B\E),

and therefore p*(E \ (B '\ D)) = 0. By Claim 1, there exists N € N with £\ (B\ D) C N,
and concludes the proof of Claim 2.
Claim 3: If A € M then A € M* and p*(A) < v(A).

In fact, we proved in item (a) that A € M. We can write A = G U H with GN H = &,
GeMand HC N € N. Hence

1 (A) < i (G) + ' () = 1(G) = p(G) = v(A),

and concludes the proof of this claim.

Now we can prove that is £ € M* | then F is locally measurable for v. To this end, let
A € M with v(A) < co. By Claim 3, u*(A) < v(A) < co and A € M*. Thus EN A € M*
and p*(EN A) < p*(A) < oo, we by Claim 2, we obtain that E N A € M, which shows the
local measurability of F.

Therefore M* C ﬁ, and hence M* = ﬁ

Now we have to prove that @ = 7 in M*. But if £ € M* then we have:

Case 1: If E € M, we have E = AU B with ANB=@,and Ac Mand BC N € N.
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Thus

and

and proves that fi(E) = U(E).
Case 2: If E € M*\ M, then by Claim 2 we must have u*(E) = co. Hence

since by definition 7(E) = oo for E € M* \ M.

EXERCISE 23. Let A be the collection of finite unions of sets of the form (a, b] N Q where

—0<a<b< .
(a) Ais an algebra on Q (Use Theorem [1.4.6]).
(b) The o-algebra generated by A is P(Q).

(c) Define pg on A by (@) = 0 and po(A) = oo for A # @. Then py is a premeasure on

A, and there is more then one measure on P(Q) whose restriction to A is pp.

Solution to (a). Let £ be the collection of the sets of the form (a,b] N Q, where
—00 < a < b < oo, regarded as subsets of Q.

Then taking a = b =0, we have @ = (0,0)NQ € £. If A= (a,b]NQ and B = (¢,d|NQ,
then let r = max{a,c} and s = min{b,d}. We have ANB = @ € £ if r > s and
ANB=(r,s|NnQefifr <s.

Nowlet E € £ If E =&, then £ = Q = (—00,00]NQ € &. If E # &, then E = (a,b]NQ
and hence E¢ = [(—o0,a] N Q] U [(b, oo] N Q], which is a finite union of disjoint elements of €.

Therefore £ is an elementary family, and the collection of finite disjoint unions of elements
of £, namely A is an algebra, by Theorem . It only remains to see that A = A. Clearly
A C A. For the reverse inclusion, let E; = (a1,b1] N Q and Ey = (ag, by] N Q be two elements
of £. We can write (ay, by] U (az, bo] as follows:

Case 1: a; < az < by < by
In this case (aq,b1] U (ag, ba] = (a1, b1].
Case 2: a1 < as < by < be.
In this case (aq,b1] U (ag, bo] = (a1, as] U (agz, b1] U (by, b].

Case 3: by = ao.
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In this case (aq,b1] U (az, ba] = (a1, by).
Case 4: by < as.

In this case we do nothing.

We have four more cases, replacing a; by as, as by ay, by by by and by by b;. But
independently of which case we are, we can write ;U E5 as a finite disjoint union of elements
os &, and hence E € A, which concludes the proof.

Solution to (b). Note that if r € Q then

[e.e]

{r}=0-LtrnQ

n=1

hence the o-algebra generated by A contains all singletons (unitary sets). If Q C Q, @ is
countable and hence ) can be written as the countable unions of its points, which show us
that @ is in the o-algebra generated by A. Since () is an arbitrary subset of Q, we obtain
that the o-algebra generated by Q is P(Q).

Solution to (c). Clearly 10 is a premeasure on A. Is associated outer measure is

oo, if B # @,
0, ifF=0.

p(E) =

Thus the o-algebra of the ©* measurable sets is P(Q) and hence p* is a measure on P(Q)
which extends py.
Consider the counting measure v on P(Q). Then if £ € £ and E # @ then

v(E) = o = uy(E),

hence v = iy on A, and hence v = py on A, but v # p*, since v({1}) =1 # oo = p*({1}).

EXERCISE 24. Let p be a finite measure on (X, M) and p* be the outer measure induced
by p. Suppose that E' C X satisfies p*(F) = p*(X) (but not that £ € M).

(a) If A,Be M and ANE = BN E then pu(A) = u(B).

(b) Let Mg ={ANE: A€ M}, and define the function v on Mg by V(AN E) = u(A)

(which makes sense by (a)). Them Mg is a o-algebra on E and v is a measure on Mg.
Solution of (a). We have, since B € M, that
1(B) + u(B°) = w(X) = p*(E) = p*(EN B) + p*(E N B°),
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and thus p*(E N B) = pu(B) + pu(B°) — p*(E N B€), and since p*(E N B®) < p*(B¢) = u(B°),
we have p*(EN B) > pu(B) and therefore, since AN E C A we have

p(A) = p (AN E) = p*(BNE) > u(B).

Interchanging A and B we obtain p(A) < u(B), and thus we have the equality.
Solution to (b). We prove that Mg is a o-algebra on E. Clearly @ € Mg, since @ € M.
Now let {A4; N E'} be a sequence of elements in Mg, that is {A;} is a sequence in M. Thus

G(A NE) (UA)mEeME,

j=1

since |J A; € M.
j=1
If Ae M, then E\ (ANE) = A°N E, hence Mg is closed under complements in E.

Thus Mg is a o-algebra on E.

Now we have to prove that v is a measure on Mp. Clearly v(@) = 0. Now let {4, N E'}
be a pairwise disjoint sequence on Mg and consider the sequence {A;} in M.

Claim: There exists a pairwise disjoint sequence {B;} on M such that p(A;) = pu(B;) for all
7.

In fact, if {A;} is already a pairwise disjoint sequence on M, we have nothing to do. If
this is note the case, then we consider B; = A; and B; = A; \ (Ui;ll Ay). Then the sequence
{B;} is a pairwise disjoint sequence in M. Now we show that B; N E = A; N E. In fact,
since B; C Aj we have B,NE C AjNE. Nowifz € A;NE thenz € Aj and x € E. But
since {A; N E'} is pairwise disjoint, we have © ¢ EN A, for all i < j, and since x € E this
implies that = ¢ A; for ¢ < j, this means that x € B; and hence A;NE = B; N E. From
item (a), p1(A;) = pu(B;) and completes the proof of the claim.

To conclude, we have

and hence v is a measure on Mg.
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2.5| BOREL MEASURES ON THE REAL LINE

I DEFINITION 2.5.1. A measure p on a topological space (X, T) is called a Borel measure

on X if its o-algebra of definition is the Borel o-algebra Bx.

In this section, we will see how to construct Borel measures on R. Let us see first some

motivation: consider a finite Borel measure p on R and define F': R — R given by
F(z) = p((—o0,z]) for z € R.

Such function F' is called distribution function of . This F'is increasing and right
continuous, since (—oo, z| = ﬂ;’;l(—oo, z;] for a sequence z; — x*. Moreover, if a < b then
(—00,b] = (—00,a] U (a,b] and thus u((a,b]) = F(b) — F(a).

The process we will present here does the opposite direction: from an increasing and
right-continuous function, we will construct a Borel measure 4 on R. The particular case

F(z) = x will lead us to the usual definition of “lenght”.

| DeErFINITION 2.5.2. Sets of the form (a,b], (a,00) or @, for —co < a < b < oo will be

called h-intervals.
| PROPOSITION 2.5.3. We have:
(1) the intersection of two h-intervals is an h-interval;

(ii) the complement of an h-interval is either an h-interval or the disjoint union of two

h-intervals.
Proof. Follow the steps of the proof of Exercise 23, item (a). [ |

By Theorem the collection A of finite disjoint unions of h-intervals is an algebra,
and using Proposition the o-algebra generated by A is Bg.

Now we will construct a premeasure on the algebra A.

| DeriniTION 2.5.4. let F': R — R be an increasing and right continuous function. Set
F(o0) = lim F(z) and F(—o00) = lim F(x) (both exist since F' is increasing). We define:
T——00

T—00

1. wo((a,b]) = F(b)—F(a), if —oo < a < b < oo, and pp((a,00)) = F(o0o) — F(a) if —oo < a,
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2. if {I;};_, is finite pairwise disjoint sequence of h-intervals, define

u

J

n n

[j> = > po(l))-

1 j=

We have two remarks to make before continuing. First, note that taking a = b in (1) we
obtain o(@) = 0. Also the difference F(o00) — F(—o0) is always well defined, since F'(c0)

and F'(—o0) cannot be simultaneously co or —oo (recall that F' is increasing).

| LeEMMA 2.5.5. The function p defined above is well defined in A, that is, if E = |J I; =
j=1
By, with {1;}5_, and {Fy}7, are two finite disjoint sequences of h-intervals then
k=1

m

Z no(L;) =Y po(F).

k=1

Proof. We will prove first that if I is an h-interval with I = (J]_, J,, where {J,}}_; is a finite
disjoint sequence of h-intervals, then po(f) = > 1o(J,). To that end, we have two cases to
p=1

consider:

Case 1: I = (a,b] with —oo < a < b < oo. In this case, each J, must be of the form
Jp, = (ap, by] with —oo < a, < b, < co. We can reorder the index p, if necessary, to obtain
a=a; <by=ay<by<---<b._1=a, <b. =0, and we have

T

S no(d) = S(Eb,) — Flay) = F(b,) — Flar) = F(8) — F(a) = po(1).

p=1

Case 2: [ = (a,00) with —oo < a. In this case, exactly one of the J,’s must be (a,,00), and
all the others are of the form J, = (a,,b,] with —co < a, < b, < co. We can reorder the

index, if necessary, to obtain a; =a < by =as < --- < b,_1 = a,, and J, = (a,,00). Thus

—_

r—

S wo(dy) = F(o0) = Fla,) + S(F(b,) — Fla,)) = F(oo) — Fla)

p=1

= F(00) = F(a) = po(1).

With this result, consider the general case stated in the lemma. Using Proposition [2.5.3]

item (i), for each j =1,--- ,nand k= 1,--- ,m, the set I; N F}, is an h-interval. Moreover,
for each j we have I; = |J ({; N F}), and for each k we have F, = |J ({; N F}), hence from
k=1 j=1
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what we proved

Do) =Y > ol NE) = > (N F) = po(Fr),
j=1 j=1 k=1 k=1 j=1 k=1
which concludes the proof. |

| ProprosiTiON 2.5.6. The function ug defined in Definition is a premeasure on A.

oo
Proof. We have to prove that if {/,;} is a pairwise sequence in A with |J I; € A then
j=1

wo(U 1) = Z po(Z;). Since each I is a finite union of h-intervals (which we can assume to

be pairwise dlsJ01nt) we can assume, after relabelling the sequence, that each I; is a single

h-interval. Also, since their union is in A, it consists of a finite union of pairwise disjoint

h-intervals, and we can partition each I; in a finite number of h-interval such that the union

of the intervals in each subsequence of this partition is a single h-interval. Since pi is finitely
oo

additive, we may assume that |J ; is a single h-interval /. In this case, we have
j=1

() +(n08) = o Us).
j=1 Jj=1 Jj=1
Now we prove the reverse inequality, and we will brake it into some cases:
Case 1: I = (a,b] with —co0 < a < b < 0.

In this case consider € > 0. Since F' is right continuous, there exists § > 0 such that
F(a+0) — F(a) < e. Also, if I; = (ay,bj], for each j there exists §; > 0 such that
F(b;j+6;) — F(bj) < €277. The open intervals (a;, b; +9;) cover the compact set [a+ 4, b], and
we can extract a finite subcover. If we discard any interval in this finite subcover which is

contained inside a larger interval and (possibly) relabelling the index j, we can assume that:
(i) the intervals (ai, by + 01),- -, (an, by + dn) cover [a + 9, b),

(11) bj + 5]‘ S (aj+1,bj+1 + 5j+1) fOl”j = ]_, cee ,N — 1.

- 53 -



Then, we have:

po(I) = F(b) — F(a) < F(b) — Fa+d) + ¢ < F(by + 6n) — F(a1) + €
— Flby +0x) — Flax) + Y [Flapn) — Flay)] + ¢

=z

25

<F(bN—|—5N)—F(CLN)+ [F(bj+5j)—F(aJ)]+e

<.
Il

<

WE

[F(b]) + 62_j - F((lj)] +€

<.
Il

A
WE

MO(Ij) + 2e,
1

.
Il

and since € > 0 is arbitrary, this conclude the proof for this case.
Case 2: [ = (—00,b], with —o0 < b < 0.

Using the same notations as in Case 1, given M > 0, there is a finite subcover of [—M, b],
satisfying (i) (with [—M, 0] instead of [a + §,b]) and (ii). Then

F(b) — F(=M) < F(by + 6x) — F(a1) < Y _ o) + €.
j=1

Since € > 0 is arbitrary, we have F'(b) — F((=M) < 372, po(I;), and the result follows by
making M — oo.
Case 3: I = (a,00) with —oo < a < 0.

Using the same argument as in Case 2, we obtain F(M) — F(a) < 3272, po(I;), and the
result again follows by making M — oo.
Case 4: I = R.

In this case, we can find a finite subcover of [—M, N]| for any given M, N > 0, and we
obtain F(N) — F(=M) < >272, po(I;), and the result is prove making M, N — oo (in any
order). [ |

With this premeasure we can construct a Borel measure, and we have our following result.

I THEOREM 2.5.7. Let F: R — R be an increasing and right continuous function. Then
there exists a unique Borel measure up on R such that pup((a,b]) = F(a) — F(b) for all
a,b € R. If G is another such function, then we have up = pug if and only if F — G s

constant. Conversely, if p is a Borel measure on R that is finite on all bounded Borel sets,

- 54 -



and we define
1((0, z]) if © > 0;
F(z)=<0 if © = 0;
— p((x,0]) if x <0,

then F' is increasing and right continuous, and p = pp.

Proof. Using Proposition we know that g given in Definition [2.5.4]is a premeasure on

A. Moreover, since R = |J (4,7 + 1] and puo((j,7 +1]) = F(j + 1) — F(j) < oo for all j, the
jET

premeasure i is o-finite on R. Hence, by Theorem [2.3.5| items (i) and (iii), there exists a

unique extension up of yy to the o-algebra generated by A, which is Bg.

Now set k = F(0) — G(0). If z > 0, then
F(x) = F(0) = ur((0,2]) = ne((0,2]) = G(z) — G(0),
and hence F(z) — G(z) = k. Now if 2 < 0 then
F(0) = F(z) = ur((2,0]) = pe((z,0]) = G(0) — G(2),

and again we obtain F(x) — G(z) = k. Hence F' — G is constant. For the converse, if F'— G
is constant then pup and pg both coincide with py on A and hence, by the uniqueness of the
extension, pp = Uq.

For the last claim, if 0 < = < y then (0, 2] C (0,y] and F'(z) = p((0,z]) < 1((0,9]) = F(y),
by the monotonicity property of u (see Theorem 2.1.3] item (a)). Now if z < y < 0 then
(y,0] C (z,0], and again by monotonicity we have F(z) = —u((z,0]) < —u((y,0]) = F(y).
For z < 0 < y, we have F(z) < 0 < F(y), and therefore F' is increasing.

Now let # > 0 and =, \, x as n — oo. Then (0, z,41] C (0, z,] for all n, (0,z] = ﬁ (0, z,]
and p((0,21]) = F(x1) < co. By the continuity from above (see Theorem [2.1.8] iterr;l:(llo)), we

have

F(a) = p((0,a]) = u( (0. 2] ) = im u((0,2.]) = lim F(a,),

and proves that F'is right continuous at z. For x < 0 the proof is analogous, and F' is right

continuous.

Now if a,b € R and 0 < a < b, then (0,0] = (0,a] U (a,b] and p((a,b]) = u((0,5]) —
1((0,a]) = F(b) — F(a). If a < b <0 then (a,0] = (a,b] U (b,0] and u((a,b]) = u((a,0]) —
w((6,0]) = =F(a) + F(b) = F(b) — F(a). Now if a < 0 < b, then (a,b] = (a,0] U (0,b] and

again u((a,b]) = F(b) — F(a). Hence, it is clear that u coincides with g in A, and by the
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uniqueness of the extension, p = up. ]

It is worth to remark that this theory could be made with h-intervals of the form [a, b)
and left continuous functions. Also, if p is a finite Borel measure on R, then y = pup where
F(z) = p((—o0,z]) is the cumulative distribution of the measure p, and this function differs
from Theorem by the constant p((—o0,0]).

The theory we developed before gives, for an increasing and right continuous function
F', not only a Borel measure on R, but a complete measure fi, on a o-algebra that contains
Br (see Theorem . We will see that i is just the completion of up and its domain is
always strictly larger than Bg. To this complete measure, which we again denote by pp, we
give the name of Lebesgue-Stieltjes measure associated to F'.

We will, from now on, explore further regularity properties of Lebesgue-Stieltjes measures.
To this end, we will fix a complete Lebesgue-Stieltjes measure p on R associated to the
increasing and right continuous function F’, and we denote by M, the o-algebra which is the
domain of 4 (which contains Bg). We know, from Theorem [2.3.5] that for cach E € M,, we

have

WE

u(E) = inf{

:inf{

just noting that a set of the form (a, c0) can be written as (a,00) = |J (a+n—1,a+n|, and
n=1

[Foy) — Fla)): £ € )]}

1

<.
I

WE

1((az, b5]): B C U(aj;bj]},

1

.
Il

we already know that 10((a,00)) = > po((a +n — 1,a + n]), since o is a premeasure on A.
n=1

First, we will see that we can compute the measure of F using open intervals, instead of

h-intervals.

| LEMMA 2.5.8. For any E € M,,, we have
p(B) = inf {3 pl(az,b): B < (Jas,b) }-
=1 j=1
Proof. We define
v(B) = inf { 3" plla;,03)): B < (o b)}.
j=1 j=1

First assume that £ C U;;(@j,bj)' We can assume, without loss of generality that
b; > a; (otherwise (a;, b;) is empty and we can discard it). Consider an strictly increasing

sequence {¢;x}tr, With ¢j1 = a; and ¢j, — b; as k — oo, and define I;; = (¢jx, ¢jx+1]. Hence
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(aj,b5) = Uply Liw and £ C U7y Ljk- Thus

> nlag b)) =D ) = Y pllix) = p(E).
J=1 j=1 k=1 G k=1

Since this is true for any cover of E with open intervals, we have v(E) > u(FE).

Now for the converse, let € > 0. By definition of p, there exists {(a;,b;]} with £ C
Uiz, (aj,b5] and > 277, pu((aj,b5]) < p(E) + e For each j, we choose d; > 0 such that
F(bj+4;) — F(b;) < 277¢ (this can be done since F is right continuous) and we have

V<E)gZ/ﬁ((%:bﬂ‘i‘(sj))gZM((aﬁb + 6;]) Zﬂ aj, b +ZU (bj, b + 65])
j=1 j=1 J=1
< uE) +e+ Y [Fb+6;) — F(by)] +e+Z2 ie = + 2
J=1°
and since € > 0 is arbitrary, we obtain v(E) < u(F). |

| PropPosITION 2.5.9. For E € M,, we have
w(E) =inf{u(U): ECU and U is open}.

Proof. Let pop(E) = inf{p(U): E C U and U is open}. Clearly if E C U, since U € Bg C
M,,, we have by the monotonicity property of p that u(E) < p(U). Hence p(E) < piop(E).

For the converse inequality, let € > 0. By Lemma [2.5.8] there exists {(a;,b;)} such that
B c U2 (a;,b) and 3777, p((ay,b5)) < p(E) + e Since U2, (a;,b;) is open, we obtain
top(E) < (E) + €, and since € > 0 is arbitrary, we have p,,(E) < p(E), which conclude the
proof. |

| PropPosITION 2.5.10. For E € M,, we have
u(E) =sup{u(K): K C E and K is compact}.

Proof. Set p.(E) =sup{u(K): K C F and K is compact}. Clearly if K C E then u(K) <
p(E) (u(K) is defined since K is closed, and hence K € Bgr C M,,). Thus p.(E) < p(E),
and we just have to prove the converse inequality.

Assume that E is bounded (hence p(E) < oo). If E is closed then E' is compact, and the
equality follows taking K = E. If E is not closed, let € > 0 be fixed. By Proposition [2.5.9]
we can choose an open set U with E\ E C U and u(U) < u(E\ E) +¢. Take K = E\ U,
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which is compact and K C E. We have

u(K) = pw(E) = n(ENU) = p(E) — [wU) = w(U\ E)]
= pu(E) = p(U) +p(U\ E)

B\
> W(E) — w(E\E) — e+ u(E\ E)
= u(E) -

and hence u.(E) > pu(E) — €, and since € is arbitrary we obtain u.(E) > p(E), if E is
bounded.

Now, if E is unbounded consider E; = EN (j,j + 1] for each j € Z. Then Ej is bounded
and by the previous computations, for each j € Z there exists a compact set K; C F; with
w(K;) = p(E;) — 276l Now, for each n € N, define H,, = |J__, K;. Then H, is compact,

H, C E and —
pe(B) > () = (U K;) = 30 (k) > Y- n(Ey) - M)
:Z/L('—3€— (UE)—3E

Therefore p.(E) > ,u( U Ej) — 3¢, and since p(F) = lim ,u( U Ej) (continuity from
j=—n n—00 j=——n

below), making n — oo we obtain p.(E) > u(E) — 3¢, and since € is arbitrary, we obtain the

reverse inequality and conclude the result. |
| THEOREM 2.5.11. If E C R, the following conditions are equivalent:

(a) EeM,.

(b) E=V\ Ny whereV is a G5 set and (Ny) = 0.

(c) E= HUN, where H is a F, set and p1(Ny) = 0.

Proof. Clearly, since p1 is complete by hypotheses, N; and N; are in M, and hence (b) and
(c) clearly imply (a).

We will prove that (a) implies both (b) an (c). For (a) implies (b), for each j € Z, we
set £; = EN(j,7 + 1] and so we have u(E;) < co. If j € Z is fixed, for each k € N we have
E; C Ujy, with U, open and u(U;y, \ E;) < k=271,
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Now take Uy = | Ujx. We have Uy \ E C |J (Ujx \ E;) and hence pu(Ui \ E) <

J=—00 J=—0

> w(Ujk \ E;) < 2. Clearly each Uy is open and taking V = [ Uy, we have V a G; set

and V' \ E C Uy \ E for all k, which implies that

p(V\E) < Uy \ E) < - for all £,

=l w

and hence p(V '\ E) = 0. Taking N; = V' \ E we prove that (a) implies (b).
For (a) implies (c), note that since £ € M,, then E¢ € M,,. Then using that (a) implies (b),
we can write £ = V' \ Ny where V is a G4 set and p(N;) = 0. Thus E = (V' \ N;)¢ = VCUDNy,

where V¢ is a F, set, and concludes the proof. |

This theorem says roughly that all sets in M, are reasonably simple (open or compact)
modulo sets of measure zero. Another useful proposition that states that measurable sets

with finite measure can be approximated by a finite union of open intervals is the following:

I PROPOSITION 2.5.12. If E € M, and pu(E) < 0o, then for every e > 0 there is a set A
which is a finite union of open intervals such that u(EAA) < e.

Proof. In fact, for a given ¢ > 0, there exists K C E C U with K compact and U open,
such that u(U \ E) < § and pu(E \ K) < 5. Now, since U is an open set of R, we can
write U = Ej(aj, b;), with a; < b; for all j. Since K C U is compact, the exists a finite
subcover ofJ _{1(aj,bj)} that covers K, and after possible relabeling, we can assume that

K C Uj_i(a;, b)) == A.
Thus we have K C A C U and
€ €
pANE) < p(U\ B) < & and (B A) < p(B\ K) < &

and hence p(EFAA) = u(E\ A) + pu(A\ E) <e. [

2.5.1 | THE LEBESGUE MEASURE ON THE REAL LINE

Now we will take a look at the properties of the most important measure on R, the
Lebesgue measure, which is the complete Lesbesgue-Stieltjes measure g associated with
the function F'(z) = x, and the measure of each interval is simply its length. The Lebesgue

measure will be denoted by m, and the o-algebra of the m-measurable sets is called the class
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of the Lebesgue measurable sets, and will be denoted by L. The restriction of m to Bgr
will be also called Lebesgue measure.
Among the most important properties of Lebesgue measure are its invariance under

translations and simple behavior under dilations. For £ C R, s,r € R, we define
E+s={r+s:x€FE} and rE={rzx:z€E}.

I THEOREM 2.5.13. Let E € L. Then if s,r € R, we have
(a) E+se L and m(E+s) =m(E),
(b) rE € L and m(rE) = |rim(E).

Proof. First note that the collection of all open intervals of R is invariant by translations
and dilations, and hence so is Bg; that is, the translation and dilation of Borel sets are still

Borel sets. Hence, for s,7 € R and E € Bg we define
ms(E)=m(E+s) and m"(F)=m(rE).
Now if (a,b) is an open interval, we have
ms((a,b)) =m((a,b) +s) =m((a+s,b+s)=(b+s)—(a+s)=b—a=m((a,b)),
and

m((ra,rb)) =rb—ra=r(b—a)=rm((a,b)) if r >0,
m’((a,b)) = m(r(a,b)) =
m((rb,ra)) =ra—rb=—r(b—a)=—rm((a,b)) ifr<0

= [r[m((a, b)),

hence mg and m” agrees with m and |r|m, respectively. Therefore, they agree on finite unions
of intervals, and by uniqueness (see Theorem they must agree on Bg.

In particular, if £ € Bg is such that m(E) = 0, then m(E + s) = 0 and m(rE) = 0, which
shows that the class of Borel sets of zero measure is preserved by translations and dilations.
If E € L is such that m(E) = 0, we know that there exists a G5 set A € Bg such that £ C A
and m(A) = 0 (take U, open with E C U, and p(U,) < 1/n, and set A = _, U,). Hence
E+sCA+sand rE C rA, with m(A+s) =m(A) =0 and m(rA) = |rjm(A) = 0, and
since m is complete, F + s and rFE are in £ and they both have zero Lebesgue measure.

Now, using item (c) of Theorem [2.5.11] each Lebesgue set E is the union of a Borel set
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and a set of Lebesgue measure zero. Thus its translation £ + s and dilation rE are also

Lebesgue sets and m(E + s) = m(E) and m(rE) = |rim(E). [ |

An impressive remark is that measure and topological properties contain some surprises.
In fact, since the Lebesgue measure of each point is zero, then the Lebesgue measure of each
countable set is also zero. In particular m(Q) = 0 and Q is a dense subset of R. But we can
make things more interesting still.

Consider an enumeration {r;} of Q in [0, 1]. Fix ¢ > 0 and consider /; the interval centered
at r; of length 277¢. The set U = (0,1) N {J;Z, I; is an open dense subset of [0, 1] (which
is “large”, topologically speaking) but m(U) < >_72, 277¢ = ¢ (which is “small”, measurably
speaking). Furthermore, the set K = [0,1] \ U is closed and nowhere dense (which is “small”,
topologically speaking) but m(K) > m([0,1]) — m(U) = 1 — € (which is “large”, measurably
speaking).

2.5.2 | THE CANTOR SET

We will present an example of a Lebesgue null set, with the cardinality of the continuum,
namely the Cantor set.
Consider the set Ey = [0, 1]. Remove from E; the middle third (3, %) e let Ey = [0, 5]U[2,1].

Remove the middle third from each remaining interval and let

and proceed with this construction, obtaining a set E; in each step. We have E; D Ey D
E3 D -+, and each Ej; is the union of 2/ disjoint closed intervals, each one with lenght 377
(ans thus m(E;) = 27377 for each j).

Define C' = ﬁ E;. This set C' is called the Cantor set, and it is clearly compact. Since
it is an intersectjij)il of a decreasing sequence of compact sets, it is nonempty. Clearly C' € Bg,

and hence C' is Lebesgue measurable and moreover

m(C) < m(E;) = <g>] — 0as j — oo,

and hence m(C) = 0.

We will explore some topological properties of C'.
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I ProrosiTioN 2.5.14. If 0 < a < B < 1, then there exist k,m € Ny such that the interval

(av, B) contains an interval of the form

(3, %2). (2.5.1)

Proof. First, choose m € Ny such that 4 < 3™(8 — «). We have

3"3—2 3"a—-1 3"(B-a)—1_4-1

= > =1
3 3 3 3 ’
and hence there exists an integer k € (&;_1, %), and therefore
3o —1 3B —2 3k+1 3k +2
—<k<—F— = < d <
3 3 N TR
and concludes the proof. [ |

The intervals removed from [0, 1] to form the Cantor set are precisely the intervals of
the form (2.5.1). Since each interval contains an interval of the form (2.5.1]) (by this last
proposition) the Cantor set C' contains no interval. This implies that C'is totally disconnected,

that is, the only connected subsets of C' are points.

| ProrosITION 2.5.15. Every point of C is a limit point of C. In other words, C' has no

1solated points.

Proof. Let x € C and I an open interval containing x. Let [; be the interval of £ that
contains x, and choose j large so that I; C I. Choose z; as the endpoint of I; with z; # =.
By construction of C, all the endpoints of the intervals of £ are in C, and hence z; € C,

which proves that x is a limit point of C. |

o0
Let x € [0,1] and consider its expansion in base 3, that is, z = > 377a;, where q; €

{0,1,2}. '

J=1

I LEMMA 2.5.16. x € C if and only if its base 3 expansion x = Y 37 Va; is such that a; # 1

7j=1
for all j.

Proof. See [1l, Page 38|. [
| PropPoOsITION 2.5.17. We have card(C) = c.

Proof. Let x € C' and Z;; 377a; its base 3 expansion. By the previous lemma, a; = 0 or 2
for all j, and we can define f: C' — [0,1] by f(z) = 372, 277b;, where b; = % € {0,1} for
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all j. Since each real number in [0, 1] can be written in base 2, this function f is surjective,

and hence card(C') > card([0,1]) = ¢. Since C' C [0, 1], we have the equality. [ |

One can see that if x,y € C and z < y, then f(z) < f(y), unless x,y are the endpoints
of one subinterval removed from [0, 1] to form C| since in this case we would have f(z) = 2%
for some m € Ny and k € {0,1,---,2™}, and f(y) is the other base two expansion of f(z).
Hence we can extend this function, from C to [0, 1] by setting f constant (and equal to f of
the endpoints) of each interval missing from C. This function f is still increasing, and since
f([0,1]) = [0,1], f can have no jump discontinuities, therefore f is continuous. This function

f is called the Cantor function or the Cantor-Lebesgue function

2.5.3 | CANTOR-TYPE SETS OF POSITIVE MEASURE

In this subsection we will generalize the construction of the Cantor set done above, to
obtain sets which are compact, nowhere dense, totally disconnected, with no isolated points
and with the cardinality of the continuum, but with positive measure.

Let I = [a,b] be a bounded interval (a,b € R and a < b) and o € (0,1). Set ¢ = %2 and

r= @ The interval (¢ — r,c+ 1) C I is called the open middle «

m((c—ryc+7r)) =2r =alb—a) =am(l).

th of I, and we have

Now we make the construction as follows. Let {«;} any sequence of numbers in (0,1) and
Ko =1 = [a,b]. We obtain K be removing the open middle " of Kj. Next K, is obtained
by removing the open middle ai® of each one of the two intervals that make K. Inductively,
K is obtained by removing the open middle Oz;.h of the 271 intervals that make Kj_;.

Define K = ﬂ;’;l K. This set is called the generalized Cantor set, and is nonempty,
compact, nowhere dense, totally disconnected, with no isolated points and has the cardinality
of the continuum. When Ky = [0, 1] and «; = 1 for all j we obtain the Cantor set C.

Now, at each step we obtain m(K;) = (1 — «;)m(K;_1) and hence, using this process j

times, we have m(K;) = (b —a) [[._,(1 — a,,). Using the continuity from above, we have

m(K) = lim m(K;) = (b—a) lim [] - ).

j—o0

If aj = a € (0,1) for all j then m(K) = (b —a) lim (1 — a)” = 0. However, if a; — 0

n—oo

sufficiently fast, we have chances to obtain m(K) > 0. In fact, for each g € (0,1), we

j
will see that we can choose a sequence a; — 0 such that lim [[ (1 — a,) = £, and hence

m(K) = (b—a)p. T

n=1
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2.5.4| A SET NOT LEBESGUE MEASURABLE IN R

One question that has to be answered is the following: are all subsets of R Lebesgue
measurable? That is, £ = P(R)?

In this subsection we will see that this is not the case, constructing a subset of R that is
not Lebesgue measurable. But it comes as no surprise that such a set has to be something
quite strange, that is, for a set to be not Lebesgue measurable, something has to be very
wrong!

To begin, consider F = [0,1), and define in E the following relation: = ~ y if and only
if z —y € Q. Clearly ~ is an equivalence relation and for each x € [0,1) we consider its
equivalence class [z]. Define € = {[z]: z € E} and using the Axiom of Choice, consider
N C [0,1) be a set with exactly one element of each equivalence class in €.

Consider now R = QN [0,1) and for each r € R define

N.={z+r:zeNNn[0,1—=r)}U{z+r—1l:ze NN[l-r1)},

that is, we shift N by r units to the right, but the part of this shift that sticks out of [0, 1)
we bring back by one unit. With this construction N, C [0, 1) for each r € R.

We have the following two properties:

| LEMMA 2.5.18.

(@) [0,1) = U,er N
(b) NyNNy=@ ifr,s € R and r # s.

Proof. (a) Let x € [0,1). By the construction of N, there exists a representative of the
class [z], we call it zo, in N. If 29 < x, set r = x — 29 € R. Then x = z¢9 + r € N, since
g € NN[0,1 —z+29) =NNJ[0,1—r). Now if 2y > z, define r =z — 29+ 1 € R. In this
case x = xog+ 71— 1€ N,, since xg € NN[rg—z,1) = NN[l—r1). In any of the two cases,
there exists r € R such that € N,, and proves (a).

(b) Assume that x € N, N Ny, with r,s € R and r # s. Then we have © = zo +r (or
r=ux9+r—1) for some xg € N and z = z; + s (or z = x; + s — 1) for some x; € N.
In any of the four possibilities, we obtain xqg — x; € Q, and since both zy, x; are in N, by
construction of N, this implies that ¢y = x1, which in turn implies that r =sorr=s+1 or
s=r+1. Since r # s we have r = s+ 1 or s = r + 1, but since r,s € R=Q N[0, 1), this
gives us a contradiction. Therefore N, N N, = &. [ |
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I THEOREM 2.5.19. N s not Lebesque measurable.

Proof. Assume that this is not the case, that is, assume that N is Lebesgue measurable.

Then, for each r € R we have

m(N)=m(NN[0,1—7r)+m(NN[l—-r1))
=m(NN0,1—=r)+r)+mNN[1l-r1)+r—1)

using the translation invariance property of the Lebesgue measure. Hence, since R is countable,

using item (a) of the previous lemma we obtain

1 =m([0,1)) = m< U NT> =3 m(V,) = 3 m(N).

reR re€ER reR

But thus last equality gives us a contradiction, since the last sum on the right can only
be 0 (if m(N) = 0) of oo (if m(N) > 0). Therefore N cannot be Lebesgue measurable. W

2.6| SOLVED EXERCISES FROM [, PAGE 39]

EXERCISE 25. Complete the proof of Theorem 1.19.
Solution. See Theorem 2.5.17]

EXERCISE 26. Prove Proposition 1.20 (Use Theorem 1.18).
Solution. See Theorem [2.5.12

EXERCISE 27. Prove Proposition 1.22a. (Show that is z,y € C' and x < y, there exists
z ¢ C such that z < z < y).

Solution. This result is proved in Subsection [2.5.2] To elaborate as the hint presented,

consider z = «, y = . By Proposition [2.5.14] the interval (z,y) contains an interval of the

3k+1 3k+2

form (555, 555

) for some integers m € Ny and k € {0,1,---,3™}. Since this interval has

empty intersection with C', any z in this interval is such that z ¢ C' and z < z < y.

EXERCISE 28. Let F': R — R be an increasing and right continuous function, and let pug
be the associated measure. Then pup({a}) = F(a) — F(a—), pr([a,b)) = F(b—) — F(a—),
(b)) = F(b) — F(a—) and up((a,b)) = F(b—) — F(a).
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Recall that F(zo—) = lim F(z).

T—T

Solution. Note that {a} = [ (a — %, a] and by the continuity from above, we have

Jj=1

pr({a}) = lim pp((a — ja) = lm[F(a) - F(a— })] = F(a) — F(a—).

Now

pr(la,b]) = pr({a}) + pr((a,b]) = F(a) — F(a—) + F(b) — F(a) = F(b) — F(a—),
pr((a, b)) = pr((a, b)) — pr({b}) = F(b) — F(a) — (F(b) — F(b—)) = F(b—) — F(a),
pr(la,b)) = pr({a}) + pr((a,b)) = F(a) — F(a—) + F(b—) — F(a) = F(b—) — F(a—).

EXERCISE 29. Let FE be a Lebesgue measurable set.
(a) If E C N, where N is the nonmeasurable set describe in Subsection [2.5.4} then m(E) = 0.

(b) If m(E) > 0, then E contais a nonmeasurable set. (If suffices to assume E C [0, 1])

Solution to (a). If F C N is measurable, then with the notation of Subsection let
F=U,er Er CU,cp Nr =[0,1), where

E.={z+r:zeEn0,l—r)}uU{z+r—1:zec EN[l—r1)},

and each E, is measurable (since E is measurable) and since E C N the sequence {E,} is

pairwise disjoint. Thus

m(F) =Y m(E) =3 m(E),

reR reR
and since F' C [0, 1), we have m(F') < 1 < oo and this implies that m(F) = 0, for if m(E) > 0,
the previous equality would imply that m(F') = occ.

P.S.: This item remains true if we replace N with N, for some r € R.

Solution to (b). Assume that m(E) > 0.

* Since m is semifinite, we can assume that m(FE) < oo, since if m(E) = oo there exists
F C E with 0 < m(F) <m(E).

* Also we can assume that E is bounded, since if F is unbounded, since m is o-finite, we
can write E' = (J,;c; £ (4, j + 1], and since 0 < m(E) < oo, this implies that at least one of
the £'N (4, j + 1] has positive measure.

* Finally, we can assume that £ C [0, 1], since if this is not the case we take s =
| min{inf £,0}| and E, = F 4+ s C [0,00) and if = sup E, + 1 then (1/r)E C [0,1), and
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if the result is proven for (1/r)E with a nonmeasurable set N, then rN — s C FE is also

nonmeasurable.

Thus we will prove the result for this case £ C [0,1) with m(E) > 0. Consider the

nonmeasurable set N described in Subsection [2.5.4] Since |J N, = [0,1), we have E =
reR

U E N N,. We have N, nonmeasurable for each r € R. In fact, if for some r € R, N,
reR

is measurable then so is IV, which is a contradiction. Assume now that each E N N, is

measurable. Then by item (a), with N, instead of N, we obtain m(E N N,) = 0 and hence

m(FE) = 0, which is a contradiction. Hence E N N, is nonmeasurable for some r € R, and

this is a nonmeasurable set contained in F.

EXERCISE 30. If F € £ and m(E) > 0, for any a < 1 the is an open interval I such that
m(ENIT)>am(I).

Solution. For a < 0, the result holds with I = R. Now we prove the result for 0 < a < 1,

and to that end we consider two cases.
Case 1: Assume that m(E) < occ.

Assume to te contrary that there exists 0 < o < 1 such that m(E N 1) < am(I) for all

open intervals 1.

With this assumption, if {,} is a pairwise disjoint sequence of open intervals such that

E c | I then
j=1

m(E)zm(Eﬂ[OJI]) Zm (ENI) aZm (2.6.1)

Now, take € > 0. There exists an open set U with £ C U and m(U) < m(E) + €. Since U

is open, there exists a pairwise disjoint sequence {/;} of open intervals such that U = |J I;.

j=1
By (2.6.1)) we have
E) < aZm(]j) =am(U) < am(E) + ae,
j=1

which implies that m(E) < %€, for each € > 0, since m(E) < oo. Thus m(£) = 0, and

1
contradicts the assumption that m(E) > 0.

Case 2: m(E) = co. Since m is semifinite, take F' C E with 0 < m(F') < co. For such F, by
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Case 1, there exists an interval I such that m(F N I) > am([). Hence
m(ENI)=>m(FNI)>am(l),

and concludes the results.

EXERCISE 31. If F € £ and m(F) > 0, the set £ — E = {x —y: z,y € E} contains
an interval centered at 0. (If I is an in Exercise 30, with a@ > %, then £ — E contains
(=3m(I), 3m(1))).

Solution. Clearly 0 € F— FE and moreover, if z =x—y € F—FE then —z =y—z € E—F.

Let % < a < 1. By Exercise 30, there exists an open interval I such that m(ENI) > %m([),
and we can assume that [ = (xg — r, 29 + ) (we can assume that I is bounded, since the
previous inequality would not hold when I is not bounded). Note that r = $m([). By the
considerations above, if we shows that (0,7) C F — E, the result is proven.

Let z € (0,r) and assume that z ¢ E — E, hence z # x — y for all z,y € E. Define
Ey =FEN(xg—r,xp) and By = EN(xg,z0+7). fx € By thenax+z€lTande+2¢ E
(sinceifr+z2=y€ Ethenz=20—-y€ E—FE). Hence By + 2 C I\ E.

Analogously Es — z C '\ E. Therefore

m(E)

I
=
&=
+
&
NN

and we obtain
m(ENT) =m(E1U Ey) = m(Ey) +m(Ez) < 2[m(I) —m(EN )],
which implies that m(E N T) < 2m(I). But then
Sm(I) <m(ENT) < 2m(I),

which gives us a contradiction. Hence z € E' — E, and thus (0,«a) C E — E, which concludes

the proof.

EXERCISE 32. Suppose {a;} C (0,1).

(a) [I(1 —ay ) >0if and only if Y «; < oo (compare ) log(l —a;) to Y «;).
j=1 j=1 J=1 =t
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(b) Given g € (0,1), exhibit a sequence {a;} such that [[(1 — ;) = 5.

j=1
Solution to (a). Note first that

oo

Z log(1—a)
Hl—a] —hmnl—a] —hml_[eloglO‘J)—hmeﬂ1 ,
1 n—oo n—oo n—oo
J:

and since all terms log(1 — «;) are negative, we have

> Z log(1—ay) — § log(1—a;)~t
1_[1—04J ) = er=! =e 77! .

7=1

Now we compare Y log(l — «a;)! to Z a;. To do that, consider the real function
j=1 Jj=

f:]0,00) = R given by f(z) = (1 —z)e” We have f(0) =1 and f'(z) = —ze® < 0 for all

€ (0,1). Hence f is strictly decreasing and f(z) < 1 for all z € [0, 1), which means that
(1 —x)e* <1 for all z € [0,1). Applying log on both sides, we obtain z < log(1 — z)~! for
all x € [0,1). Thus taking = «;, the Comparison Test gives us that if > log(1 — a;)™!
converges then ) a; converges.

For the other side, consider the function g: [0,1/2) — R given by g(z) = (1 — z)e*".
Thus ¢g(0) =1 and ¢'(z) = €**(1 — 2z) > 0 if x € [0,1/2). Hence g is strictly increasing and
1 < g(z) for all z € (0,1/2), which implies that 1 < (1 — z)e** for all z € [0,1/2). Applying
log on both sides, we obtain log(1 — z)™' < 2z for all z € [0,1/2). Thus taking z = «a,
the Comparison Test gives us that if Y «; converges, then Y log(1 — «;) ™! converges (since

> o converges, there exists jo € N such that «; € (0,1/2) for all j > jo, and we apply the

Comparison Test for j > jo).
This concludes the proof of (a), since ]o_o[(l — a;) > 0 if and only if > log(1 — a;)~*
converges. e
Solution to (b). Let us construct first the following: given 7 < 0, construct a sequence
C (0,1) such that > logvy; = 7.
Take r = 1 — % Then r > 1, since v < 0, and for each j, define v; = e, Thus
7v; € (0,1) for all j. Now we have

zlogw N

7j=1

Now for f € (0,1), set v = logf8 and consider the sequence ; from the previous
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construction. Defining a; = 1 — 7; we have

Z log(1—a;) > logvy;

(o)
||1—a] =1 = ei=! =e =0,

and we conclude the construction.

Explicitly we have

1
log 3

aj=1- e for all j, where r =1 —

EXERCISE 33. There exists a Borel set A C [0,1] such that 0 < m(AN1I) < m(I) for
every subinterval I of [0,1]. (Hint: every subinterval of [0, 1] contains Cantor-type sets of

positive measure).

Solution. Consider R = QN [0,1] and Z = {(a,b): a,b € R with a < b} the collection
of all intervals with rational endpoints in [0, 1]. We know that Z is countable, thus we have
T =1}

There exists a Cantor-set type K; C I; with positive measure (K is compact and totally
disconnected). Since I; \ K is open, there exists an open interval I C I \ K, and a
Cantor-type set Wy C I with positive measure (W} is also compact and totally disconnected).
Clearly K1 N'W; = @, and since they are both compact and totally disconnected, so is
Cy = Ky UWy.

Now I, \ C} is open, hence there exists an interval IJ C I\ Cs, and a Cantor-type
set Ky with positive measure. Also, there exists a Cantor-type set Wy C I \ K; (since
the latter is open) with positive measure. Hence (K; U Ky) N (W, UWs,) = &, and Cy =
Ky UKy UWUW, C I U Iy is compact and totally disconnected.

Assume we have constructed K, W; with (._, Kx)N(U._, Wi) = @ and C; = J._, (KU
W) C Ui_, I is compact and totally disconnected. Thus I, \ C; is open and contains
an interval I7,; which in turn contains a Cantor-type set Kji; of positive measure. Also
Iy \ K41 contains a Cantor-type set of positive measure W;,;.

Therefore (1) Kp) N (UL Wa) = @ and Cjyy = UL (K UWL) € ULEL I is compact
and totally disconnected.

Now we define A = [J;Z, K, which is a Borel set (countable union of compact sets). If

is a subinterval of [0, 1], then there exists jo such that I;, C I, and hence

KjoCIjO

m(ANT) =m(ANL,) =m(K;, NI, =" m(K;)>0.

- 70 -



Also, since Wj, is disjoint from K for all j € N we have
m(ANT) <m(ANI)+m(W;NI)<m(]),

and thus 0 < m(ANIT) <m(I).
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CHAPTER 3

INTEGRATION

31| MEASURABLE FUNCTIONS
Let (X, M) and (Y, ) be two measurable spaces and f: X — Y a function. We define
fTHN) ={f"1(E): E€e N}
| ProposITION 3.1.1. The collection f~Y(N) is a o-algebra on X.
Proof. This result follows since f~! preserves unions, intersections and complements. |

| DEFINITION 3.1.2. f: X =Y is called (M, N)-measurable (or simply measurable if
M, N are understood) if f~(N) C M, that is, if f~(FE) € M for all E € N.

| ProposiTiON 3.1.3. If N is generated by £ then f: X — Y is (M, N)-measurable if
and only if f~Y(FE) € M for all E € €.

Proof. Clearly the only if part is trivial. The if part follows from the fact that {F C
Y: fY(E) € M} is a o-algebra on X that contains &£, and hence it contains N [ |

I COROLLARY 3.1.4. If X and Y are topological spaces, every continuous function f: X =Y

is (Bx, By )-measurable.

Proof. This result follows from the fact that f is continuous if and only if f~!(U) is open in

X for every open subset U of Y. ]

If (X, M) is a measurable space and f: X = Ror f: X =+ Cor f: X — R then it will
be called M-measurable (or simply measurable), if it is (M, Bg) or (M,B¢) or (M, Bg)
measurable. In particular f: R - Ror f: R — C or f: R — R is called Lebesgue (Borel)
measurable if it is (£, Br) ((Bg, Br)) or (L, Bc) ((Br, Bc)) or (£, Bg) ((Bgr, Bg)) measurable,

respectively.
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If f,g: R — R are Lebesgue measurable, it does not follow that f o g is

Lebesgue measurable, even if g is continuous. If E € Bgr we have f~'(E) € L, but unless

J7YE) € Bg there is no guarantee that g='(f~*(E)) will be in L (we will see the existence
of a nonborelian Lebesque measurable set in a following exercise).

However if f is Borel measurable then f o g is Lebesque or Borel measurable whenever g

18.

| PrROPOSITION 3.1.6. If (X, M) is a measurable space and f: X — R, the following are

equivalent:
(a) f is M-measurable.

(b) f~((a,00)) € M for all a € R.
(¢) f~Y([a,00)) € M for all a € R.
(d) f~Y((—00,a)) € M for all a € R.

(e) fY((—o0,a])) € M for all a € R.

Proof. This follows from Propositions [3.1.3| and [1.3.3] |

We often need to consider the measurability of a function f on subsets of X. In this case,
if (X, M) is a measurable space, f is a (real or complex) function and E € M, we say that f
is measurable on F if f~1(B)N E € M for all Borel sets B; or equivalently, if f|g is Mg
measurable, where Mg = {FNE: F € M}.

Given a nonempty set X, a family {(Y,, N,)}a € A a collection of measurable spaces and
fa: X — Y, is a map for each o € A, there is a unique smallest o-algebra on X such that all
fo are measurable, namely the o-algebra M generated by the sets f,'(F,) with E, € N,
and o € A. This o-algebra M is called the o-algebra generated by {fa}aca-

If X = [] Ya, we see that the product o-algebra on X (see Section is the o-algebra

ac
generated by the coordinate maps 7,: X — Y,, a € A.

| ProrosiTION 3.1.7. Let (X, M) and {(Ya, Na)}aca be measurable spaces, Y = [] Ya,
a€el
N = @aqeaNy, and 7o Y — Y, the coordinate maps for each o« € A. Then f: X —Y is

(M, N)-measurable if and only if fo = 7o o f is (M, Ny)-measurable for all o € A.

Proof. Assume that f is (M, N )-measurable and fix o € A. If E, € N,, then by definition
of N, we have n1(E,) € N and hence f;'(E,) = (1o 0 f) "N (E,) = f~Y7 ' (E,)) € M,
and f, if (M, N,)-measurable.
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For the converse, since N is generated by the family € = |J | 7,'(E,) and f, is
aca Eq N,
(M, N, )-measurable for all « € A, we have

SN (Es)) = (ma 0 )TN Es) = [ (Es) € M.

Hence, by Proposition [3.1.3] it follows that f is (M, N)-measurable. [ |

I COROLLARY 3.1.8. A function f: X — C is M-measurable if and only if Ref: X — R
and Imf: X — R are M-measurable.

Proof. This follows from Proposition since Be = Bg2 = Br ® Bg by (|1.3.1)). |

| ProprosiTiON 3.1.9. Let f,g: X — K be M-measurable functions, where K can be C or
R. Then f+ g and fg are also M-measurable.

Proof. Define F': X - KxK, ¢: KxK — Kand¢: KxK — Kby F(z) = (f(z), g(z)) for
r € X, ¢(x,y) =x+yand Y(x,y) = zy for z,y € K. By Proposition|1.3.2, Bx.x = Bx ® B,
and by Proposition m, F is (M, Bx«x)-measurable. By Corollary , ¢ and v are
(Bxxx, Bk )-measurable. Thus, f + g = ¢ o F and fg =1 o F' are M-measurable. [ |

This result holds for functions f,g: X — R, if we take care with the indetermination
oo — 0o and define by convention that 0- 0o =0-(—o0) = 0 (see Exercise 2 ahead).

Now we will see how measurable functions behave under limits.

| PROPOSITION 3.1.10. Let {f;} be a sequence of R valued measurable functions on (X, M).

Then the functions:

(a) gi(x) zsgpfj(x), (¢) hi(z) =inf f;(z),
(b) g2(z) = h?isogpfj(x% (d) ha(x) = liminf f;(x)

are all M-measurable. Also, if f(x) = lim f(x) exists for every x € X, then f is also
j—o0

M-measurable.

Proof. We prove that

g ((a.00)) = | £ (@ o0

In fact, let z € g;'((a, 00]), hence g;(z) = sup f;(x) > a. Thus there exists jy such that
J

fio(x) > a, for otherwise we would have g;(x) < a which is a contradiction, hence the C

inclusion holds. The converse inclusion D is trivial. Thus g; is M-measurable.
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Analogously, we can show that h;'([—o0,a)) = Ui, fj_l([—oo, a)), and thus h; is also
M-measurable.

Now, for each k € N, the function r;(x) = sup f;(x) is M-measurable by (a), and hence
>k
g2(x) = ir]if rr(z) is M-measurable. Analogously hy is M-measurable. When the limit exists,

we have f = go = ho, and f is also M-measurable. [ |

| COROLLARY 3.1.11. If f g: X — R are M-measurable, then so are max(f,g) and

min(f, g).

Proof. Use the previous result to the sequence f; = f, fo = g and f, = g for n > 3. |

| COROLLARY 3.1.12. If{f;} is a sequence of complex-valued functions and f(x) = lim f;(x)
Jj—oo

exists for all x, then f is measurable.

Proof. Just apply Corollary [3.1.8| [ |

3.1.1| DECOMPOSITIONS OF FUNCTIONS
For future use, we will present two useful decompositions of functions.

| DerFiNITION 3.1.13. Let f: X — R. Then we define

[T (x) = max(f(x),0) and f~ () = max(—f(z),0) = —min(f(x),0),
the positive and negative parts of f, respectively.

Clearly we have
f=fr =1 and fl=f"+f,
and more specifically we have f(x) = f(x) iff f(z) > 0 and f(z) = —f (2) iff f(x) <O0.
Also, if f is measurable, then both f* and f~ are, by Corollary [3.1.11] Also, this implies

that if f is measurable, then |f]| is also measurable (the converse is not true in general).

Before presenting the other decomposition, we recall the sign function in C, given by

Z i, # 0,
sgn(z) = { |7l (3.1.1)
0 it z=0.

Thus we have z = |z|sgn(z) for all z € C.
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| DeriNITION 3.1.14. Let f: X — C. We define the polar decomposition of f as

f(@) = |f(2)lsgn(f(x))  for allz € X.

| ProPosITION 3.1.15. If f is measurable, then so are |f| and sgu(f).

Proof. The function z — |z| is continuous on C, hence |f| is measurable if f is. Now, the
function z — sgn(z) is continuous on C\ {0}. Hence, if U C C is open, then sgn='(U) is
either open (when 0 ¢ U), or of the form V' U{0} where V is open (when 0 € U). In either one
of these cases, sgn~'(U) is a Borel set, hence sgn is Borel measurable. Hence sgn(f) = sgno f

is measurable. |

3.1.2| SIMPLE FUNCTIONS

We will now discuss the concept of simple functions, which are the building block for the
theory of integration. To begin, we set (X, M) a measurable space, and we need first the

following definition:

| DeriNiTION 3.1.16. Let E C X. The function defined by

Xe(x) = { (1) Zzz ; g (3.1.2)

is called the characteristic function of E (also known as indicator function of E, and
also denoted by 1g).

| PropPOSITION 3.1.17. xg: X — R is M-measurable if and only if E € M.

Proof. If xg is M-measurable, then E = y3'([1,00)) € M. Now if E € M, then

X ifa <0,
Xz ([a,0) =4 E if0<a<l,
g ifa>1,
and x5'(Ja,00)) € M in any case, hence xp is M-measurable. [ |

| DeErFINITION 3.1.18. A function s: X — C is said to be a simple function if there exists
¢, ,cn € Cand Ey,--- ,E, € M such that

n

s(z) = ZCjXE]- (x)  forallx € X.

j=1
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The following proposition is straightforward.

I ProprosiTION 3.1.19. A function s: X — C is simple if and only if s is M-measurable
and s(X) is finite.

In fact, if s is simple, we can write

n

s(z) = chXEj (x) for each x € X, (3.1.3)
j=1
where {¢;}/_, is a finite sequence of distinct elements and E; = s~ ({¢;}) foreach j = 1,--- ,n.

The decomposition is called the standard representation of s, and writes s as a
finite linear combination with distinct coefficients, of characteristic functions of disjoint
measurable sets whose union if the whole space X.

On note to remember that even if one of the ¢; is zero (that can happen), we still need to
envision ¢;xg; as a part of the standard representation, since the set £; may have a role to
play when f interacts with other functions.

Clearly, when s and r are simple functions, then so are s + r and sr. We will see that we
can approximate any measurable function by a sequence of simple functions, in a very well

behaved way.

| THEOREM 3.1.20. If f: X — R is a M-measurable function with f(x) >0 for all z € X,
then there exists a sequence {s,} of real simple functions such that 0 < s1 < s9 < -+- < f

such that s, — f pointwise and s, — [ uniformly on any set on which f is bounded.

Proof. Fix n € N and we split [0, 00| in the following way:

JY=10,27" and JF= (k27" (k+1)27"],
221
fork=1,---,22"—1. Hence |J J*=1[0,2"], and we set I, = (2", 0c]. Thus {J*}2" "1 U{L,}
is a finite sequence of disjointk:gts whose union is [0, o], for each n.

Now we define EF = f=1(J*) and F, = f~*(1,), then {E*}2" "1 U {F,} is a sequence of
pairwise disjoint sets whose union is X, and since f is measurable, each one of these sets
is measurable. Also 0 < f(z) < 27" for z € E?, k27" < f(z) < (k+ 1)27" for x € E¥
(k=1,---,2? —1) and f(x) > 2" for x € F,.

Hence, for each n, define

22n—1
sp(x) = Z k27" xgr(v) +2"xF, (z) for each v € X.
k=0
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Therefore, by construction, 0 < s,, < s,41 < f for each n, and also 0 < f(x)—s,(z) < 27"
22n 1

for each # € |J E¥, and the result follows. [ |
k=0

One important thing to notice is that we are splitting the image of f in intervals, and
using these intervals to split the domain of f. This process is different from what we do in

the classical theory of Riemann integration, where we split the domain in intervals.

| CoroLLARY 3.1.21. If f: X — R is measurable, there exists a sequence {s,} of real
simple functions such that 0 < |s1]| < [so| < -+ < |f], sn — f pointwise and s, — f

uniformly on any set on which f is bounded.

Proof. Using Theorem for f* and f~ we obtain sequences {¢,} and {r,} of real simple
functions with 0 <y < o < < fH, 0<r <ry <~ < f7,withg, = fTand r, — f~
pointwise, and uniformly for sets on which f™ and f~ are bounded, respectively. Setting
A= f71([0,00]) and B = A¢, we know that A, Be M, AUB=X, q,/Jp=0and r,|4 =0
for each n (since 0 < s, < fT and 0 < r, < f~ for all n).

Set s, = g, — 7y, for each n. Then, for each n, we have 0 < |s,| < ¢ +7, < fH+f~ = |f],
and also f — s, = (f* —q.) — (f~ — 1), hence s, — f pointwise, and s,, — f uniformly on
set which f is bounded.

Now if remains to prove that |s,| < |s,41| for each n. If x € A then |s,(z)| = ¢.(z) <
Gn+1(x) = Spy1(x) = |spy1(x)| (since r,(x) = 0 for z € A for all n). Analogously, if x € B,
then |s,(x)| = ru(z) < rpp1(z) = |spr1(x)] (since s,(z) = 0 for x € B for all n), and we

conclude the proof. [ |

I PROPOSITION 3.1.22. If f: X — C is measurable, there exists a sequence {s,} of simple
functions such that 0 < |s1] < |sa| < -+ < |f|, sp — [ pointwise and s,, — f uniformly on

any set on which f is bounded.

Proof. By Corollary Ref: X - R and Imf: X — R are measurable, and hence, by
Corollary there are sequences of simple functions {s}} and {s?} such that 0 < |s}| <
|si] < - < |Re(f)], 0 < [82] < [s3] < -+ < |Im(f)], st — Ref and s? — Imf pointwise,
and uniformly on sets which Ref and Imf are bounded respectively.

Thus the sequence s,, = s! + is? for each n has the desired properties. |

313 | MEASURABILITY OF FUNCTIONS ON COMPLETE MEASURE SPACES
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We fix (X, M, ) a measure space. When we want study measurable functions, it is
advantageous to exclude the behavior of measurable functions on p-null sets. On this note,

this study is much simpler when p is complete.

I ProrosiTiON 3.1.23. The following implications are true if and only if pu is complete.
(a) If f is measurable and f = g p-a.e., then g is measurable.

(b) If f. is measurable forn € N and f, — [ p-a.e., then f is measurable.

Proof. Assume that p is a complete measure. We prove (a) and (b).
(a) Let N ={x € X: f(x) # g(x)}. Then by hypothesis, N € M and p(N) = 0. Thus

g ((a,00)) = (97" ((a,00)) N N) U (f'((a, 00)) N N°) € M,

" J/ J/

vV Vv
CN emM

since p is complete (and thus g7*((a,00)) N N € M). Therefore g is measurable.

(b) Let g = limsup f,,. Then g is measurable by Proposition [3.1.10, and g = f p-a.e.. By

n—oo
item (a), f is measurable.

Now we prove that if these implications are true, then u is a complete measure. In fact,
assume that p is not complete. Then there exists a p-null set N (that is, N € M and
u(N) = 0) and a subset F' of N which is not measurable.

Define f = xny and g = xp. Then if z ¢ N we have f(x) = g(z), thus f = g p-a.e., but
[ is measurable and g is not, thus (a) does not hold. For (b), define f, = (1 + =)xn for
n € N and g = yp. Hence f,, — f uniformly on X and thus f, — g p-a.e., and (b) also does
not hold. ]

However, there is no much harm if we forget about the completeness of the measure.

I PROPOSITION 3.1.24. Let (X, M, 1) be a measure space and let (X, M,Ti) be its comple-
tion. If f is an M-measurable function on X, there is an M-measurable function g such that

f = g m-almost everywhere.

Proof. First, assume that f = ypg for some E € M. Thus E = GU F, where G € M,
F C N € N (see the notation in Theorem [2.1.9)), and we can assume that G N F = @. Set
g = Xa, which is M-measurable. Then {z € X: f(x) # g(x)} = F which is a f-null set.
Thus the result is true if f is a M-measurable simple function. For the general case, let {¢,,}

be a sequence of M-measurable simple functions such that ¢, — f, and for each n, choose a
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M-measurable simple function v, such that 1, = ¢, outside a set £, € M with fi(E,) = 0.
For each n, there exists a p-null set N,, such that E,, C N,. Hence, setting N = |J N, we

n=1

have N € M, p(N) =0 and U E, C N. Now define g = hm XX\an Then g is the limit

of a sequence of M- measurable functlons hence g is M- measurable and

lim ¢,(z) = lim ¢,(x) = f(x) if x € N¢,

- 0 ifz e N,

[e.e]
since if x € N¢ then z ¢ |J E, and hence v, = ¢, for all n. Therefore f = g except possibly
n=1
in N, which is a g-null set (and thus a g-null set). [ |
We end this section with a final result regarding properties that hold almost everywhere

and completion of measure.

| PROPOSITION 3.1.25. Let (X, M, 1) be a measure space and let (X, M, i) be its comple-
tion. A property P holds p-a.e. if and only if it hold Ji-a.e.

Proof. Assume that P holds p-a.e. Since M C M and i =y on M, P holds fi-a.e.

Now assume that P holds fi-a.e. Thus there exists £ € M with 7i(E) = 0 and such that
P holds in X \ E. By Proposition 2.1.10} there exists N € M with u(N) =0 and E C N.
Hence X \ N C X \ E, and thus P holds in X \ N. Therefore P holds u-a.e. [ |

3.2| SOLVED EXERCISES FROM [, PAGE 48]

In Exercises 1-7, (X, M) is a measurable space.
EXERCISE 1. Let f: X - Rand Y = f~(R). Then f is measurable iff f~!({—o0}) € M
“1({o0}) € M and f|y: Y — R is measurable.

Solution. Assume that f is measurable. Firstly note that, since R € By, we have Y € M.
In Y we consider the g-algebra My = {ENY: E € M} C M, and we have

(f|Y>_1((a7 OO)) = f_l((a’7 OO)) ny e MYa
emMm

since (a,00) € By for each a € R, and this implies that if B is a real Borel set, then
(fly)"4(B) € M. Now {oc} = ;2 (n,00] € Bg and hence f~*({co}) € M, since f is

measurable. Analogously for {—oo}.

- 81-



Conversely, note that Y = X \ f~!({#o0}), and since both X and {+occ} are in M (the
latter by hypothesis), we have Y € M and thus My C M. Let B € Bg. Hence

J7HB) = FHBAR) U fH (BN {£oc}) = (fly) (BNR)U f (BN {£oo}) € M,

N J/ N J/

TV TV
EMyCM eM

since BNR € Bg by Theorem [1.3.4] Thus f is measurable.

EXERCISE 2. Suppose f,g: X — R are measurable.
(a) fg is measurable (where 0 - (£o0) = 0).

(b) Fix a € R and define

Mz) = { a if f(z) = —g(w) = oo,
f(x) +g(z) otherwise.

Then A is measurable.

Solution to (b). We will firstly prove item (b). To that end, note that the set

Yo ={xeX: f(x) =—g(x) = oo}
= [T ({oo}) Ny ({00 U [T ({~00}) Ng™ ({oc})

is measurable, since f and g are measurable functions.

Now we have

h™'({oo}) = fH(00) N g™ (=00, 00]) U f~H((—00, 00]) Ng~" ({oo})

and again, since both f and g are measurable, h=!({co}) is measurable. Analogously for
h='({—o0}). Now, let b € R. We have

h=H((b, 00]) = h™H((b,00)) U R~ ({oco}),

and
(f +9)7'((b,00)) ifa<b

h~ ((b, OO)) = { (f —i—g)_l((ba OO)) UY, ifb<a,

and since f|p-1(g) and g|,-1(r) are measurable, and Y is a measurable set, we have h~*((b, c0))

measurable. Hence h™!((b, oc]) is measurable, and therefore i is measurable.
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Solution to (a). Let Qt = {r € Q: r > 0} and Q= = {r € Q: r < 0}, which are countable
sets.

Before continuing, we will prove the following claim: let y;,y, > 0 be such that y;y, >
b > 0. Then there exists 7 € QT such that y; > r and yy > % Indeed, if b = 0, then choose
any r € Q% such that r < y;. Now we assume that b > 0. Then we choose r € QT such that
r <y and ry, > b (such r exists, for otherwise ry, < b for all » < y;, and by density of Q,
we obtain y;y, < b, which is a contradiction).

Now assume that f,g > 0 and b > 0. Using our claim, we can write

(f9) "' ((b,0c]) = {z € X: f(x)g(z) > b} = [ ' ((r,00]) N g~ ((b/r, o)),
reQt
and hence (fg)~!((b,00]) is measurable. If b < 0 then (fg)~'((b, oc]) = X, also measurable.
Therefore fg is measurable.
Now for the general case, consider the measurable functions f*, f=, ¢, ¢~ > 0, which are
all measurable, such that f = f* — f~ and ¢ = ¢ — g~. We have

fog=(T"=fNg" =9 )=f"g"+f g (g +[g"),
=F ;;rG

where F' > 0 and —G > 0 are measurable by our previous computations (and hence G is also
measurable). Now we prove that {z € X: F(z) = —G(z) = o0} = 2.

If F(z) = oo we have f*(z)g™(z) + f~(x)g~ (z) = co. We will brake this situation into
two cases:
Case 1: Either f*(z) = oo and g*(z) > 0 or f*(z) > 0 and g™ (x) = oco. In this case
f~(z) = ¢ (x) = 0 and we have G(z) = 0.

Case 2: Either f~(z) = oo and g (z) > 0 or f~(z) > 0 and ¢ (z) = oo. In this case
fT(x) =g%(x) =0 and G(z) = 0.

Hence F(z) = oo implies G(z) = 0 and thus {z € X: F(z) = —G(z) = oo} = &. Thus
by item (b), fg = F + G is measurable.

EXERCISE 3. If{f,} is asequence of measurable functions on X, then {z € X: lim f,(z) exists}
n—oo

is a measurable set.

Solution. As in Proposition [3.1.10] set

g2(x) = limsup f,(z) and ho(x) = liminf f,(z),

n—00 n—0o0
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which are measurable functions. Hence, by the previous exercise, the function

F(x) = { ! if 92@7)_: ha(x) = o0
ga(x) — ho(x)  otherwise,

is measurable. Furthermore {x € X: lim f,(z) exists} = F~!(0), and thus it is a measurable
n—oo

set.

EXERCISE 4. If f: X — R and f~((r,00]) € M for each r € Q, then f is measurable.

Solution. Let a € R and {r,} a decreasing sequence in Q such that a = lim, . 7ry.
Then

FH((ay00)) = | F7((rs 00]) € M,

hence f is measurable.

ExeErcise 5. If X = AU B where A, B € M, a function on X is measurable iff f is

measurable on A and B.
Solution. Let f4 = f|4 and fp = f|p. If f is measurable, then for each C' € By we have
(f)7HC) = fHC)NT eM,
for / = A, B. Hence f4 and fp are measurable. Now for the converse, note that
FHO) = (O N A U(fHC) N B) = (fa) (C) U (f5)1(C) € M,

and thus f is measurable.

EXERCISE 6. The supremum of an uncountable family of measurable R-valued functions

on X can fail to be measurable (unless the o-algebra M is very special).

Solution. Assume that X is uncountable and M is o-algebra such that {z} € M (and
therefore each countable set is measurable). Assume that there exists a nonmeasurable set F’
in X. Define, for each z € X, the function f,: X — R by

f2(y) = X2y (y)  for each y € X.
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Hence {f,}.cr is an uncountable family of measurable functions and

sujg fe(y) = xr(y) forally e X,
T€

which is not a measurable function.

EXERCISE 7. Suppose that for each @ € R we are given a set £, € M such that

E, C Eg whenever a < 3, |J E, = X and (| E, = @. Then there is a measurable function
acR a€eR
f: X — Rsuch that f(z) < o on E, and f(z) > a on ES for every a (Use Exercise 4).

Solution. We define
f(z) =inf{a € R: x € E,} for each z € R.

We claim that this function satisfies all the required conditions. First, note that by
construction, we have f(z) < aif z € E,. Also, if x € ES then x ¢ E, and hence © ¢ Ej for
all 8 < «, hence f(z) > a.

Now, since |J E, = X = |J ES (since () E,

a€eR a€R a€cR

= @), for any given z € X there exist
@, 8 € R such that x € E, N Ef, this implies that o < 5 and

_OO</8<f(‘T)<a<OO7

and thus we have shown that f(X) C R.

It remains to prove the measurability of f. To that end, note that if f(x) < r then there
exists a € R such that f(z) < a <r and z € E,. Since Eg C E, for § < «, then for any
a < g <r with ¢ € Q we have x € E,. Conversely if ¢ € Q is such that ¢ < r and z € E,
then f(x) < ¢ < r. We have just proved that

F (=00 = |J EjeM.

q<r, g€Q

Thus
froo)= (] ESeM,

q<r, q€Q

for each r € Q. Therefore, by Exercise 4, f is measurable.

Exercise 8. If f: R — R is monotone, then f is Borel measurable.

Solution. Since f is measurable iff —f is measurable, we can assume without loss of
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generality that f is monotonically increasing. Now let a € R and z € f~*([a, o0)), that is,
f(z) 2 a. Ify >z, then a < f(z) < f(y), which implies that y € f~([a, 00)).
In other words, we have proven that if z € f~*([a, 00)) then the ray [z,00) C f~!([a, 00)),

and thus f~!([a,0)) is an interval. Therefore f is Borel measurable.

EXERCISE 9. Let f: [0,1] — [0, 1] be the Cantor function and let g(z) = f(z) + .
(a) g is a bijection from [0,1] to [0,2] and h = ¢g~! is continuous from [0, 2] to [0, 1].
(b) If C is the Cantor set m(g(C)) = 1.

(c) Be Exercise 29 of Chapter 1, g(C) contains a Lebesgue nonmeasurable set A. Let
B = g'(A). Then B is Lebesgue measurable but no Borel.

(d) There exist a Lebesgue measurable function F' and a continuous function G on R such

that F' o G is not Lebesgue measurable.

Solution to (a). g is a continuous (sum of two continuous functions) and increasing
(sum of two increasing functions) such that g(0) = 0 and ¢g(1) = f(1) + 1 = 2. If we show
that ¢ is strictly increasing, the g will be a bijection. Let 0 < z <y < 1. Then f(z) < f(x)
and = < y, then g(z) < g(y), and g is strictly increasing. Since [0, 1] is compact and R is a

1

Hausdorff space, its inverse h = g~! is continuous (see |2 Theorem 26.6|)

Solution to (b). Using that g is a bijection, we can write

[072] = g([ov 1]) = g(([O’ 1] \ C) U C) = g([ov 1] \ O) U g(C),

and hence
m(g(C)) =2 —m(g([0,1]\ O)).

Now C'is closed, and hence [0, 1] \ C' is open, and can be written as a countable union of
disjoint open intervals, namely [0,1]\ C' = | I,,, where {I,, = (a5, b,)} is a pairwise disjoint
n=1

family of open intervals. Hence

o0

n(s(Un) =m(Us))

n=1

m(g([0, 1]\ €))

WE

m(g(Ln)) = Y m((f(an) + an, f(ba) + bn))

i
I

NE

[f(bn) = f(an) + by — an),

3
Il
N
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and recalling that f is constant in each interval outside C', hence is constant on each [,,, we
have f(b,) = f(a,) for all n and thus

o0 [e.e]

m(g([0. U\ €)) = Y lbw = au) = m( [ 1) = m((0,1]\ €) = m([0,1]) = m(C) = 1,
n=1 n=1

since m(C') = 0. Therefore m(g(C)) = 1.

Solution to (c¢). Note that since A C g(C), then B = g7'(A) C C. But m(C) = 0 and m is
a complete measure, thus B is Lebesgue measurable. Now assume that B is Borel measurable.
Since g~! is continuous, A = g(B) = (¢~ !)"!(B) is a Borel set, which is a contradiction, since
A is not Lebesgue measurable.

Solution to (d). Define F = xg and G = g~!. Thus F is Lebesgue measurable (since B is

a Lebesgue measurable set), and G is continuous. But
(FoG)7((1/2,00)) = g(F~((1/2,00))) = g(B) = A,

which is not Lebesgue measurable. Hence F' o GG is not Lebesgue measurable.

EXERCISE 10. Prove Proposition [3.1.23

EXERCISE 11. Suppose that f is a function defined on R x R¥ such that f(x,-) is Borel
measurable for each z € R and f(-,y) is continuous for each y € R*. For n € N, define f, as
follows. For i € Z let a; = i/n, and for a; < z < a;41 let

foloy) = flain, y)(@ — @) — flai, y)(@ = ain1)

Qiy1 — Q4

Then f, is Borel measurable on R x R¥ and f,, — f pointwise; hence f is Borel measurable
on R x R*. Conclude by induction that every function of R™ that is continuous in each

variable separately is Borel measurable.

Solution. Note first that if (z,y) € R x R* we have

Fulzoy) — flay) = (flair1,y) = f@y) (@ — @) = (flaiy) = fl@,y) (@ = ai)

Aij41 — G4

But a;41 —a; = 1/n, |r — a;] < 1/n and |x — a;11| < 1/n. Therefore

|fn(x7y> - f(xay” < |f(ai+17y) - f(xvy)| + |f(azay) - f(x,y)|,
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and by the continuity of f(-,y), we have f,(z,y) — f(x,y) as n — oo.

Now for the Borel measurability of f,, we proceed as follows: since n > 1 is fixed, we write
R = Ulai,air1]. In A; = [a;,ai11] X R¥) f,|a, is the sum of product of Borel measurable
functlif)%ls with continuous functions, and hence, it is Borel measurable. Using a simple
generalization of Exercise 5 (writing R x RF = Uiz 4i), we have f,, Borel measurable on
R x R*.

Now we prove the last argument by induction. For n = 2 the claim follows from what
we just proved, since if f: R? — R is continuous in each variable separately then f(z,-) is
continuous (hence Borel measurable) and f(-,y) is continuous. Assume that the claim is
true for n and assume that f: R"*! = R® x R — R is a function which is continuous in
each variable separately. Using the induction, fg~ is a function which is continuous in each
variable separately, hence it is Borel measurable, that is, f(x,-) is Borel measurable for each
x € R". Also by assumption f(-,y) is continuous for each y € R, and therefore it is Borel

measurable.

3.3| INTEGRATION OF NONNEGATIVE FUNCTIONS

From now on, we consider fixed a measure space (X, M, ) and we define
LT =LY(X,M)={f: X = [0,00]: f is measurable}.

| LEMMA 3.3.1. Assume that ¢ € L is a simple function with ¢ = > i1 @€E = D ey bexr,

with {E;}5_, and {F}.}]L, finite sequences of disjoint measurable sets. Then

n

> aju(E) = bu(Fy).

j=1

Proof. For each j = 1,--- ,n and k = 1,--- ,m we define G, = E; N F,. We have
By = Ujz, Gjx and F, = |J;_, G for each j = 1,--- ,;n and k = 1,--- ,m. Moreover if
Gk # @, letting x € G, we have a; = ¢(x) = b,. Hence we define

a; if Gj,k: 7& I,
C]7k = .
0 if G]”k = .
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Thus we have

Z aii(Ey) =Y cun(Gin) =D Y cini(Gix) = > bep(Fr),
j=1 k=1 k=1 j=1 1

and the proof is complete. [ |

| DEFINITION 3.3.2. If ¢ € L* is a simple function with standard representation ¢ =

> ajXg,;, we define the integral of ¢ with respect to p by
j=1

[ on- ; aj(Ey)

with the convention (as always) that 0 - 0o = 0.

We note that [ ¢du may be oo, if (E;) = oo for some j on which a; > 0. When there is
no confusion on which is the measure u, we will write f ¢ instead of f odu. Also, sometimes

it is convenient to display the argument of ¢ explicitly, and we can also use the notation
J ¢(z)du(z) (or [ ¢pu(dz)). This integral is well defined, by Lemma m

| PROPOSITION 3.3.3. Let ¢ € L™ be a simple function and A € M. Then ¢x4 is also a

simple function in L™ and

/ PXadp = aj#(A nE;).

Proof. Just note that ¢y = Z ajXg;na 1s the standard representation for ¢y 4, if Z ajXE
j= j=
is the standard representation for o. |

| DEFINITION 3.3.4. If ¢ € L™ is a simple function and A € M, we define
[ o= [ xadu= Y autan ).

The same remarks for [ ¢du also apply to [, ¢du. Note also that [, = [.

| PROPOSITION 3.3.5. Let ¢,v) € LT be simple functions and ¢ > 0. Then we have the
following properties of the integral:

@ [e=c[o
) [@rv)= o+ [v
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(© o< then [o< [ v

(d) the map M > A [, ¢du is a measure on M.

Proof. First of all we write ¢ = ) a;xpg, and ¢ = ) brxr, as their standard decompositions.
j=1 k=1

n
(a). Note that c¢ = ) ca;xg, is the standard decomposition of the simple function c¢¢ € L*.
j=1

[ o= S can(Ey) = c > au(Ey) = [ o

Hence

(b). We note that, for each j and k we have

n

O E; N Fy) and F, = U(EJ N Fy),

k=1 j=1

n m
since X = |J E; = |J Fi. Hence ¢+ is a L™ simple function, with standard representation
j=1 k=1

¢+ = ZZ aj + bk)X B0

7=1 k=1
and hence 0 m
/(¢ +) =) > (a; + bp)u(E; N Fy)

7j=1 k=1

=3 auBNF)+ >0 buu(E; N F)
j=1 k=1 J=1 k=1

= Z%M( U(EJ A Fk)) + Zbkﬂ U(E] a Fk))
j=1 k=1 k=1 J=1

(c). Note that, by the decomposition made on item (b), we can write ¢ = > > a;xg,nr,
j=1k=1

n m
and ¢ = > > bpxg,nr.- If ¥ € E; N F, since ¢ < ¢, we must have a; < by, and hence
j=1k=1

m

/¢ ZZa]uEﬂFk ZZbkuEﬂFk) /w.

j=1 k=1 j=1 k=1
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(d). It is clear that [, ¢ = 0. Now assume that {A;} is a pairwise disjoint sequences of sets
in M and A= |J A;. Then
i=1

/gb a]pE NA)= i@u(UEﬂA)zicgqu NA;)

]:1 7=1 =1

_ZZWE N A;) Z/ o,

=1 j=1
and proves that M 3> A — fA ¢dp is a measure on M. [ |

| DEFINITION 3.3.6. If f € L™ we define the integral of f with respect to p as

/fdu:sup{/gbd,u:Oégbéf, ¢pe Lt issimple}.

Using item (c) of this last proposition, if f = ¢ is an L* simple function, then this

definition coincides with the first one.

| ProrosITION 3.3.7. Let f,g € Lt and ¢ > 0. Then:

@ [ef=c[ 1
o) 1< [girr<q

Proof. (a). This follows from Proposition item (a) and the fact that sup(cE) = csup F
for ECRand ¢ >0
(b). f0< ¢ < fand ¢ € LT is simple, then 0 < ¢ < g, and the result follows. [ |

The same remark applies here, that is, if A € M, then we define [ W= J fxa. This

definition also coincides with
/f:sup{/qﬁd,u:og(bgfinfl, pecLt issimple}.
A A

We will now begin to state and prove the fundamental theorems in the theory of integration.

| THEOREM 3.3.8 (Monotone Convergence Theorem (MCT)). If {f,} is a sequence in Lt
such that f, < fni1 for allm and f = lim f,(=sup f,), then
n—o00 n

[
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Proof. Since f,, < f,41 for all n, Proposition item (b), the sequence { [ f,} is increasing,
hence its limit exists in R. Moreover, since f,, < f for all n, we also have [ f, < [ f for all n

and therefore

lim héff

n—o0

To achieve the other inequality, we fix o € (0,1) and let ¢ € Lt be a simple function
with 0 < ¢ < f. Define £, = {z € X: f,(z) > a¢(z)}.
Claim 1: each E, is a measurable set.

In fact, since both f,, and ¢ are measurable, the function g, = f, — a¢ is measurable.
Also E, = g,'([0,00]), and thus E,, is a measurable set.
Claim 2: E,, C E, 4, for all n.

In fact if x € E, then f,(z) > a¢(x). But f,(z) < f.i1(z) and hence f,11(z) = fu(z) >
a¢(x), that is x € E, 11, and prove the claim.
Claim 3: X =J" | E,,.

In fact, fix z € X. If f,(z) < a¢(x) for all n, we would have f(x) < a¢(z), which is a
contradiction, since ¢ < f and « € (0,1), and hence x must belong to some E,.

Hence, since a¢xp, < fuXE, < fn we have

/fn>/nfn>/na¢=a [ o

Thus, using the fact that M > A — [ 4 @ 1s a measure on M, the property of continuity
from below of measures and the fact that X = |J E,, we have lim [ f, > o [ ¢. Taking
n—oo

n=1
the supremum over all ¢ € LT which are simple and such that 0 < ¢ < f, we obtain

lim [ f, > a [ f, and since this is true for any « € (0, 1), taking the limit when o — 17, we
n—oo

obtain
lim [ f, > / f,
n—oo
which concludes the proof. |

The monotone convergence is essential. It states that to compute [ f, we only need to
compute f ¢n where {¢,} is an increasing sequences of simple functions in L™ that converge
pointwise to f, which exists from Theorem [3.1.20] With this theorem, we can also prove the
additivity of the integral.

| THEOREM 3.3.9. If {f.} is a finite of infinite sequence in L™ and f = f., then

[i-5 ]
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Proof. Assume that f; and fy are Lt functions. Using Theorem [3.1.20| we can find increasing

sequences {¢;} and {¢;} of simple functions in L™ such that lim ¢; = f; and lim ¢; = fs.
Jj—00 j—00
Using the MCT and the properties of the integral for simple functions we have

Jtrem=tm [@ 0=t [o+tm fo,= [n+ [

An induction argument concludes the case for a finite number of functions. Now assume
that we have an infinite sequence {f,}. For each n, set g, = > ;_, fx. Then {g,} is an
increasing sequence in LT that converges to f, and by the MCT and the previous case of

finite sequences we have

J 7=l f o J:%/ka ,}ggoi‘l/fk:g/fk.

| ProrosiTiON 3.3.10. If f € L* then [ f =0 if and only if f =0 a.c.

Proof. Assume first that f is simple, that is, f = Z a;xg, and hence [ f = Z a;jp(Ej).
j= j=
If f =0 a.e. then the sets on which a; > 0 we must have p(E;) = 0, hence ff = 0.

Reciprocally, if [ f =0, then either a; = 0 or u(E;) = 0, and hence f = 0 a.e..
If f is not simple, let ¢ be a simple L™ function with 0 < ¢ < f. If f =0 a.e. then ¢ =0

a.e. and [ f =sup, [ ¢ = 0. For the converse we will write
{reX: f(z >O}—UE where FE, ={x € X: f(x) > 1/n}.

So if it is false that f = 0 a.e., then we must have p(E,) > 0 for some n. But then if
¢ =1/nxg, and f > fxg, > ¢ >0and ¢ € LT is a simple function, hence

[ = [o=tuE)>0

and contradicts the fact that [ f = 0. [ |
I COROLLARY 3.3.11 (Improved MCT). If {f.,} C L*, f € L™, fu < fuy1 for all n and
lim f,(x) = f(x) a.e., then

n—oo

/ f=1lim [ f,.
n—oo
Proof. Assume that lim f,(x) = f(z) for all x € E, where u(E°) = 0. Then we have the
n—oo

following;:
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(1) {fnxg} is an increasing sequence in LT that converges to fxg € LT (for all z € X);
(i) f— fxg=0and f, — fuxe = 0 a.e. (that is, they are equal for all z in E).

From (i), (ii), the previous proposition and the MCT we have

[ 1= [rxe=tm [ o=t [ 1.
|

They hypothesis that the sequence {f,} is increasing is fundamental for the MCT.

Consider, for instance, X = R and p the Lebesgue measure. Then

X(n,n+1) — 0 and nX(0,1/n) — 0

pointwise, but fx(n7n+1) = f”X(o,l/n) =1 for all n.

However, if we remove this hypothesis, one inequality still holds.

| LEMMA 3.3.12 (Fatouw’s Lemma). If {f,} is any sequence in Lt then

/ liminf f,, < hmlnf / fon-
n—oo

Proof. For each k > 1 we have 1r>1£ fn < fj for all j > k, hence [inf,>x f, < [ f; for all

J = k, and thus
/rllggfn <;r>1£/fj.

But {mf fn}r 18 an increasing sequence of LT functions that converges to hm 1nf fr, and
by the MCT we have

/ liminf fy = lim [ inf f, < lim inf / fi= li]gn inf / fr.
—00

k—o0 k—o0 n>k k—oo 52k

| CoroLLARY 3.3.13. If {f,} C L*, f € LT and f, — [ a.c., then

/féliminf/fn.

Proof. If the convergence is everywhere, this is a direct consequence of Fatou’s Lemma, since
f = liminf f,,. If the convergence is only a.e., we modify f and f, on a null set, as done in

n—o0

the Improved MCT. |
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| ProPosITION 3.3.14. If f € LT and [ [ < oo then {x € X: f(x) = oo} is a null set
and {x € X: f(x) > 0} is a o-finite set.

Proof. Set E,, = {z € X: f(xz) = oco}. Since f is measurable, F., is a measurable set. If
w(Es) >0, then f > fxp, = nyxg, for all n, hence

/f > /nXEoo = np(Ex),

and making n — oo we obtain that [ f = oo, which is a contradiction. Therefore u(E,) = 0.
For the second part, let E,, = {z € X: f(z) > 1/n} for each n and £ = {z € X: f(z) >
0}. Then £ = |J E, and each E,, is a measurable set. We will show that u(E,) < oo for

n=1

each n. Assume by absurd that p(FE,) = oo for some n. Then f > fxg, > (1/n)xg, and

henee / ;> / (1/m)xE, = (1/m)p(E,) = oo,

which is a contradiction and proves that E is o-finite. |

3.4| SOLVED EXERCISES FROM [, PAGE 52]

EXERCISE 12. Prove Proposition [3.3.14]

Solution. It is already proven in the text.

EXERCISE 13. Suppose {f,} C L*, f,, — f pointwise and [ f = lim [ f, < co. Then
[ [ =1im [, f, for all E € M. However, this need not to be true if [ f =lim [ f, = cc.

Solution. By Fatou’s Lemma, since f,xg — fxg, we have

/Efghminf/Efn.

If we can prove that limsup [ g fn < S [, then we are done. To that end, note that if
E € M we have fyp < f and hence

/Efz/fxE</f<oo7

and thus fEf < oo forall E € M. Since f = fxg + fxge and f, = fuxe + fuxEe We have

/fz/Ef+ (1w /fnz/Eme [ toralln
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But then Fatou’s Lemma we have

Ji-[1- chéliminf(/fn—/Efn>Z/f—limsup/Efm

and since everything is finite, we have

limsup/EfnéfEf-

Now we show that this result can fail if [ f = lim [ f, = co. Let X = R and p the
n—oo
Lebesgue measure. Consider f = X[2,00), fn = X[2,00) + "X(0,1/n) and E = (0,1]. Then f, — f
pointwise, [ f = [ f, = oo for all n and

/ fn = /nX(O,l/n] = nﬂ’((ov 1/”]) =1 forall n,
E

but fEf:().

EXERCISE 14. If f € L let \(E) = [, fdu for E € M. Then X is a measure on M and
for any g € L™, [ gd\ = [ gfdu (first suppose that ¢ is simple).

Solution. Let {A;} be a pairwise disjoint sequence in M and A = |J A;. Then, since
j=1

XA = Y. Xa, we have

n=1

A(A)=LfduszxAduzgffojdungj fduzgmn-

Hence )\ is a measure on M.

n
Now for the other claim, assume that g € L™ is a simple function, with g = }_ a;xg,,
j=1

n
with X = (J £ and {E;}7_, is a pairwise disjoint finite sequence. Then
j=1

/gd/\:iajA(Ej) :iaj[Ej fduz/zZ:GjXEjfduz/fi%XEjduz/fgdu-

Now if g € L™ let {¢;} be an increasing sequence in LT of simple functions that converges

to g. Then, using the result for simple function and the MCT we have

/gd/\ = lim /@dA = lim /qufdu = /gfdm
Jj—o0 j—o0
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and the last equality follows also from the MCT, since ¢; f increases to fg.

EXERCISE 15. If {f,} C L*, f, decreases pointwise to f, and [ f; < oo, then [ f =
lim [ f,.

Solution. Before we begin, we note that since f < f, < f; for all n, we have

[1<[n< <

and hence all the integrals are finite.

By Fatou’s Lemma, we have [ f < liminf [ f,. The proof is complete if we can prove
that limsup [ f, < [ f. To that end define g, = fi — fn. Then {g,} C L* and g, increases
pointwise to f; — f. Hence by the MCT we have

/Uv%%ﬂm(/ﬁ—h>ZMMM</ﬁ—ﬁ)Z/ﬁ—me/fr

Now note that of g = f1 — f, then fi =g+ f and [ fi = [g+ [ f, and since all the
integrals are finite, we have [g= [ fi — [ f, thatis [(fi — f) = [ fi — [ f, thus we obtain

[r=[1=[th=n= [ n-tmsw [ £

and hence [ f =limsup [ f,, and the proof is complete.

EXERCISE 16. If f € Lt and [ f < oo, for every € > 0 there exists E € M such that
WE) <oocand [, f>([f)—e

Solution. By Exercise 12, the set A = {x € X: f(z) > 0} is o-finite, and we can write
A= U7, A; with p(A;) < oo for all j. Without loss of generality, we can assume that
A; C Ajy for all j (taking B; = | J;_; A4; if necessary).

Since M 3 B+ X(B) = [ fdu is a measure and f = fya, from the continuity from
below for the measure A\, we have

/f:/Af:)\(A): lim A(A) = lim [ .

Jj—o0 Jj—r00 A

Also fxa, < f,and [, f < [f. Thus, since [ f < oo, given € > 0 we can choose j

o</f—Aﬁ<e

sufficiently large so that
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Taking E = A; concludes the result.

EXERCISE 17. Assume Fatou’s Lemma and deduce the MCT from it.

Solution. Let {f,} C LT a sequence that increases to f. Then since f,, < f for all n,
we have [ f, < [ f for all n and hence limsup [ f, < [ f.
By Fatou’s Lemma, [ f <liminf [ f,, but then

/fghminf/fnnmsup/fné/f,

so all inequalities are equalities and lim [ f,, = [ f, which is the MCT.

3.5| INTEGRATION OF COMPLEX FUNCTIONS

We continue our work with a fixed measure space (X, M, pu).

I DEFINITION 3.5.1 (Integral for extended-real valued functions). If f: X — R is a
measurable function, then both ft and f~ are in L™ (see Definition . If at least one
of the integrals [ f+ and [ f~ is finite, we define

il

When both integrals are finite, we say that f is integrable.

I PROPOSITION 3.5.2. A measurable function f: X — R is integrable if [1f] < oc.
Proof. This follows directly from the fact that |f| = f™ + f~. [ |

I PROPOSITION 3.5.3. The set of integrable functions f: X — R is a real vector space, and

the integral is a linear functional on it.

Proof. Assume that f,g: X — R are integrable and a,b € R. Then, since |af + bg| <
la|| f] + 10||g], it follows that af + bg is integrable, hence it is a real vector space.

Now we show that the integral is a linear functional on it. If a > 0 then (af)" = af*

and (af)” =af” then [af =a [ f. Now (—f)" = f~ and (—f)” = f* hence

Jen=[eor=fen=[r-[r=-]1
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and the result for a < 0 follows from the previous two cases, therefore [af =a [ f for any
a € R.

Now take h = f +g. Then h=h" —h~,but h=f+g=f" — f~+ g7 — g~ and hence
ht —h™ = ft— f~4+g" — g, therefore h* + f~ + g~ =h™ + f+ + g*. But the additivity

of the integral in L™ we have

/h++/f‘+/g—=/h—+/f++/g+,
/(f+g)=/f+/g,

which concludes the result. |

and hence

I DeriNITION 3.5.4 (Integral for complex functions). We say that a complex valued function
f: X — C is integrable if [|f| < co. More generally, if E € M, we say that f is
integrable on E if [, |f| < co.

Since |f| < |Ref| + [Imf] < 2|f|, we see that f is integrable iff both Ref and Imf are

integrable, and in this case, we define

[ = [rer+i [ty

It follows as in Proposition that the space of complex-valued integrable functions is

a complex vector space, and the integral is a complex-linear functional on it.
| EXERCISE 3.5.5. Prove these last claims.

We will denote this space by L'(u) (or L*(X, i), or L*(X), or simply L', depending on

the context).

| ProposiTION 3.5.6. If f € L, then

]/f‘</|f|.

Proof. This is trivial if [ f =0, since [ |f| > 0. If f is real, we have

[l frle e frefm
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Now assume that f is complex and [ f # 0. Let o = sgn( [ f), then

Sl [l =1

and in particular [ af is real. Hence

‘/f‘ —Re [af = [Re(af) < [ IRetap) < [lasi= [171

| ProPosITION 3.5.7. We have the following:
(a) iof fe L', then {x € X: f(x) # 0} is o-finite.
(b) if f,g€ L', then [, f = [, g for al E € M iff [|f —g|=0iff f =g a.e.
Proof. (a). We have
{reX: fla)#0}={z e X: ff(x) >0} U{z e X: f (z) >0},

and the result follows since each one of the sets on the right side is o-finite (by Proposition

E3E)
(b). The equivalence that [ |f —g| =0 iff f = g a.e. follows by Proposition , since
|f—gl€e LT and |f —g|=0ae. iff f=g a.e.

If [|f—g]=0thenif E € M, we have

[Ef—[Eg‘éfElf—glz/XE!f—glé/lf—g\IO,

and hence fEf = ng.
Now we prove that if [ rf= / g then f = g a.e., which completes the proof. Assume

that it is false that f = g a.e. and consider h = f — g, then it is false that h = 0 a.e. Writing

u = Reh and v = Imh and considering
E.s={rxeX:r’(z) >0} forr=u,vands=d=,

then at least one of the F, ; must have positive measure. Assume, for instance that F, ; has
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positive measure. Then

Re(/Euﬁf—/EMg):Re/Eu7+h:/u+>O,

since v~ = 0 in £, . This implies that f Fus h # 0 and gives us a contradiction. Analogously

for the other three cases. [ |

With this proposition, we can make some additional remarks, that are significantly
important for the theory of integration.

First: this proposition shows us that when we are integrating a function, its definition on
any null set is irrelevant. That is, we can change the definition of f anyway we want in any
null set and we obtain the same result when integrating. Hence, if f: X — R is integrable,
we have already seen that {x € X: f(x) = oo} is a null set, and hence {z € X: f(z) = o0}
is also a null set. Redefining f to be, for instance, 0 in this set, then we can look at f as
a real valued function. This means that, under integration, one does not need to consider
integrable functions taking values in the extended real line, but only real values.

Hence, we will redefine L*(u) as follows:

| DeriNtTION 3.5.8. Consider f,g complex-valued integrable functions. We say that f ~ g

iff f=g ae.

This relation ~ is an equivalence relation in the set of complex-valued functions, and we
can define L' () as the set of all such equivalence classes. This new L'(y) is still a complex
vector space. But although now L'(u) is a space of equivalence classes, we will still write
f € L'(u) with the meaning that “f is an a.e.-defined integrable function”. This is an abuse

of notation, but it does not cause major confusions.

| ProrosiTiON 3.5.9. If it is the completion of u, then there exists a one-to-one correspon-
dence between L*(p) and L'(f).

Proof. Assume that f € L'(j7), that is f: X — C is an M-measurable function. Then, by
Proposition [3.1.24] there exists a M-measurable function g: X — C such that f = g fi-a.e.
Thus to each f we associate W(f) = g. If U(f;) = U(f;) then f; = f» f-a.e., and hence
fi1 = fo in L'(1z), so this association is injective.

If g: X — C is an M-measurable function, then g is also an M-measurable function,
since M C M, hence ¥ is surjective, since ¥(g) = g.

It remains to show that if f € L'(z) and ¥(f) = g, then g € L'(u). Since f € L' () and
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f = g p-a.e., we have |f| = |g| fi-a.e. and

[ 19ld= [ 1glam= [ 111dp < .

and the first equality follows from the fact that g is M-measurable and 1 is the completion
of u, therefore g € L*(p). [ |

Hence we can (and shall) identify the spaces L'(u) and L' (7).

| DEFINITION 3.5.10. For f,g € L*(i) we define

pUy%z/V—gL

| PROPOSITION 3.5.11. The function p is a metric on L.

Proof. Tt is clear that 0 < p(f,g) < oo for all f,g € L'. Also p(f,g) = 0iff f = g a.e., that is,
iff f=gin L'. Tt is trivial that p(f, g) = p(g, f), and finally, since | f — g| < |f — h|+|h — ¢|,

we have the triangle inequality. |

| DeErFINITION 3.5.12 (Convergence in L'). Consider a sequence {f,} C L*. We say that
fo— fin L' if f € LY and p(fn, f) = 0 as n — oo, that is, if [|fn — f| = 0 as n — .

Now, together with the MCT and Fatou’s Lemma, the next theorem form the three

fundamental convergence theorems of the theory of integration.

| THEOREM 3.5.13 (The Dominated Convergence Theorem (DCT)). Let {f,} be a sequence
in L' such that

(a) fo— [ ae.

(b) there exists a nonnegative g € L* such that | f,| < g a.e. for all n.

n—oo

Then f € L' and /f = lim [ f,.

Proof. Using Propositions [3.1.23] and [3.1.24] after perhaps a redefinition on a null set, f is a

measurable function. Since |f| < g a.e., f € L'. Taking real and imaginary parts, we can

assume that f,, f are real-valued, and hence g + f,, > 0 and g — f,, > 0 for all n. Thus, using

Fatou’s Lemma, we have

/g+/f<hminf/(g—i—fn):/g+1iminf/fn
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and

/9—/f<hminf/(g—fn)Z/g—limsup/fn,

therefore limsup [ f, < [ f <liminf [ f,, which concludes the result. [ |

| THEOREM 3.5.14. Suppose that {f;} is a sequence in L' such that 3. [ 1f;] < oo. Then
j=1

oo
> fj converges a.e. to a function in L' and

Jj=1

/gszg/fj-

Proof. By Theorem [3.3.9) [ >~ |f;| =Y [ |fj| < 0o, so the function g = >_ |f;] is in L'. By
=1 =1 j=1

Proposition 3.3.14] > |f;(x)| is finite for a.e. x, and for such z, the series ) f;(z) converges.
J=1 =1

Thus | f;| < g a.e for all n and we can apply the DCT to the sequence of partial sums to
j=1

obtain - -
/j;fj = ;/fj-
[ |

I THEOREM 3.5.15. If f € L'(u) and € > 0, there exists an integrable simple function
¢ = a;xg, such that [1f = ¢ldu < €; that is, the integrable simple functions are dense in
L' in the L' metric.

If v is a Lebesgue-Stieltjes measure on R, then the sets E; in the definition of ¢ can be
taken to be finite unions of bounded open intervals; moreover, there is a continuous function

g that vanishes outside a bounded interval such that [ |f — g|du < e.

Proof. Since f is measurable, using Proposition [3.1.22] there exists a sequence {¢,} of simple
functions such that 0 < |¢] < |¢o] < --- < |f| and ¢, — f pointwise. Clearly, since f € L,
each ¢, is in L' and ¢, — f — 0 pointwise. Since |¢,, — f| < |dn| + | f] < 2|f| € L, using

the DCT, we obtain
1621150

and given € > 0 we can choose n such that f | — f] < e
For the second part, we assume that u is a Lebesgue-Stieltjes measure. We write ¢ = ¢,
m
and consider its standard decomposition ¢ = »_ a;xg,. We can assume that the a; are all
=1

Jj=
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nonzero and the E; are disjoint, discarding the sets on which ¢ is zero from the decomposition,

n(B) = [ xe, =l [ Jol <l [ 1< o0

Before continuing, note that for measurable sets £ and F', we have u(EAF) = p(xg, xr) =

and hence

[ Ixe — xrl, since xpar = |xr — xr|- Hence, for each j, given € > 0, using Proposition
2.5.12] there exists a set A; which is a finite union of open bounded intervals such that

n(E;AA;) < and considering ¢ = 3 ajxa,; we have

m\a I’

J16=61= Y lal [ e, xal = S laln(Baa) <o

and hence [ |¢ — f| < 2e.

Hence, we can write gb Z bex1,, where I, = (cg, dy] with ¢, dy € R for each k, and
k=
we can again assume that all bk are nonzero and that the finite family {I;} of intervals is

pairwise disjoint (here we use h-intervals and approximate then from the inside with open

intervals). Now for each k, we will construct a continuous function g5: R — R as follows:

(i) choose 0) > 0 such that

€

/L((Ck, Ccr + 5k]) + ,u((dk, dk + (Sk]) < —,

p|bk|
and define g, = 1 on [cg + O, di];

(il) gr = 0 on (—o0, cx] U [dy + 0k, 00);

(iii) define g linear from 0 to 1 in [¢x, ¢x + 6] and linear from 1 to 0 on [d, di, + k).

Thus [ |bexr, —brgr| < |bk|<,u((ck,ck+5})+u((dk—6, dk])> < €/p. Therefore, g = > by
is continuous, vanishes outside | J}_, (cx, dj + dx] and

p
/!g—¢! <Z/\bk\|>ak—gk\ <
k=1

/If—g|<36~

The next theorem gives us a criterion for the validity of the interchange limits and

and then

derivatives with integrals.
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| THEOREM 3.5.16. Suppose that f: X x [a,b] — C with —o00 < a < b < co and that
f(-,t): X — C is integrable for each t € [a,b]. Define

:/ flz,t)du(z)  for each t € [a,b).
Then

(a) if there exists g € L'(p) such that | f(x,t)| < g(z) for all x,t and tlir? f(z,t) = f(x,to)
—lo
for every x then 1tlir? F(t) = F(ty). In particular, if f(x,-) is continuous for every x,
—to

then F' is continuous.

(b) if Of /Ot exists and there exists h € L*(u) such that |(Of/0t)(x,t)| < h(z) for all x,t
then I 1s differentiable and

of

F'(t) = L

—(x,t)du(x)  for allt € [a,bl.

Proof. (a). Let {t,} be any sequence in [a, b] such that ¢, — ¢, and define f,(z) = f(z,t,)
and fo(x) = f(x,to) for every x € X. Hence f,, — fy pointwise and |f,| < g for all n. Thus,
applying the DCT we have [ fy =lim [ f,, that is,

F(ty) = /fxtodu /fo—hm/fn—hm/fxt )dp(z) = lim F(t,).

Since this is true for every sequence {t¢,} in [a, b] converging to ty, the result follows.
(b). Take again any sequence {t,} in [a,b] with ¢, — t¢, such that t, # t, for all n, and

define
f(xatn) B f(l’,to)
t, — to

Define also ho(z) = (9f/0t)(x,to) for all z € X. Hence h,, — hg, and since each h,, is

measurable, it follows that hy is measurable. By the Mean Value Theorem we have

hn(z) = for all n and = € X.

t) — flat
i)~ Sl _
|tn_t0| t€la,b)

A ()| =

%(m,t)‘ < h(z) forall x € X,

and we can again apply the DCT to obtain [ hy = lim [ h,,, that is,

F(t,) — F(t

Ftn) =t 2= i [, @dute) = [ o@iante) = [ e tuta).
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The use of sequential limits is fundamental to treat continuous limits, since the DCT only
deal with sequences. However, in similar situations in the future, we will just say t — to,
with the understanding that we are taking sequential limits.

In the particular case when p = m is the Lebesgue measure in R, this integral we have

just developed is called the Lebesgue integral.

3.51 | COMPARISON BETWEEN THE RIEMANN AND LEBESGUE INTEGRALS

We will use Darboux’s characterization of the Riemann integral, in terms of upper and
lower sums, to compare it with the Lebesgue integral.

Let [a,b] be a compact interval. By a partition of [a,b], we mean a finite sequence
P ={t;}7_such that a =tg <t; <--- <t, =0.

Let f be an arbitrary bounded real-valued function defined on [a,b]. For each partition
P, we define

Spf =) M(t;—t;1) and  spf =) m(t;—t; 1),
j=1

j=1

where M; = sup f(z) and m; = [inf }f(:z:) The sums Spf and spf are called upper
IE[t]'_1,t]'] zeltj—1,t;
and lower sums of f on P, respectively.

Then we define

L(f)=fSpf and  L(f)=supsp],

where the infimum are taken over all partitions P of [a,b]. They’re called respectively the
upper and lower integrals of f in [a, b].
When 72(]‘) = I°(f), their common value is the Riemann integral fab f(z)dz and f is

called Riemann integrable.

| THEOREM 3.5.17. Let f be a bounded real-valued function on [a,b]. If f is Riemann

integrable then f is Lebesque measurable (and hence Lebesgue integrable on [a,b], since it is

bounded), and
b
/ flz)dx = fdm.
a [a,b]
Proof. For each partition P of [a,b] define
GP - Z MjX(tj—l,tj] and gP - ijX(t]'_l,t]‘]v
j=1 j=1
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with the same notation as above. Thus Spf = f Gpdm and spf = fgpdm.
We can choose a sequence { P} of partitions of [a, b] such that P, C Py for all k, whose

mesh (= jg@xn(tj —tj_1)) converges to zero and such that Sp, f and sp, f both converge to

Since Py C Py for all k, {Gp,} is a decreasing sequence and {gp,} is an increasing
sequence. We can thus define G = lim Gp, and g = lim gp_, which are measurable functions,
since they are limits of sequences of simple measurable functions. Since gp, < f < Gp, for

all k, where M = sup f, we have g < f < G and using twice the DCT, we have

b
/de:lim/kadm:limSpkf:/ f(x)dleimstf:lim/gpkdm:/gdm.

Therefore [(G — g)dm = 0, which implies that G = g a.e. on [a, b] by Proposition [3.3.10}
Hence, since g < f < G, we have f = g = G a.e. on [a,b], thus f is measurable (since it is

equal a.e. to a measurable function and m is complete) and

[ sam = [ Gam= [ gam = [ ()

Now we will characterize the set of Riemann integrable function on an interval [a, b]. To
that end, let f: [a.b] = R be a bounded function and define

H(xz)= lim sup f(y) and hA(z)= lim inf f(y).

60T |y—z|<5 §—07 |y—z|<o

| LEvivia 3.5.18. f is continuous at = € [a,b] iff H(x) = h(z).

Proof. Assume that f is continuous at x. Then given € > 0, there exists dy > 0 such that if
0 <6 <dpand |y—z| < we have |f(y)— f(z)| <, thus f(y)— f(x) < eand f(z)— f(y) <e€
for all y such that |y — 2| < J. Hence

sup f(y) — f(z) <e and f(z)— inf f(y) <e

ly—z|<d ly—=z|<o

and then

sup f(y) — inf f(y) < sup f(y) — f(z)+ f(z) — inf f(y) <2e

ly—z|<d ly—x|<d ly—z|<d ly—a|<é
Taking the limit when 6 — 0% we have H(z) — h(x) < 2¢, and since € > 0 is arbitrary, we
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obtain H(z) — h(z) < 0. Since H(z) > h(z) for each x, we have H(x) = h(x).
For the converse, assume that H(z) = h(z) = a. Hence given n > 0, there exists dp > 0

such that for 0 < § < g we have

ja — sup f(y)| <n/2 and Ia—yiglf<5f(y)l<n/2,

ly—z|<d ‘

which implies that sup f(y) — inf f(y) <n. But then for |y — x| < § we have

ly—z| <6 ly—=z|<é

1fly) = f(@)] < sup f(y)— inf f(y) <nm,

ly—x|<d ly—x|<d

and proves that f is continuous at z. |

| LevMA 3.5.19. In the notation of the proof of Theorem we have H =G and h =g

a.e.

Proof. Consider the sequence of partitions { P, } used in the proof of Theorem and set
E = {points of P for all k}. Since each Py has a finite number of points, £ is countable and
hence has zero Lebesgue measure.

We will show that H = G in [a,b] \ E. If x € [a,b] \ E, then Gp (z) > H(x), since if

x € (tj_1,t;) we have Gp (x) = sup f(y) > H(x). Hence G(z) > H(z).
ye(ti—1:t)]

If H(x) < G(x), choose a € R such that H(z) < a < G(z). By definition of H, there
exists dy > 0 such that if 0 < § < dy we have f(y) < a if |y — x| < 0. But since the mesh of
the partitions Py tends to zero, for large k, x € (t;_1,t;) and t; — t;_1 < J, hence

Gp(r)=M;= sup f(y)<a.

ye(tjflvtj]

Since the sequence {Gp, } is decreasing, we have G(z) < Gp,(x) < a < G(x), which gives
us a contradiction, hence H = G in [a,b] \ E, therefore H = G a.e.
Analogously we show that h = g a.e. ]

| CoroLLARY 3.5.20. H and h are measurable, f[a y Hdm = TZ(f) and f[a y hdm = I°(f).

Proof. Since G and ¢ are measurable, H = GG, h = g a.e. and m is a complete measure, H

and A are measurable. Moreover

/ Hdm = de: lim kadm: thPkfITZ(f>7
(a,b] [a,b] [a,b]
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and

/ hdm = gdm = lim gp.dm = limsp f = I°(f),
[a.] [a.] [a.]
[ |

| THEOREM 3.5.21. Let f be a bounded real-valued function. Then f is Riemann integrable

iff D(f) =A{z € [a,b]: f is discontinuous at x} has zero Lebesque measure.

Proof. 1If f is Riemann integrable, using the notation of the previous results, by Corollary

[3.5.20], we have
b
/ Hdm:/ f(:v)d:v:/ hdm,
[a,b] a [a,b]

hence H = h a.e. by Proposition m Thus D(f) has zero Lebesgue measure by Lemma
B.5.18

Conversely, if D(f) has zero Lebesgue measure, H = h a.e. by Lemma and hence
by Proposition and Corollary we obtain

L= [ tin= [ dn= 1)
a,b] [a,b]

hence f is Riemann integrable. |

These results show that the proper Riemann integral is contained in a particular case
of the Lebesgue integral. Some improper Riemann integrals can be interpreted as Lebesgue
integrals immediately, but others still require a limiting procedure. Consider the follow

example.

I ExAMPLE 3.5.22. If f is a Riemann integrable function in [0,b] for allb > 0 and Lebesgue

integrable on [0,00), then
b

/ fdm = lim [ f(z)dz
[0,00) b—oo 0

In fact consider the “sequence” f, = fxpop-. Then f, — f pointwise as b — oo and
|fo] < |f|, hence by the DCT we have

fdm = lim fXxopdm = hm fdm = hm/ f(z

[0,00) b—o0 [0700 [0 b b—o0
However, the limit on the right side may exist even when f is not Lebesgue integrable.
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(_Tll)n X (n,n+1]- Thus

o0
For instance, consider f = >
n=1

o0

1
fldm = — =00,
/[o,oo)" >

n=1

and hence f is not Lebesque integrable in [0,00), but

b R AN [ S = (=1)"
[ i = i Z;(? - T 6D :;(f?’

which 1s convergent.

The Lebesgue theory offers two real and useful advantages over the Riemann theory. First,
we have more powerful convergence theorem. Such results are not true in general for Riemann
integrals. Also, there are much more Lebesgue integrable functions the Riemann ones. One
simple example is the function xqg. Since is everywhere discontinuous, it is not Riemann
integrable on any closed interval, however, it is Lebesgue integrable and €, xodm = 0.

Also, metric spaces on which the metric is defined with Lebesgue integrals are complete,
but not when defined with the Riemann integral.

From now on, for real-valued functions, we will use the notation fab f(z)dx for Lebesgue

integrals.

3.5.2| THE GAMMA FUNCTION

In this subsection we discuss the gamma function. To begin, let z € C with Rez > 0

and define f,: (0,00) = C by f.(t) = t*"'e™*, where t*~! = exp[(z — 1) Int].
| PropPosITION 3.5.23. If 2 € C is such that Rez > 0 then f, € L'((0,00)).

Proof. We must show that [ |f.(¢)|dt < co. To that end, first note that, since [¢*~!| = ¢Re==1,
for 0 <t < 1 we have | f.(t)| < t®*~! and thus

1 1 L tRez 1 1
/0 | fo(t)]dt < /0 tRe==lg = Roz o = Roz < oo since Rez > 0.

Now, for t > 1, set @ = Rez — 1 and ¢(t) = t®e~"/2. Hence |f.(t)| = g(t)e*/? and since

tlim g(t) =0, g is a bounded function for ¢ > 1, which ensures us that there exists a constant
—00
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C > 0 such that |f.(t)] < Ce™*/2. Thus

/ |f=()]dt < C/ e 20t — —2Ce 2T — 2012 < oo,
1 1

1
and joining the two estimates, we have f, € L'((0, 00)). [ |
Using this proposition we can make the following definition.

| DEFINITION 3.5.24 (Gamma function). We define for Rez > 0 the gamma function of

z by

['(z) = / e tdt.
0
| PropPOSITION 3.5.25. For Rez > 0 we have T'(z + 1) = 2I(z).

Proof. Let a,b > 0. Using the comparison between the Lebesgue and Riemann integrals, we
can use integration by parts to obtain

b b b
/ teldt = —tPe | + 2 / t*le tdt,

and letting a — 0% and b — oo (and recalling that f, € L'((0,00))), we obtain the result. W

Thus, if —1 < Rez < 0, we can define the gamma function for z by the formula

r(z) - Ll

z

since Rez + 1 > 0. Inductively, we can use this procedure to define I' for the entire complex

plane, except for Rez = m, where m is a nonpositive integer.
| PROPOSITION 3.5.26. For every nonnegative integer n, we have I'(n + 1) = nl.

Proof. We have I'(n + 1) = nI'(n) = n(n — 1)I'(n — 1) - - - n!['(1), for each nonnegative integer

n. It remains to show that I'(1) = 1, but this follows easily since

') = / etdt = —et| T = 1.
0 0
|

Together with the gamma function, we also have the beta function. It is defined by

1
B(z,y) = / t" N1 —t)vtdt  for z,y > 0.
0
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| PRrROPOSITION 3.5.27. For z,y > 0 we have

B(x,y) =

Proof. This proof we be done later, as it requires some further definitions and results (See
Exercise 60). [ |

3.6| SOLVED EXERCISES FROM [1, PAGE 59]

EXERCISE 18. Fatou’s Lemma remains valid if the hypothesis that f,, € LT is replaced by
the hypothesis that f,, > —g where g € L™ N L'. What is the analogue of Fatou’s lemma for

nonpositive functions?

Solution. Fatou’s Lemma. Assume that {f,} is a sequence of measurable functions such
that f,, > —g for some g € L™ N L'. Thus

/lim inf f,, <lim inf/fn.

Before proving the result, we will prove the following lemma:

Lemma. If f > —g, f is measurable and g € LT N L, then [(f+¢9)=[f+ [g.

Proof. Indeed, if f € L' the result is given in Theorem [3.5.14 Assume now that f is
not integrable and write f = f* — f~. Let E~ = {x € X: f(z) < 0}. Since f > —g we
have f(x) = —f(z) for x € E~ and hence —f~(z) > —g(x), thus f~(x) < g(z). Hence
Jf =)o [ <[y 9<[g<oo. Thus, if fis not integrable, this means that [ f* = oo
and hence [ f = oco. It remains to prove that [(f +g¢) =oco. If h = f + g (which is in L")
we have h = f* — f~ + g and hence h+ f~ = f* + ¢, hence

Jre[r=[wsrr=[r+ s

and since [ g and [ f~ are finite, this follows that [ h = co. Hence, in any case [(f +g) =
Jr+Jg )

Now we can prove this version of Fatou’s Lemma. Since f,, > —g we have f,, + ¢ > 0 for

all n, and we can apply Fatou’s Lemma together with our previous lemma to obtain

/liminffn—i—/g:/liminf(fn—l—g) <1iminf/(fn+g) :liminf/fn-l-/g,
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and since g € L', the result holds.

Fatou’s Lemma for nonpositive functions. If {f,} is a sequence of measurable functions

with f, <0 for all n then
hrnsup/fn < /limsupfn.

Proof: Apply Fatou’s Lemma for {—f,}.

EXERCISE 19. Suppose {f,} C L'(u) and f,, — f uniformly.
(a) If u(X) < oo then f e L' (p) and [ f, — [ f.

(b) If p(X) = oo, the conclusion of (a) can fail. (Find examples on R with the Lebesgue

measure).

Solution to (a). Since f, — f uniformly, there exists ng such that |f, — f| < 1 for

n = ng. Hence

|f| < |f_ fno' + |fno| < 1+ |f7m|7

and since p(X) < oo, the constant function 1 is in L'(u), hence f € L'(u).

‘/fn —/f' < [ 1= 11 < 0 15a(o) = FIHX) =0

as n — 00, since pu(X) < oo, hence lim [ f, = [ f.
Solution to (b). Consider f, = Zx(o,. Hence f, = f = 0 uniformly on R but [ f, =1
for all n and [ f = 0.

Now

EXERCISE 20. (A generalized Dominated Convergence Theorem) If f,,g,, f,g € L',
fon— fand g, — g ae., |fo| < gp and [ g, — [gthen [ f, = [ f. (Rework the proof of

the dominated convergence theorem).

Solution. We have g, + f, > 0 and g,, — f,, = 0 for all n. Using Fatou’s Lemma, we have

/g+/f<liminf/(gn+fn):/g+1iminf/fn
/g—/f<1iminf/(gn—fn)=/g—limsup/fm

and we obtain the desired result.

and
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EXERCISE 21. Suppose f,, f € L' and f, — f a.e. Then [|f, — f| = 0iff [|f.] = [|f]
(Use Exercise 20).

Solution.

Assume that [|f,] = [|f|. We have |f, — f| < |fal + |f] for all n, |f.| + || = 2|f] a.e.
and [ |fa|+ [|f] = 2 [ |f]. Thus, since since f, — f — 0 a.e., we can use Exercise 20 to
conclude that [|f, — f] = 0.

For the converse, assume that [ |f, — f| — 0. Since ||fu| — |f]] < |fn — f| for all n
and |f,] — | f| = 0 a.e., we can use Exercise 20 to conclude that [(|f,] —|f]) — 0, hence

J1fal = J111-

EXERCISE 22. Let p be the counting measure on N. Interpret Fatou’s lemma, the MCT

and the DCT as statements about infinite series.

Solution. Let f: N — R any function. Then since M = P(N), f is automatically
measurable. We write f(n) = a, for all n. If f > 0 then

[ rodntn Zf p((rh) =3

n=1

If f is any function, the f is integrable iff [ |f| < oo iff Z |a,| is convergent.

Fatou’s Lemma. If {a,;} is a doubly indexed real sequence w1th an i = 0 for all n, k then

oo o

g liminf a, ; < liminf E O ko
n—00 ’ n—00 ’

k=1 k=1

MCT. If {ay} is a doubly indexed real sequence and {b;} is a real sequence with 0 < a1, <

agp < -+ < by and lim a,y = by If {a,} is a doubly indexed real sequence with a, ; > 0
n—oo

for all n, k, then

e e
lim E Ap k. = E bk
n—00

k=1 k=1

DCT. Assume that {a,} is a doubly indexed sequence in R with ) a,j absolutely con-
=1
vergent for all n, lim a,j; = by for all k, and there exists a nonnegative sequence {c;} with
n—oo

x
> ¢ convergent and |a, x| < ¢ for all k, then ) by is absolutely convergent and
k=1 k=1

[e.9] oo
E bk = lim E Ap k-
n—oo
k=1 k=1
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EXERCISE 23.

This is done in Subsection B.5.1]

EXERCISE 24. Let (X, M, 1) be measure space with u(X) < oo and let (X, M, i) be its
completion. Suppose that f: X — R is bounded. Then f is M-measurable (and hence in
L*(;z)) iff there exist sequences {¢, } and {¢,,} of M-measurable simple functions such that

On < f < and [(¢, — ¢n)dp < n~t. In this case lim [ ¢, dp = lim [, dp = [ fdp.

Solution. Assume that f if M-measurable. Then, by Proposition [3.1.24] there exists a

M-measurable function g such that f = g fi-a.e., and since f is bounded, g is also bounded.

We will adapt the proof of Theorem |3.1.20L Choose ng such that —2m < g < 2™. For

n = ng and we define

Joo=[-2" 2" +27"  and  Jpp= (2" + k27" 2"+ (k+1)27"

22n+1_1

for k=1,---,22""1 — 1. Hence |J Jox=[-2",2"] for all n.
k=1

Define E, ; = g *(Jnx) for k = 0,---, 2?1 — 1. Since ¢g(X) C [-2",2™] C [-2",2"]
22n+171
for n > ng, we have |J £E,, = X and the finite sequence of sets {E,, }; is in M and is
k=0

pairwise disjoint. Now we can define

922n+1_1 22n+1_1
bn= Y (=2"+k27")xp,, and ¢,= > (=24 (k+1)27")xp,,
k=0 k=0
for k=0,---,22" — 1. Thus ¢,y < Ppyr1 <+ < g < -+ < Upyr1 < Uy, and moreover, for
n = ng we have
22n+171
[ = odn= Y 2 u(Bu) <27 0(X),
k=0

If ny is such that for n > n; we have n27"u(X) < 1 then for n > max{ng, n1} we obtain
/(¢n — ¢p)dp < nt (%)

Clearly, ¢, < f < v, p-a.e. Let A be the set on which ¢,, < f fails, then A C N where
N € M is a null set. We can redefine ¢,, on N by setting ¢, (z) = a = in)f( f(z) for z € N,
Te
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thus

22n+171

bn= > (=2"+k27")xg, nne + OXN,
k=0

is still a simple M-measurable function and ¢,, < f. The same can be done with ,, using
sup f(z), and hence f < 1,. Since integration does not see null sets, inequality (ED remains
flen)({:hanged.

Now we prove the converse. To that end, if ¢,, < f < ¢, for all n and [ (¢, — ¢ )dp < n™'.
Define ¢ = limsup ¢,, and ¢ = lim inf v,,, which are M-measurable by Proposition|3.1.10, and
well defined real-valued functions, since ¢,, < f < ¢, and f is bounded (hence ¢,, < ;g)f( f(z)

and 1, > sup f(z) for all n). Thus ¢ < f <1 and by Fatou’s Lemma
reX

/(’;/)—¢)dﬂ = /(liminfwn—limsup Gn)dp = /liminf(@/)n—@/)n)du < liminf/(wn—gbn)du =0,

hence [(¢ — ¢)du = 0. Using Proposition we have ¢ = ¢ p-a.e. Since ¢ < f < ¢, we
have ¢ = ¢ = f p-a.e. Thus f is p-a.e. equal to a M-measurable function. Assume that A

is a p-null set such that f # ¢. Then if B C R is a Borel set, we have

FHUB) = (B nAYU(fH(B)NA) = (¢ (B)NA)U(f(B) N A),

(. J

'

emMm CA

hence f~1(B) € M, and f is M-measurable.

EXERCISE 25. Let f(x) = 27Y2if 0 < » < 1, f(x) = 0 otherwise. Let {r,} be an

enumeration of the rational, and set g(z) = > 27" f(z —1,).
n=1

(a) g € L'(m), and in particular g < oo a.e.

(b) g is discontinuous a.e. and unbounded on every interval, and it remains so after any

modification on a Lebesgue null set.

(c) g% < oo a.e., but ¢? is not integrable on any interval.

Solution to (a). First note that f|(_oc0jup1,00) = 0 and hence it is measurable. Also f| 1)
is continuous, hence measurable. Thus by Exercise 5 of Section f is measurable. For
each n, the translation h,(z) = z — r, is continuous, hence measurable. Thus f, =2""foh,

is measurable for each n, and thus ¢ is measurable.
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Clearly g > 0, and hence, by Proposition [3.3.9| we have

/ gdm = 22—" / Fla — ro)dm(z).

But note that 0 <z —r, < 1iff r, <x <r, + 1, hence

rn+1

rn+1
/f x —rp)dm(z) = / (. — 7o) Ve = 2(x — 1) =2,

Tn

and hence
/gdm Z 92~ n+l __ Z 9—n _

and g € L'(m). By Proposition [3.3.14] g < oo a.e.

Solution to (b). First, we show that g is unbounded on every interval. Let I C R be
a nondegenerated interval (that is, I is neither a single point nor empty). Thus there
exists a rational 7, which is an interior point of /. Let M > 0 choose § € (0, 1) such that
(Tny 7o +6) C I and 27"(x —1,)"Y%2 > M for x € (r,, 7, + §). Hence, for z € (r,, 7, + 9) we
have 0 <x — 17, <d <1 and

g(x) = 27" f(x — 1) = 27 (@ — 1) V2 > M,

and this proves that ¢ is unbounded in I. Furthermore (r,,r, +¢8) C ¢g~'((M, >0)), and hence
m(g~'((M,0))) > 6, so any redefinition of g in a Lebesgue null set will yield an unbounded
function on every interval.

Since g < oo a.e. and ¢ is unbounded on every interval, ¢ is discontinuous a.e.
Solution to (c). Since g < oo a.e, then g* < co a.e.

Now, fix a nondegenerated interval I, choose r,, a interior rational point of / and ¢ € (0,1)

such that (r,,r, +J) C I. Thus we have
/g2dm > /(2—nf(x — 1)) 2dm(z) = 27" /f2(x — 1, )dm(x)
! ! Pl !
> 22"/ (x —ry) " ldm(x) = oo,

hence ¢ is not integrable on I.

EXERCISE 26. If f € L'(m) and F(x f f(t)dt, then F' is continuous on R.

Solution. Since X(—ooq|f] < [f], X(=ooq)f is integrable and F is well defined for every
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r € R. Now let x € R and z,, — x. Then
P - ol = | [ = [ o] | [ (xonf = xsaf )
< / [X(cosen] f = X(—o0.a) f|dm.
Let gn = |X(coen]f — X(—o0,2)f] for each n. We have
9n(t) = X(min{enz},maxienn)| f ()]

Thus, since z,, — z, we have g,(t) — 0 as n — oo for all t # z. Hence g, — 0 a.e.
Moreover |g,| < 2|f| € L*(m) and by the DCT, we have

|F(x,) — F(z)] </|gn|dm—>0 as n — 0o,

and thus F' is continuous at z.

EXERCISE 27. Let f,(r) = ae™™® — be™™ where 0 < a < b.

@pi?mmmzw

() 32 [ fulw)ds =0,

n=10

i fn(z)dx =1n(b/a).

n=1

(c) i fn € L'([0,00),m) and

n=1

Solution to (a). We have

[ bz [ @iz [ fa@a
0 1/na 1/na
- —nax —nbzx efnbm e "N >
= (ae — be )dx| = ( — )
1/na n n 1/na
1
_ 1 }efb/a _671‘ 7
n

and hence

o 0 o 1
|ful(@)|da > e — e Y =~ =o0.
> / | DO
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Solution to (b). Note that for each n we have

0 oo e—nbx e~ AT \ oo
/ fo(z)de = / (ae™"% — be ") dx = ( — >‘ =0,
0 0 n n /Jlo

and hence > [ fu(z)dz =0

n=10
Solution to (c). Note that

0o oo o
2 fn — E e naT _ be—nbx) — E e~naT _ p 2 e—nb:c)
n=1 n=1 n=1

since bot series in the right hand side converge absolutely for each x > 0, hence

—bx

g;f”@) B a(li—;‘m> B b(l i e—bx> - e‘”a— 1 ebxb— I

b
Set f(x) = e s e for > 0. But

o0

hence f(x) = 0 for all # > 0. Define g, = Xji/n00)f- Clearly g, > 0, g, is measurable for

each n and g, increases to f, and from the MCT we obtain

0o o0 b
/f = lim [ g, = lim J(w)de = lim 1/n (e‘”a— 1 ebo — 1>dx.

n—oo n—oo 1/n n—o0

c
It just remains to compute the integral [ — 1dx, for ¢ = a,b. To that end, make the
e p—

substituition v = e** — 1, hence du = ¢(u + 1)dx to obtain

c 1 1 1 U
do= [ ———du= [ (-~ —=)du=In|——| 4+ k=mn|1 - e
/e“—lx /u(u—f-l)u / u  u+1 “ nu—|—1+ . ¢

and using the limits of integration, we obtain

0o c e/
dr = —1In(l —e ™).
e 1

+ k,

Therefore

n—oo e—a/n

/f = lim ln - eb/n> =In(b/a),

- 119 -



where in the last equality the L’Hopital Rule was used. Thus, the result is complete.

ExeErRCISE 28. Compute the following limits and justify the calculations.

(a) lim r sin(x/n)

—dx.
n—00 (1—{—1‘/71)” v
0

1

1 2
(b) lim [ " g,
0

o0

(c) lim /de

n—o00 aj(l —+ q:Q)

d) 1
(d) Jm [ o5

this accord with the various convergence theorems?)

Sdx. (The answer depends on whether a > 0, a = 0 or a < 0. How does

sin(x/n)

(1+z/n)"
each n and for each = > 0, f,,(z) = 0 as n — oo. Also, since (1 + z/n)" > 1+ x + 22 /4 for

Solution to (a). Define f,(z) = for each n and = > 0. Hence f,,(0) =0 for

n > 2 and z > 0, we have

1 o 1
@) < —— d . _dr <o
()] 14+ x+22/4 an /0 14z +22/4 =

Hence, by the DCT we have [~ f,(z)dz — 0.

1
Solution to (b). Define f,(z) = ﬂ for each n and x > 0. We have f;(z) = 1 for all

(1+a?)
x>0, f,(0) =1 for all n and

2
1+ nx <1,

< <

and 1 € L'([0,1],m). Since f,(z) — 0 for 0 < z < 1, from the DCT we have fo fu(z)dz — 0.

Solution to (c). Define f,(z) = nsin(z/n) for each n and z > 0. From the first fundamental

z(1+ 2?)
limit, we have f,(z) — 1+ —— for all x > 0. Since
1 < 1 70
n d dr = — < 00,
@S a /0 1+2 T2 5

by the DCT we have [;* f,(z)dx —
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Solution to (d). We can compute this limit directly:

oo

. n .
nh_g)lo i mdaf; —nh_)rgO <arctan(mc)

o0 T .
) ) =5 nh_}rgo arctan(na),

and thus we have

- 0 ifa>0
n
li ——dx = if @ =
nl_}r{)lo Ty T /2 ifa=0
T ifa <O.

Now for the application of the convergence theorems in each case. Let

f(z) = Tim n _{0 ifx#0

nooo 14 n22? | oo ifz=0
Since faoo f(z)dz = 0 for each a € R, we could apply a convergence theorem for a > 0,

but there is no chance of applying a convergence theorem for a < 0.

Hence for a < 0, there can be no L'([a, 00), m) function g such that |f,(x)] < g a.e. in
[a,00). Also, for a < 0 the sequence {f,} is not increasing. We can apply Fatou’s Lemma to

obtain

0< /OO f(z)dz < liminf /OO fu(x)dx,

n—oo

but this has no new information, since {f,} is nonnegative.

1 %
For a > 0, since | f, ()] < = for all z > 0 and [ J5dz < oo, we can apply the DCT.
T

EXERCISE 29. Show that / x"e “dxr = n! by differentiating the equation / e "dy =
0 0

Similarly, show that / e dy = (2n)!y/m/4™n! by differentiating the equation

— 00
[e.e]

e dy = \/7/t.

\w'h—t

—00

Solution. Define f(z,t) = e ™ for > 0 and ¢ € [a,b] with 0 < a < 1 < b. Since f is
continuous, f is measurable. Also [ e "dzr = 1/t < oo for each ¢ € [a,b]. Moreover f is

0
differentiable and 0f /0t = —xze " for all x,¢ > 0 and

‘g—{(x,t)‘ < ze and / rve “dr = 1/a* < oo,
0
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hence from Theorem [3.5.16| applied for F'(¢ fo (z,t)dr = 1/t, we have

1 o0
—=—F'(t)= / re dz.
t2 0

Using induction on this last equation together with Theorem [3.5.16] we obtain

n! ee _
= z"e dx,
thrl 0

and taking t = 1 we obtain the result. Analogously, we obtain the second part.

k

k
EXERCISE 30. Show that lim z" (1 — E) dr = nl.
k—oo 0 k

Solution. Fix n and define f(z) = X (o) x)x”( ) . We have fiy(z) — 2"e™" for

x > 0. Since fr > 0 for all £ and f,, = f = 2" " > 0. Now for 0 < x < k we have

h(:c):k;ln(1—%>+x<0,

since h(0) =0 and A'(x) <0 for 0 < z < k.
Applying the DCT and using Exercise 29 we have

k
lim (1 - = dx— hm/ fr(z da:—/ e *dr = nl.
k—oo Jq k—o0

EXERCISE 31. Derive the following formulas by expanding part of the integrand into an
infinite series and justifying the term-by-term integration. Exercise 29 may be useful (Note:
in (d) and (e), term-by-term integration works, and the resulting series converges only for

a > 1, but the formulas as stated are actually valid for all a > 0).

[e.9]

(a) For a >0, / e~ cos(az) = /me /4,

—00

1
(b) For a > —1,/ 7*(1—2) ' In(z Z
0 k=

(c) Fora>1, /000 7% (e® —1)"'dz = I'(a)((a), where ((a) = i i

n=1 ne
(d) Fora>1, / ez~ sin(x)dr = arctan(a™).
0
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(e) Fora>1, where Jo(x) = Z 2 is the Bessel function

o 1
e “J(x)dr = ——,
/0 o(@) V1+a? n=0

of order zero.

. 00 (_a2)n$2n
Solution to (a). For all x,a € R we have cos(ax) = )

= 2n)

e 2n ,.2n 2n
2a”"x a*"\/m
n| < T —dr = ———,
/'f | \/ooe @n)! T gl

2 (_a2)nx2n

(2n)!

. Also using Exercise

29 we have

and hence Y [|f,| < oo where f,(z) =e . By Theorem |3.5.14] we have

00 2 4
/ e_x2cos \/_Z / ﬁe‘“2/4.

o0

Solution to (b). For 0 < z < 1 we have

x:lil<x> =2%In(z i i “n(z —ix‘”"ln(l/x).
n=0 n=0 n=0

Since the functions (0,1) 5 z — z°""In(1/x) are nonnegative, by Theorem we have

/le“(l—x) 'n(x Z/ 2" In(1/x)dx

Using integration by parts and the fact that a > —1 we obtain

1
(a+n+1)%

1
/ 2T In(1/x)dx =
0

hence
oo

1 oo
“M—g) ' )de =-S5 ——
/Ox( z)" In(z)d Z(a—l—n+ 21 a—l—k
Solution to (c). We write

l,a—l 9= 1 e~ %

%) %)
o _ a—1_—x —nx a—1 fn+1 a—1 7kx
61_1_1_€—x_x ¢ Ze Zl‘ Zx
n=0 k=1

Since f,(z) = 22 te~ ™7 are nonnegative functions for > 0, Theorem m gives us

0o l,a—l 0 0o
/ - 1dx:§ / e kg,
6 J—
0 1 70
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Making the change u = kx we have du = kdx and

- xa—l - 1 OO a—1_-—u
/0 €$—1dngﬁ/o u e du = ((a)'(a).

Solution to (d). We write

e r L sin(z) = Z @n + 0 ,

and for f,(z) = %e “ for x > 0, we have
/Oolf( )ld 1 /OO 2n —az g 1 /OO 2n —u
n\T Xr = ————— r e r = u e u
; @nt 1), 2n 1 Dla2ntt
I'(2n+1) 1

T @2n+ Dl (20 + a2t

and hence Y [|f,] < oo if a > 1. Thus

o0 n

00 n 2n
—ax -1
/0 e r ! sin(x)dr = E / 2n+ 5 a2 — = arctan(a ).

O

—1) 2n
Solution to (e). For f,(x) = %eax for > 0 we have
e < gpn I'(2n+1) (2n)!
n(z)|dr = Yy = =
/0' ’f (I)’ € /0' 4n(nl)26 € 4n(n!>2a2n+1 4n(n!)2a2n+1

and Y [ |f,] is convergent (using the Ratio Test) if a > 1. Therefore

> —a:t o S )|
/0 J o Z 4 a2n+1

n=

To conclude, note that for |z| < 1 we have

1 _i (-1)"1.35...(2n — 1)z i 2n L™
Vitae ~— 2nn/! = ’

(2n)!  (2n)!

since 1.3.5...(2n — 1) = 546 9 = o]
"n!
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! Sl Gl 0 LI e
N \/7 Zm—/ﬂ e olw)de.

3.7| MODES OF CONVERGENCE

If we consider a sequence {f,} of complex functions on a set X, the statement f,, — f
can have several distinct meanings, for instance, uniformly or pointwise. In the case where
X is a measure space, we can speak of a.e.-convergence or L!'-convergence. Clearly uniform
convergence implies pointwise convergence, and the latter implies a.e convergence (the
converses are not true in general). None of these convergences (without further hypotheses)

imply L' convergence, neither vice versa.

| ExamvprLe 3.7.1. Consider in R with the Lebesque measure the following example.
(i) fo=71"X0Om)

(i) fo = X(mn+1);

(iii) Jn = nX[0,1/n];

(iv) fa = X(j/2r,(i+1)/24) forn = 2F 1 for 0 < j < 2k,

In (i), sup|fn(z)| = 1/n — 0 as n — 0, that is, f, — 0 uniformly. In (i), f, — 0
pointwise, quji sup |fn ()| =1 and [ f, =1 for alln. In (i), f.(x) = 0 for all x # 0, but
fa(0 )zn—)ogeﬂiiencefn—)O a.e. but [ f, =1 for all n.

In (w), since [|f.] =27% = 0 with 28 <n < 2" and hence [ |f,| — 0, that is f, — 0

in L. But f,(z) does not converge for any x € [0,1], since f,(x) =0 for infinitely many n
and fn(z) =1 for infinitely many n.

We will see now another mode of convergence, that we be useful.

| DEFINITION 3.7.2. Let {f,} be a sequence of measurable complex-valued functions on
(X, M, ). We say that {f,} is Cauchy in measure if for every e > 0,

p{x € X |fulz) — fu(z)| =2 €}) =0  asn,m — oo,
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and that {f,} converges in measure to f (which has to be measurable) if for every e > 0,
w{x e Xt |fulz) — f(x)| =2 €}) =0  asn — oco.

I ProOPOSITION 3.7.3. If f, = [ in measure, then {f,} is Cauchy in measure.

Proof. Let € > 0 be given. If z € X is such that | f,,(2)— fi(7)] = e then € < | fu(z) — frn(2)| <

(
[ful@) = @) + |f(2) = fm(@)|. T [fulz) — f(2)] < €/2 and [f(z) = fm(2)| < €/2 then
[fo(@) = fm(2)] < e Hencew ¢ {o € X: |fu(z)—f(2)] <e/2}0{z € X: Ifm(x)—f(l“)l <€/2}

and therefore we have

{r e X:|fu(2) = fm(2)[ = €}
Clz e X:|fule) = f(2)] = /2y U{z € X |f(2) = fm(2)] = €/2},

and since the measure of the two sets on the right hand side converge to zero as n,m — oo,

{fn} is Cauchy in measure. [ |
In (i) of the previous example, given € > 0 we have
m({r € R: |fo(x)|=€}) =0 foralln>e?,

hence f,, — 0 in measure.
In (iii) we have

m{z € R: |fo(z)| = €}) =1/n  forn >e,

hence f,, — 0 in measure.

In (iv) we have
m({z € R: |fu(x)] = €}) =27F for 2F <n < 25

hence f,, — 0 in measure.

But in (ii) we have for n # m and 0 < € < 1 then

m({x € R: [ful@) = ful@)] > €}) = 2,

since |f,(z) — fm(x)] =1 for x € (n,n+ 1) U (m,m + 1). Therefore {f,,} is not Cauchy in

measure.

I PROPOSITION 3.7.4. If f, — f in L' then f, — f in measure.
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Proof. Let B, . ={z € X: |f,(z) — f(x)| > €}. Then

JIEE / o 11> ().

thus w(E,) <e ' [|fn— f] = 0 as n — oo, that is, f, — f in measure. [ |

The converse of this result is clearly false, by (i) and (iii) of the previous examples.

| THEOREM 3.7.5. Suppose that {f,} is Cauchy in measure. Then there is a measurable
function f such that f, — f in measure, and there is a subsequence {f,,} that converges to

f a.e. Moreover, if also f, — g in measure, then g = f a.e.
Proof. First we fix j = 1. Since {f,} is Cauchy in measure, we can find n; such that
p{x € X1 |fu(x) — fo,(x)] =271} <271 forn,m > ny. (3.7.1)
Set g1 = fn,. Likewise, we can choose ny > n; such that
p{z € X:|fu(x) — fm(2)| =272}) <272 for n,m = no.

Set go = fn, and B} = {z € X: |g1(z) — g2(z)| = 27'}. Then by we have pu(E;) <
27!, Inductively we can choose n; 1 = n;, g; = fo, and B; = {v € X: |g;j(x)—gj41(x)] =277}
with p(E;) < 279,

Now for each k, set Fy, = (J2, E; then u(Fy) < io: 277 = 217k and for x ¢ F), and

j=k
1 > jJ > k we have

i—1

e Z |9p(2) = gpra ()] < D277 <21, (3.72)
p=j
and thus {g;} is pointwise Cauchy on Ff¢. If F = (\,—, Fy = limsup Ej, then u(F) =
lim p(E;) = 0, and {g,} is pointwise Cauchy on F°. Set f(x) = lim g;(x) for x € F'* and
?f?; =0 for z € F' (by Exercises 3 and 5, f is measurable). Hence g; — f a.e.
Using and making i — oo for each x € F¢, we have |g;(z) — f(z)| < 2" and since
p(Fy) = 0 as k — oo, g — f in measure. Now

{z € Xt [fule) = f(2)] = ¢}
Clr e Xt |fulr) = g;(@)] = ¢/2y U{z € X |g;(2) — [(2)] = €/2},
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and thus f, — f in measure, since the measure of both sets on the right side converge to
7€ero as n, j — 00.

Now assume that f,, — ¢g in measure and fix £ € N. We have

{zeX:|f(z) —g(x) > k"}
C{z e Xt |f(z) = ful@)] 2 k712 U{z € X1 [ ful2) — g(2)| > k7 /2},

for all n, and making n — oo we obtain u({z € X: |f(z) — g(z)| = k~'}) = 0. Thus, since
{r € X: f(z) # g(a)} = MLife € X: [f(2) — g(x)| = K7}, we have p({z € X: f(x) #
g(x)}) =0 and hence f = g a.c. [ |

The fact that f,, — f a.e. alone is not enough to ensure that f, — f in measure, as item
(ii) of the previous example shows. However, this does hold, with even stronger conclusions,

if X has finite measure, as we will show in the next result.

| THEOREM 3.7.6 (Egoroff’s Theorem). Suppose that u(X) < oo and f, — f a.e. (f, and
f are all measurable complez-valued functions). Then for every ¢ > 0 there exists E C X

with w(E) < € and f, — f uniformly on E°.

Proof. Assume first that f,, — f pointwise on X. For k,n € N define

[e.e]

Eu(k) = e € X: f5(@) — ()] = k'),

j=n

If k is fixed, then {E,(k)}, is a decreasing sequence and since f;(z) — f(x) as j — oo for
cach z € X, we have ()2, E,(k) = @. Since u(X) < oo, from the continuity from above, we
have ju(E,(k)) — 0 as n — oco. Given € > 0 and k € N, choose ny, such that u(FE,, (k)) < e27*
and let E = |, En, (k). Then u(E) < e and |f,(z) — f(z)] < k™' for n > ny and z ¢ E.
Thus f, — f uniformly on E°.

Now if f, — f a.e., let F' C X be the set with u(F') = 0 such that f, — f everywhere
on F°. Thus, from the previous result (with F° instead of X), given ¢ > 0 there exists a
set F C F°¢ with u(E) < € and f,, — f uniformly on E¢. Thus taking A = E U F then
w(A) = p(E)+p(F) = u(E) < eand A° = E°NF° = E° hence f,, — f uniformly on A°. W

The convergence in Egoroff’s Theorem is often called almost uniform convergence,

and it implies a.e. convergence and convergence in measure (see Exercise 39).

I ProrosiTioN 3.7.7. f, — f in measure iff Ref,, — Ref and Imf, — Imf in measure.
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Proof. Note that |Ref, — Ref| < |f, — f|, Imf, — Imf| < |fn — f] and |f, — f]*? =
|Ref, — Ref]? + |Imf,, — Imf|?, hence

{r € X: [Refu(r) = Ref(2)| = e} C{r € X [fulz) — f(2)] = €},

{z € X [Imfy,(z) —Imf(2)| > €} C{z € X: [fu(2) — f(2)] > €},

and

{z e X [fulz) = f(2)] > €}
C {z € X: [Ref, — Ref| > ¢/V2} U{z € X: [Imf, — Imf| > ¢/V2},

which concludes the proof. [ |

3.8| SOLVED EXERCISES FROM [, PAGE 63]

EXERCISE 32. Suppose u(X) < oo. If f and g are complex-valued measurable functions

on X, define
1f — 9l
p(f.g z/—du-
() 1+|f =gl

Then p is a metric on the space of complex-valued measurable functions defined on X, if
we identify that function are equal a.e. and f, — f with respect to this metric iff f,, — f in

measure.

Solution. First of all, since u(X) < oo and 0 < lﬁ;ﬂq‘ < 1 for all f, g measurable we

have

lf =gl
J i < ) < o

and p(f, g) is well defined.
We have p(f,g) = 0iff |f — g| = 0 a.e., that is, iff f = g a.e. Clearly p(f,g) > 0 and
p(f,9) = p(g, f) for all measurable f,g.

To show the triangle inequality, consider the real function u(s) = s(1 + s)~! for s > 0.

Then «/(s) = (1+ )72 > 0, and hence u is increasing. Thus, since |f —g| < |f — h|+|h — ¢
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we have

|f =gl lf —hl+]h—g4
T =g —U(If—gl)<U(|f—h|+|h—gl)—1+|f_h|+|h_g|
_ |f = Al |h — g
L+ |f=hl+|h—gl  1+I[f=hl+]h—g]|
|f = h |h — g

S14+|f-h 1+]h—g|

and integration on both sides yields p(f, g) < p(f, g) + p(h,g) for f, g, h measurable.
Now assume that p(f,, f) — 0. We will prove that f, — f in measure. To this end let
e > 0 and consider E,, = {x € X: |f.(xz) — f(x)| = €}. Thus using the increasing property of

the function uw above, for x € E,, we have

|fn_f’ - i . € . €
itz [ e [ur-myz [ w0 [ = ),

thus u(E,) < e '(1+€¢)p(fn, f) — 0 as n — oo. Hence f,, — f in measure.
If f, = f in measure, let ¢ >0, n € Nand £, = {z € X: |f.(x) — f(x)] > €}. Thus

|fn_f| |fn_f| |fn_f|
ny == T 1 o — T s T X Ene X;
)= [ [En,€1+|fn—f|+/E,cl,emfn—fl<“( o) sl )

since 0 < 1J|{|7};flf\ <1lin X, lﬁ’};ﬂ[‘ <

p(fu, [) = 0asn — co.

1+|f€n—f| <ein Ej _and p(E; ) < p(X). Therefore

EXERCISE 33. If f, > 0 is measurable for all n and f, — f in measure then [ f <
liminf [ f,.

Solution. Let {f,, } be a subsequence of {f,} such that [ f,, — liminf [ f, =: a. Since
J fn =0, we have @ > 0. Since f, — f in measure, f,, — f is measure as well. Hence by
Theorem m there exists a subsequence { fnkj} of {f,,} such that fnkj — [ a.e. as j — oo.

Hence, by Fatou’s Lemma
/f < liminf/fnkj = lim/fnkj = lim/fkn =a= liminf/fn.

EXERCISE 34. Suppose |f,| < g € L' and f, — f in measure.
(a) [f=lm [ f,.
(b) fo— fin L',
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Using Proposition [3.7.7], we can assume that f,, and f are all real. Also we note that
since | [ ful < [1fal < [ g < oo, the sequence {[ f,} is bounded and has a convergent
subsequence (which we will call {[ f,,}). From this subsequence, since f,, — f in measure,
there exists a subsequence (which we call { o, }) and a measurable function h, with h = f
a.e., such that fn,— ha.e. But then by the DCT, since |fnkj| — |h| a.e. and |fnkj| < g we

Jint= [ =t [ 15,1

and since { [ |f,|} is bounded, f € L'. Now we can solve the exercise.
Solution to (a).

Now we have g + f,, > 0 and g — f,, = 0 for all n and since f,, — f in measure, we have

have

g+ fn—>9+ fand g — f,, = g — f in measure. Using Exercise 33, we have

/g+/f:/(g+f)<hm1nf/(g+fn):/g+limmf/fn
/g—/f=/(g—f)<liminf/(g—fn)z/g—limsup/fm

and since g € L', we have [ f < liminf [ f < limsup f, < [ f, hence all inequalities are
equalities and [ f =lim [ f,.

Solution to (b). Since for given € > 0 we have

and

{z e X:|[[fulx) = f(@)] = 0] = €} = {w € X: |fulx) = f(z)] = €},

we see that f, — f in measure iff |f,, — f| — 0 in measure. Also |f, — f| < g+ |f| € L,
hence we can apply part (a) to |f,, — f| to conclude that

[15.=11-0

that is, f, — f in L'

EXERCISE 35. f, — f in measure iff for every ¢ > 0 there exists N € N such that
p({x e X: |fulz) — f(x)] = €}) < € for every n > N.

Solution. If f,, — f in measure, the conclusion is straightforward from the definition of
convergence in measure. Now for the converse, assume that given € > 0 there exists N € N
such that p({x € X: |f.(z) — f(z)| = €}) < € for every n > N. Assume also that {f,} does

not converge to f in measure. This implies that exist €y, 79 > 0 and a sequence n; — oo as
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k — oo such that

p{z e Xt |fo,(x) — f(x)] = e}) = no for all k.

Set € = min{eg, 7m0} > 0. We have

{v e Xt |fu (@) = f(@)] = e} D {z € X: [fo,(z) — ()] = e},

and thus

p{r € X [fo, (@) = f(@)] Z €}) 2 u({z € X [fo,(x) — f(2)] = €}) =m0 > €,

for all k, and contradicts the hypothesis.

EXERCISE 36. If u(E,) < oo for n € N and xg, — f in L', then f is (a.e. equal to) the

characteristc function of a measurable set.

Solution. Since g, — f, then there exists a subsequence {£,,} such that XE., — f
a.e. Let £ C X be the measurable set on which xg, (2) = f(z) for # € E, and p(E®) = 0.

But since xg,, (x) =0 or 1 for every x € X, we must have f(z) =0 or f(z) =1 on E.
IfA={z € E: f(z) =1} = En f~1({1}) then A is measurable and f = ya a.e., since
f(z) = xa(x) for all z € E.

Note. The hypothesis u(E,) < oo for all n is only to ensure that xyg, € L' for all n.

EXERCISE 37. Suppose that f, and f are measurable complex functions and ¢: C — C.

(a) If ¢ is continuous and f,, — f a.e., then ¢o f, — ¢ o f a.e.

(b) If ¢ is uniformly continuous and f,, — f uniformly, almost uniformly, or in measure,

then ¢ o f,, — ¢ o f uniformly, almost uniformly, or in measure, respectively.

(c) There are counterexamples when the continuity assumptions on ¢ are note satisfied.

Solution to (a). Let £ C X be the null set such that f,(x) — f(z) for every x € E°.
Then, since ¢ is continuous, ¢(f,(z)) — ¢(f(x)) for each x € E¢, hence ¢ o f, — ¢po f a.e.
Solution to (b). Given ¢ > 0 there exists 6 > 0 such that |¢(z) — ¢p(w)| < € if |z — w| < 4.

Assume that f,, — f uniformly. Then for § > 0 above, there exists N € N such that
|fu(z) — f(x)] < for all z € X. Hence

[6(ful2)) — o(f(2))| <€ forallze X,
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hence ¢ o f, — ¢ o f uniformly.
If f, — f almost uniformly, there exists a measurable set £ with u(F) < € and f, — f
uniformly on E°. From the above, ¢ o f,, — ¢ o f on E° uniformly and hence ¢po f,, = ¢ o f

almost uniformly.

If f, — f in measure, then

{r e X [fulz) — f(0)] <0} C{z € X: |o(ful2)) — o(f(2))] < €},

thus
{r € Xt |fulz) — f(z)| 2 6} D {z € X: [o(fulz)) — 6(f(2))] = €},

and hence

p{r € X [fulx) = f(2)| 2 6}) 2 p({z € X [o(fulz)) — o(f(2))] = €}),

and since the measure on the left side converges to zero as n — oo we have ¢ o f,, — ¢ o f in

measure.

Solution to (c). We can assume, without loss of generality that we have real-valued
functions and ¢: R — R.

For a counterexample of (a), take f,(x) = 1/n for all n € N and f = 0 (thus f, — f
uniformly in R) and ¢(z) = 0 for x # 0 and ¢(0) = 1. Thus ¢o f,, =0 and ¢ o f =1 and
{(¢ o fn)(x)} does not converge to (¢ o f)(z) for any z € R.

Counterexample of (b). Define f,(z) =2+ 1/n and f(z) =z for allz € R and n € N.
Thus f,, — f uniformly (and hence almost uniformly and in measure). Take ¢(z) = 2 (which

is continuous but not uniformly continuous). But

1

{z €R: (90 fu)(x) = (@0 @) > &} = {z €R: |2 + 5| > €} O[5, 00),
for all e > 0 and n € N, hence f, does not converge to f in measure (and hence it does not

converge neither almost uniformly nor uniformly, see Exercise 39).

EXERCISE 38. Suppose f, — f and g, — ¢ in measure.

(a) fo+ gn — f+ g in measure.

(b) fugn — fg in measure if (X)) < oo, but not necessarily if p(X) = oo.
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Solution to (a). Given € > 0, we have

{z € Xt [(fu+9n)(@) = (f + 9)(2)] > €}
CHz e X: [fulx) = f(2)] = €/2} U{z € X [gn(x) — g(x)| > €/2},

and from this it follows that f, + g, — f + ¢ in measure.
Solution to (b). Recall that f,, f, g., g are complex-valued functions. We will prove first
that f2 — f? in measure, and to this end, we will brake the proof into a few claims.
We define for M > 0, the set Ay (h) ={z € X: |h(z)| > M}, for h= f, or h =g.
Claim 1: given nn > 0 we can choose M > 0 such that u(Ap(f)) < n.
We have A,,11(f) C An(f) for all m, and ﬁ A (f) = @. Since u(X) < oo, we have

m=1
from the continuity from above lim wu(An,(f)) = pu( ) An(f)) = 1(@) = 0, hence the claim

m—0o0
holds.

Claim 2: given > 0 and M > 0 as above, we can choose N € N such that u(Ax1(fn)) <
2n for alln > N.

Indeed, since f,, — f in measure, we have u({z € X: |f.(x) — f(z)| = 1}) = 0 as n — oo,
hence there exists N € N such that |f,(z) — f(x)] < 1 on a set B¢, with u(B) < n. Hence
|fu(z)] < 14 |f(z)| on B and

Aprpi(fn) = {z € B [fu()]
C {z e B®: |f(z)|
C Au(f)U B,

> M +1}u{xeB|fn()|>M+1}
> M}U

for all n > N, hence p(Ap1(fn)) < 2n, which proves Claim 2.

Since Api1(f) C Ap(f), we can join these two claims to obtain the following: given

n > 0, we can choose M, N > 0 such that for all n > N we have
(Am(f) <n and p(Ax(fn)) <21,
Given € > 0, since f,, — f in measure choose N; > N such that for n > N; we have
p{z € X [fulz) — fz)| = ¢/2M}) <7

Thus if |f(z)| < M, |fu(x)] < M and |f,.(z) — f(x)| < €¢/2M we have

[fa(@) = (@) = |fal2) = f@)||fal2) + f2)] < 2M|fu(z) = f(2)] <,
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hence
{zeX:|f2(x)— fA2) = e CAu(f)UAu(fo) U{z € X [fu(x) — f(2)] > €},

and thus
p({x € X: |fi(x) = f2(2)] = €}) < 4n,

for n > Ny. Thus f2 — f? in measure.
Since fngn = %[(fn"i'gn)z _fg_gi] and fg = % <f+9)2 _f2_92] , we have f,g, — fg
in measure, using item (a).

Now for the counterexample, see the counterexample of Exercise 37 (c).

Exercise 39. If f, — f almost uniformly, then f, — f in measure.

Solution. Given € > 0, choose a measurable set F with u(F) < € such that f, — f
uniformly on E°. Also, choose N € N such that |f,(z) — f(z)| < e for n > N and all x € E°.
Thus if n > N we have

{r e X:[fulz) - f(2)] > €} CE,

and hence p({z € X: |f.(x) — f(z)| = €}) < e. Thus by Exercise 35, f, — f in measure.

EXERCISE 40. In Egoroff’s theorem, the hypothesis “u(X) < oo” can be replaced by
“|ful < g for all n, where g € L'(u)”.

Solution. From the DCT [|f| < [g and f € L'(x). As in the proof of Egoroff’s

Theorem, we can assume without loss of generality that f, — f pointwise, and we set

Eulk) = | J{o € X: [f5(w) — f@)] = k7).

j=n

If we can prove that u(E;(k)) < oo for all k, then as in the proof of Egoroft’s Theorem, it
will follow that p(E,(k)) — 0 as n — oo and the rest of the proof remains unchanged.
Now, if € (k) then there exists j € N such that |f;(z) — f(z)| > k~!. Hence

n(BR) = [ xeodn = [

E

du<k/ (@) — F(@)ldp
1(k) Eq (k)

<k/(5m@n+vmmmma@/ o < 2 [ ga < o
El k El

(k)
since g € L'(p). Therefore the result follows.
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Exercise 41. If p is o-finite and f,, — f a.e., there exist measurable Fy, Fy,--- C X
such that u(( U Ej> ) = 0 and f, — f uniformly on each F;.
j=1

[e.9]
Solution. Since y is o-finite, we can write X = J A; with p(A4;) < oo and the sequence
j=1

{A;} € M disjoint. Since f,, — f a.e. on X, f, — f a.e. on each A,.
Now we fix j. Given k£ € N, from Egoroftf’s Theorem applied to A;, there exists a
measurable set Fj, C A; with u(A; \ E;x) < k7'277 and f,, — f uniformly on E; .

Hence
u(( G Ej,k>c> < u( G(Aj \ Ej,k:)) = iM(Aj \ Ejg) < % for all j,
j=1 j=1 Jj=1

and thus u(( U U Ej,k>c> = ,u( N ( U EM)C) < 1 for each k.
k=1j=1 k=1 \j=1
Therefore f,, — f uniformly on each £} and u(( ENC) c) = 0. Relabelling the Ej;’s
k=1
we have the result.

EXERCISE 42. Let p be the counting measure on N. Then f,, — f in measure iff f,, — f

uniformly.

Solution. Assume that f, — f in measure. Thus, given € > 0, there exists n € N such
that

p({m € N: [fu(m) — f(m)]| = €}) <1,
since p is the counting measure, then p({m € N: |f,(m) — f(m)| = €}) = 0, which implies
that {m € N: |f,(m) — f(m)| > ¢} = @, and thus |f,(m) — f(m)| < € for all m € N and
n > N, that is, f,, — f uniformly.

The converse is straightforward.

EXERCISE 43. Suppose that u(X) < oo and f: X x [0,1] — C is a function such that
f(-,y) is measurable for each y € [0,1] and f(x,-) is continuous for each = € X.

(a) If0<e¢,0 <1then E.s={z € X:|f(z,y) — f(x,0)] <eforall y<d} is measurable.

(b) For any € > 0, there is a set £ C X such that u(E) < e and f(-,y) — f(-,0) uniformly
on E°asy — 0.
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Solution to (a). Define
Fos={reX:|f(z,y) — f(z,0)] < efor all y < 0 with y € Q},

thus Fis = ({z € X: |f(z,y) — f(2,0)| < €} where the intersection is taken over rational
y < d, and thus, since f(-,y) is measurable for each y € [0, 1], it is a countable union of
measurable sets, which is measurable.

To conclude (a), we will prove that E. 5 = F,s. Clearly E.5 C F.s5. Now if x € F, 5, then

|f(x,y) — f(z,0)] <eforall y<din Q. But f(x,-) is continuous, and by density of Q, it
follows that |f(z,y) — f(x,0)] < e for all y < §. Hence F.5 C E.s.
Solution to (b). Fix ¢, > 0. For each n € N, define A,, = E,, 1, which is measurable by
item (a). We have A,, C A, for all n. Since f(z,y) — f(2,0) as y — 0 for each z € X
we have ﬁ A¢ = @ and from the continuity from above (since p(X) < 0o) we can choose
NeN sgc:ﬁ that p(A%) < e On Ay we have |f(x,y) — f(z,0)] <nfor y < 1/N.

Now we will use this procedure as follows. Fix ¢ > 0 and 5 € N. From the previous
construction, we can choose N; € N and a set Ay, = Eyjj1/n;, with /L(Afvj) < €277 and
|f(z,y) = f(z,0)] <1/j on Ay, for y < 1/Nj.

Take £ = 61 Ajy,. Thus 1(E) < e and given n > 0, choose j such that 1/j < n and for

=

o0
r € E°= () Ay, we have
j=1

|f(z,y) — f(z,0)| < 1/j <nfory < 1/Nj,

which means that f(-,y) — f(-,0) uniformly on E¢ as y — 0.

EXERCISE 44. Lusin’s Theorem. If f: [a,b] — C is Lebesgue measurable and € > 0,
there is a compact set E C [a, b] such that m(E°) < € and f|g is continuous (Use Egoroff’s

Theorem and Theorem |[3.5.15)).

Solution. Take ¢ > 0. For each j € N, set A; = {z € [a,b]: |f(z)| < j}. Thus
[a,b] = fjAj, A; C Ajq for all j and since m([a,b]) = b —a < oo, using the lower
semicont;lllity of m we can choose jy such that m([a,b] \ 4;,) < e.

Define g = x4, f. Using Theorem , for each n there exists a continuous function
gn: [a,b] — C such that fab lgn(x) — g(x)|dz < 1/n.

Thus g, — ¢ in L'([a,b], m) and hence it converges in measure. Thus there exists a

subsequence {g,, } that converges a.e. to g. Now we can use Egoroff’s Theorem to ensure
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that there exists a set F' C [a, b] with pu(F') < € and g,, — ¢ uniformly on [a,b] \ F.
By inner regularity of m, there exists a compact set £ C Aj, \ F such that m(A;, \ F) <
m(FE) + €. Thus

m([a,b] \ E) = m([a,b]) — m(E) < m([a,b]) — m(A;,) +m(F)+e€ < 3e.

Since E C [a,b] \ F, gn, — ¢ uniformly on E, hence g|g is continuous. Also E C A;

Jo s

hence f|g = g|g, so f|g is continuous and concludes the result.

3.9| PRODUCT MEASURES

Let (X, M, u) and (Y, N, v) be measure spaces. We have already constructed the product
o-algebra M ® N, which is generated by the family € = {E x F: E € M and F € N'}.
Now, using p and v, we want to define a measure on M @ N.

First, the elements on £ are called rectangles.
| Levva 3.9.1. The family £ of rectangles is an elementary family.

Proof. Clearly @ = @ x @ is a rectangle, thus @ € £. Now if A x B, C' x D are rectangles,

we have
(AxB)N(CxD)=(ANC)x (BND)eg,
and
(Ax B)= (X x B°)U(A° x B),
which is a finite disjoint union of rectangles. Thus £ is an elementary family. |

Using Proposition [1.4.6] the family A given by finite disjoint union of rectangles is an
algebra (and A also generates M ®@ N).
Assume that A x B is a rectangle given as a (finite or countable) disjoint union of

rectangles A; x B;. Then for z € X and y € Y we have

Xa@)XB(Y) = xaxs(@.y) = Xaxn,(@,9) = > xa,(z)x5, )

Integrating with respect to  and using Theorem [3.3.9, we obtain

(A0 = [ xalexatdnte) = 3 [, (), W)dato) = (4,
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Now integrating with respect to y and again using Theorem |3.3.9 we have

p(Aw(B) =Y u(A;)v(By).

I DeriNIiTION 3.9.2 (Product premeasure). If E € A is the disjoint union of rectangles
{A; x B}, we define

m(E) =Y u(A)v(By),
i=1
with the convention 0 - oo = 0.

Then 7 is well defined by our previous argument, since any two representations of F as a

finite disjoint union of rectangles have a common refinement), and it is a premeasure on A.
| ExercisE 3.9.3. Prove that  is a premeasure on A.

Using Theorem [2.3.5, m generates an outer measure whose restriction to M @ N is a
measure that extends 7. This measure is called the product measure of 4 and v, and it is
denoted by p x v.

If both p and v are o-finite, say X = Ej Ajand YV = Ej By, with pu(A;) < oo and

j k=1

j=1 =
v(By) < oo for all j, k, then X xY = JA; x By and p x v(A; X By) = u(A;)v(By) < oo
gk
for all j, k, so pu x v is also o-finite, and Theorem [2.3.5| ensures us that u x v is the unique

measure on M ®@ N that p x v(A x B) = u(A)v(B) for all rectangles A x B.

I ProrosiTION 3.9.4. If u and v are o-finite, then there exists an increasing sequence of
rectangles {A; x B;} with finite product measure, such that X x'Y =J;(A; x Bj).

Proof. We can write X = (J; A; and Y = {J; B; with {4;} and {B;} increasing sequences
of measurable sets of  and v finite measures on X and Y, respectively. Thus {A; x B;}

is an incrasing sequence of rectangles in X x Y with finite ;1 X v measure and X x Y =

U;(4; x B;). n

The same construction works for any finite number of factors. That is, if (X;, M;, ;) are
measure spaces for ¢ = 1,--- . n, defining a rectangle as sets of the form A; x --- x A,, with
A; € M;, then the collection A of disjoint unions of rectangles is an algebra and the same
procedure used above can be applied to produce a measure iy X - -+ X p, on M; ® --- @ M,
such that

%X (A x Ay = T Ay,
=1
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Moreover, if all y;’s are o-finite, p1 X - -+ X p, is the unique measure on M; ® - -- @ M,
that extends the defined premeasure on A. In this case, the obvious associativity properties
hols, for example, identifying X; x X5 x X3 with (X7 x X5) x X3, we have M; @ My ®@ M3 =
(M7 ® My) ® Ms (the former is generated by sets of the form A; x As x A3 with A; € M;
and the latter by sets of the form B x A; with B € M; x My and A3 € Mj), and
p1 X g X iy = (1 X po) X pg (since they agree on sets of the form A; x Ay x Ajs, and hence
in general by uniqueness).

We will presente the results for n = 2, just for simplicity, but they hold for any finite
number of factors. Hence from now on we will just consider the case of two measure spaces

(X, M, ) and (Y. N, v).
| DeriNniTION 3.9.5. If E C X XY we define:

(i) for each x € X the r-section E, of E as the subset of Y given by

E,={yeY: (z,y) € E},

(ii) for each y € Y the y-section EY of E as the subset of X given by

EY={zr e X: (z,y) € E}.

Also, if f is a function defined in X x Y, we define the r-section f, and y-section fY
of [ by
fo(y) = [(x) = f(z,y).

I EXAMPLE 3.9.6. I[f E C X XY, then (xg): = xg, and (xg)¥ = Xpv. In fact, if v € X
then xg(z,y) =1 iff y € E, and if y € Y then xg(x,y) =1 iff v € EY.

| PROPOSITION 3.9.7.
(a) fE€e MQN then E, € N for allz € X and EY € M for ally €Y.

(b) If f is MQN -measurable, then f, is N'-measurable for allx € X and fY is M-measurable
forallyey.

Proof. (a). Define

R={ECXxY:E,eNforallyeY and EY € M for all z € X}.
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Since <Ej1 E2>w = U2, (Ei), for all z € X and <Ejl Ei>y = U1 (E)Y, we see that
R is closedj:mder countable unions. Also, since for Ej € R we have (E), = (E,)° and
(E€)Y = (EY)°, R is closed under complements.

Also each rectangle A x B is in R, since (A X B), = Bif x € A and (A x B), = & if
x € A% and (Ax B)Y =Aify € Band (A x B)Y — @ if y € B°. Hence R is a o-algebra
that contains all rectangles, and thus M ® N’ C R, and concludes the proof of (a).
(b). We have for any set J

(fo) ') ={yeY: fily)eJy={yeY: flz,y) € J} = (f ' (J))

and (f¥)~1(J) = (f~%(J))¥, hence (b) follows from (a) and from the M ® N-measurability
of f. |

3.9.1 | MONOTONE CLASSES

Before proceeding, we will need some technical lemmas, that will help us further.

| DEFINITION 3.9.8. Let X be a nonempty set. A subset C of P(X) is called a monotone
class if C s closed under countable increasing unions and countable decreasing intersections,
that is, if {E;} C C and Ej C Ejyq for all j then U; Ej € C and if {E;} CC and Ej41 C Ej
for all j then (; E; € C.

Clearly, every o-algebra is a monotone class. Also, it is simple to see that if {C)}aea is

a family of monotone classes in X, then [ C, is also a monotone class. Hence, given any
AEA
subset £ of P(X), there exists a unique smallest monotone class containing &, called the

monotone class generated by £, denoted by C(E).

I LevMMA 3.9.9 (The monotone class lemma). If A is an algebra of subsets of X, then the
monotone class C generated by A coincides with the o-algebra M generated by A.

Proof. Since M is also a monotone class, we have C C M. If we can show that C is a
o-algebra, then M C C and the result is proven.
To show that C is a g-algebra, for each E € C we define

C(Ey={Fe€C: E\F,F\ Eand ENF arein C}.
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Clearly @, F € C(E) and also E € C(F) iff F € C(E). It also follows easily that C(F) is
a monotone class.

If £ € A, then F' € C(E) for all F' € A, since A is an algebra, that is, A C C(E) for all
E € A. Hence C CC(E) for all E € A. Thusif F € Aand F € C, then F' € C(E) and hence
E € C(F). Therefore A C C(F), for all F' € C, which in turn implies that A C C(F’) for all
FecC.

Conclusion: if £, F € C then E\ F, F\ F and ENF are in C. Since X € A CC, C is an
algebra.

Now if {E;} C C, we have CJ E; € C for each n (since C is an algebra), and since C is

j=1

closed under countable increasing unions we have

o Qnee

that is, C is a o-algebra. [ |

3.9.2| THE FUBINI-TONELLI THEOREM

Now we will relate integrals in X x Y with integrals on X and Y.

| THEOREM 3.9.10. Suppose (X, M, u) and (Y,N,v) are o-finite measure spaces. If
E e M®N, then the functions X > x — v(E,) andY >y — pu(EY) are measurable on X

and 'Y, respectively, and

px(B) = [Eaule) = [ u(Eavty).

Proof. First we assume that both p and v are finite measures, and let C be the set of all
E € M ® N for which the conclusions of the theorem are true.
If E = A x B is a rectangle, then since F, = Bif x € A and E, = @ if z € A° we have

v(B) ifzeA
v(b,) = = x)v(B),
(£ { ST =)
and analogously u(EY) = u(A)xs(y). Hence the result holds for all the rectangles.
Now we show that C is a monotone class. To that end, let {E,,} C C be an increasing
sequence and £ = |J, E,. Since E, = |, (E;)s, the functions f,(z) = v((E,),) are
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measurable for all n and they increase pointwise to f(z) = v(E,). Hence f is measurable

and by the MCT together with the continuity from below of u x v we have

/(E dp( _hm/ ) =limp x v(E,) = pu x v(E).

The same reasoning shows that u x v(E) = [ p(EY)dv(y), and E € C.

Now let {E,} C C be a decreasing sequence and E = () E,. Since E, = (), (E,),, the
functions f,(z) = v((E,).) are measurable for all n, decrease pointwise to f(z) = v(E,) and
folz) < v((E1):) < v(Y) < 0o. Hence we can use the DCT together with the continuity
from above of ;1 x v to show that u x v(E) = [v(E,)du(z). Analogously we show that
px v(E)= [ u(EY)dv(y), and hence E € C.

Thus C is a monotone class that contain all rectangles, and by additivity of u, v and pu X v,
it contains the algebra M of all the finite disjoint unions of rectangles. By the Monotone
Class Lemma (Lemma C contains M ® N. This concludes the case when p and v are
finite.

If 4 and v are o-finite, from Proposition we can write X x Y = (J;(A4; x B;) with
{A; x B;} an increasing sequences of rectangles with finite p X v measure. If E € M Q N,

then we can apply the previous argument to £ N (A; x B;) for each j, which gives us

px (BN (A% By)) = [ xa, @l Ba 1 Bduo)

since (BN (A; x Bj)), = B, N B; ifx € Aj and (EN (A; X B))), = @ if v € AS.
The same applies to show that

px (BN (A x By)) = [ (B0 A, ()i ),
and an application of the MCT on both equalities proves the result. |

I THEOREM 3.9.11 (The Fubini-Tonelli Theorem). Suppose that (X, M, u) and (Y,N,v)

are o-finite measure spaces.

(a) (Tonelli) If f € LT(X X Y) then the functions g(x) = [ fudv and h(y) = [ fYdu are in
LH(X) and LT(Y), respectively, and

/fdMXV /[/fxydv )}du /[/fxyd,u )}du() (3.9.1)

(b) (Fubini) If f € L'(u x v) then f, € L'(v) a.e. z € X, f¥ € L'(u) ae. y €Y,
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the a.e.-defined functions g(x) = [ fudv and h(y) = [ fYdu are in L'(p) and L'(v),
respectively, and ( - holds.

Proof. (a). When E € M®AN and f = xg, then g(z) = [ xp,dv = v(E,) and h(y) = u(EY),
and item (a) reduces to Theorem [3.9.10] By add1t1v1ty, item (a) holds for nonnegative simple
functions.

Now if f € LT(X x Y) then consider a sequence {¢,} of nonnegative simple functions
that increases pointwise to f, hence {(¢,).} increases to f, for each € X and {(¢,)?}

increases pointwise to fY for each y € Y. Now define

@) = [y and haty) = [ (00"

for x € X and y € Y, respectively. The MCT implies that

im g (2) = lim [ (60, = [ tim(o)adv = [ v = g(a),

for each x € X. Hence, g is measurable. Analogously, h is measurable.
Using that (a) holds for each (¢,) and the MCT, we have

[ o=t [ (@) =tima [ 0nd(x )= [ it xv),

and analogously [ hdv = [ fd(p x v). This proves (a).

(b). From (a), we have if f € LT(X x Y) and [ fd(u x v) < oo then [ gdp < oo and
hence g < 0o a.e., which in turn, since g = [ f,dv, implies that f, € L'(v) a.e. z € X.
Analogously we show that f¥ € L'(u) a.e. y €Y.

Thus if f € L'(u x v) is a real function, part (b) follows from part (a) applied to fT
and f~. If f € L'(u x v), then (b) follows from (b) for real functions applied to Ref and
Imf. |

We will omit the brackets from now on, that is,

/foydu }du //f:r:ydu Ydpu( //fdudu

In general, the Fubini and Tonelli theorems are used in sequence: one wants to reverse the
order of integration in a double integral [[ fdudv. First we check that [ |f]d(p x v) < oo,
using Tonelli’s part to compute this integral as an iterated double integral, and only then we
apply Fubini’s part to conclude that [[ fdudv = [[ fdvdu
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Also, it is important to point out that the hypothesis of o-finiteness is necessary (see
Exercise 46). Also the hypothesis f € LT(X x Y) or f € L'(u X v) is necessary, in two
respects.

First, we can have f, and fY measurable for all , y and for the iterated integrals [[ fdudv
and [[ fdvdp to exist, even if f is not M @ N-measurable. However, the iterated integrals
can be different (see Exercise 47).

Second, if f is not nonnegative, it is possible for f, and f, to be integrable for all z,y
and for the iterated integrals [[ fdudv and [[ fdvdp to exist, even if [|f|d(u x v) = oo,
but again, in this case, these integrals can be different (see Exercise 48).

Even when p and v are complete, 4 X v is almost never complete. For instance, suppose
that A € M is such that p(A) = 0, that N' # P(Y) and take E € P(Y) \ M. Then using
item (a) of Proposition [3.9.7, we have A x E ¢ M ® N, since (A x E), = E for all z € A,
which is not in /. Bt AXx E C AxY and (uxv)(AxY) = pu(A)v(Y) =0, since u(A) = 0.
Thus we have a nonmeasurable set inside a zero measure measurable set, which means that
i X v is not complete. A concrete example is X =Y = R and y = v = m the Lebesgue
measure.

If one wants to work with complete measure, one can consider the completion of u x v.
In this scenario, the relationship between the measurability of a function on X x Y and
the measurability of its x-sections and y-sections is not so simple. However, when correctly

reformulated, the Fubini-Tonelli Theorem is still valid.

| THEOREM 3.9.12 (The Fubini-Tonelli Theorem for Complete Measures). Let (X, M, p)
and (Y, N ,v) be complete and o-finite measure spaces, and let (X XY, L, \) be the completion
of ( X x Y, MN,uxv).

(a) If f € LY(X x Y, \) then f, is N-measurable for a.e. x and fY is M-measurable for
ae yeY, Xsx— [ fudvandY 5>y~ [ fYdu are measurable and

/ fdx = / / fdudy = / fdvdp. (3.9.2)

(b) If f € LM(X x Y, ) then f, is N-integrable for a.e. x and fY is M-integrable for a.e.
yeY, Xsaw [ fodv andY 3y — [ f¥du are integrable and (3.9.2)) holds.

The proof of this theorem is outlined in Exercise 49.

3.10| SOLVED EXERCISES FROM [, PAGE 68]
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EXERCISE 45. If (X, M;) is a measurable space for j = 1,2, 3 then M; @ My ® M3 =
(M1 ® My) @ Ms. Moreover, if p1; is a o-finite measure on (X, M) then uy X ps X psg =
(1 X p2) X pis.

Solution. Since F; = {E; x Ey: E; € M;, i = 1,2} generates M; ® My, using
Proposition , (M ® Msy) ® Mj is generated by Fy = {A x E3: A€ Fy, B3 € M3},

But F; is naturally identified with &€ = {E; X Ey x E3: E; € M;, i = 1,2,3}, which
generated M; ® My ® Mj3. Hence the equality follows.

We have

pa X pg X piz(Ey X By X E3) = py (B pa(Fa) ps(E3)
= 1 X pp(Ey X Ep)pz(Es) = [(p1 X p2) X ps][(Ey X Ea) X E3]

for all rectangles Fy x Ey X F3. Hence, using the countable additivity of both measures,
p1 X pro X pig(A) = [(1 X pe2) x usl(A) if A is a disjoint finite union of rectangles. Hence, by
uniqueness of the extension given in Theorem m (using the o-additivity of p;, i = 1,2, 3,
we see that py X pg X pg is o-finite), pg X po X pg = (11 X p2) X 3.

EXERCISE 46. Let X =Y =[0,1], M =N = By}, # = Lebesgue measure and v =
counting measure. If D = {(z,z): = € [0,1]} is the diagonal in X x Y, then [[ xpdudv,
J[ xpdvdu and [ xpd(p x v) are unequal. (To compute [ xpd(p x v) = p x v(D), go back
to the definition of u x v).

Solution. First we note that D is measurable. Indeed, given n € N, define [, = [%, %]

n—1

for k=0,--- ,n—1and E, = J (Iyx x I,x). Thus D=, E, E MQN.

k=0
We have

1
/ / Xpdpdy = / / Xp(z,y)dzdv(y),
[0,1] Jo

but for each fixed y € [0,1], we have xp(x,y) =0 if z # y and xp(z,y) =1 if x = y, hence
xp(-,y) = 0 p-a.e., and thus

[ xotuar = [ oarts)=0-(0.1) =000 =0

Now since v({z}) = 1 for each x € [0, 1] we have

1 1
// xpdvdp = / / Xp(z,y)dv(y)dx = / ldx = 1.
o Jjo 0
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Lastly, to compute p x (D), we will use the outer measure. Assume that D C |J (A4, x B;)
j=1

where A;, B; € B for all j. Since D = |J D N (A; x B;), then given x € [0,1] we
1

=
have (z,x) € (A; x B;) for some j, that is, x € A; N B;, and hence |J A; N B; = [0,1].
j=1
Therefore there exists j € N such that u(A; N B;) > 0, thus u(A;) > p(A; N B;j) > 0 and
w(Bj) = w(A; N B;) > 0, and in particular, v(B;) = oo (since if v(B;) < oo implies that
p(B;) =0). Hence p x v(A; x B;) = oo, and thus > u x v(A; x B;) = co. Since this is true
=1

j:
for any cover of D by rectangles, we have p x v(D) = oc.

EXERCISE 47. Let X be an uncountable linearly ordered set such that for each z € X,
the set {y € X: y < x} is countable (Example: the set of countable ordinals). Let M be the
o-algebra of countable or co-countable sets, and let © = v be defined on M by p(A) = 0 if
A is countable or pu(A) =1 if A is co-countable. Let £ = {(z,y) € X x X:y < x}. Then
E, and EY are measurable for all z,y € X and [[ xgdpdy and [[ xpdvdp exist but are not

equal.

Solution. We have for each v € X
E,={yeX:(z,y) e Ey={yeX:y<a},
which is countable (hence in M), and v(E,) = 0. Then

// xedvdp = /V(Ex)du(x) = /Odu:O.

But for each y € X we have BV = {zx € X:y <z} = ({r € X: x <y}U{y})", and hence
EY is co-countable (hence in M), and u(EY) = 1. Thus

[ xwdude = [ uena = [1ar =100 <1

since ¥(X) =1 (X is co-countable).

EXERCISE 48. Let X = N, M = P(N) and p = v = counting measure. Define f(m,n) =1
ifm=n, f(mn)=—-1if m=n+1and f(m,n) =0 otherwise. Then [ |f|d(p x ) = o0,
and [[ fdudv and [[ fdvdp exist and are unequal.

Solution. First we note that p x v is also a counting measure, since u x V(A x B) =

p(A)v(B) on rectangles. Now if we let E = J - ,[(n,n) U (n+ 1,n)], we have |f| = xg, and
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since p x v(E) = oo, we have

/\f\d(#XV)Z/XEd(uXV):uxy(E):oo.

But
//fdudu—//fmndu )dv(n ;Tnzlfmn go_o,

and

//fd”d’“‘/ f(m, n)dv(n)dp(m =ZZf(m,n>=f(1,1>:1.

EXERCISE 49. Prove Theorem [3.9.12] by using Theorem [3.9.11| and Proposition (3.1.24

together with the following lemmas.
(a) f Fe M®N and p x v(E) =0 then v(E,) = u(EY) =0 for a.e. z and y.

(b) If f is L-measurable and f = 0 A-a.e. then f, and f¥ are integrable for a.e. x and y, and
LAV = =0 for a.e. z and y (Here the completeness of p and v are needed).
fzd fud 0 fi dy (H h 1 f d ded

Solution to (a). This follows directly from Theorem [3.9.10]

Solution to (b). Let F' = {(z,y) € X x Y: f(z,y) # 0}. Since f = 0 X-a.e. and A is
complete we have A(F') = 0. But A is the completion of  x v, and by definition, there exists
E € M®N such that F C E and p x v(E) = 0. By item (a), ¥(E,) = v(EY) = 0 a.e. z and
y. Since F, C E, and v is complete, we have F, € N and v(F,) = 0 p-a.e. x. Analogously
FYe M and pu(FY) =0 v-ae. y.

Now {y € Y: f.(y) # 0} = F, and v(F,) = 0 p-a.e. x, it follows that for p-a.e. z, f, =0
v-a.e. By Proposition , since v is complete, f, is measurable, and |f,| = 0 v-a.e., hence
[ 1fsldv = 0. Therefore f, is integrable and [ f,dv = 0. Analogously fV is integrable and
[ fedu = 0.

Proof of Theorem We prove first item (a). To that end, let f € LT(X x Y, \).
Hence by Proposition [3.1.24] there exists a M ® N -measurable function h such that f = h
A-a.e., and we can assume h > 0, after possible redefinition of A in a p x vr-null set.

We define g = f — h. Then g = 0 M-a.e. and by Proposition [3.1.23] ¢ is measurable.
Using part (b), g, and ¢¥ are integrable for a.e. z and y and [ g,dv = [ ¢g¥dp = 0. Thus
fz = gu + h, is N-measurable for a.e. x € X and fY = ¢¥ + h¥Y is M-measurable for a.e.
yey.
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Also z — [ fodv = [(gs+ hy)dv = [ hpdv is M-measurable for a.e.  and y — [ fYdu =
J(g¥+h¥)du = [ h¥du is N-measurable for a.e. y, using the fact that g, and g¥ are integrable
for a.e. z,y, [ g.dv = [ g¥du =0 a.e. z,y and Theorem [3.9.11] Moreover

// fdpdv = //fyduduz //hydudz/: /hd(u X V)

and analogously [ fdvdp = [ hd(p x v).

Now it remains to prove that [ fd\ = [hd(pxv). If E € M®N then ux v(E) = A(E)
and hence [ xpd(p x v) = [ xpdX. By linearity, the result follows for M ® N-measurable
nonnegative simple functions. Using the MCT, the result follows for all M ® N -measurable

nonnegative functions. Since f = h A-a.e. we have

/fd)\:/hd)\:/hd(uxy).

Thus part (a) of Theorem [3.9.12] follows. Part (b) follows as in Theorem [3.9.11

EXERCISE 50. Suppose (X, M, u) is a o-finite measure space and f € LT (X) such that

f < oo everywhere. Let
Gy = {(n,y) € X x [0,00): y < f(2)}.

Then Gy is M@ Bg-measurable and ux m(Gy) = [ fdu. The same is true if the inequality
y < f(z) is replaced by y < f(x) in the definition of Gy. (To show the measurability of
Gy, note that the map (z,y) — f(z) — y is the composition of (z,y) — (f(x),y) and
(z,y) — z —y). This is the definitive statement of the familiar theorem from calculus: “the

integral of a function is the area under its graph”.

Solution. First we show the measurability of Gy. Consider the functions ¢: X x [0, 00) x
R? and ¢: R? — R given by

bl y) = (f(x),y)  and ¢(z,w) = 2 —w,

for all z € X, y € [0,00) and z,w € R. By Proposition [3.1.7} 1) is M & Bg-measurable. Now
if F(z,y) =¢o(x,y) forall z € X and y € [0,0), we have

Gy =F([0,00)) = ¥~ (¢7'([0,00))),
but since ¢ is continuous, ¢~ ([0, 00)) is closed in R?, and hence a borelian set. Since v is
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measurable, Gy € M ® Bg (for the inequality y < f(z), use (0, 00) which is open, instead of
[0,00)).

Now using the Fubini Tonelli’s Theorem, we have

pxm(Gp) = [ xed(ux m) = / [ X p)dm(@da(z)

— [ m(lo.s@Nduta) = [ f@)duta) = [ i

With the inequality y < f(x), just note that m([0, f(x))) = f(z), and the result follow

the same.

EXERCISE 51. Let (X, M, u) and (Y, N,v) be arbitrary measure spaces (not necessarily
o-finite).

(a) If f: X — C is M-measurable, g: Y — N is N-measurable and h(z,y) = f(x)g(y),
then h is M ® N -measurable.

(b) If f € L'(u) and g € L*(v), then h € L'(u x v) and [ hd(p x v) = [[ fdu][[ gdv].

Solution to (a). Define ¢: X x Y — C? by ¢(x,y) = (f(x),g(y)) for all z € X and
y € Y, and also define ¢: C* — C by ¢(z,w) = zw, for all z,w € C. Hence 9 is M @ N-
measurable by Proposition and ¢ is continuous. Hence h = ¢ 0 1) is M ® N-measurable.
Solution to (b). Assume that f = y4 and g = xp for A € M and B € N. Hence
h = x4 X XB = Xaxp and

/hd(ux V) = X v(A x B) = u(A) x v(B) = [/XAdu] /dev _ /fdu /gdy

since i X V(A x B) = pu(A) x v(B) by definition of the product measure.

n
Now assume that f is a simple nonnegative function f = > ¢;x4, and g = xg. We have
i=1

h =" ¢ixa,xp and thus
i=1

/hd(u X V) = icl-,u X v(A; X B) = iciu(Ai)y(B) = [/fdu} [/gdy]

Now assume that both f and g are M and N measurable (respectively) simple nonnegative

functions. Hence g = Y dixp, and we set hy = difxp, for each k = 1,---  m. Using the
k=1
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previous case, for each k =1,--- ,m we have

[ it sy = [ frotn vy = o] [ san][ [xmar) = [ [ 1] [ dixadv],

and summing up for £ =1,--- ,m, we obtain the result for f and ¢ in this case.

Assume that f € LT(X) and g € LT(Y) are real. Then we have sequences {s,} and {r,}
of nonnegative simple M and N-measurable functions that increase pointwise to f and g,
respectively. Consider h, = f,g,, then each h, is in LT (X x Y') by Proposition and
{hy} increases to fg. Therefore the MCT implies that

/ hd(p < v) = Tim [ hyd(p < v) = Tim [ / fndu] [ / gndu / fdu / gdv|.

For f € L'(u) and g € L'(v) real functions, the result follows by applying the previous
case to ftg*, ftg=, f~¢" and f~¢g~. For complex functions, just apply the real L! case to
RefReg, RefImg, Im fReg and Im fImg.

EXERCISE 52. The Fubini-Tonelli Theorem if valid we (X, M, 1) is an arbitrary measure
space and Y is a countable set, N' = P(Y) and v is the counting measure on Y. (Cf.
Theorems (3.3.9 and [3.5.14]).

Solution. By using an enumeration {r,} of Y, we can assume that ¥ = N. We prove

first two lemmas:

Lemma 1. If f is a function defined in N then [ fdv = > f(n).
n=1

Proof. Clearly every function defined in N is A/ = P(N)-measurable. Now if J C N and
f = XJs then

/de:/XJdV:V(J):iXJ(n)

Now, by additivity it holds for nonnegative simple functions. Using the MCT it holds for
nonnegative functions. Applying to f* and f~ we have the result for real L'(v) functions,

and applying it to the real and imaginary parts of f we have the result for L'(v) functions.
U

Lemma 2. For f € LT (X xY) or f € L'(u X v), we have

/fdMXu / fdudv.
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Proof. Let A€ N and J C N. For f = yax; we have

/fd(u xv) = px v(AxJ) = p(Av(]) = u(A)xs(n) = Z/XAxJ(x,n)du(x),

and using Lemma 1, we have [ fd(u x v) = [[ fdudv. Using the same steps of Lemma 2
(additivity, MCT, f* and f~, real and imaginary parts of f), we prove the result. O

Now for any function f defined on X x N, we have

fe(n) = f*"(z) = f(z,n) foralln € N.

Hence if f € LT(X x Y), Theorem [3.3.9 implies that = — [ f.(n)dv(n) = > f.(n) =
n=1

> f™(z) is M-measurable and that

/fa:ndz/ Ydp(x /Zf” )dp(x Z/f” )dp(x /fxndu )dv(n).

The same conclusion holds if f € L*(u x v), using Theorem [3.5.14]

3.11| THE n-DIMENSIONAL LEBESGUE INTEGRAL

The Lebesgue measure m™ on R" is the completion of the product m X - - - X m, n-times,
of the Lebesgue measure m in R, that is, the completions of mx---xm on Bg®- - -QBg = Bgn,
or equivalently, the completion of m x ---xmon L&®---® L. The domain L" of m" is called
the class of Lebesgue measurable sets in R"; and we will sometimes consider m™ on the
smaller domain Bg.». When there is no danger of confusion, we will omit the superscript n of
m", and write m for m™ as in the case n = 1, and write [ f(x)dz for [ fdm.

We begin establishing extensions of the results for Borel measures on the real line for the
Lebesgue measure m in R". If R = H?:l R; is a rectangle in R", that is, each R; € L for
j=1,---,n, we will call the sets R; C R the sides of R.

I THEOREM 3.11.1. Suppose 2 € L™. Then
(a) m(E) =inf{m((U): E C U, U open} =sup{m(K): K C E, K compact}.
(b) E=A1UN; = Ay\ Ny, where Ay is an F, set, Ay is a Gs set and m(Ny) = m(Ny) = 0.
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(c) If m(E) < oo, for any e > 0 there exists a finite collection {R;}_, of disjoint rectangles

whose sides are open intervals such that m(EAJ;_, R;) < e.

Proof. (a). As in Proposition 2.5.9] set pi0,(E) = inf{m(U): E C U, U open}. By mono-
tonicity of m, if E C U then m(E) < m(U), hence m(E) < pq,p(E). If m(E) = oo, then
by monotonicity f,,(E) = co. Now assume that m(E) < co. By the definition of product
measures, for £ € L" and € > 0, there exists a sequence {7} of rectangles in R", with
Ty = Iy Rjr, Rjr € L for each k=1,--- ,pand j € N, and E C |J;Z, T; such that

[e.e]

S ITmw) = > m(T) < m(E) + 3.

=1 k=1

Now fix j € N. Given n > 0, for each &k = 1,--- ,n, using Proposition [2.5.9| applied to
R; € L, there exists an open set U, such that R, C U, and m(U, ) < m(R,;) +n. Set
U; = [1i_, Ujx, which is open in R™ and T; C U;. We have

m(U;) = [ [ m( < JI0n(Rw) +m) = [ m(Rix) + 0+ Z(Rja, -+, Rymym),

k=1 k=1 k=1

where Z(R;1, -+, R;n,n) is a function involving products of m(R;z), k = 1,--- ,n and
powers of 7 up to the power n — 1. Since m(E) < oo and {R,,}7_; is a finite collection
(remember that j is fixed for the moment), have Z(R,;,--- , Rj,,n) bounded, and hence we
can choose n > 0 small so that n- Z(Rj1,- , Rj,,n) < €27771

Hence, for each j € N, we have an open set U; with T; C U; and m(U;) < m(Tj) + €277.
Defining U = U;’;l Uj, we have U open, £ C U and hence

oo B) <mlU) < Y m(Uy) <D m(Ty) + 5 < mlE) + e,
7j=1 7j=1

and since this is true for any € > 0, we obtain p,,(E) < m(E).

The proof that m(F) = sup{m(K): K C E, K compact} is completely analogous to
the proof of Proposition The only change is that, when m(E) = oo, we consider
= ;2 B; where B, —{xeR" j—1< ||z|| < j} for each j € N, and set E; = E N B,

for each 7 € N.

(b). The proof of (b) is analogous to the proof of Theorem [2.5.11}

(c). Suppose m(FE) < co. Using the construction made in (a), given € > 0, there exists
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an open set U = (J;2, Uj, such that U; = [[;;_, Uy, for each j € N, with £ C U and

[ee]

U) < Zm(Uj) = Z Hm(Uj,k) <m(E) +e.

Now fix j € N. Since Uj is open, we have U;, = (J;Z, I]), where {I7,}2, is a disjoint
countable collection of open intervals. Since m(E) < oo, we have m(U;;) < oo for all j € N
and k =1,---,n, and thus

Zm(];k) =m(U;x) < o0.
r=1

Therefore there exists ro = ro(j) € N such that Y°°  m(I},) < (e279)!/", for each
k=1,---,p. Set Vi = U2, I}, and V; = [[;_; Vjx. We have V; C U; and

n

m(U; \ Vi) = [ [ m(Uss \ Vix) = H Z m(lj;,) < e27.

k=1 k=1r=ro+1

Since )77, m(U;) < oo, choose N € N such that » 72 v, m(U;) <e For V = U;YZIVJ»,
we have V.C U, m(V \ E) < m(U \ F) < € and

=

m(E\V)<m(U\V)<m< (U\V> (U U)

j=1 J=N+1
hence m(EAV) < 3e. Now note that since each Vj, j = 1,--- | N, is a rectangle whose

sides are finite unions of disjoint intervals, we can write | J ;=1 Vj as a finite disjoint union of

rectangles whose sides are open intervals, and (c) is proven. |

| THEOREM 3.11.2. If f € L*(m) and € > 0, there is a simple function ¢ = Zjvzl ajXR;,
where each R; is a product of intervals, such that [ |f — ¢| < €, and there is a continuous

function g that vanishes outside a bounded set such that [|f — g| < e.

Proof. Using Proposition we can find a sequence {¢;} of simple measurable functions
such that 0 < [¢1] < [¢p2| < -+ < |f], ¢; — fi pointwise and ¢; — f; uniformly on any set
on which f is bounded.

Since f € L*(m), using the DCT, since |¢; — f| — 0 pointwise and |¢; — f| < 2|f| € L'(m)
for all j, we obtain [ |¢; — f| — 0 as j — oo. Thus given > 0, we can choose j large enough

so that [ |¢; — f] <.
Assume that ¢; = > 7_, cxXp,, where each Ej, € £. As in Theorem [3.5.15 we can assume

- 154 -



that all aj are nonzero and the Ej, are disjoint. Aside from the Ej where ¢; is zero, we have

m(Ey) = / o = lal™! /E 1651 < Jas| ! / £l < 0.

Now we can use part (c) of the previous theorem to find, for each k& = 1,--- ,p, a

finite collection {R;;}:*, of disjoint rectangles whose sides are open intervals, such that
m(E AU, Riy) < g. Setting ¢ = > "7 > % arXr,, we have

/|¢—f|</\¢—¢j|+/|¢j—f\<im<EkAGRM)+n<2n.
k=1 =1

Now, for each rectangle R; ) = H?Zl(az‘,kmbak,j) we choose 0 < 0;; < min{%(bam —
a;x;),n}t and define T ), = H?Zl[ai,k,j + i ks bik; — Oik;]. Hence T; C R;y is a rectangle
with closed intervals as sides. Thus, using Urysohn’s Lemma, we can construct a continuous

function g that vanishes outside | J}_, (U, R;x and coincides with ¢ on | Ji_, U, T; x, hence

Jla=s1< [la=ol+ [lo-r1<c+mm

where C'= 70| Y7 Y70 0igj is a bounded constant. Taking 7 < min{z%7, 5}, the result
follows. [

With theses results, we can prove that the Lebesgue measure m in R” is also translation

mvariant.

I THEOREM 3.11.3. The Lebesgue measure m is translation invariant in R™. More precisely,
for a € R, define 7,: R" — R" by 7,(x) =z + a for all x € R™, and we have:

(a) if E € L™ then 7,(E) € L™ and m(7,(E)) = m(E),

(b) if f: R® — C is Lebesgue measurable, then so if f o 1,. Moreover, if either f > 0 or
f € LY(m) then [(fo1,)dm = [ fdm.

Proof. (a). First note that 7, is invertible, with inverse 7_, for each a € R. Also 7, is
continuous for each a € R, it preserves the class of open sets of R™. Thus, the class of Borel
sets is preserved by 7,. If E =[], E; and a = (ay, - ,a,) then 7,(E) = [, (E; + a;) and
hence m(7,(E)) = [, m(E; + a;) = [[;—, m(E;) = m(E), since the Lebesgue measure in R
is translation invariant. By the uniqueness of the Lebesgue product measure on Borelians,
this formula remains true for all Borel sets. As for the one dimensional case, the set of
Lebesgue null sets is preserved by 7,, and the result follows from Proposition item (b).
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(b). If f is Lebesgue measurable and B is a Borel set in C, then f~'(B) = EU N where
E is e Borel set in R" and N € L" with m(N) = 0. But 7, }(E) = 7_,(F) is also a Borel set
and m(7,Y(N)) = m(7_o(N)) =0,s0 (for,) " (B)=7,"(E)UT, ' (N) e L and for,is
Lebesgue measurable.

The equality [(f o 7,)dm = [ fdm reduces to m(7,(E)) = m(E) when f = xp. By
linearity, it follows for all simple functions, and by the MCT it follows for all nonnegative
measurable functions. Taking the positive and negative parts of real and imaginary parts

when f € L'(m), we conclude the result. |

3.11.1 | THE JORDAN CONTENT MEETS LEBESGUE MEASURE

In this subsection we compare the Lebesgue measure on R with the notion of Jordan

content from calculus of several variables.

| DeFiNITION 3.11.4. A cube Q in R™ is a set of the form Q = [[1_,[as, bi] with —oo <
a; < b; < oo foreachi=1,--- n, withb, —a; =b; —ay for eachi=2,--- n. That is, a

cube is a product of equal length closed intervals.

For each k € Z we set Qy, as the collection of all cubes of the form [T, [m;27%, (m;+1)27%],
where m; € Z for i = 1,--- ,n. So the length of the intervals of a cube in Qj, is 27%, hence
its volume is 27™. Clearly, the Lebesgue measure of such a cube is also 27"%.

We note the following two properties of this collection:

(P1) any two distinct cubes in Qy, have disjoint interiors;

(P2) U{Q: Q € Q4} =R";

(P3) cubes in Q1 are obtained from cubes in Qy by bisecting each side of the cube.
| DeriniTION 3.11.5. If E C R™ we define the:

(a) inner approximation of E by Qy as
AEE) = J{Qe % QC E}.
(b) outer approximation of E by Q. as

AE k) = Qe o: QnE #a}.
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We always have A(E, k) C E C A(E,k), and A(E,k) may be empty, even if F is not
empty. However, if E is not empty, A(E, k) will always be nonempty. Here, we have again that
the volume of A(E, k) is simply p2~"*, where p is the number of cubes of Q; that lie inside

E. Also, this coincides with its Lebesgue measure m(A(FE, k)), that is, m(A(E, k)) = p2~".
The same conclusion holds for A(E, k), but with p being the number of cubes that intersect
E. When FE is unbounded, p = oo, and hence both the volume and the Lebesgue measure of

A(E, k) are co. We also have the following for each k € Z:

A(E k) CAE k+1) and A(E k) D A(E k+1),

since each cube in Q4 is the union of 2" cubes in Q; with disjoint interiors. Hence, we can
define the limits

&(E) = lim m(A(E,k)) and R(E) = lim m(A(E,k)),

k—o0 k—o0

called, respectively, the inner and outer content of E, and if they are equal, their common
value k(FE) is called the Jordan content of E. We note that if E C R" is not bounded,
then ®(E) = oo, so the theory of Jordan content makes sense, and it meaningful, only when

E is bounded.
If £ C R is bounded, define

A(E) = G AE k) and  A(E) = ﬁZ(E, k).

Thus A(E) C E C A(E), both A(E) and A(E) are Borel sets, and using continuity from
below and above of m we have

K(E)=m(A(E)  and  R(E) = m(A(E)).

Therefore, since m(A(E)) < oo (recall that E is bounded), the Jordan content of E exists

iff m(A(E) \ A(F)) = 0. We have then the following result.

I ProrosITION 3.11.6. Let E C R™ be a bounded set. If the Jordan content of E exists
then E € L™ and m(E) = k(F).

Proof. We write E = A(E)U (E \ A(E)). If the Jordan content of E exists, then m(A(E) \
A(E)) =0, and since E\ A(E) C A(E)\ A(E), the completeness of m shows that £\ A(E) €
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L" and m(FE \ A(E)) = 0. Hence, using item (b) of Theorem [3.11.1} F € L£". Lastly

m(E) = m(A(E)) + m(E\ A(E

2
=
+
=)
I
2
=

and the result is complete. |

Now we will establish further relations between the Lebesgue measure and the Jordan

content.

| Levivia 3.11.7. If U € R™ is open, then U = A(U). Moreover, U is a countable union of

cubes with disjoint interiors.

Proof. If x € U, since U is open, there exists 6 > 0 such that {y € R": ||y —z| < §} C U.
Let k € Z be large enough so that 27%,/n < 6. Then if @) is a cube in Q}, that contains x and
y € Q we have ||y — x| < 27%y/n < § (the worst case scenario is when z and y are complete
opposite vertices of the cube @, and their distance is exactly 27%/n). Hence Q C U, which
implies that x € A(U, k) C A(U) ad therefore U C A(U). Since A(U) C U, we have the
equality.

For the second assertion, first write
= JAWU k) =A U (U k)\ AU, k —1)).

Now A(U,0) is a countable (or possibly finite) union of cubes in Qy with disjoint interiors.
Also the closure of A(U, k) \ A(U,k — 1) is a countable (or possibly finite) union of cubes in

Q. with disjoint interiors, and hence the result follows. |
| CoroLLARY 3.11.8. If U C R" is open we have m(U) = x(U).
| CoroLLARY 3.11.9. If K C R" is compact, then m(K) = R(K).

Proof. Since K is compact, K is bounded, and we can find kg € Z and a cube Qg € Q, such
that K C int(Qy). If Q € Q, for k > kg, then either QN K = & or Q C @y \ K, hence

and letting £ — oo we obtain

R(K) + £(Qo \ K) =m(Qo).
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But Qp \ K = (int(Qy) \ K) U 0Qy, with disjoint union, where 0@Q) is the boundary of Q)
which has zero Jordan content, so k(Qp \ K) = k(int(Qp) \ K) = m(int(Qo) \ K) = m(Qy).
Here we used the fact that int(Qg) \ K is open, used the previous corollary and also the fact

the the Lebesgue measure of 0Q) is zero. From this it follows that

R(K) = m(Qo) —m(Qo \ K) = m(K),
and concludes the result. [ |

Now we can see the true relationship between the Lebesgue measure and Jordan content.
The Jordan content is obtained approximating a bounded set F from the inside and outside
by a finite union of cubes with disjoint interiors. The Lebesgue measure, however, is obtained
with a two-step approximation process: first we approximate E from the outside with an
open set, and from the inside with a compact set, then we approximate this open set from the
inside and the compact set from the outside by finite unions of cubes with disjoint interiors.
The Lebesgue measurable sets are precisely those for which these outer-inner and inner-outer

approximations give the same answer in the limit.

3.11.2 | THE CHANGE OF VARIABLES THEOREM

In this subsection we will see what happens to a measurable function f and its integral
when we compose it with a diffeomorphism G. But first, we need to investigate the simpler

case where (G is a invertible linear transformation 7.

| DEFINITION 3.11.10. We consider {e;j}7-, the standard basis of R". If T: R" — R" is a
linear transformation, we consider the square matriz (T;;) = (e; - Tej). The determinant
of this matriz will be denoted by detT. We will denote by GL(n,R) the group of invertible

linear transformations of R".
We recall that det(7T o S) = det T'det S for linear transformations 7',S: R™ — R™.

I DeriNiTION 3.11.11. The following three kinds of linear transformations are called

elementary type transformations:
Type 1. Multiply one coordinate by a nonzero number:
T(xla"' y Ljy e 75671) = (xla"' y Clgy " o 71;71) C#Oa
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Type 2. Add a multiple of one coordinate in another coordinate:
T($17"' y Ly s o 7xn) = (1'1,"' y Lj _I_C'Ik?'” axn) k 7£.]a
Type 3. Interchange two coordinates:

T<:C17"' yLjy sty Ly " ,$n):($1,"' R TR P 7xn)-

We sumarize the main properties of elementary types transformations.
| ProrosiTioN 3.11.12. We have the following:

(a) Any elementary type transformation is invertible, and its inverse has the same type.

(b) If T is of type 1 then det T = ¢, if T is of type 2 then det T = 1, and if T is of type 3
then detT' = —1.

(c) If T € GL(n,R), there exists T1, Ty, -+ ,T,, elementary type transformations such that
T'=Tno0---Ty01Ty,

that is, any invertible transformation is a finite composition of elementary type trans-

formations.

Proof. (a). This is clear from the fact that the inverse of a type 1 elementary transformation

is T(xy, - @, @) = (x1,-+ ¢ xj, -+ ,x,), the inverse of a type 2 transformation is
T(xq,--- 4, ,xy) = (21, -+ ,&j—CTy, - -+, Ty), and the inverse of a type 3 transformation
is itself.

(b). This follows easily by computing the determinant of the matrix (7;;) in each of the
three cases.
(c). This follows from the fact that any invertible matrix can be row reduced to the

identity matrix. [ |

Now we will see how the Lebesgue integral behaves under linear transformations. We

begin with a lemma in R.
I LeviMA 3.11.13. Let f be a Lebesque measurable function in R.

(a) If T\(x) = cx for all x € R, with ¢ # 0, then f o Ty is Lebesque measurable. If f >0 or

f € LY(m) then
/ fla)de = |c] / F(cx)dz.
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(b) If Ty(z) = x4+ a for all x € R, with a € R, then f o Ty is Lebesque measurable. If either

f>=0and f € LY(m) then
/f(a:)da: = /f(x—l—a)d:c

Proof. It E € L and f = xp, then for ¢ # 0 we have f(cx) = yg(cx) = xe—1p(z). Using
Theorem [2.5.13, ¢7'E € £ and

[ t@de= [z = m(B) = (e B) =Ie| [ xerpa)iz =1d| [ flea)

By additivity, the result follows for simple functions. Using the MCT, the result follows
for nonnegative measurable function. Using the positive and negative parts of the real and
imaginary parts, the result follows for L!'(m)-functions, and (a) is proved. The proof of (b) is

completely analogous. |
| THEOREM 3.11.14. Suppose T € GL(n,R).

(a) If f is a Lebesque measurable function on R", the so is foT. If f >0 or f € L'(m),
then

/f(x)dx = |det T /(foT)(a:)da: (3.11.1)

(b) If E€ L", then T(E) € L™ and m(T(E)) = |det T'|m(E).
Proof. First suppose that f is Borel measurable. Then f o T is also Borel measurable, since

T is continuous. If (3.11.1)) holds for linear transformations 7" and S, we have

|detToS|/ o(To09))(x)dx,

and hence (3.11.1)) holds also for 7o .S. Thus, it suffices to prove (3.11.1]) for elementary type

transformations.

If T is a type 3 elementary transformation, then using the Fubini-Tonelli Theorem we

/f(x)dx:\/\.../f(‘xl’...7‘1’:]-’-..’xk’...7'Z'n)dx1...dxj...dxk...dmn

/ /fx17 y L 77x]77xn>dx1dxkd$]dxn
=/foT)( )da:—|detT|/ f o T)(x)ds,

obtain
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since det ' = —1 for an elementary type 3 transformation.

If T is a type 1 transformation, again by using the Fubini-Tonelli Theorem we have

/f(x)dx:/~--/f(a:1,--- e ap)day - day e day,

:/..-/ [/f(a’;l’.-- 7:1?]-7-.. 7xn)dx‘7}dx1.--da’:]_ld‘r]+1..-dxn’

and using Lemma |3.11.13| we obtain

/f(m)da::/---/[\c\/f(a:l,--- L CTjy ,xn)dxj]dxl---dxj_lda:jH---dxn

:|c|/~-/f(x1,--- ccxj, - x)day - drg - da,
— el [(f o T)(wyde = et | [ (f 0 T) (e,

since det T' = ¢ for en elementary type 1 transformation.

Analogously for a type 2 elementary transformation, we use the Fubini-Tonelli Theorem
to integrate first in z; and Lemma [3.11.13| to conclude the result.

Thus, so far, we have proven that if f is Borel measurable and 7' € GL(n,R), then foT
is Borel measurable and (3.11.1]) holds.

To continue, we note that both 7" and T~! are continuous, so if A is a Borel set, then so

is T(A). Applying what we have just proved to f = x7(4) and T we obtain

m(r(4) = [xaon(@)ds = [ e = |dent] [(f o T) (@)t

= |det T /XA(m)dx = |det T|m(A),

since (f oT)(x) = xra)(Tx) = xa(x) for all z € R". Hence if m(A) = 0 then m(T'(A4)) = 0,
and the class of Borel null sets is invariant under T (and hence also under T7!). If E € L"
and m(E) = 0, then there exists a Borel set A such that £ C A and m(A) = 0. Hence
T(E) C T(A) and T(A) is a Borel null set, and since m is complete, T(E) € L™ is a Lebesgue
null set. Writing a Lebesgue measurable set £ = AU N where A is a Borel set and N a
Lebesgue null set (using Theorem item (b)) and we can assume AN N = &, we have
T(E) =T(A)UT(N), where T'(A) is a Borel set and T (N) is a Lebesgue null set, which
implies that T(E) € L™ and

m(T(E)) =m(T(A)) + m(T(N)) =m(T(A)) = |det T|m(A) = |det T|m(E),
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and we conclude (b).

Now if f is Lebesgue measurable, T € GL(n,R) and B is a Borel set in C we have
f~YB) = AU N, where A is a Borel set and m(N) = 0. But T-*(A) is a Borel set and
T~1(N) is a Lebesgue null set, hence

(foT)H(B)=T(fH(B) =T (A UT(N) € L,

and f is Lebesgue measurable.

Now from what we have proved above, holds for characteristic functions of
Lebesgue measurable sets. By linearity it holds for simple functions. Using the MCT it
holds for nonnegative measurable functions and taking positive and negative parts of real

and imaginary parts it holds for L!(m)-functions. [ ]
| COROLLARY 3.11.15. Lebesque measure is invariant under rotations.
Proof. A rotation is a linear maps satysfying T7T* = I, where T™* is the transpose of T'. Since

det T = det T*, we must have | det T'| = 1, and hence if E' € L™ we have m(T'(E)) = m(E). B

Now we will treat the general case of C! diffeomorphisms.

I DEFINITION 3.11.16. Let G = (g1, ,gn) be a map from an open set Q@ C R"™ into R",
whose components g; are C', that is, have continuous first order partial derivatives. We
denote by D, G the linear map defined by the matriz ((0g;/0x;)(x)) of partial derivatives at x,
for each x € Q). Note that if G is linear, then D,G = G for all x € Q. The map G is called a
O diffeomorphism if G is injective and D,G is invertible for all x € Q. In this case, the
inverse function theorem guarantees that G=': G(Q) — Q is also a C' diffeomorphism and

that D,(G™') = [Dg-1(»G] ! for all z € G(Q).

Before stating and proving the Change of Variables Theorem, we set some notation and
prove a lemma. For x € R" and T = (T};) € GL(n,R)) we take

n
|zl = max |z|  and [T = max Y [Tyl
i=1,-,n i=1,--,n £ )

j:

Then we have ||[Tz|| < ||T]|||x]|, and if @« € R™ and h > 0 the set {x € R": ||z — a|| < h}
is the cube centered in a with side length 2h.

| LEMMA 3.11.17. Suppose that ) is an open set in R™ and G: Q — R" is a O diffeomor-
phism. If A C Q is a Borel set we have

m(G(A)) < /A\det D.G|dx.
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Proof. First consider a cube QQ = {x € R": ||z —a| < h} C Q. Givenz € Q, fixj=1,---,n
and consider the function [0,1] 3 ¢ + g;(tx + (1 — t)a) € R, which is a C* function in R.
Hence, by the Mean Value Theorem, there exists ¢y € (0, 1) such that

d
itz + (1~ to)a Z agﬂ tor + (1 — to)a) (z; — a;),

95() — gj(a) =
and therefore

IG() = Gla)| = max |g;(x) — g;(a)] < (SUPHD Gll) max |z; —ai < hsggHDyGH,
=1y Yy

since tox + (1 —tp)a € Q for any ¢y € (0,1). This implies that G(Q) is contained in the cube
Q={y €eR": |ly— G(a)| < hsup,cq |D,G|}, and thus

m(G(Q)) < m(Q) = (2h sup I1D,GI)" = (21615 1D, G)"m(Q)-

If T € GL(n,R), then we can apply this formula for T-! oG instead of G and use Theorem
B.I1.14] to obtain

m(G(Q)) = [det TIm(T~(G(Q))) < | det T\(zlelg 177 D, G)"m(Q), (3.11.2)

since 7' o G is a diffeomorphism and D, (T'G) = T7'D,(G) for all y € Q.

Now fix € > 0. Since Q > y — D,G is continuous (and hence uniformly continuous in @),

we can choose 0y > 0 such that for all 6 € (0,dy) we have

€

D.G - D,G| <
| e e O]

for all y, z € Q with ||z — y|| <,
and since D,G — D,G = D,G(I — (D,G) ' D,G) we obtain
[(D-G) ' D,GI < 1T = (D.G) DG + 1 = [(D.G) DG — DGl +1 < e +1,

for z,y € Q with ||z — y|| < . Now we subdivide @) into N cubes, @1, -, Qy, with disjoint

interiors, whose side lengths are smaller than §, and we name x1,--- ,zy the centers of such
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cubes. Using (3.11.2)) for ); instead of @ and D, ;G instead of T', we obtain

m(G ﬂqﬂc )\imw@»

Jj=1

<D ldet D, Gl( Sup I(D2,G) ™ DyG|")m(Q;)

j=1

(1+e)" Z|detD G|m(Q;).

=z

Now, the last sum of these inequalities is the integral (on ) of the simple function
Os = Zjvzl | det D,;G|xq,\00, (the dependence of § is the dependence on the subdivision
{Q;} of Q), since m(0Q);) =0 for all j =1,--- , N. But from the uniform continuity of the
map @ 3z — D,G, we have ¢s(x) — | det D, G| m-a.e. in Q as 6 — 07, and the Dominated
Convergence Theorem shows us that making 6 — 07 (along a countable subsequence) we

obtain

N
Z | det Dy, G|m(Q;) = / os(x)dr — / | det D,G|dx as 6 — 07,
= Q Q

Hence

mwm«uwémwmm

and making € — 0 we obtain m(G(Q)) < [, |det D,G|dz.
Now if U C () is open, then by Lemma |3.11.7, we can write U = U;; (); where the Q);’s

are cubes with disjoint interiors Thus

m<2mwm<zémmwm,

and since the boundaries 0(); have zero Lebesgue measure (and thus their union also have

zero Lebesgue measure), we obtain
[e.9] [e.9]
> [ laeen.ciie =3 [
j=1 Qi j=1 7 Q;\9Q;

U\UZ, 0Q; v

and therefore m(G(U)) < [;;| det D,G|dz.
Now let E C Q be a Borel set with m(E) < co. Using Theorem [3.11.1]item (a), we can

| det D,G|dz :/ | det D, G|dx
U52.,(Q5\0Q;)
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construct a sequence {U,} of open subsets of (2 with £ C U; and m(U;) < oo for all j, and
m(N,=, U; \ E) = 0 and thus xy, — xr m-a.e. Hence, by the DCT we have

m(@(E) < m(6((10)) = lim m(G(w;)

J—00

J]—00

< hm/ \dethG|dx:/ | det D, G|dx.
U; E

Lastly, if £ C Q is any Borel set, since m is o-finite, we can write £ = U;’il E; with

disjont Borel sets with m(E;) < oo, then

m(G(E)) < im(G(Ej)) < i/E | det DIG|dx:/E|detDmG|dx.

Jj=1

I THEOREM 3.11.18. Suppose that Q is an open set in R™ and G: Q — R" is a C*

diffeomorphism.

(a) If f is a Lebesque measurable function on G(2) then f o G is a Lebesgue measurable
function on Q. If f >0 or f € LY(G(2),m), then

/ J(@)de = / (f o G)(w)| det D, G|dz.
G(9) Q

(b) If ECQ and E € L, then G(E) € L™ and m(G(E)) = [, |det D,G|dx.

Proof. (a). Consider f a simple nonnegative Borel measurable function on G(2), that is,

f= Z;”Zl ajXa,, which A; is a Borel set for each j. Using the previous lemma, we have

fla)de =" am(A;) < Zaj/ | det D,G|dx = /(f o G)(z)| det D,G|dz.
j=1 ]:1 Gil(A]') Q

G(Q)

Thus, if f € LT(G(2)) then we can choose a sequence {s,} of nonnegative simple Borel

measurable functions that increases to f, and

/ sp(x)dr < /(sn o G)(x)|det D,G|dzx,
Q) 0

and since (s, o G)(x)| det D, G| increases to (f o G)(x)| det D,G| pointwise, the MCT implies

- 166 -



that
f(z)dx < /(f o G)(x)|det D,G|dx.

G(Q) Q

Applying this reasoning to € replaced by G(2), G replaced by G™! and f(z) replaced by
(f o G)(x)| det DG, so that

/(foG)(x)|detD$G|dx</ (f 0 Go GY)(x)| det Dg-1(») G| det DG |dw
Q G

)
— [ twys,
G(Q)

which concludes the case for f > 0 Borel measurable. For f real valued integrable Borel
measurable function, we see that (f o G)* = fT oG and (f o G)™ = f~ o G, and the result
follows easily. Using real and imaginary parts, the result is true for complex integrable Borel

measurable functions. The proof for Lebesgue measurable functions is analogous to the proof

of Theorem B.I1T.14
(b). This statement is just item (a) applied to f = xq(m). [

3.12| SOLVED EXERCISES FROM [, PAGE 76]

ExXERCISE 53. Fill in the details of the proof of Theorem [3.11.2]

Solution. It is already done.

EXERCISE 54. How much of Theorem B.11.14] remains valid if 7" is not invertible?

Solution. First we see that applying a finite sequence of elementary type transformations,
we can assume that T(zy,--- ,z,) = (x1, - , 2,0, -+ ,0) for some 0 < k < n (for k = 0,
T =0). Setting A = {z € R": x, = 0} we have A € L" (it is closed) and m(A) = 0.

If E€ L then T(E) € L™ since T(E) C A and m is complete. Moreover

m(T(E)) = 0 = | det T|m(E),

since det T' = 0. Now we note that f o T may not be Lebesgue measurable, even if f is. Let
B C R* not Lebesgue measurable in R¥. We have B x {0} measurable in £" (here 0 € R"~*),

since m is complete. Consider f = xpx{oy. Thus

T {1 =T (B x {0}) = BxR"™"
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which is not measurable in R™ (since at least one of its sections is B, which is not measurable
in R¥).

In fact, even when f o T is Lebesgue measurable, may not be true. Consider
f = Xjo.1», which is in L'(m) N L*(R"), and take 7= 0. Then foT = f(0) = 1 which is
not in L*(m). In this case we have foT € LT(R") but

1:/f(a:)da:#Oz|detT|/foT(:z:)d:c

EXERCISE 55. Let E = [0,1] x [0,1]. Investigate the existence and equality of [, fdm?,
fo fo x,y)dzdy and fo fo x,y)dydz for the following f:

(a) f(z,y) = (2% — y?) (22 +¢) 72
(b) f(z,y) = (1 —xy)~°, with a > 0.

(c) flz,y)=(x—3)2if0< |yl <|z— 1% and f(z,y) = 0 otherwise.

Solution to (a). Firstly, note that f is continuous from F \ {(0,0)} to R, and hence f
is measurable. Now we fix y € (0,1] and we define F': [0,1] — R by F(z) = —x(z* + y*) .

Then using the quotient rule we have

/ a2 2 4 22
F(z) = x(xzj’y2>2"’” = f(z,y),
hence
1 1 1 1 1
+ dr — _ / dr = _ - -
[ #rene= [ s = [ P@ar=F0)-Fw = 5 -

for all y € (0, 1], since f*(z,y) =0 for 0 < x < y. Analogously, for y € (0, 1], we have

/01 [ (@, y)de = /Oy(—f(a:,y))dx =— /Oy F'(z)dz = F(0) — F(y) = —.

Applying Tonelli’s Theorem to f* we obtain

/Ef+dm2=/01/01f+(:v,y)dardy=/ol (5, ~ 152
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From the MCT, we have

t1 1 bl 1
/0 @dy = lim /0 @X[l/n,l)(y)dy = lim —dy = lim §lnn = 00,

n—00 n=0 J1/m 2y n—00

and since ﬁ < 1 for all y € [0,1] we have fol ﬁdy < 1 < oo, which implies that

[ [Tdm?® = co. Again from Tonelli’s Theorem we have

"1
/f_dm2:/ —dy = oo,
E 0 2y

hence [, fdm? is not defined. However

/ 1 / s y)dady = / 1 { / e+ / 1 f(w)dz} dy

1
1
= —/0 T yzdy = arctan(0) — arctan(1) = —%,

and since f(x,y) = —f(y,x) for all z,y € [0, 1] we have

t[AV@w@wzg

Solution to (b). Note that f(z,y) > 0 for all (z,y) € E and since f is continuous,

f € L™ (E,m?) and hence by Tonelli’s Theorem, all three integrals exist and are equal.

Solution to (c). Note that f is measurable and

(z—3)? ifze(l]and0<y<z—3
0 otherwise
(z—3)? ifyel0,fandy+5<z<1

0 otherwise

F(y) = (3—2)* ifzel0,})and0<y<i-—uz
0 otherwise
(3—2)? ifyel0,fand0<z<i—y

0 otherwise

{
{
{
{
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Hence we have

+ 92 Tonelli’s Th. ! ! + 1/2 ! 1\—3
frdm* 7= (2, y)dedy = (x — 3) dady
E 0 y+1/2
o 1/2 12 9
lange of Var. / / 3d,’]jd Fund. Th Calc. _/ (_ . 4> dy
0 y?

12 9 dn + 4
"7 lim —/ (——4>dy— lim —n+

n—oo 2 1/n y n— 00 2n

Similarly we have

1 1 /2 12—y ,q _3
/f_dm2:/ / f‘(x,y)dxdy:/ / <——x> dxdy
E 0o Jo 0 0 2
/2 p1/2
:/ / r3dedy = 0o
0 y

and hence [ 5 fdm? is not defined. We also prove above that fol [z, y)de =
fo (z,y)dz for y € [0, 5] and hence

/01 /Olf(x,y)dxdy — /01/2 [/01 fH(z,y)de — /Olf—(m7y)dx] dy = 0.

Note that for z € [0, 1) we have f*(z,y) = f(z,y) and hence

[ swar= [ = [T (=) = (o )7

and for z € (3,1] we have f~(z,y) = —f(z,y) and thus

[ = [ riema== [ (=) ()

Thus

' ! - 1 — 1/2
1 2 MCT
/ (/ f(x,y)dy) do = / (iU - —> dx = / 7 2dz "= oo,
0 0 1/2 2 0
1 1 - 12 B s
/ (/ f(x,y)dy) dx = / (1 — $> dr = / r2dz "= oo,
0 2 0

and therefore fo fo x,y)dydz is not defined.

and
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ExeErcIse 56. If f is Lebesgue mtegrable on (0,a) and g(z f t=1f(t)dt, then g is
integrable on (0,a) and [ g(x)dz = ;' f(

Solution. Define F': (0,a) x (0,a) — C by

F(t,z) = @XA(IS,JJ), where A = {(t,z) € (0,a) x (0,a): x < t}.

Since f is measurable, % is continuous (hence, measurable) and A is open, F' is measurable.

Using Tonelli’s Theorem we have

/|F|dm2:/Oa/0a|F(t,x)|dmdt:/ / @) A(t, 2)dxdt

a t t
:/ / Mdmt:/ F()|dt < oo,
o Jo 1 0
hence F € L' and hence

) = /xa @dt = Aa @X(w,a)(t)dt = yXA( )dt Aa Fx(t)dt

is integrable (since for each x € (0,a) we have x4(t, %) = X(2,0)(t)) by Fubini’s Theorem, and

also

/Oag(x)dxz/Oa/an(t,x)d:cdt:/Oa/an(t,x)dtdx:/Oa/ot@dxdt:/oaf(t)dt

EXERCISE 57.  Show that [°e™**27'sinwzdx = arctan(s™') for s > 0 by integrating

e *"sin & with respect to « and y. (It may be useful to recall that tan(3 — 6) = (tan§)~!
Cf. Exercise 31d.)

Solution. We have |e **¥sinx| < xze ¥ for all z > 0 and y > 1. Hence f(x,y) =

e *ginx is in L'(m?) on E = (0,00) x [1,00) since

& 1
/ ze dr = 5 forall y > 1,
0 (sy)

and hence by Tonelli” Theorem we have

00 oo 1 1
/ re Wdm? = / / re *dxdy = / Yy = 5 <o
5 1 Jo 1 (sy) °
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We have
oo
/ e Wsinzdy = s e **x 'sinx for all z > 0,
1

and using integration by parts we have

o 1
e einwdr = ——— forall y > 1.
/0 1+ (sy)?

Using Fubini’s Theorem we obtain

s_l/ e P x tsinxdr = / / W sin xdydr = / / ¥ ¢in wdxdy
0

_/1 Wdy— 1[2 arctan(s )]

= s !arctan(s™).

EXERCISE 58. Show that [~ e *"z7!sin® zdx = }log(1 + 4s72) for s > 0 by integrating

e % sin 2xy with respect to x and y.

Solution. Note that |e™**sin2zy| < e ** for all z > 0 and y € [0, 1], hence e*" sin 2zy
is in L'(m?) in E = (0,00) x [0,1]. Also

1
/ e T sin 2zydy = ez 'sin® z,
0
and using integration by parts we have

——— for all y € [0, 1],

—S8T 3 2 d —
/o e " sin 2zxydr = 4

and

1 5244
2y t=s2+44y2 1 / 1 1 _ g2
———d =" - —dt —log(1 4477
/0 52 + 4y? Y 4 /o 4 og(1 + )

and the result follows using Fubini’s Theorem.

EXERCISE 59. Let f(z) =2 'sinz.

(a) Show that [°|f(x)|dx =

(b) Show that limp_, fo x)dx = 3 by integrating e~*¥ sin z with respect to z and y. (In

view of part (a), some care is needed in passing to the limit as b — oo).

Solution to (a). Note that for n € Ny and € [(n + )7, (n + 2)7] we have [sinz| >
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1 1
n+1)w < (n—l—%)ﬂ

oo oo ©© 1
/0 |f (@)|dx 2/ Z [mxumé)w,(mg)w](@ dx
n=0

O o 1
Z/ mx[(n+%)w,(n+%)ﬂ]($)d$

and ( < % Hence we have

where in (x) we used Theorem [3.3.9]

Solution to (b). Now fix b > 0. Since |e *sinz| < 1 for all z,y € (0,b), e
L*(m?) in E = (0,b) x (0,b). We have

—bx o}

b .
sinz e "sinx
/ e Wsinxdy = - for all x € (0,0),
0 x x

and integration by parts result in

b —b —by .-
1 — e~ cos b — ye~ sin b
/ e ™sinxdr = ¢ Cis—i— y2ye MY for all y € (0,b).
0

Using Fubini’s Theorem we have

b b
/smxd _/ e smm // 0 gin wdyda
by COSD — ysind
- dxdy = d —d
// sin vdxdy = /01+2y / ey y

b— b
= arctan(b) — / e Mdy for all b > 0.
0 1+y?

To conclude we will note that

b e=bT gin o
—dx| <
0 T

and

14y

“TYsinx 1s in

(3.12.1)

b . b b —b?
h— b 1 (%) 1—
J R I R T e
0 2 0 1+y° 0 b

where in (&) we used that fact that (0,00) 3 y — 1% is a bounded function (hence the

1+y2
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bound C' does not depend on b). Hence taking the limit in (3.12.1)) we obtain

bsinx

lim dr = lim arctan(b) = i
b—oo Jo X b—o0 2

EXERCISE 60. Show that % = fol t*~ 11 —t)v~1dt for all z,y > 0. (Write I'(z)T'(y)

as a double integral and use the argument of the exponential as a new variable of integration.

See Definition [3.5.24 and Proposition [3.5.27)).

Solution. Using Exercise 51, for f(u,v) = u*te “v¥"le™" (u,v) € E = (0,00) x (0, 00),
we have f € L'(E, m?) and

F(a:)F(y):/ umle“dw/ vyle”dv:/fde.
0 0 E

Set = (0,00) x (0,1) and consider the map G : Q x R? given by G(s,t) = (st, s(1 —t)).
Hence G(2) = E and G is a diffeomorphism. Hence

/ fdm?* = /(f o G)(s,t)|det Dsyy - G|dm?
E Q
1 o)
—/ / (st)* temsts¥ 11 — t)vLe 0D sdsdt =
0o Jo
1 0o
= / / sTHYTLE (1 — 1) te S dsdt
0o Jo
1 00
(;) / tac—1<1 o t)y_ldt . / Sac—l—y—le—sds
0 0
1
=T'(z+ y)/ (1 =),
0

where in (#) we used again Exercise 51, and we conclude the result.

EXERCISE 61. If f is continuous on [0,00), for @ > 0 and = > 0 let

Lf@) = o5 [ @0 o

I..f is called the o' fractional integral of f.
(a) Ioypf = 1a(Isf) for all o, 5 > 0. (Use Exercise 60)

(b) If n € N, I,f is an n'™-order antiderivative of f.
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First we prove that for z > 0, the function [0,z) > ¢t — (x — ¢)*~!, denoted by fo,
is in LY([0,2z),m). Clearly fo € L*([0,z)). Consider f,: [0,z) — R given by f,(t) =
X0z 11(t)(x — t)*~" (for sufficiently large n). Then {f,} C L*([0,z)) increases to fq

pointwise, and using the MCT we have

/[Om)(x — t)a—ldt = lim ) X[O,z_%](t)(ﬂf _ t)a_ldt _

n—o0 [07 )

(E—; xT o 1
= lim (x —t)*tdt = lim u® 'du = lim (x_ — ) =" < o0,

n—oo J n—oo [1 n—oo \ (¥ n*o (0%

and thus fo € L'([0, ), m).
Moreover, using Theorem [3.5.16|item (a), I, f is continuous in [0, o).
Solution to (a). Using Fubini and Change of Variables we have

@ = 55 [ =0 s [ =9 ey
t

— ; e T — B—=1/yp s a—1 $)ds

- F(,B)F(a)/o /0< )"t = 8)* f(s)dsdt

_ ; T T . B—1 — g a—1 $)ds

" T(B)D(w) /0 / (x=1)"(t —s)* dtf(s)d
1 z 1

®»_ L T — g)fta-l W Y f(s)ds — .
Y i @ [ et (s = s f @),

=

using Exercise 60, and in () the change of variable u = (t — s)(x — s)7L.
Solution to (b). For n = 1 this result is just the Fundamental Theorem of Calculus. If the
result holds for n, i.e. L1, f(z) = f(z) then

dmtt " d d"

anﬂf(x) = %%Il(jnfxx) = %[nf(m) = f(z),

and the result is complete.
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CHAPTER 4

SIGNED MEASURES AND
DIFFERENTIATION

In this chapter, given two measures u, v on X, we want to give meaning to the expression

dv
o that is, we want to differentiate v with respect to p.
1L

4.1| SIGNED MEASURES

| DEFINITION 4.1.1. Let (X, M) a measurable space. A signed measure on (X, M) is a

function v: M — [—00, 00] such that
(i) v(@) =0;
(ii) v assumes at most one of the values £00;
(iii) if {E;} is a disjoint sequence in M, then
V( U Ej) = Z v(Ej),
j=1 j=1
where the series above converges absolutely when V(U?il E;) is finite.

It is clear from this definition that every measure is a signed measure. To make the

distinction clear, sometimes we will refer to measures as positive measures.

| ExXAMPLE 4.1.2. 1. Let jy, ps measures in M such that at least one of them is finite.

Then v = 1 — s is a signed measure on M.
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2. We say that a function f: X — [—o00, 0] is extended p-integrable if at least one of
[ frdp and [ f~du is finite. Then the function

v(E) = / fdu,
E
1S a signed measure.

We will see that, indeed, the examples in Example |4.1.2| exhaust all possible signed

measures. That is, every signed measure can be represented by one of the two previous cases.

| PROPOSITION 4.1.3. Let v be a signed measure on (X, M). Then v is continuous from

below and from above.

Proof. Continuity from below: to show this, let {£;} be an increasing sequence in M and
let £ =J;2, ;. If v(Ej,) = £oo for some E;

Jo>

v(Ej) = v(E;) + v(Ejn \ Ej), (4.1.1)

(and recalling that v can only assume one of +00) we have v(E;;1) = oo for all j > jo,
and also since v(E) = v(E;)) + v(E \ Ej,) we have v(E) = too. Hence v(E) = £oo =
lim; o v(E;).

Assume that v(E;) € (—o0,00) for all j € N. From (4.1.1)) we have v(E;; \ E;) =
v(Ej1) — v(E;), and the proof is analogous to the case of positive measures.

Continuity from above: this is analogous to the case of positive measures (see Theorem
9.1.9). m

| DeriNITION 4.1.4. If U is a signed measure on (X, M), a set E € M is called
(a) positive forv isv(F) >0 for all F € M with F C E.

(b) negative for v is v(F) <0 for all F € M with F C E.

(¢c) null forvisv(F) =0 for all F € M with F C E.

For example, when v(E) = [, fdu for some extended j-integrable function f, then E is
positive /negative /null for v precisely when f > 0/f <0/ f =0 p-a.e. on E.

| LEMMA 4.1.5. Any measurable subset of a positive set is positive and the union of any

countable family of positive sets is positive.
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Proof. The first assertion is clear from the definitions of positivity. Now let {FP;} be a
countable family of positive sets. Considering Q); = P; \ Ui; Py, we have (); C P; and hence
(), is positive for v, and also {Q,} is a countable disjoint family in M. Thus if £ € M is
such that £ C U;Z, P; = ;2 @; then E'=JZ, N Q; and therefore

V(E):ZU(EHQ]) 207
j=1
since v(E N Q;) > 0 for all j (recall that @); is positive for v and £ N Q; € M and
EnN Qj C QJ) [ |

I THEOREM 4.1.6 (The Hahn Decomposition Theorem). If v is a signed measure on (X, M),
there exists a positive set P and a negative set N for v such that PUN = X and PNN =@
If P, N is another such pair, then PAP = NAN s null for v.

Proof. We can assume, without loss of generality, that v does not assume that value oo, for

otherwise we can consider —v. Since v(&) = 0, we can define
a =sup{v(E): E is a positive set for v} > 0.

There exists a sequence {F;} of positive sets for v such that lim; , v(P;) = «a. Set
P = Uj‘;l P;, which is positive by the previous lemma, and hence v(P) < a. Also setting
Q; = Uj—, Pr, {Q,} is an increasing sequence of positive sets for v, P; C @; for all j.
Now v(Q;) = v(P;) + v(Q; \ P;) and since Q; \ P; C Q; and @), is positive for v we have
V(Q;\ ;) > 0 and hence 1(@Q;) > v(P),

Now, using the continuity from below we obtain

v(P) = v [] p;) = (@@j) = lim v(Q,) > lim v(P)) = .

and therefore v(P) = a. Since v does not assume the value co, we conclude that o < oco.
Claim: the set N = X \ P is negative for v.

In fact, assume that N is not negative for v. First, note that if £ C N is positive and
v(E) > 0, then EU P is positive and v(E U P) = v(F) + v(P) > «, which is a contradiction.
Hence N cannot contain any nonnull positive set.

Now if A € N and v(A) > 0, since A cannot be positive, there exists C' C A with
v(C) < 0 and thus setting B = A\ C' we have v(B) = v(A) — v(C) > v(A). In conclusion, if
A C N and v(A) > 0, there exists B C A with v(B) > v(A).
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Now, since NN is not negative for v, let n; be the smallest positive integer for which there
exists a set B C N with v(B) > n;' (if no such integer exists, this means that v(B) < 0
for all B C N, and N would be negative for v). Define A; a set such that v(A;) > n;".
Inductively, set n; as the smallest positive integer for which there exists B C A;_; with
v(B) > v(A;_1) + nj_l and name A; such a set.

Define A = (2, A;. Then oo > v(A) = lim; o, v(4;) > Y372 n;" > 0, and hence
n; — oo as j — 0o. Also, since v(A) > 0 there exists B C A such that v(B) > v(A4) + 2n~*
for some integer n. Since B C A;_; for all j, we can find j sufficiently large such that n < n;

and v(A;_1) < v(A)+n!, which leads us to
v(B)>v(A)+n "t +nt > v(4 )+t

and since n < n;, this contradicts the definition of n;. Therefore N must be a negative set
for v.

Finally, assume that P, N is such another pair. Thus P \ P C P, hence P \ P is positive
for v. Also P\ P C N, and hence P\ P is negative for v, which implies that it must be null
for v. Likewise P\ P is null for v. The fact that PAP = NAN is straightforward and the

proof is complete. n

A decomposition X = PU N of X as the disjoint union of a positive and a negative set
for v is called Hahn decomposition of v. It is usually not unique, since v-null sets can be
transferred from P to N or vice-versa, but it leads to a canonical representation of v as the

different of two positive measures, with at least one of them finite.

| DEFINITION 4.1.7. We say that two measures . and v on (X, M) are mutually singular,
or that v is singular with respect to ;. (or vice-versa), if there exists E,; F € M, ENF = &,
EUF = X such that E is null for p and F is null for v. In this case, we denote this relationship

by
wl v

Informally speaking, mutually singularity means that p and v live in disjoint subsets of
X.

I THEOREM 4.1.8 (The Jordan Decomposition Theorem). If v is a signed measure, there

exist unique positive measures vt and v~ on (X, M) such that v =v" — v~ and v L v~.

Proof. Let X = PU N a Hanh decomposition of v. For £ € M, define

vH(E)=v(ENP) and v (E)=-v(ENN).
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Then clearly we have v = v — v~ and v* L v~. Now if v = p* — p= with ™ L u~,
then let E, F' € M be such that X = EUF, ENF = @, F is null for u™ and E is null for
1~ . Then X = FU F is a Hahn decomposition of v, and since F is positive for v and F' is
negative for v we have PAFE and NAF null sets for v. Therefore, if A € M we have

pH(A) = plANE)+u (ENF) = p™(ANE) = v(ANE) = V(Aﬂp)—f-\V(A N(E\ P)Z =vT(A),

—— ~
=0 =0
hence ut = v, and analogously we show that 4~ = v~ and conclude the proof. ]

The measures vt and v~ are called the positive and negative variations of v, and
v =vt — v~ is called the Jordan decomposition of v. Furthermore, we define the total

variation of v as the positive measure |v| defined by
lv|=vt +v.

I ProrosiTioN 4.1.9. We have the following:

(a) E e M isv-null iff |v|(E) =0;

M) vLpifflv| Lpiff vt Lpandv™ L p.

Proof. (a). Assume that £ € M is null for v, that is, v(F) = 0 for all F € M with F C E.
Let X = PUN a Hahn decomposition of v, then

vHE)=v(ENP)=0 andv (E)=-v(ENN)=0,

and thus |v|(E) = vT(E) + v~ (E) = 0. Reciprocally, if |v|(E) = 0, then v (E) = v~ (E) = 0.
If Fe Mand F C E we have v (F)=v~(F)=0and v(F) =v(F) —v (F) =0, thus E
is v-null.

(b). Assume that v L u. Then X = EU F with E,F e M, ENF = @, E p-null and F
v-null. From item (a), |v|(F) = 0 and hence |v| L pu.

Now if |v| L p,let X = EUF with E,F e M, ENF =@, FE is p-null and |v|(F) = 0.
Then v (F) =0 and v~ (F) = 0, which implies that v* L pand v~ L pu.

Lastly, assume that X = F1UF| = EsUF, with Eq, Es, Fy, Fo € M, E1NFy = EsNEy, = &,
Ey, Ey p-oull, vt (Fy) = v (Fy) =0. Set E = E{UEy; and F = X\ E = Fy N Fy. Hence
FE is a p-null set (union of two p-null sets) and if A C F with A € M we have A C F}
and A C Fy, which implies that v"(A) = v~ (A) = 0, thus v(A) = 0 and F is a v-null set.
Therefore v L i, and the proof is complete. [ |
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We observe that if v omits the value oo, then v*(X) = v(P) < oo, so that v is a finite
measure, and v is bounded above by v*(X). Similarly if v omits the value —co. In particular,
if the range of v is contained in R, v is bounded.

For a Hahn decomposition X = P U N of v, we can write
v(E) = / fdp for E € M,
E
where u = |v| and f = xp — xn, since
v(E)=v(ENP)+v(ENN)=vH(ENP)—v (ENN)
=vHENP)+v (ENP)-[v (ENN)+vT(ENN)]
———

N———
=0 =0

= AENP) +ENN) = [ xpdil = [ sl
| DeErFINITION 4.1.10. If v is a signed measure on (X, M), we define
L'(v)=L'(v")nL(v7),
and for f € L'(v) we define the integral of f by

/fdz/:/fdzﬁ—/fdy‘.

Also, we say that a signed measure v is finite (or o-finite) is |v| is finite (or o-finite).

4.2| SOLVED EXERCISES FROM [, PAGE 88]

EXERCISE 1. Prove Proposition [£.1.3]

Solution. Already proven in the text.

EXERCISE 2. Prove Proposition [£.1.9]

Solution. Already proven in the text.

EXERCISE 3. Let v be a signed measure on (X, M).
(a) Li(v) = Li(|v]).
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(b) 1t f € Li(v),

[ fav| < [1fldlv].

(c) If E € M, |v|(E) = sup{| [, fdv|: |f| <1}

Solution to (a). Let £ € M. Then

[ el = wl(B) = v (B) + v () = [ xwdvt + [ .

Thus this result holds for simples functions by additivity of the integral, by the MCT for
nonnegative measurable functions, and hence for functions in L!(|v|) (using the positive
and negative parts for real functions, and then the real and imaginary parts for complex

functions).

Hence if f is a measurable function, we have

st + [1g1a = [ 1s1aol,

which shows that f € L'(|v|) iff f € L'(vT)N LY (v™) = LY (v).

Solution to (b). If f € L'(v) then
<| [ ra

'/fdz/ z‘/fdzﬁ—/fdf
< [1niar+ [1flar = [15idw

Solution to (c). Define a(E) = sup{| [, fdv| : |f| < 1}. If v(E) € (—o0, 00), from item
(b) applied to fxg, we have a(E) < |v|(E). Note now that v(E) € {£oo} iff [V|(F) = oo,
and in this case taking f = 1 we obtain a(E) = oo = |v|(E). Now if X = PU N is a Hanh
decomposition for v, define f = xp — xn. Then |f| < 1 and

/;fdy

and hence |V|(F) < a(E).

+L/fmf

=|[M(ENP)+v(ENN)| = v (E) + v (E)| = v (E) + v (E) = |v|(E),

EXERCISE 4. If v is a signed measure and A, u are positive measures such that v = X\ —
then A > vt and p > v~
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Solution. Let X = PU N be a Hahn decomposition of ». We have

VH(B) = v(ENP) = AMENP) - u(ENP) < AENP) < A\E), and
v (E)=—v(ENN)=puENN)=XANENN)<u(ENN) < puE).

ExXErRCISE 5. If 14,15 are signed measures that both omit the value oo or —oo, then

|1 + 12| < 1| + || (Use Exercise 4).

Solution. Writing
vty =v v =+ ),
=) =p

we have vy + 15 = X\ — p where A, u are positive measures. From Exercise 4 we have
A= (n+r)" and p=(n+w),

hence

1+ 1o = (1 +12) (1 +12)” <A+ =[] + |ral.

EXERCISE 6. Suppose v(E) = || p fdu where 1 is a positive measure and f is an extended
p-integrable function. Describe the Hahn decompositions of v and the positive, negative, and

total variations of v in terms of f and pu.

Solution. Let PT = {z € X: f(z) > 0}, Z ={z € X: f(z) =0} and N~ = {z €
X: f(z) <0}. If Py, Ng € M are subsets of X such that Z = PyU Ny and PyN Ny = &, then
X = PUN is a Hahn decomposition of v, where P = PT U Py and N = N~ U N,. Clearly,
these are all the possible Hahn decompositions of v.

We have also

B = [ frdn v B = [ dpand () = [ 171

for every F € M.

EXERCISE 7. Suppose that v is a signed measure on (X, M) and F € M.
(a) vT(E)=sup{v(F): FeM, FCE}and v (E)=—inf{v(F): Fe M, F C E}.

(b) [v[(E) =sup{} }_, [v(E))|: n €N, Ey,---, E, are disjoint, and |Jj_, E; = E}.
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Solution to (a). Let X = PU N be a Hahn decomposition of v. If F € M and F C E
we have

v(F)=v(FNP)+v(FNN)<v(FNP)=v"(F)<v'(R),

hence sup{v(F): F € M, F C E} < v"(E). On the other hand ENPe M, ENP CE
and ¥(E N P) = v"(E), and thus the equality follows. Analogously we have v~ (FE) =
—inf{v(F): F e M, F C E}.

Solution to (b). We consider the same Hahn decomposition of v. If Fy,--- | E, are

disjoint and (J_, F; we have
v(E))| = [v(E; N P) +v(E;NN)| = [v(E;) — v (E;)| < [v[(E))

and hence
n n

> BN <Y IVI(ES) = vI(E),

j=1 j=1
and thus sup{} 7, [v(Ej)|: n € N, Ey,---, E, are disjoint, and J;_, E; = E} < [v[(E).
For the converse, let £ = 4 U Ey with £y = FENP and Fy = ENN. Then Eq, E> are
disjoint, £ = Fy U Ey and

[V (EV)|+ v (Br)| = [v(ENP)|+v(ENN)| = [v7(E)[+]|—v" (ENN)| = v (E)+v (E) = |[v|(E),

and concludes the proof.

4.3| THE LEBESGUE-RADON-NIKODYM THEOREM

| DeriNITION 4.3.1. Assume that v is a signed measure and p 1S a positive measure in
(X, M). We say that v is absolutely continuous with respect to p, and we write v < p,
if v(E) =0 for all E € M for which u(E) = 0.

| ProPOSITION 4.3.2. v < piff [v] < p iff v+ < pand v < p.

Proof. Consider X = P U N a Hanh decomposition for v. Assume that v < p and £ € M
is such pu(E) =0. Then u(ENP) = pu(ENN) =0 and hence v*(E) =v(ENP) =0 and
v (E)=—-v(ENN)=0. Therefore vt <« p and v~ < p.

If v < pand v~ < p, then given E € M with pu(E) = 0 we have v (E) =v=(E) =0
and thus |v|(F) = v (E) + v~ (F) =0, that is, |v] < p.
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Finally, if |v| < p and E € M is such that u(E) = 0, we have |v|(F) = 0 and thus
vT(E) =v~(E) =0, which in turn implies that v(E) = vT(E) — v (E)=0,and v < . W

Absolute continuity is, in some sense, the antithesis of mutual singularity, that is, we have

the following result.
| ProrosiTioN 4.3.3. Ifv L pand v < i then v = 0.

Proof. Since v L pu, there exists F, F' € M such that X = FUF, ENF = &, F is v-null
and p(F) = 0. But since v < p, we have |v| < p and this implies that |v|(F) = 0, hence
X = FUF is v-null, that is, v = 0. |

The name absolute continuity comes from the next result.

I THEOREM 4.3.4. Let v be a finite signed measure and p a positive measure on (X, M).
Then v < v iff for every e > 0 there exists & > 0 such that |v(E)| < € whenever u(E) < 4.

Proof. Since v < p iff |v| < p and [v(E)| < |[v|(E), it is sufficient to assume that v is a
positive measure. It is clear that the e-0 condition implies that v < u. For the converse,
assume that v < p and assume that the e-0 condition does not hold. Then there exists €y > 0
such that for all n, we can find E,, € M with p(E,) < 27" and v(E,) > €.

Define I, = |J>2, E,. Then {F} is a decreasing sequence and u(Fy) < 2'"% and
v(Fy) = v(Ey) > ¢ for all k € N. Now setting F' = (),—, we have pu(F') = 0 and using the
continuity from above of v (recall that v is finite) we obtain v(F) = limg_,o v(Fr) = €0,

which contradicts the fact that v < p. |

If i is a positive measure and f is an extended p-integrable function, the signed measure
v defined by v(E) = [ » fdu is clearly absolutely continuous with respect to p, and it is finite
iff f e L'(u). We have then the following consequence of the previous theorem.

I COROLLARY 4.3.5. if f € L*(u), for every e > 0, there exists 6 > 0 such that |fE fd,u‘ <€
whenever u(E) < 4.

Proof. Apply Theorem [£.3.4 to Ref and Imf. [ |

We will use the notation
dv = fdu

to express the relationship v(E) = [ 5 Jdp, and sometimes, we will refer to fdu as a signed
measure.

Before proving the main result of this section, we will make a technical lemma.
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I LEMMA 4.3.6. Suppose that v and p are finite positive measures on (X, M). FEitherv L u
or there exists € > 0 such that u(E) > 0 and v > e on E (that is, E is a positive set for

v —€p).

Proof. Given e > 0, choose ny € N such that ny' < e. For each n > ng, v —n~'y is a signed
measure on (X, M). Let X = P,UN,, be a Hahn decomposition for v —n~'y for each n > ny.
Let P =, Pnand N =" N, = P° Then N is a negative set for v —n~"u for all
n = ng, that is, 0 < v(N) < n~'u(N) for all n > ng, and since p is finite, this implies that
v(N)=0. If u(P) =0 then p L v. If p(P) > 0, then pu(P,) > 0 for some n > ngy, and P,
is a positive set for v —n~ly. Thus v —ep > v —n"tpy > 0in E := P,, and the result is

proved. |

I THEOREM 4.3.7 (The Lebesgue-Radon-Nikodym Theorem). Let v be a o-finite signed
measure and p a o-finite positive measure on (X, M). There exist unique o-finite signed
measures A, p on (X, M) such that

Al pu, p<Lp and v=XA+p.

Moreover, there is an extended p-integrable function f: X — R such that dp = fdu and

any two such functions are equal p-a.e.

Proof. We will split the proof in three cases.
Case 1: v and p are finite positive measures.

In this case, define

]—":{fe[ﬁ(X): /fd,uéy(E) for allEGM}.
E

Since v is a positive measure, f =0 € F, and thus F is nonempty. Also if f, g € F then
h=max{f,¢g} € F. Infact if A= {xr € X: f(x) > g(x)} we have

/Ehdu:/EmAfd,u—i-/E\AgdpgI/(EDA)+1/(E\A):V(E).

Let a = sup{ [ fdu: f € F}, since a < v(X) < oo, we can choose a sequence {f,} C F
such that [ f,du — a. Define g, = max{fi,---, f,} and f =sup f,. Then g, € F for each
n € N, g, increases pointwise to f and [ g,dp > [ fodp for each n € N. Thus from the MCT

we obtain
/ fdp = lm / gndpt > lim / fudpi = a.
n—oo n—oo
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But another application of the MCT shows that for all £ € M we have
[ sdn=tim [ gud < v(B)
E n—oo E

and hence f € F, which implies that [ fdu = a. Since a < oo, this implies in particular that
f < oo p-a.e., and we can redefine f, if necessary, so that f is a real-valued function.

Now we claim that the measure d\ = dv — fdu (which is positive since f € F) is singular
with respect to p. If that is not the case, from Lemma [£.3.6] there exist £ € M and
e > 0 such that u(E) > 0 and A > eg on E. But then expdu < d\ = dv — fdu, that is,
(f +exp)du < dv,so f+exg € F and [(f + exg)dp = a+ ep(E) > a, which contradicts
the definition of a.

Thus the existence of A\, f and dp = fdu is proved. Now for the uniqueness, if dv =
d\+ fdu, we have d\—d\ = (f — f)du. But A\—X L p (see Exercise 9), while (f — f)du < dy,
hence d\ — d\ = (f — f)du =0, so that A = Aand f = f p-ae. (by Proposition , and

concludes the case of finite positive measures.

Case 2: Suppose that p and v are o-finite positive measures.

In this case we can write X = [J;2, A; with {A;} C M a disjoint sequence with such
that p(A;),v(A;) < oo for all j € N. Define p;(E) = u(E N Aj) and v;(E) = v(E N Ej) for
all £ € M. Then applying Case 1, we have dv; = d\; + f;du; for all j € N, with A\; L p;.
Since j1;(AS) = v;(AS) = 0 we have \;(AS) = v;(AS) — [, fdp; = 0, and we can assume that
fi=0on AS. Define A =37 \;jand f =377, f;. Then

dv=d\+ fdp and A L p,

(see Exercise 9), and dX and fdu are o-finite, as desired. The uniqueness follows as before.

Case 3: v is a o-finite signed measure.

Apply Case 2 to vt and v~ and subtract the results. The uniqueness follows again as in
Case 1. |

The decomposition v = A+ p where A L p and p < p is called the Lebesgue decompo-
sition of v with respect to u. In the case where v < u, Theorem {4.3.7| says that dv = fdu
for some f. This result is usually known as the Radon-Nikodym theorem, and f is called
the Radon-Nikodym derivative of v with respect to . We denote it by Z_Z:

dv

dv = —dp.
v d,uu
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Strictly speakmg, is the class of functions equal to f. The formulas suggested by the

differential notation are generally correct. For example, it is simple to see that

dii +v) _dn  dv
du Codp o dp

We also have the chain rule:

I ProprosITION 4.3.8. Suppose that v is a o-finite signed measure and p, A\ are o-finite
positive measures on (X, M) such that v < p and p < \.

(a) If g € L*(v), then g(% ) € L(p) and

(b) We have v < X and

dv  dvdu
—=——JA-a.e
d\N  dpdi

Proof. (a). By considering v and v~ separately, we may assume that v > 0. The equation

Jgdv = [ g( 9(3 () dp is true when g = xg, since by definition of we have

/XEdV:l/ / —du

Hence it hold by linearity for simple functions, by the MCT for nonnegative measurable
functions, and by linearity again for L'(v) functions.

(b) Replacing v, p by p, A in (a), and taking g = XE(Z—Z) we obtain

dv du
_/gd“_/gdA /deAd

= d” d“ A-a.e. by Proposition [3.5.7] |

for all E € M, whence ¢ =5

)\

| CoroLLARY 4.3.9. If p < A and A\ < pu then (d—’\)(%’f) =1 a.e. (with respect to either A
or IL).

I ExAMPLE 4.3.10 (Nonexample). Let m the Lebesque measure on R and v the point mass
at zero on (R, Bg), that is, for E € Bg we have

(B) 1 if0cE.
T 0 oeE
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Then v L u, since R ={0} U (R \ {0}), m({0}) =0 and v(R\ {0}) = 0.

The nonexistent Radon-Nikodym derivative Z—Z

is popularly known as the Dirac 6-function.
We conclude this section with a simple, but useful, result.

I PROPOSITION 4.3.11. If py,- -+ , i, are measures on (X, M), there is a measure p such

that p1; < pu for all j, namely, p =377 ;.

Proof. The proof is straightforward. [ |

4.4| SOLVED EXERCISES FROM [, PAGE 92]

EXERCISE 8. v < piff v < piff vt < pand v~ < p.

Solution. This is Proposition 4.3.2]

EXERCISE 9. Suppose {v;} is a sequence of positive measures and p a positive measure. If

vj L for all j then 377 v; L p, and if v; < p for all j then 3272 v; < pu.

Solution. Assume that X = E; U F; with E;, F; e M, E;NF; = &, v;(F;) = 0 and
p(E;) =0 for all j. Set B =J;2, Ej and F' =2, Fj = E°. Then for v = 3772 v; we have
v;j(F) =0 for all j and

() <3 ulE) =0 and  w(F) =3 u(F) =0,
j=1 Jj=1
and E,F e M, ENF =@ and X = EUF, hence v L p.

Now if v; < p for all j and E € M is such p(E) = 0, then v;(E) =0 for all j and hence

v(E) =0, thus v < p.

EXERCISE 10. Theorem mail fail when v is not finite. Consider dv(z) = % and
dp(x) = dx on (0,1), or v the counting measure and u(E) =5 27" on N.

Solution. We know that v < 4 in the first case, since if 4(E) = 0 then v(E) = [, % = 0.
But v((0,0)) = oo and pu((0,d)) = ¢ for all § > 0.

As for the other case, clearly if ©(E) = 0 we must have £ = @ and hence v(E) = 0, thus
v < p. But for E, = {k,k+1,---} we have u(Ey) =2'"% — 0 as k — oo and v(E}) = 00
for all k.

Thus in both cases the conclusion of Theorem [£.3.4] is false.
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EXERCISE 11. Let p be a positive measure. A collection of functions {fu}aea C L' () is
called uniformly integrable if for every e > 0 there exists 6 > 0 such that | [, fodu| < €
for all « € A whenever p(FE) < 0.

(a) Any finite subset of L'() is uniformly integrable.

(b) If {f.} is a sequence in L'(u) that converges to f in L'(u), then {f,} is uniformly

integrable.

Solution to (a). The result is true for a single function by Corollary |4.3.5 Thus for
each €, taking the minimum of the ¢’s for each f in the finite subset we have the result.

Solution to (b). For ¢ > 0, choose ny € N such that
/]fn—f\ <§ for all n > no.
Now for {fi,---, fuo—1} We know from item (a) that exists > 0 such that

/Efndu /Efdu‘ < g

for all E € M with p(E) < 0.

Hence for n > ng we have

/Efnd/ub' <

<e foralll<n<nyg—1 and

[Efdu’+/|fn—f|<e,

and concludes the result.

ExERCISE 12. For j = 1,2 let p;, v; be o-finite positive measures on (X, M) such that

v; < ;. Then vy X vy < py X g and

Solution. Set f; = ;%_ for j =1,2. If A x B is a rectangle in M; ® My we have

V1 X VQ(A X B) = Vl(A)VQ(B) = /Afld,ul/ fgd[,bg
B

= Jifod(py X p2),

AxB
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where the last equality follows from Tonelli’s Theorem. By additivity of the integral, this
results also holds for finite disjoint union of rectangles. By uniqueness of the extension of the

product measure, we have then

v X 1a(E) = /Eflfzd(lh X fi2).

This shows that vy X vy < 1 X o and the uniqueness of the Radon-Nikodym derivative

shows us that
d(Vl X VQ)

d(pn X pg)

dvy dvy

= fife= d_/uduz'

EXERCISE 13. Let X = [0,1], M = Bjy1), m = Lebesgue measure, and p the counting

measure on M.
(a) m < p but dm # fdu for any f.

(b) p has no Lebesgue decomposition with respect to m.

Solution to (a). Clearly if u(E) = 0 we have £ = & and hence m(E) = 0. Assume that
for some f € L*([0,1]) we have dm = fdu. For any = € [0, 1] we have

0=m({e) = [ fdn=fa),
{=}

thus f =0 in [0, 1], which implies that dm = fdu = 0 in [0, 1], which is a contradiction.

Solution to (b). Assume that du = d\ + fdm for some f € L*([0,1]), with A L m.
Then [0,1] = AUB, A,Be M, AN B =@ with m(A) =0 and A(B) = 0.

But given x € [0,1] we have 1 = p({z}) = \({z}) + f{m} fdm = A({z}), hence A = p.
This implies that u(B) = 0 and hence B = @. But this gives A = [0, 1] and the fact that
m(A) = 0 gives us a contradiction.

Hence p has no Lebesgue decomposition with respect to m.

ExXeErRCISE 14. If v is an arbitrary signed measure and p is a o-finite positive measure on
(X, M) such that v < pu, there exists and extended p-integrable function f: X — [—o0, 0]
such that dv = fdu. Hints:

(a) If suffices to assume that p is finite and v is positive.

(b) With these assumptions, there exists £ € M that is o-finite for v such that p(E) > pu(F)

for all sets F' that are o-finite for v.
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(c¢) The Radon-Nikodym theorem applies on E. If FF'N E = & then either v(F) = pu(F) =0
or u(F) >0 and v(F) = oo.

Solution to (a). First note that since v < p then v < p and v~ < pu, hence we can
apply this result for v, v~ and subtract the result. Hence, we can assume that v is positive.

Now since j is o-finite, we can write X = (J;2, A; with {4;} a disjoint sequence in M
and p(A;) < oo for all j. Define v;(E) = v(ENA;j) and p;(E) = p(ENA;) for all E € M
and each j € N. Thus v; < p; and p; is finite for each j, and if f; is such dv; = f;dpy;,
considering f = Z;’;l f;j we have dv = fdpu.

Hence it suffices to assume p finite and v positive.

Solution to (b). Let o = sup{u(F): F is o-finite for v}. Since & is o-finite for v and
v is finite, « is well defined and 0 < o < oo. By definition of «, there exists a sequence {F,}
of o-finite sets for v such that

1
a—— < p(F,) <a.
n

Take E = J,_, F,,. Then E is o-finite for v, since it is a countable union of o-finite sets
for v and p(E) > p(F,) > a— < for all n € N, hence p(E) = «, and concludes the proof.

Solution to (c). Applying the Radon-Nikodym Theorem on F, there exists a extended
p-integrable function g: E' — [0, oo| such that dv = gdp on E.

Now let F' € E°. Then either p(F) = 0, which implies that v(F) = 0 since v < u, or
u(F) > 0. In the latter case, v(F) = oo, since F' cannot be o-finite for v, for otherwise
WEUF)=u(E)+ u(F) = a4+ u(F) > a, which contradicts the construction of E, since
E U F is o-finite for v.

Thus we define f: X — [0,00] by setting f(z) = g(z) for all z € F and f(z) = oo for all
x € k¢ If G € M we have

o if u(GNE°)=0:

v(G)=v(GNE)+v(GNE°)=v(GNE) :/ gdp = fdu
T GNE GNE

L

=0

o if u(GNE°) >0:

V(G)=00=v(GNE)+ V(G_TOEC) = /GQE fdu + /GQEC fdp = /Gfd,u.
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Thus dv = fdp on M and the result is proven.

EXERCISE 15. A measure pu on (X, M) is called decomposable if there is a family
F C M with the following properties:

(i) u(F) < oo for all F' € F;

(ii) the members of F are disjoint and their union is X;
(i) if j(E) < oo then j(E) = X per p(E OV F);

(iv) f EC X and ENF € M for all F € F then E € M.
(a) Every o-finite measure is decomposable.

(b) If p is decomposable and v is any signed measure on (X, M) such that v < p there
exists a measurable f: X — [—00,00] such that v(E) = [, fdu for any E that is
o-finite for p, and |f| < oo on any F' € F that is o-finite for v (Use Exercise 14 if v is

not o-finite).

Solution to (a). Let X = |2, A; where {4;} is a disjoint sequence in M with
p(A;) < oo for all j € N. Then the family F = {A;: j € N} satisfies (i)-(iv).

Solution to (b). Working with v and v, it suffices to assume that v is a positive
measure. Since p is decomposable, let F be a family satisfying (i)-(iv). Defining vp(E) =
v(ENF) and pr(E) = u(E N F), we have vp < pup and pp is finite. Hence we can apply
Exercise 14 to vp and up, and obtain an extended pp-integrable function gr: X — [0, o0]
such that dvp = gpdup. Since pup(G) = 0 for all G € M with G C F°, we can assume
that gr = 0 on F°. If F is o-finite for v, then the function gr can be obtained use the
Radon-Nikodym Theorem, and it ensures us that we can take gr < 0o in F'.

Define f: X — [0,00] by f =3 pcrgr. We have f|p = gp for all F' € F, and hence for
a>0and F e F:

£, 00]) N F = (g7) " ([a, o0]) € M,

and using property (iv) we obtain f~!([a, cc]) € M, which proves that f is measurable. Also
f <ooin any F € F that is o-finite for v.
Let F € M is o-finite for pu. For each F' € F we have

WENF) = ve(B) = [ grdur= [ fin,
E

ENF

since pup = 0 on F°.
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We claim that u(EF N F) = 0 for all FF € F except possibly for a countable amount
of F’s. In fact, since E is o-finite for y, let £ = (JZ, E; with u(E;) < oo and {E;} a
disjoint sequence in M. From (iii), u(E;) = > per #(E; N F) < 00, and hence the collection
= {F € F: u(E;NF) > 0} is countable. Therefore u(ENF) =0 forall F ¢ F := Ui, 7.
Thus v(EN F) =0 for all F ¢ F and hence

v(E) =Y uv(ENF) Z fep

FeF ENE

o
EN( F) EN(

Fu = /E fd.

Upg#F)

=0

Uper

EXERCISE 16. Suppose that u, v are positive o-finite measures on (X, M) with v < pu

d dv
and let A\ = 1+ v. Iffzétheno f<1pae and - I

du 1—f
Solution. We have p < A\, v < X and A < p. Hence all the Radon-Nikodym derivatives

Z’;, g; and d)‘ are defined. Moreover we have

dv B dv d\

—=——=f— d —— =1 pae.
an  dndp f an p j-a.e

Since the measures are o-finite, we can assume that they are finite (decompose X into a
countable disjoint union of x4 and v finite measure sets). Thus, if F' = {x € X: f(x) > 1} is
such that 0 < u(F) < oo we have

A(F) = u(F) + v / fX > u(F) + A(F),

and we obtain a contradiction, hence 0 < f < 1 p-a.e.

Finally note that for £ € M we have

d d\
and thus ﬁ =1 — f, which shows that @ = ﬁ, and hence
v_ I
dp 1—f
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EXERCISE 17. Let (X, M,pu) be a o-finite measure space, N a sub-algebra of M,
and v = ply. If f € L'(u), there exists g € L'(v) (thus g is A-measurable) such that
J fdu = [, gdv for all E € N if g is another such function then g = g v-a.e. (in probability

theory, g is called conditional expectation of f on N).

Solution. Define A on N by d\ = fdv. Since v = |y, we also have d\ = fdu on
N. Since f € L*(u), A is finite. Furthermore, if £ € A is such v(E) = 0 then A\(E) = 0,
that is, A < v. We can thus use the Radon-Nikodym Theorem to obtain a unique (v-a.e.)
N-measurable function g: X — [0, oo] such that

d\ = gdv.
Since A is finite, g € L'(v). Also for E € N we have

/E fdu = \E) = /E gdv.

If g is such a function, then fE gdv = fE fdu = A(E) and hence d\ = gdv, and thus g = g

v-a.e. from the uniqueness of the Radon-Nidodym derivative.

4.5| COMPLEX MEASURES

I DerINITION 4.5.1. A complex measure on a measurable space (X, M) is a map
v: M — C such that:

(a) v(2) =0;

(b) if {E;} C M is a disjoint sequence, then
o0 o
V( U Ej) = v(Ey),
7=1 J=1
where the series converges absolutely.
In particular, a complex measure does not assume infinite values. Hence a positive measure

is a complex measure only if it is finite. A simple example of complex measure is dv = fdu,

where y is a positive measure and f € L'(p).
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Given a complex measure v, we will write v, and v; for the real and imaginary parts of v.
Thus v, and v; are signed measures that do not assume both the values 00. Thus both v,
and v; are finite, and therefore the range of v is a bounded subset of C.

All the notions we have developed so far for signed measures have simple generalizations

to the case of complex measures, namely:
| DeErFINITION 4.5.2. For a complex measure v we define:

(a) L'(v) = L'(v,) N LY(v;) and for f € L*(v) we define

/fdu:/fdyr+z'/fdui.

(b) If u and v are complex measures we say that v 1L p if v, L p., v; L py, vy L p; and

(c) Ifv is a complex measure and \ is a positive measure, we say that v < X if v, < X and

v K .

Also, all the results of the previous sections can be generalized to complex measure, one
only has to apply each one of them to the real and imaginary parts separately. In particular

we have:

I THEOREM 4.5.3 (The Lebesgue-Radon-Nikodym Theorem for Complex Measures). If v
is a complex measure and p is a o-finite positive measure on (X, M), there exist a complex
measure A and an f € L'(pu) such that X L p and dv = dX\ + fdu. If also AL opoand
dv = d\+ fdu, then X=X and f = [ p-a.c.

As before, if v < u, we denote f of the previous theorem as Z—Z.

The total variation of a complex measure v is the positive measure |v| determined by
the property that if dv = fdu, where p is a positive measure, then d|v| = | f|dpu.

First of all, we need to see that this is well defined. First, given a complex measure v,
defining p = |v,| + |v4], we have v < u, and Theorem gives us f € L'(u) such that
dv = fdu. Thus such positive measure u and f € L'(u) always exist.

Now assume that dv = fidu; = fodps. Let p = py + po. Thus py < p and e < p, and
by Proposition we have
dpn

dpy
i i p=dv=f, i P,
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so that f15+ d‘“ =fs déf p-a.e. Since ¥4 and d”l are nonnegative, we have

dp
dul d#l _ dﬂz o dp
| fil— f1 sl = |f2 0
and thus p
[Aldi = | A1 = |f2 dp—lleduz

Hence the definition of |v| is independent of the choice of p and f. Thus definition
also agrees with the previous definition of v when v is a signed measure, since in this case

dv = (xp — xn)d|v| where X = PU N is a Hahn decomposition for v and |xp — xn| = 1.
| ProPOSITION 4.5.4. Let v be a complex measure on (X, M). We have

(a) [v(E)| < |V|(E) for all E € M.

(b) v <« |v| and

dv |
dlvl|

(¢c) L'(v) = L*(Jv]) and if f € L'(v) then

\ [ sav] < [1staot

Proof. Let dv = fdu as in the definition of |v|. Then for F € M we have

W(B)| = Efdu‘ < [ \fldn = )

which proves (a). From (a) it follows directly that v < |v|. Since

dv
dlv| H

and hence f-9% = f |v|-a.e. But either |v| = 0 (which implies that v = 0) or |f| > 0 |v|-a.c.,
|

fdp = dv =~ -djv| =~ fdp,

hence TZ\ =1 |v|-a.e., which proves (b).

The proof of (c) is left as an exercise (see Exercise 18). [ |
| ProPOSITION 4.5.5. If 11, v are complex measures on (X, M), then |11 +vo| < ||+ |va].

Proof. Using item (b) of the previous proposition, we have v; < |v;| and vy < |v»]. Then

for p = |11] + |ve| we have 11 < p and vp < p, and we can write dvy = fidp and dvy = fodp.
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Then d(vy + v5) = (f1 + f2)du and
djy +vo| = |fr + foldp < (LA + [fal )dp = dlw] + d]vy],

and concludes the result. [ ]

4.6| SOLVED EXERCISES FROM [1, PAGE 94]

EXERCISE 18. Prove Proposition [4.5.4] item (c).

Solugao: First, since v < |v|, we have by definition v, < |v| and v; < |v|, and we can
consider dv, = f.d|v| and dv; = fid|v|. Hence dv = fd|v| where f = f, +if;, and |f| =1
|v|-a.e. since d|v| = |f|d|v|.

Using Proposition [£.3.8) we have for g € L'(v) = L'(v,) N L*(v;) that gf, € L*(|v]),
gfi € L*(Jv]), and

Joav= [gav+i [ gan = [ opdii+i [opavi= [ oap ()

Hence |g| = |gf| = |gf; +igfil <lgfel +gfil € L(|v]), thus g € Li(|v]).

For the other inclusion, if g € L'(|v|) then since |f.],|f:| < 1 |v|-a.e. we have g|f.|,g|fi|] €
LY(|v|) and since d|v,| = | f.|d|v], d|v;| = | fi|d|v|, we have g € L'(|v,]) and g € L'(]v;|). From
Exercise 3(a), this implies that g € L*(v,.) N LY (v;) = L'(v).

From (x) we have
' [ aiv|= \ [osawl < [lasiawi = [1glan

since |f| =1 |v|-a.e.

EXERCISE 19. If u, v are complex measures and A is a positive measure, then v L p iff

lv| L |p| and v < N iff [v] < A

Solution. From the definition of v 1 p we have:
(1) v Ly, and X = Ey U Fy, EyNFy =@, Ey p-null and Fy v,-null.
(2) v Lp;and X = Es U Fy, Es N Fy = &, Ey py-null and Fy v,-null.
(3) v; Ly, and X = E3U F3, B3N F3 = &, E3 p-null and F3 v-null.
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(4) v, Lpy;and X = E4,UFy, ExNFy =@, E; p;-null and Fy v;-null.

We write dv, = f,.d|v|, dv; = fid|v|, du, = g,d|u| and dp; = g;d|p|. From (1), (2), (3) and
(4) we have f. =0 |v|-a.e. on F1 U Fy, f; =0 |v|-a.e. on F3U Fy, g, = 0 |p|-a.e. on Ey U Ej3
and ¢g; = 0 |u|-a.e. on Ey U Ey.

Defining f = f. +if; and g = ¢, + ig; we have dv = fd|v| and du = gd|v|, hence
f=0laecon F=(FLUE)N(FsUF), |fl =1|vlae on X\ F, g =0 |ulae. on
E := (FyUEs)N(FB,UE,) and |g| = 1 |u-a.e. on F:= X\ E C F. Hence |v|(F) = 0,
|u|(F) =0, X =FEUF and ENF = &, hence |v| L |y

For the converse, let X = FUF with ENF = &, |v|(F) =0 and |u|(E) = 0. Let also
dv = fd|v| and du = gd|pu|. We have f =0 |v|-a.e on F and |f| =1 |v|]-a.e. on E, and g =0
|p|-a.e. on E and |g] =1 |p|-a.e. on F. If f, = Ref, fi = Imf, g, = Reg and ¢; = Img, then
dv, = fdlv|, dv; = fid|v|, du, = g,d|pu| and dp; = gid|u|. Also E'is pi,, p-null and F' is v,., v;
null, and v, L p, for s,q =r, ¢, thus v L p.

Now if v < X\ we have v, < A and v; < A. Then if p = |v,| + |y, dv, = f.dp and
dv; = fidp, for E € M is such that A(E) = 0 we obtain F v,,v; null and thus f, = f; =0
p-a.e. in K. Thus

VI(E) = / f 4 ifildp =0,

and thus |v| < A. The converse follows from |v(E)| < |v|(E), since if A\(E) = 0 we have
|v|(E) = 0, which implies that |v(E)| = 0, and hence v,.(F) = v;(E) = 0, that is, v, < A and
v; < A, hence v < .

EXERCISE 20. If v is a complex measure on (X, M) and v(X) = |v|(X) then v = |v|.
Solution. For £ € M we have
v(E) +v(E) = v(X) = [V[(X) = [V[(E) + [v|(E),

and thus
V(ES) = [V[(E°) = [v[(E) — v(E).

Since v, (E°) < v, (E°)| < |v(E°)| < |[V|(E€)| we have
Re(v(E) — [|(E¥)) = 1, (E¥) — [v|(E) < 0 and Re(jo|(E) — v(E)) = |VI(E) — v, (E) > 0.

Hence Re(|v|(E) — v(E)) = |V|(E) — v,(E) = 0, which implies that |v|(E) = v,.(E), for
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each F € M, and in particular v,.(F) > 0 for all E € M. Now we have
ve(E)* = W(E)* = [W(E)]* = v (E)* + vi(E)?,
and hence v;(E) = 0 for all E € M. Therefore
VI(E) = vi(E) = vn(E) + wi(E) = v(E),

for all £ € M, that is, |v| = v.

EXERCISE 21. Let v be a complex measure on (X, M). If E € M, define

—SUP{Z\ ):neN, By, - E, disjoint,E:UEj},

Jj=1

—sup{2| . By, By, -+ disjoint, E = UEJ}

j=1
| sav :|f|<1}.
E

Then py = o = pg = |v| (First show that pu; < pe < ps. To see that pg = |v|, let
f = dv/d|v| and apply Proposition m To see that uz <

functions).

ps(E) = sup {

111, approximate f by simple

Solution: Note that if {E;}"_, is a disjoint sequence with £ = {J;_, E;, defining F; = &
for j > n, {E;} is a disjoint sequence, £ = Uj:1 E; and

> ()| = Z v(Ej)| < pe(E),

taking the supremum on the left hand side of this inequality we have p;(F) < p2(E).

Now if {£;} is a disjoint sequence with E' = (J7Z, Ej, define g = 3%, sgn v(Ej)xz;-

Then ¢ is measurable and |g| < 1, moreover

i|y \—ngnl/ Z/Sgnl/ XEdz/_/gdy_
j=1

gdv| < ps(E),

and taking the supremum on the left hand side of this inequality we have po(FE) < us(E).
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Now clearly for |f| < 1 we have

[ sav

and taking the supremum on the left hand side of this inequality we have ps(E) < |v|(E).

< /E Fldiv] < II(E),

Taking f = dv/d|v| we know that |f| =1 |v|-a.e., and we can redefine f in a |v|-null set, if

necessary, so that | f| = 1 everywhere. Thus using Proposition we have

wI(8) = [ awl= [ 1Papl = [ sdapl = [ fa?

where in (x) we used the fact that the left hand side is equal to |v|(E) (first equality of the

/ fdv] < s(E),
E

equation) and hence is it a positive real number.

Now to show that us < py, fix f with |f| <1 and E € M. We know that there exists
a sequence of simple measurable complex functions {s,} such that s, — f uniformly on X
(since f is bounded), and 0 < |s1] < |s2| < --- < | f| (see Proposition [3.1.22)). Hence, given €

there exists ng such that
€
SUup [Sp () — f(2)| < —==,
supls,0(2) = F10)] < 155
and we recall that |v|(X) < oo, since v is a complex measure. We have s,, = > 7| a;x4;,
and s, xg = Z?:l a;Xe;, where B; = A; N E, with {A;}7_, disjoint and X = U?:l Aj,

therefore {F;}_, is disjoint and £ = (J]_, Ej. Also, since [s,,| < [f| < 1, we have |a;| <1

forall j=1,--- ,n. Hence
/ SnodV
E

/E fdv
i a;v(Ej)

j=1

< +

/E(f—sno)dz/

<e+’/snoxEdV =€+

e+ Y (B < et m(E).
j=1

Taking the supremum for | f| < 1 on the left hand side we have u3(E) < € + i (E), and
since this holds for each € > 0, we have u3(E) < p1(F), and we complete the proof.
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CHAPTER 5

L SPACES

The theory of LP spaces comes to generalize the idea of L' functions, are they have

extreme importance in the study of differential equations.

5.1 | BASIC THEORY OF L” SPACES

We will fix now a measure space (X, M, u), where pu is a positive measure. Unless clearly

stated otherwise, we will be speaking of this fixed space.

| DeriNiTiON 5.1.1. Let f: X — C be a measurable function on X and 0 < p < co. We

define /
£l = [ / |f|pdu} |

(where ||f|l, could be o), and also
IP(X, M ) ={f: X — C: f is measurable and || f]|, < co}.

We will abbreviate LP(X, M, u) by LP(p) (when X and M are understood) or LP(X)
(when M and p are understood), or simply by LP (when (X, M, u) is understood). As well
as for L', we will see LP as a space of classes of functions that are equal p-almost everywhere,
and we will use the notation f € LP to mean that f is equal p-a.e. to a function in LP.

If A is a nonempty set, we define ?(A) to be LP(A,P(A), 1), where u is the counting
measure. We will denote ¢7(N) simply by 7.

It is clear that LP is a complex vector space (or real, if we consider only real-valued
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functions), since for f, g € L? we have

[f +9l” < max{[f],[g]})" < 2°(If" + [9]),

so that f+ g € L*.
We clearly have || f||, = 0 iff f =0 p-a.e. and |[cf]|, = ||| f|l,- Hence, to verify that || - ||,
is in fact a norm in L?, it remains to show the triangle inequality.

Before proving the triangle inequality, we will see that it fails for 0 < p < 1.

I EXAMPLE 5.1.2. Suppose a,b >0 and 0 < p < 1. Fort > 0 we have t!"* > (a + t)P~!

and integrating both sides with respect to t, from 0 to b we have
a? + b > (a+b)P. (5.1.1)

Thus if E,F are disjoint sets of positive finite measure on X, setting a = u(E)Y?,
b= u(F)?, f = xg and g = xr we have |f +gP = f + g and

1f +gll, = U |/ +glp] " [/(f + g)] e (u(B) + p(F))"»

=@ +")">a+b=|fll,+ g,

Now we want to prove that the triangle inequality is in fact true for p > 1. To do that,
we first need to prove the most important inequality for L? spaces, the Holder inequality.

We will prove this inequality after proving the following simple lemma.

| Levvia 5.1.3. Ifa,b >0 and 0 < A < 1 then
a*b' ™ < da+ (1 — \)b,

with equality iff a = b.

Proof. The result is trivial for b = 0. For b > 0, diving both sides by b we have

(&) <xgra-n

and setting ¢ = a/b, all we have to show is that t* < M\t + (1 — \) for all ¢ > 0 with equality
ifft =1.

To that, define h(0,00) — R by h(t) = t* — A\t. We have h'(t) = \t*~1 — ), hence A'(t) = 0
iff t =1, and A/(t) > 0 for 0 < ¢t < 1 and A'(t) < 0 for ¢ > 1. Therefore h is strictly increasing
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for 0 < t < 1 and strictly decreasing for £ > 1, attaining its maximum value at ¢ = 1, namely

1 — A, and the result is proven. |

| THEOREM 5.1.4 (Holder Inequality). Suppose 1 < p < 0o and %+% =1 (that is, ¢ = ]%).

If f and g are measurable functions on X, then

IFglle < I£1lpllgllo- (5.1.2)

In particular, if f € LP and g € L4, then fg € L', and in this case equality holds in
(5.1.2) iff a|f|P = Blg|? p-a.e. for some constants a, f = 0 not both null.

Proof. It || f||, = 0 or |lg||; = 0 then f =0 a.e. or g =0 a.e., and hence fg =0 a.e., and the
inequality is trivial. If || f||, = oo or ||g||; = oo, then the result is also trivial.

Now we note that if the result is true for f and g, and a,b € C, then the result is also
true for af and bg, since both sides of the inequality is scaled by |ab|.

Thus, it suffices to prove the result for ||f]|, = |lg|l, = 1 and the equality holds iff
[fP = |g|? a.e. In this case, we will apply Lemma with a = |f(x)|P, b = |g(z)]? and
A = p~! to obtain

£@(@)] < | @P + ool (513

and integrating both sides we obtain

1 1 11
Hmm<5W%+aMM:5+5:1:WMMM

Equality holds iff it holds a.e. in (5.1.3), which is true precisely when |f|P? = [g|" a.e. W

The condition %+% = 1 appears frequently in LP theory. If 1 < p < oo, the number

g such that % + % =1 (that is, ¢ = p%l) is called the conjugate exponent to p. Clearly

1 <qg<o0.
| THEOREM 5.1.5 (Minkowski’s Inequality). If 1 < p < oo and f,g € L, then
1f 4 gllp < [ f1lp + Nlgllp-
Proof. The result is obvious if p =1 or if f + g = 0 a.e. Otherwise, since
[f+glP = 1f +gllf + g~ < (fI+lgDIf + gl (5.1.4)

using the Holder inequality, and noting that (p — 1)¢ = p when ¢ is the conjugate exponent
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to p, we have

/|f + gl < WIS+ gl g + allplILf + gl il

1/q (5.1.5)
= (sl + o) ([ 1749)
and hence
1-1/q
5ol = [17+aP) <15l + ol
|
With this result, we see that (L?, || - ||,) is a normed vector space. But more is true:

I THEOREM 5.1.6. For 1 < p < oo, L? is a Banach space, that is, it is a normed vector

space which is complete with the metric defined by d(f,g) = | f — gll,-

Proof. We will show that every absolutely convergent series is convergent in LP, that is,
consider {fz} C L? such that > ;7 || fxll, = B < co. Let

:Z|fk(x)| and G, Z|fk foralln € Nand z € X.

We have |G|, < >, [ fell, < B for all n € N. Moreover G, () increases to G(z) for
cach x € X, and hence GP(z) increases to GP(z) for each z € X. Thus we can use the MCT

to conclude that
/Gp — lim [ G = lim |G, < B? < ox,
n—oo

n—o0

which shows us that G € LP, and in particular, G(z) < oo a.e., and we obtain that the series

> rey fr(x) converges a.e. Defining

F(z )—hmsupik

n—oo

we have F' measurable and F(z) = > 7, fi(z) € C a.e. Moreover, we have |F| < G and
hence F € LP. Also |F —Y",_, fr] < (2G)? € L', so by the DCT we obtain

> | = =Y fi| =0,
k=1 |, k=1
thus the series > ;- | fx converges in the L? norm, and concludes the result. |

| ProprosiTION 5.1.7. For 1 < p < 0o, the set of simple functons s = Z?Zl a;jXg;, where
w(E;) < oo for all j, is dense in LP.
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Proof. It s ="

i1 @i Xm; with p(Ej) < oo for all j, with the E; disjoint and a; # 0, we have

|s[? = >"7_ laj|[’xr, and hence

[s= 2 lalut) < .
j=1

which shows that s € LP. Now if f € LP, f is measurable and we can choose a sequence
of simples functions {s,} such that |s,| < |f| and s, — f pointwise, using Proposition
B.1.22] Then s, € LP, since |s,|P < |f[P and |s, — f|P < 2P|f|P € L', and the DCT gives us
|sn — fll, = 0 as n — oo. Moreover if f, = > a;xp, with {E;} disjoint and a; nonzero,
we must have pu(E;) < oo for all j, since Y |a;[Pu(E;) = [|falP < 0o, and the proof is
complete. |

To complete the definitions of LP spaces, we introduce a space corresponding to the
limiting value p = oco. If f is a measurable function on X, for each a > 0 we define
Ao ={zr e X:|f(z)| >a}, J={a>0: u(A,) =0} and also

1flloc = inf J.

with the convention that inf @ = oo.
We observe that the infimum is actually attained: in fact, let o = ||f]|o. If @ = o0,
there is nothing to prove. Now assume that o < co. There exists a sequence a,, € A with

a<a, <a+n'. We have then
oo
Aa = U Aana
n=1

and from the monotonicity of i we obtain

p(ha) <3 p(Aa,) =0,

n=1

hence o € J and the infimum is attained.

The number || f||s is called the essential supremum of |f| and it sometimes written

[flloe = esssup,ex!f(2)]-

I ProprosITION 5.1.8. For a measurable function f: X — C there exists a set E € M such
that u(E°) =0 and |f(x)] < || flleo for all z € E.

Proof. Define E = {z € X: |f(x)| < ||f]le}, Which is in M, since f is measurable. Now
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since the infimum || f|| is attained in its definition, we have

p(E®) = p({z € X [f(2)] > [[flle}) =0,

and concludes the proof. |

We now define
L = L®(X,M,u) ={f: X — C: f is measurable and || f|o < 00},

with the usual convention that two functions that are equal a.e. (and hence have the same

esssup) define the same element in L.

I PropoOSITION 5.1.9. f € L™ iff there is a bounded measurable function g such that f = g

a.e.

Proof. Let E € M be as in Proposition [5.1.8| and define g = fxg. Thus ¢ is measurable and
lg(2)] < || f]loo < 00 for all x € X. ]

Note that once (X, M) is fized, L>°(X, M, u) depends on p only as p

determines which sets have zero measure. If p < v and v < p, then clearly L™= (n) = L*™(v).

When p is not semifinite, it is appropriate to consider a slightly different definition of
L, and this will be explored in Fxercises 23-25.

The results we have proved for LP with 1 < p < oo can be extended to the case of p = oo,

as follows:
| THEOREM 5.1.11. We have

(a) If f,g are measurable functions on X, then || fglli < || fll1ll9llee- If f € L' and g € L,
then || fgllh = I fll1ll9llee iff lg(x)] = ||g]|lcc a-€. on the set where f(x) # 0.

(b) || - lso s @ norm on L.
(€) Wlfa = flloo = O iff there exists E € M such that u(E°) =0 and f, — f uniformly on E.
(d) L* is a Banach space.

(e) The simple functions are dense in L.
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Proof. (a). The first inequality is trivial. Now if f € L' and g € L™, if |g(z)| = ||g]| a-e-.
on the set where f(z) # 0 then ||fglli = ||f]l1]|glcc. Now assume that || fg|li = ||f1]|g]co-
We have |f(z)g(z)| < |f(2)||lg]|s a.e. and then the hypothesis implies that

/ (119l — 1 £l) = 0.

hence |fl||g9]lc — |fg| = 0 a.e., which in turn implies that ||g]| = |g| a.e. on the set where
f(x) # 0.

(b). If f,g € L™, then |f + g| < ||fll + ||9]lc a.e., and hence f + g € L*® with
1f + glloo < I lloe + l[glloo- Clearly if [|f[loc = O then f =0 a.e. and |[cflloc = |c[||f[loc, and

thus || - || is a norm in L.

(c). It fro = fin L™, let E = {z € X: |fu(z) — f(2)| < ||fo — fllo}. Thus
E = JH{z e X: |ful@) = f(@)] = lfa = fllso}
n=1

and since u({x € X: |fu(x) — f(x)| = |fn — fll}) = 0 for all n, we have pu(E°) = 0.

Moreover,

sup | fu(z) — f(2)] < [[fn = flle =0,

zeE
that is, f, — f uniformly in E. The converse is trivial (note that the conclusion of the
converse is that f € L> and f,, — f in L™) .

(d). If {f.} is a Cauchy sequence in L>, given € > 0 there exists ny such that

||fn_fm||oo<€ for all n,m = ng.

Set B = (5 € X: |fu(@) = funl@)] < fu = fnlloc}. Thus

B = U {z € X:1fa(@) = fnl@)] > 1 = Fnlloc}
n,m=1
and hence p(E°) = 0, since all the sets on the right are p-null.

Thus for all z € E we have |f,(x) — fm(z)| < € for n,m > ny. Hence we can define
f(z) = lim f,(z) for each z € E. Setting f = 0 on X \ F we have f measurable, and for
n—oo
n>ngandall x € £

|[fu(z) = f(2)] <€

thus f, — f uniformly on E. Hence from item (b) we have f € L* and f, — f in L*,
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which proves that L* is a Banach space.

(e). Clearlyifs =>"

=1 X, 1s a simple function, we have sup,¢ x [s(z)| < max;_1 . , |a;] =
l|s|lcc < co. Hence s € L. Also if f is a measurable function in L*, there exists a se-
quence {s,} of simple measurable functions and a set £ € M with pu(E¢) = 0 such that
50| < |f] < ||f]loo for all n and = € E and s, — f uniformly on E (see Proposition [5.1.9).
Thus given € > 0, we can choose ng such that |s,(z) — f(z)| < e forall n > ng and z € E.
Hence ||s,, — f|le < € for all n > ng, and thus s, — f in L>, which proves that the simple

functions are dense in L°. [ ]

1'= 1, it is natural

In view of item (a) of this theorem and the formal equality 17! + oo™
to consider 1 and oo conjugate exponents of each other, and we do just that from now on.
Item (c) of this result shows that || - || is closely related (but not identical with) the

uniform norm || - ||, given by || f|lu = sup,ex |f(z)]. We have, however, the next result:

I PROPOSITION 5.1.12. Let u be any Borel measure in a topological space X that assigns

positive values to every nonempty open set. Then if f: X — C is continuous we have

[flloe = [1f [l

Proof. Since the set {z € X: |f(z)| > ||fllo} is open in X, it either is empty or it has
positive measure. But from the definition of || f||o, it must have zero measure, and hence
)] < 1o for all & € R Thus £l < [1f]lc.

On the other hand, if || f||. < [|f]|cc there exists M > 0 such that |f(z)] < M < [|fl~
for all z € R. But then {x € X: |f(x)] > M} = @, and contradicts the definition of || f]| .
Thus £l = 1]l n

Using this result, when restricting ourselves to continuous functions and such Borel
measures, we may use the notations || f||, and || f||s without distinction, and we may regar
the space of bounded continuous functions as a (closed!) subspace of L.

We have, in general, L? C LP for all p # ¢g. To see what is the issue, it is useful to have

this following example in mind.

| ExampLE 5.1.13. Consider m the Lebesgue measure on X = (0,00) and set fo(x) =z~
1. faxon € LP iff p<a™.

2. faX(,e0) € LP iff p>a™t.

Thus that are two apparent reasons for why a function f fails to be in LP. Either |f|?
blows up too fast near a given point, or |f|? fails to decay sufficiently rapidly at infinity.

In the first situation, the behavior of |f|P becomes worse as p increases, while the second
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becomes better. In other words, if p < ¢, function in L can be locally more singular than
functions in L4, whereas functions in L9 can be globally more spread out than functions in
LP. These somewhat imprecise ideas are a rather accurate guide to the general situation,

which we present in the next results.

| ProprosITION 5.1.14. If0<p<qg<r <oo, then LY C LP+ L", that s, each f € L7 is

the sum of a function in LP and a function in L.

Proof. If f € L9, let E = {x € X:|f(z)] > 1} and set g = fxg and h = fxge. Then
lgI” = [fIPxe < |f1"xe < |f|% hence g € LP, and |h|]" = |f|"xpe < |f|%xge < |f|7, hence
h e L™ (for ¢ <r < o0). For r = oo, we have ||h||o < 1, and the proof is complete. [ |

| ProPOSITION 5.1.15. If0 < p < q < r < 00, then LPNL" C L7 and || f|l, < |1} FIIE,
where X € (0,1) is defined by

thatis,)\zg-r_q.

q T—Dp
Proof. If r = 0o, we have A = p/q and |f|? = |f|P|f|97P < |f|P|| f||%?, so

Ll < ARG = £ RIS

Now we consider the case r < co. We have |f|? = |f|*|f|~ and we will use Holder’s

inequality with the pair of conjugate exponents p/Aq and r/(1 — X)q to obtain

/ o= / P < P a1

Ag/p (I-XN)gq/r
_ { / |f|p] [ / |f|7"] — A,

and taking the g-th root on both sides we conclude the proof. |

| ProPOsITION 5.1.16. If A is any set and 0 < p < q < oo, then (P(A) C (9(A) and
1fllg < 11

Proof. 1f ¢ = o0, it is clear that

1115 = (ilelg If(a)|> = sup F@P <Y If (@) = fIE,

acA

so that || flle < [|f]lp-
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For ¢ < oo, we use Proposition |5.1.15, with 7 = oo and A\ = p/q to obtain

1Al < WAIRIAS S < HAI AN, = 1 -

| ProPosITION 5.1.17. If (X)) < 00 and 0 < p < q < 00, then LI(p) C LP(p) and

11l < 1 fllqn(X)7 5.

Proof. 1If ¢ = 0o, we have

157 < P30 = a6,

and the result follows taking the p-th root. For ¢ < oo we will use Holder’s inequality with
the pair of conjugate exponents ¢/p and ¢/(q — p) to obtain

p/q
/ P = / P 1< Pl ey = [ / |f|q} u(X) @/ = | f|jp (X)) PV,

and taking p-th roots, the result is proven. |

Among the LP spaces, three have great importance: L!, which is the landmark of
integration theory; L*, because of its close relation with uniform convergence; and L? which

is a Hilbert space with inner product given by
(f.9)2 = /f?du-

Unfortunately, L' and L* are pathological at some points, one of these is the duality
theorem we will present later, see Theorem [5.3.3] So sometimes it is useful to work in the

intermediate spaces LP for 1 < p < oo.

5.2| SOLVED EXERCISES FROM [, PAGE 186]

EXERCISE 1. When does equality hold in Minkowski’s inequality? (The answer is different
for p =1 and for 1 < p < co. What about p = c0?)
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Solution. If p = 1, the equality occurs iff |f + g| = |f| + |g| a.e., which happens iff
fg > 0 a.e. For the last claim, note that

|f+gl=1fl+1g]

|f+ 9P = (If]+g])?

|f + 91> = 1f1? + 2 fg| + |9

(f +9)(f +9) = fP?+2|fg] + g/

|fI* + 2Re(fg) + |g* = | fI* + 2| fg| + |gI*
Re(fg) = |fgl = 1f7l,

(R R

and since Re(z) = |z] iff z > 0, the claim is proven.

For 1 < p < oo, the equality holds iff it holds in and (|5 1.5)). In (5.1.4)), the equality
holds iff |f + g| = |f| + |g|, that is, iff fg > 0 a.e. In , equality holds if it holds in
Holder’s inequality for f and |f + g[P~! (with exponents p and ¢, respectively), and for g and

|f + g|P~! (with exponents p and g, respectively). That is there exists nonnegative constants

C1, C2, C3, C4, (With ¢1, 3 not both null, and ¢3, ¢4 not both null) such that a.e. we have
alfP =calf+ 9" =co|f +glP and  cslgl =culf + 9" =l f + gl
If co =c4 =0, then f = g =0 a.e. and the equality holds. If ¢4 > 0 we have

C C
alflP = ool f+glP = Zeul f+ gl = Zeslgl,
Cy Cy

and taking p-th roots, we obtain ci/p|f| = (%Cg) o lg| a.e. with not both constants zero
(analogously we treat the case ¢ > 0). Hence equality holds in (5.1.5)) iff there exists
nonnegative constants «, 3, not both zero, such that «|f| = 5|g| a.e.

Thus equality holds in Minkowski’s inequality for 1 < p < oo iff fg > 0 and there exists
nonnegative constants «, 5, not both zero, such that «|f| = g|g| a.e.

For p = oo, equality holds if fg > 0 a.e., since in this case |f + g| = | f| + |g| a.e. On the
other hand, if equality holds, then a.e. we have

1+ gl < U+ Tgl <Al + llglloe = 1f + gllo-

If |f+g| <|f|]+|g| in a positive measure set, then ||f + gllc < || f]lco + [|9llc0, hence
|f + gl =|f] + |g| a.e. and this holds iff fg > 0 a.e.
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EXERCISE 2. Prove Theorem B.1.11]

Solution. This is done in the text.

EXERCISE 3. If 1 <p<r<oo, LPNL"is a Banach space with norm || f|| = || fll, + | I+,

and if p < ¢ < r, the inclusion map LP N L™ — L7 is continuous.

Solution. Clearly LP N L" is a vector subspace (both of L? and L"), and || - || is a norm
in LP N L". Now if {f,} is a Cauchy sequence in L? N L", from the definition of || - || it follows
directly that {f,} is also a Cauchy sequence in L? and L". Hence there exists functions
g € LP and h € L" such that f, — ¢gin LP and f,, — h in L".

Assume r < oo. Using the result of Exercise 9 below, since f,, — g in L? (and 1 < p < o0),
fn — ¢ in measure and hence there exists a subsequence {f,,, } of {f,} such that f, — g a.e.
Then since f,, — h in L", using again Exercise 9, there exists a subsequence { fnkj} of {fu,}
such that fnkj — h a.e. But this implies that ¢ = h a.e. and hence g € LPNL" and f, — g
in LPNL".

If r = oo, since f,, — h in L™, there exists a set £ € M with u(E°¢) = 0 such that f, — h
uniformly in E. But then f,, — ¢ in L(E) and using Exercise 9, up to a subsequence, f, — ¢
a.e. in F. Hence g = h a.e. in E, and since u(FE¢) =0, g = h a.e. Hence g € LP N L™ and
fn— gin LP N L.

Therefore LP N L™ with the norm || - || is a Banach space.

If remains to prove the second claim. From Proposition [5.1.15 we have LP N L™ C L? and

£l < AIRIAIE,

where A € (0,1) is such % = % + 122 Using Lemma [5.1.3| we obtain

T

[fllg < ALFllp + (0= F e < 1Flp + (L[ = (L7

and the inclusion LP N L™ — L? is continuous.

EXERCISE 4. If 1 <p <7 < oo, L? + L" is a Banach space with norm || f|| = inf{||g||, +
|h|l-: f =g+ h}, and if p < ¢ < r, the inclusion map LY — LP + L" is continuous.

Solution. Since LP 4 L" is the sum of the vector subspaces of the vector space of all
measurable functions f: X — C, it is a vector space. Now we prove that || - || is a norm in
LP + L. First note that if || f|| = 0 then there exist sequence {g,} C L? and {h,,} C L" such
that ||gn||p, + |Anll; — 0 and f = g, + h,, for all n € N. Thus g, — 0 in L? and h, — 0 in L".
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Repeating an analogous argument from Exercise 3, we can extract subsequence {g,, } of
{9} and {hy,,} of {h,} such that g,, — 0 and h,, — 0 a.e. Hence

f = 9n, + by, — 0 ace.

and thus f =0 a.e.

Let c € C. if ¢ = 0 then ||cf|| =||0]| =0=0||f||. If ¢ # 0, then f =g+ h for g € L” and
h € L" iff cf = cg + ch, and hence ||cf| = |||l |-

For the triangle inequality, let fi, fo € LP + L". If fi = g1 + hy and f; = g5 + ho then

fit fo=(g1+g2) + (h1 + ha),

and hence

1+ foll < llgr + g2llp + 12 + halle < llgally + 1hallr + [lg2lly + [Pzl

and take the infimum over all possible representations of f; and f; we obtain
11+ ol < AN+ D221

Thus || - || is a norm in LP + L". To prove that LP 4+ L" is a Banach space, let {f,,} be a
sequence in LP 4+ L" such that >~ 7 || f,|| < co. From the definition of || - ||, for each n € N,
there exists g, € L” and h,, € L" such that f,, = g, + hy, and ||gnll, + [|Aall- < || fall + 27"

Thus 307 (Ignlly + [12all-) < 252 (1fall +277) < oo, hence 3277, |lgally < oo and
> Il < oo, and there exists g € LP and h € L" such that >~ ¢, = ¢ in L? and
> hyin L". Let f = g+ h. We have

Hf— kaH < Hg— ng + Hh— th
k=1 k=1 7 k=1

hence Y >° | f, = f in LP? + L", which proves that L” + L" is a Banach space.

Now if p < g < r, Proposition [5.1.14| shows that LY C LP + L". Let f € L? with || f]|, = 1.
Set £ ={x € X:|f(z)] > 1} and define g = xg and h = xge. Then if r < oo we have

— 0 as n — oo,
T

91" = [f1"xe < [f1*xe <[fI" and [B]" = |f|"xze < |f|"x2e < |FI%
and thus [|g|> < [[f[l2 = 1 and [|A]]; < [|f[|§ = 1. This shows that g € L?, h € L" and
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f = g+ h, therefore
I < lglly + [[Allr <1+1=2.

If r = 00, then ||h]| < 1 (since |f|xge < 1 for all z € X)), and the same conclusion holds,
that is, || f|| <
If f € L9 is any function with |||, > 0, then f = f/||fll, € L and |||, = 1, then

= (I lall 1 < 2011l

and since this inequality is true for f = 0, we have || f|| < 2|/f||, for all f € L9, and proves

that the inclusion L? — LP + L" is continuous.

EXERCISE 5. Suppose 0 < p < ¢ < oo. Then LP ¢ L7 iff X contains sets of arbitrarily
small positive measure, and L? ¢ LP iff X contains sets of arbitrarily large finite measure (for
the ‘if” implication: in the first case there is a disjoint sequence {E,} with 0 < pu(E,) < 27",
and in the second case there is a disjoint sequence {E,,} with 1 < u(E,) < co. Consider

f =>_a,xg, for suitable constants a,). What about the case ¢ = c0?

Solution. Suppose X contains sets of arbitrarily small positive measure. Then we can
choose F| € M with 0 < u(F;) < 471, Choose F, € M such that 0 < u(Fy) < 47 u(Fy).
Inductively, we construct a sequence {F,} C M with 0 < u(F,) < 47 'u(F,_;) for n > 1
(and 0 < p(Fy) < 271). In particular 0 < u(F,) < 47"

Now we consider E, = F, \ U4, Fr- Thus F, C E, U (U;_,.1 F) and hence

W(E) < plED)+ S u(F) < F)Y ot )+ 3u(F),

and thus 0 < 2u(F,) < u(E,). Since E, C F, we have 0 < pu(E,) < p(F,) <4™ <27

Furthermore, the sequence {E,} is disjoint, since for n < m we have

EnmEm:Fnﬂ< N Fk) ﬂFm< N Fk) C FCOF, =
k=n+1 k=m+1

since F appears in ﬂzo:n .1 Fy because n < m. Hence there exists a disjoint sequence
{E,} € M such that 0 < u(E,) <27™.
Now consider f = > (nu(E,)) /%xg,, which is well defined, since {E,} is disjoint. We

have .
q —= e
JUE S
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hence f ¢ L9. However

/|f|p - Zn—p/qM(En>1—p/q < Zg—n(l—p/q) < 00,

since 1 — p/q > 0, and thus f € LP. Therefore L? ¢ L1.

For the converse, assume that L? ¢ L9, that is, there exists f € LP such that f ¢ L.
Define E,, = {z € X: |f(x)| > n}. Using Proposition [5.1.15, if f € L*, we would have
f € L% which is a contradiction. Hence || f||cc = 00 and thus u(E,) > 0 for all n € N. Also

we have
Jisv= [ 1p = wae.)
En
and hence 0 < p(E,) < |[f|Pn™" — 0 as n — oo, since || f[|, < oo.

Now for the other case, suppose first that X contains sets of arbitrarily large finite
measure. Let F} € M with 1 < u(F;) < oo. For each n € N we construct F,,;; € M such
that 14 3°7_, u(F,) < u(F,+1) < oo. Consider By = Fy and E, = F,, \UjZ| Fi. Then {E,}

is a disjoint sequence in M and

n—1
W(E) > p(F) — Y Fo> 1
k=1

Let f =Y (nu(E,))"?xg,. Then

1
p frnd —_ =
Jir=31-x.
thus f ¢ LP and
/|f|q - Zn—q/p,u(En)l—q/p < Zn—q/p < 0,
since u(FE,) > 1 and ¢/p > 1. Hence f € L1.

Conversely assume that L? ¢ LP and let f € L9 such that f ¢ LP. Let E, = {z €

X:|f(z)| > 1/n}. Since
/ s / 1> netu(E),
E,

it follows that u(E,) < n?|f||4 < oo for all n € N. Furthermore, {E,} is an increasing

sequence, and hence, with £ = (J -, E, we have u(E) = lim pu(E,). But £ = {z €
nN—r00

X: f(x) # 0}. Thus if u(E) < oo, applying Proposition |5.1.17| to (F, Mg, pu|r) we would

have
£l = £zl < FlElou(EYYPYE = || £llu( E)YP~Y < oo,
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and this implies that f € LP, which is a contradiction. Hence pu(E) = oo, and thus
lim p(E,) = oc.
n—o0

Now for the case ¢ = oo. The first assertion remains true. In fact, assume that X

contains sets of arbitrarily small positive measure, and as above consider a disjoint sequence
{E,} € M with 0 < u(E,) < 27" Define f = nxg,. Then f ¢ L* but

/|f|p = nPu(B,) <Y n"27" < oo,

and hence f € LP. Conversely, let f € LP such that f ¢ L, and define FE, = {z €
X:|f(z)] > n}. Then since f ¢ L™ we have p(E,) > 0. Also

Jir=] 1S > (),

and hence p(E,) < n7?||f[|F — 0 as n — oo.
For the second, if X contains sets of arbitrarily large finite measure, as before, we can

consider a disjoint sequence {F,} C M with 1 < u(FE,) < oo for all n € N. Let f = xg,.

Then f € L™, but
[l = ) =3 1=,

and thus f ¢ LP.
The converse in this case is not true. Consider X a nonempty set, M = {2, X}, u(@) =0
and p(X) = oco. Hence f =1 is in L™ but not in L? (since [|f[]P = u(X) = o), and

therefore L>° ¢ LP but X does not contain sets of arbitrarily large but finite measures.

EXERCISE 6. Suppose 0 < py < p; < oo. Find examples of functions f on (0, 00) (with
Lebesgue measure), such that f € LP iff

(a) po <p<p1,
(b) po <p<p,
(c) p=po.

(Consider functions of the form f(z) = 7% log x|®).

Solution to (a). If p; < oo define

flz) = 27 Py (@) + 27 P0x o0 ().
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Then

1 o)
/|f]p:/ xp/pld:v—i—/ x PPy,
0 1

and f € LP iff both integrals are finite. The first is finite when p < p; and the second when
p > po. Thus f € LPiff pg < p < p;.
If py = oo, consider f(z) =z~ V7|log(z — 1)|x11,2) + /P X[2,00)- Then

2 o]
|fIP = / x_p/p0|log(x — 1)[Pdx +/ zPPody,
1 2
which is finite iff both integrals are finite. The second is finite iff p > pg. The first if finite for
all p > 0, and to see that note first that for all a > 0 we have

UO’

lim (z —1)*log(z —1)[ = lim u*log(1/u) FROPEIE Jim — = 0.
u—0

r—1t u—0t «

Now choose a > 0 such that ap < 1. From the limit above, there exists 0 < § < 1 such
that |log(z — 1)] < (x — 1)~ for € (1,1 + ). Then we obtain

2 2
/ 2 7P/Po| log(z — 1)[Pda < / |log(z — 1)|Pdx
1 1

146 2
= / |log(z — 1)|Pdx +/ |log(z — 1)|Pdx
1 1

+4

146
< / (x — 1) P%dx 4 |log(0)|P(1 — ¢) < oo,
1

since ap < 1. Thus f € LP for all p > pg, but since lim, 1+ f(x) = 0o, f ¢ L>®. Thus f € LP
iff pg < p < 0.

Solution to (b). Assume p; < oo. Take

@) = (xlog?(1/x)) P x (0,172 () + (2log® (1/2)) " P X (o .00) (),

and we have

150 = [ wegasmy i [ og /) ma

and thus f € L? iff both integrals are finite.

We analyze the first integral, and the second is analogous. For p = p;, we have

1/2 12 4
/ (zlog®(1/z))P/Prdx = / ———du,
0 0

xlog?(z)
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but using the substitution u = log(x) we have

1
log(z)

1 1 1
/—de: —du=——+c=— +c,
xlog®(x) u u

and from the Fundamental Theorem of Calculus we obtain

12 4 1
dr = < 00.
/0 xlog?(x) ’ log(2) >

Before continuing, we note that for o, 5 > 0 we have mli)%l+ 2%(log?(z))™® = 0 and hence
there exists a constant ¢ > 0 such that (log?(x))~? < cz~® for all z € (0,1/2).

Now for p < p; we choose A > 0 such that p/p; + A < 1, and applying this last remark
with § = p/p; and @ = A\ we obtain

1/2 1/2 1/2
/ (zlog®(1/z)) P/Prdx < / PPy = / o~ PPN Ay < oo,
0 0 0

since p/p1 + A < 1.
For the remaining case (p > p;) we need to note that for a, f > 0 we have mlirgl+ 2(log?(x))? =
0, and hence there exists a constant ¢ > 0 such that z®(log®(x))? < ¢ for all x € (0,1/2) and
thus .
(log?(x)) ™" > % for all x € (0,1/2).

Thus for p > py, choose A > 0 such that p/p; — A > 1. Applying this previous estimate
with « = A and 8 = —p/p;1, we obtain

1/2 1/2 1/2
/ (zlog?(1/x)) P/Prdx > c_l/ PPNy = c_l/ 2~ PPNy = oo,
0 0 0

since p/py — A > 1. Thus the first integral is finite iff p < p;. Analogously for the second
integral we obtain finiteness iff p > pg, and thus f € L iff py < p < p;.

If p; = oo take f(z) = (2log®(x)) VP Xp00). Since || flle < (2log*(2))~1/7 < o0, we
have f € L*, and hence f € L? iff py < p < 0.

Solution to (c). Take p; = py in the case p; < oo in item (b). From the computations

we already have done, f € LP iff pg < p < p1 = po, that is, iff p = py.

Exercise 7. If f € LP N L*> for some p < oo, so that f € L? for all p > ¢, then
|71l = Jim 1£l,

Solution. If || f||s = 0 then f = 0 a.e. and the equality is trivial. Assume that || f||oc > 0
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and choose 0 < € < ||f||oc. Set A ={x € X: |f(z)] > || fllooc —€}. Clearly u(A) > 0. We have

e / P / P2 w(A) (e — O,

and thus p(A) < (|| flle — €)7P||f[]5 < 0o. Using the same computations with ¢ instead of p

we obtain

111G = (A flloo — €)%

and hence liminf || f||, = || f||cc — €. Since € > 0 is arbitrary, we obtain lim inf N fllg = 11 f oo
g—00 -

For the other inequality, using Proposition|5.1.15|for ¢ > p we obtain || f||, < ||f||£/q||f||1 pla,
and making ¢ — oo have

hmsuprHq [/l

and the proof is complete.

EXERCISE 8. This exercises makes use of Jensen’s inequality, which is a topic not seen in

this course.

EXERCISE 9. Suppose 1 < p < oo. If ||f, — fll, = 0, then f, — f in measure, and
hence some subsequence converges to f a.e. On the other hand, if f,, — f in measure and
|fn] < g€ LP for all n € N, then || f, — f|l, = 0.

Solution. Let E, . = {z € X: |f.(x) — f(z)| > €}. Then
[1r=sv= [ 1= ap = eu),

and hence p(E,) < € P||f, — flF — 0 as n — oo, and thus f, — f in measure. Using
Theorem there exists a subsequence {f,, } of {f,} such that f,, — f a.e.

Now assume that f,, — f in measure and |f,| < g € LP. Since

P>

{z e X:|[fule) = F(@)]" = 0] = ¢} = {z € X: |fulz) - f(2)
={z e X: [fu(2) — f(z)

}

=
> el/p}7

(@)

we obtain |f, — f|? — 0 in measure. Using the subsequence {f,, } that converges a.e. to f,

we obtain | f| < g a.e., and hence |f, — f|P < (|fu| + |f])? < 2P¢” € L' and using Exercise 34
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we have |f, — f|? — 0 in L', that is

1= 2 = / o= FIP =50,

hence || f, — fl, = 0.

EXERCISE 10. Suppose 1 <p < oo. If f,,, f € L” and f, — f a.e., then ||f, — f||, = 0 iff
| fallp = [ f]lp- (Use Exercise 20 in Section [3.6).

Solution. Using the triangle inequality for the norm || - ||, (for p > 1) we have

[ fally < 1fn = Fllp + 11 fll, and {[fll, < [1fa = Fllp + [ fallp,

and hence ||| full, — | fllp| < || fn — fllp, and thus if || fo — f[|, — O then || fall, — [ f[],-
For the converse, note that since f,, — f a.e. we have |f,, — f|F — 0 a.e. Now |f, — f|P <
2°(| ful? + | fIP) := gn. We have g, — 2PTY f|P := g a.e. and

Jon=2([ 1P+ [157) =2t + 171 > 2051 = [ o

since || full, = || fllp- Thus using Exercise 20 of Section [3.6{ we obtain [ |f, — f|P — 0, that
is, || fn — ng — 0, and thus || f, — f|l, = 0.

EXERCISE 11. If f is a measurable function on X, define the essential range Ry of f to

be the set of all z € C such that {x € X: |f(x) — z| < €} has a positive measure for all € > 0.
(a) Ry is closed.

(b) If f € L™, then Ry is compact and || f|l« = max{|z|: z € R;}.

Solution to (a). Let {z,} C Ry be such that z, — z for some z € C. If Given € > 0
choose ng such that |z, — z| < €/2 for n > ng. Then for x € {x € X: |f(z) — z,| < €/2} we

have

€
2
and thus {x € X: |f(x) — 2, < ¢/2} C {z € X:|f(z) — 2] < €} for n > ng. Since

{zr € X: |f(x) — z,| < €/2} has positive measure then {z € X: |f(x) — z| < €} has positive

(@) =2l < If@) =zl +en =2l < 5 + 5 =€,

measure, and therefore 2 € Ry and Ry is closed.

Solution to (b). Assume f € L. Let z € C such that |z| > || f]l«~ and choose € > 0
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such that |z| > ||f|lec + € f 2z € {x € X: |f(x) — 2| < €} we have

[flloe + €= [f(@)] < lz] = [f(2)] < [f(2) — 2] <,

and hence ||f||oc < |f(z)|. This means that {x € X: [f(z) — 2| < €} C{z € X: |f(x)] >
| flloc}, and thus, by definition of || f||~, we obtain

p{r e Xo|f(x) — 2| < e}) < p({r € X [f(2)] > Ifll}) =0,

which implies that z ¢ R;. Hence Ry C {z € C: |2| < [|f]|~}. Thus Ry is bounded, and
since it is closed (by item (a)), it is compact in C.

From what we just have proved, we obtain max{|z|: 2 € R;} < [[flle. If a :=
max{|z|: z € Ry} < | f|lco, we know that the sphere S = {z € C: |z2]| = ||f||} does not
intersect Rs. Hence for each z € S, there exists €, > 0 such that {z € X: |f(z) —z| < €,} has
zero measure. The collection of open balls {B._(z)}.cs (here B.(w) ={z € C: |z —w| < r})
constitutes a open cover of S, and since S is compact, there exists z1,--- , 2, such that
S c UL Be., (%) Take 0 < < 12:({1111”6,2 and also 0 < 1 < ||[fllee — @ I [[flloc =7 <
|f ()| < |Iflloo, that is, f(z) is closer than 7 to S, it must be in one of the balls B, (2;), and

therefore we have
{zeX:Ifloo—n<If@)] < Iflle} € Jlo € X1 [f(2) = 2l < e}
i=1
and thus {z € X: ||f|lcc =1 < |f(2)| < ||f]loc} has zero measure. Also

{z e X:[f(@)] > [fllee=n} = {z € X: |fllo—n < [f(2)] < [flloc}U{z € X: [f(2)] > [|f]lc}

has zero measure and contradicts the definition of || f||oc-

ExXERCISE 12. If p # 2, the L? norm does not arise from an inner product on L?; except

in trivial cases when dim(L?) < 1 (show that the parallelogram law fails).

Solution. If Y is a normed vector space and dim(Y') < 1 and Y = span{yo} (yo = 0 when

I = la*[lyoll* =

dim(Y) = 0), then (oo, By0) = aB||yo/|? is an inner product on Y and ||ay
(oo, ayo)-

Now assume that dim(L?) > 1 and p # 2. In order to show that the parallelogram law
fails, we will need to show the existence of sets Ey, Ey € M such that 0 < p(E;), u(E2) < oo

and Ey N EFy = @. To obtain such sets we will prove following two claims:

- 223 -



Claim 1. There exists a set F} € M with 0 < pu(E;) < oo.

In fact, if that is not the case then for f € L?, since {x € X: f(x) # 0} is o-finite, we
must have u({x € X: f(x) # 0}) = 0, which implies that f =0 in L?, and thus dim(L?) = 0,
which is a contradiction.

Claim 2. There exists a set E € M with 0 < p(EF) < oo and pu(EAE;) > 0.

In fact, if that is not the case then let f € LP. Fix zy € Ej, and let A = {z €
X: f(z) — f(zo)xr, (x) # 0}. Thus this set is o-finite since f — f(zo)xg, in is LP. Hence
A=, A, with {4,} € M is disjoint and p(A,) < oco. Thus either u(A4,) = 0 or
w(A,AE,) = 0. We have

A\Elzfj(An\E) and El\A:ﬁEl\An,

We have u(A\ Ey) =0. If u(A,) =0 for all n € N, then p(A) =0 and f = f(zo)xg, a.c.
Otherwise p(A,AE;) =0 for some n € N, and in this case we also have p(E; \ A) =0, and
then u(AAE,) = 0. Therefore A C (A\ E1) U(ANE,), but u(ANEy) < u(E;) < oo and
since (AN E)AE, = E; \ A, we have

H(A) = p(A\ Ey) + p(AN By) < u(A\ Er) + p(Er \ A) = u(AAE) =0,

and hence f = f(z9)xp, a.e. Thus f = f(xg)xg, in LP. Thus we have shown that each f
in L? is a constant multiple of yg,, which means that dim(L?) = 1. This contradicts our

hypothesis and proves Claim 2.

Setting E; as in Claim 1, F as in Claim 2 and Fy = FAE; we have 0 < u(FE;) < oo and
Ey N Ey = @, as needed.

Assume 1 < p < oo and define f; = u(Ey) YPxg, and fo = p(FEy)"Pxg,. Then
fi, fo € LP and || f1l|, = || f2ll, = 1. If the parallelogram law holds, we have

11+ follp + I = follp = 200 Al + 1 f2015) = 4.

But we have

| fa +f2||12)—|- | f1 —f2||127 _ </|f1+f2|p>2/p+ </|f1 _f2|p>2/p

-1 —1 2/p 142/p
:2< p(E) " Xy + u(Ey) XE2> =2 ;

and thus the parallelogram law holds iff 1 4+ 2/p = 2, that is, iff p = 2.
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For p = oo, set f1 = xg, and fo = x&,.
Lo+ fall% + 1o = folloo = 2 # 4 = 2(| All% + | £201%),

and the parallelogram law fails.

EXERCISE 13. LP(R",m) is separable for 1 < p < oo. However, L>(R", m) is not separable.
(There is an uncountable set F C L™ such that ||f — g||oc = 1 for all f,g € F with f # g).

Solution. Let G be the set of all simple functions of the form s = Z;nzl CiXR,, where R;
is a rectangle R; = Hi:L___’n(ai,j, bij), a;j < b;; and ¢;, a; ;,b; ; are rational numbers for all
j=1,--- mandi=1,--- ,n. Then G C LP(R", m) is countable, and we will show that is
dense in LP(R"™,m).

By Proposition m it only remains to show that given € > 0 (and we assume 0 < € < 1)
and a simple function ¢ = Z djx g, with m(E;) < oo for each j =1,--- , k there exists a
function s € G such that ||s — ¢[|, < e. But we know from Theorem item (c) that for
each E; € M with m(E;) < oo and € > 0 there exists a finite collection of disjoint rectangles
{R;;}'_, whose sides are open intervals such that m(E;AJl_, Ri;) < e. By shrinking or
enlarging a little each side of each R; ; we can assume that then endpoint are rational numbers.
Also, for each j = 1,--- ,k we can choose w; rational such that |d; — w;| < e. Thus for

k0
s = Zj,i:l WjXR,,; We have s € G and

Is = &llp < ZH = d;) XR”|p+ZHd =Xy, mi)lp
7 ) (5.2.1)
1/p
< jnax \d —wjlzl VP4 maka<EALJ1R”> Zl|dj|
ji= i =

1/p
. ¢
Now since max;_j.... ; |d; — w;| < €, max;—... j m(EA Uiy Ri’j> < €/P < ¢ and

m(JRis) <m(Eu UR”> < m(E) + m<EjAORi,j) < m(E;) + e < m(E;) +1,

=1 =1

where in () we have used AU B = (AN B) U (AAB) C AU AAB. Therefore we have from

B21) that
s — oll, < Ce

where C' = max{k + Z§:1 m(E;), ij:l |d;|}. Thus G is dense in LP(R",m) and LP(R™, m)
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is separable.

Now for L*(R™,m). Let {f,} be a countable sequence in L>°(R", m). Define a sequence
A, by

A ={zeR": |z[| <1} and A, ={z e R":n < ||z|| < n+ 1} for n € N.

Define also a sequence a,, by

—1 if f, > 0a.e. on A,
ap =
1  otherwise.

and finally define g = 3 7, anxa,. Since |g| = > 07 |an|xa, = D .o Xa, We have g €
L>*(R™,m) and ||g|lcc = 1. Now for each n € N, we have |g — f,| > 1 a.e. on A,, and hence
llg — frlloo = 1, so no countable subset of L>(R™, m) can be dense. Thus L>*(R",m) is not

separable.

Another possible proof (using the hint) is to consider the set F consisting of functions f
such that f =0 or 1 in each A,,. Thus F C L>®(R",m) is equivalent (bijective) to the set
of all sequences {a,} such that a, = 0 or 1, hence F is uncountable. Moreover, if f,g € F
and f # g, then || f — g||l.c = 1. Hence no countable subset of L>(R", m) can be dense in
L>®(R™ m).

EXERCISE 14. If g € L*, the operator defined by T'f = fg is bounded in L for 1 < p < oo.

Its operator norm is at most ||g|/~, with equality if x is semifinite.

Solution. For 1 < p < oo we have

Jresr= [ isgr <ot [ 107 = ol

hence |7/ ], < llgllcllfll,- For p = oo we have

Tf(2)] = [f(@)g(@)] < llglloo] f ()] < llgllocll flloo a-e.

and thus ||Tflcc < ||9]loo]|f]|cc- Thus T'f is bounded on L? and its operator norm is at most
191lco-

If g = 0 a.e., then the equality is trivial. Now assume g # 0 a.e., u semifinite and
1 < p < oo Choose e >0,set A= {z € X:|g(x)] = |9l — €} and choose B C A with
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0 < u(B) < oco. Define f = pu(B)~"/Py5. We have

11 = (e [ 1) =1,

and

751 = (w8 [ 1aP)" > gl .

since p > 1. Thus ||T]| = ||g|lcc — €. Since € > 0 is arbitrary, we obtain ||T|| = ||¢||o, and
thus {|T]] = {|g]oc-
For p = o0, set f = xp. Hence || f||oc = 1 and

Tf ()] = [f(x)g(x)] = [xs(x)g(x)] = (|9l — €,

and thus [|T|| = |Tf||cc = ||9]lcc — €, and as before we conclude that ||T']| = ||g]|co-

ExXERCISE 15. The Vitali Convergence Theorem. Suppose 1 < p < oo and {f,} C LP.
In order for {f,} to be Cauchy in the L? norm is it necessary and sufficient for the following

three conditions to hold:

(i) {f.} is Cauchy in measure;
(ii) the sequence {|f,|'} is uniformly integrable (see Exercise 11 in Section [4.4));

(iii) for every e > 0 there exists £/ C X such that (F) < co and [, |f,[? < € for all n € N.

(To prove the sufficiency: given € > 0, let £ be as in (iii), and let A,,, = {z € E: |f.(x) —
fn(x)] = €}. Then the integrals of |f,, — fiu|P over E'\ A, A, and E€ are small when m

and n are large - for three different reasons).

Solution. For the necessity: assume that {f,} is a Cauchy sequence in LP. Then f,, — f
in LP for some f € LP. Using Exercise 9 we have f,, — f in measure and hence {f,, } is Cauchy
in measure. Since {|f,|’} is in L' and converges to |f|’ in L', using Exercise 11 of Section
[1.4] the sequence {|f,|P} is uniformly integrable. To prove that {f,} satisfies (iii), given
¢ > 0 choose ng € N such that || f,, — f||, < €'/ for n > ng. Define g = max{f, fi, -+, fap_1}-
Thus g € LP and for n > 0 we set

E,={x€ X: |g(z)| >n}.

Then
/ 9P > [ loP > PuE,),
En
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and hence p(E,) < n7P[|g[[f < oo for each n > 0. Moreover, since [g[Pxp: — 0 a.e. as

n — 0%, using the DCT we obtain fE g’ — 0 as n — 07, and we choose > 0 small so that
n

fE,g lg|P < € and set E = E,. Hence

|f77«|p< |g|p<6 fOI'TL:]_,"',no—l,
Ec Ec°

Now for n > ng we have

|fn|P<2P/ |f|p+2p |fn_f|17<2p/ |g|p_|_2p/|fn_f|p<2p+167
EC E(: EC EC

and hence p(E) < oo and [, |ful? < 2PT'e for all n € N.

Now for the converse assume that {f,} satisfies conditions (i), (ii) and (iii). Given € > 0,

using (iii) let £ € M be such that 0 < u(F) < oo and [, | fu|? < € for all n € N.
Define A, ={z € E: |fn(x) — fu(x)| = €}. Then we have

| fn = ful? < 2p/ |fmlP 22 [ |ful? < 2P (5.2.2)
Ec Ec Ec

Using (ii), there exists 6 > 0 such that [, |f,|” < e for all A € M with p(A) < é and for
all n € N.

Since {f,} is Cauchy in measure there exists ng € N such that u(A,,,) < ¢ for m,n > ny,

and hence

/ |fn = ful” < 2”/ | fin]? + 2p/ | ful? < 2PT e, (5.2.3)
mn Amn Amn

for all n,m > ny.

We have |fr, — fulPXE\Amn < €XE € L' (since u(F) < o0) and also | fp, — [alPXE\ A — 0

in measure as m,n — oo. Thus using Exercise 34 of Section |3.8 we obtain

/ ’fm_fn‘p_>0>
E\Apmn

and hence there exists n; > ng such that

/ | fm = fal” <€, (5.2.4)
E\Amn
for m,n > ny. Thus for m,n > ny, combining (5.2.2)), (5.2.3) and (5.2.4)) we obtain
/!fm—fn\pz Ifm—fn|p+/ yfm—fn\u/ | — fal? < (2742 + 1)e,
Ee mn E\Apmn
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which proves that {f,} is a Cauchy sequence in LP.

EXERCISE 16. If 0 < p < 1, the formula p(f,g) = [ |f — g|P defines a metric on L? that
makes L? into a complete topological vector space (the proof of Theorem still works
for p < 1if ||f]|, is replaced by [ |f[F, as it uses only the triangle inequality and not the

homogeneity of the norm).

Solution. To prove that d is a metric, it only remains to prove the triangle inequality.

From (5.1.1)) we have
|f = hl" <(f =gl +1g = )" <|f =gl + 19 = Al",

and hence p(f,h) < p(f,g) + p(g,h) for all f,g,h € LP. Hence p is a metric. The proof of
Theorem remains unchanged for 0 < p < 1 replacing || f||, for [ |f|?, and thus L? is a

complete topological vector space.

5.3| THE DUAL OF L7

Suppose that p and ¢ are conjugate exponents, then Holder’s inequality shows that each

g € L9 defines a bounded linear functional ¢, on L? by

o5 = | 13

and the operator norm of ¢, is at most ||g/|,-

If p = 2 and we are thinking of L? as a Hllbert space, it is more appropriate to define
¢g(f) = [ fg. The same convention can be used for p # 2 without changing the results that
will be presented below in an essential way.

In fact, the map g — ¢, is almost always an isometry from L? to (LP)*, the dual space of
LP.

| ProPOSITION 5.3.1. Suppose that p and q are conjugate exponents and 1 < g < co. If

g € L1, then
lglly = 16, = sup{’/fg‘ 1l = 1}-

If v is semafinte, this result holds also for ¢ = oc.
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Proof. From Hélder’s inequality we have ||¢4|| < ||g||, and the equality is trivial if ¢ = 0 a.e.
If g# 0 a.e. and 1 < ¢ < o0, define

lgl7?
T =gl

Then

1 gl
1= — / gler = Wl _
P gl B lglld

recalling that (¢ — 1)p = ¢, since p and ¢ are conjugate exponents. Thus we have

91" gl
ol = 0, = [ o= [ LsEmg g ot = 5 gt = gl

lglla™ ||g||" 1

hence [lgg]l = llgllo-

If g =1, define f =sgn g. We have || f|lc =1 and [ fg =gl

Now assume that p is semifinite and let ¢ = co. For € > 0 consider A = {z € X: |g(z)| >
llglloc — €} Then p(A) > 0 and since p is semifinite, there exists B C A with 0 < p(B) < oo.

Let
1

w(B)

1
6ol = /fg= @/Bm > llgleo — €,

and since € > 0 is arbitrary, we obtain ||¢,|| = ||¢||co- [ |

f= XBSgn g.

Then ||f]l; =1 and

Conversely, if f — [ fg is a bounded linear function of L?, then g € L? in almost all

cases. In fact, we have the following stronger result.

I THEOREM 5.3.2. Let p and q be conjugate exponents. Suppose that g is a measurable
function on X such that fg € L' for all f in the space ¥ of simple functions that vanish

outside a set of finite measure, and the quantity

M) = {| [ fo]: 7 € 5 wna 111, -1}

is finite. Also, suppose either that Sy, = {x € X : g(x) # 0} is o-finite or that p is semifinite.
Then g € LT and My(g) = ||9]l,-

Proof. First we note that if f is any function in > we have

[ 14 < w011,
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is also in X

In fact, if f = 0 a.e., then this inequality is trivial. If f # 0 a.e., then f=

and || f]|, = 1, hence
/fg‘ ~ ‘/fg' < My(g).

No we remark that if h is a bounded measurable function that vanishes outside a set
E of finite measure and ||hl|, = 1, then | [ hg| < M,(g). In fact, using Proposition
there exists a sequence { f,,} of simple functions such that f,, — h uniformly on X (since h is
bounded) and |f,| < |h| for all n € N, in particular f,, vanishes outside F and f,, € L? for all
n € N. We have f? — h? uniformly in X and |f,|? < |h|P € L for all n € N and using once
the DCT we have || f,||, = ||k, = 1.

f
1£1l»

b
£l

which concludes this first claim.

Also f,g — hg and | f.g| < |h||g] < ||h]|ccgXE, since h vanishes outside E. Since gxg € L!
by hypothesis, we can use again the DCT to obtain

’/ hg' —|1im [ fug :gggJ [ fus

Now we can begin the proof of the result. Consider first ¢ < co. We may assume that

< lim My(g)l| fallo = Mo(g)-

Sy is o-finite, as this condition automatically holds when fx is semifinite (see Exercise 17).
Let {E,} be an increasing sequence of sets of finite measure such that S, = |J,—, E,. Let
{sn} be a sequence of simple functions such that s, — ¢ pointwise and |s,| < |g|, and let

Gn = SuXE,- Then g, — g pointwise, |g,| < |g| and g,, vanishes outside E,,. Let

f = ol seng

lgnlld™

Then, as in the proof of Proposition we have ||f,|, = 1, and by Fatou’s Lemma we

obtain

lglle < Timinf [|gall, zliminf/]fngn| < liminf/|fng| :liminf/fng < M(g),

and for the last estimate we used our second claim. Using Holder’s inequality we obtain
M,(g9) < ||gllq, and the proof is complete for the case ¢ < oo.

Now suppose ¢ = 0o. Given € > 0, let A = {x € X: |g(z)| > M(g) + €}. If u(A) > 0,
we can choose B C A with 0 < pu(B) < oo (either because p is semifinite or because A C ;).
Setting f = pu(B) ' x55gn g, we have || f||; = Land [ fg = u(B)™" [, 19| = M (g)+e, which
contradicts our second claim from the beginning of the proof. Hence p(A) = 0 and hence

llglloc < Mx(g) + € for each € > 0, and the proof is complete. [ |
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The last and deepest part of the description of (LP)* is the fact that the map g — ¢, is,

in almost all cases, a surjection.

I THEOREM 5.3.3. Let p and q be conjugate exponents. If 1 < p < oo, for each ¢ € (LP)*
there exists g € L7 such that ¢(f) = [ fg for all f € LP, and hence L7 is isometrically

isomorphic to (LP)*. The same conclusion holds for p = 1 provided u is o-finite.

Proof. First suppose that p is finite. Thus all simple functions are in LP. If ¢ € (LP)* and E
is a measurable set, let v(E) = ¢(xg). For any disjoint sequence {E;}, if £ = U;’il E; we

have xyg = Z;’il XE; where the series converges in the LP norm, since

- - > 1/p
XE—ZXEJ = || Z XEij:N( U Ej) — 0 asn — oo,
Jj=1 j=n+1 j=n+1

p

and here the assumption p < oo is crucial. Hence, since ¢ is linear and continuous,

v(B) = o(xe) = 0( 2 xe,) = D olxs) = > vIE),

J=1

so that v is a complex measure. Also, if u(E) = 0 then xg = 0 as an element of L, so
v(E) = 0, that is, v < p. By the Radon-Nikodym theorem there exists g € L'(u) such
that ¢(xg) = v(E) = [, gdu for all E, and hence ¢(f) = [ fgdp for all simple functions f.

Moreover
‘ / fg

and Theorem implies that g € L?. Hence, since the set of simple functions are dense in
L?, using the DCT we obtain ¢(f) = [ fg for all f € LP.

Now we suppose that p is o-finite. Let {E,} be an increasing sequence of sets such
that 0 < p(E,) < oo and X = |J~, E,, and we will identify LP(E,) and L(E,) as
subsets of LP(X) and L4(X), respectively, consisting of functions that vanish outside E,.

= [(H < oS5,

The preceding argument shows that for each n € N, there exists g, € LY(E,) such that
6(f) = [ fou for all f € L2(E,), and gally = I6lescenll < 6]l The function g, is
unique modulo alterations on null sets, so ¢, = ¢, a.e. on E, for n < m, and we can
define g a.e. on X by setting g = ¢, on E,, for each n € N. By the MCT we have
llgll, = lm ||gnlly < ||@]], so g € L2 Moreover, if f € L?, then by the DCT, fxg, — f in L?
and hence ¢(f) = lim ¢(fxs,) = lim [, fg = [ fg.

Finally, suppose that p is arbitrary and p > 1, so that ¢ < oo. As above, for each o-finite
set £ C X, there exists an a.e.-unique g € LY(E) such that ¢(f) = [ fgg for all f € LP(E)
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and ||gg|l, < ||¢]]. If F is o-finite and F' D E, then gp = gg a.e. on E, so ||grll, = |9zl
Defining
M = sup{||grll,: E is a o-finite set},

we have M < ||¢]| < oo. Choose a sequence {E,} of o-finite sets such that ||gg,|, — M and
set F'=J. 2, E,. Then F is o-finite and

lge.lle < llgrlly < M for alln € N,

thus making n — oo we obtain ||gr||, = M. Now if A is a o-finite set with A D F', we have

|47 = |gp|? + |ga\p|? a.e. on X (since g4 = gp a.e. on F and ga = ga\r a.e. on A\ F) and

/|9F|q+/|gA\F|"=/IgAI‘1<Mq=/|gF|",

and hence ga\p = 0 a.e., which in turn implies that g4 = gr a.e. on X (here the fact that

hence

q < oo is used).
If felLP then A=FU{zx € X: f(z) # 0} is o-finite, so

oh = [ faa= [ sor.

thus we take g = gr and the proof is complete. |
I COROLLARY 5.3.4. For1 < p < oo, LP is reflexive.
Now we conclude this section with some remarks regarding the cases p = 1 and p = oo.

For any measure p, the correspondence g — ¢, maps L into (L')*, but
in general is neither injective nor surjective. Injectivity fails when p is not semifinite.

Indeed, if E C X is a set of infinite measure with no subset of positive finite measure and
fe Ll then {x € X: f(x) # 0} is o-finite and hence it intersects E in a null set. It follows
that ¢y, = 0 although xg # 0 in L.

This problem, however, can be fixed, by redefining L™ - see Fxercises 23 and 24.

The failure of surjectivity is more subtle and we will give an example (see also Ezxercise
25). Let X be an uncountable set, u the counting measure on (X, P(X)), M the o-algebra of
countable or co-countable sets, and py = the restriction of u to M. Every f € L'(u) must
vanish outside a countable set, and hence L*(p) = L* (o).

On the other hand, L*°(u) consists of all bounded functions on X, whereas L> () consists
of those bounded functions that are constant except on a countable set. With this in mind, it

is easy to see that the dual of L'(pg) is L>=(u), and not the smaller space L™ (jug).
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As for the case p = oo, the map g — ¢, is always an isometric injection
of L' into (L>)* by Proposition but is it almost never a surjection.

Indeed, let X =0, 1] with n = m the Lebesque measure. The map f+— f(0) is a bounded
linear functional on C(X), which we regard as a subspace of L>°. Using the Hahn-Banach
Theorem, there exists ¢ € (L>®°)* such that ¢(f) = f(0) for all f € C(X). To see that ¢
cannot be given by an integration against an L' function, consider the functions f, € C(X)
defined by fn(x) = max{1 —nx,0}. Then ¢(f,) = fu(0) =1 for alln € N, but f,(z) — 0 for
all z > 0 and |f,(x)] <1 € L*[0,1]) for alln € N, so by the DCT we have [ f,g — 0 for all
ge L.

5.4| SOLVED EXERCISES FROM [, PAGE 191]

EXERCISE 17. With notation as in Theorem m, if pu is semifinite, ¢ < oo and M,(g) < oo,
then {x € X : |g(x)| > €} has finite measure for all € > 0 and hence S, is o-finite.

Solution. Assume that for a given € > 0 we have pu({z € X: |g(z)| > €}) = 0o. Then
using Exercise 14 of Section 2.2] given ¢ > 0 there exists F' C {z € X: [g(x)| > €} with
¢ < pu(F) < oo. Assume 1 < p < 0o, and define

f=wF) Py rsgag.

We have || f|, = 1 and f is a bounded measurable function that vanishes outside F'. Thus

we obtain

M,(g) = '/fg‘ = M(F)_l/p/ g = en(F) 1P > ec'/t,
F

and thus making ¢ — oo we obtain M,(g) = oo, and contradicts the hypothesis.
For p = oo, define f = ypsgn g. We have ||f|l.c = 1 and f is a bounded measurable

function that vanishes outside F'. As before
My (g) > ec,

and making ¢ — 0o we obtain a contradiction. Hence {z € X : |g(z)| > €} has finite measure

for all e > 0. Since
Sy = {v € X: g(a) £ 0} = | o € X: lg(@)] > 1/n},
n=1
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we obtain S, o-finite.

EXERCISE 18, 19, 20, 21 AND 22. These exercises make use of Functional Analysis

topics, which are not seen in this course.

ExXERCISE 23. Let (X, M, u) be a measure space. A set F € M is called locally null if
uw(ENF) =0 for every F' € M such that u(F) < co. If f: X — C is a measurable function,
define

Ifll« =inf{a > 0: {x € X: |f(x)| > a} is locally null},

and let £> = L£>*(X, M, ) be the space of all measurable f such that || f|. < co. We
consider f,g € L£* to be identical if {z € X: f(z) # g(z)} is locally null.

(a) If E is locally null, then p(E) is either 0 or co. If p is semifinite, then every locally null

set is null.

(b) || - ||+ is a norm on £ that makes £ into a Banach space. If p is semifinite then
L = L™,

Solution to (a). If E is locally null and 0 < u(FE) < oo, taking F' = E in the definition
of locally null set we have u(E) = p(EF N E) = 0, which is a contradiction. Hence p(F) is
either 0 or oo.

Now assume that p is semifinite and FE is a locally null set which is not null. Then
u(E) = oo and since p is semifinite, there exists F' € M with FF C E and 0 < p(F) < oo.
But since E is locally null we have pu(F) = p(E N F) = 0, which is a contradiction. Therefore
E must be null.

Solution to (b). Before we proceed, we prove that the infimum is attained. If || f||. = oo,
there is nothing to do. Now if o := || f||« < oo, than we can construct a decreasing sequence
{a,} such that a, — a (a, > «a for all n € N) and {z € X: |f(z)| > a,} is a locally null set.

Hence
o0

{reX:|f(x))>a}l=|J{zeX:[f(2)]>an}

n=1

Thus if FF € M has pu(F) < oo we have

pFn{e e X:|f(@)] >a}) <D nFN{zeX:[f@)]>a}) =0,

and hence {z € X: |f(z)| > a} is also a locally null set, and the infimum is attained.
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Secondly, we prove that the relation f = ¢ in L% if {z € X: f(z) # g(x)} is in fact an

equivalence relation. The reflexivity and symmetry are clear. If f = ¢ and g = h in £ then

{z e X: f(z) # Mx)} C{x e X: f(x) # g(z)} U{r € X:g(z) # h(z)},

and hence {z € X: f(x) # h(x)} is locally null. Thus f = h in £, and this relation defines

an equivalence relation in £.

Now we prove that || - ||« is a norm on £*.

(i) |Ifll = 0iff f=0in £

In fact if f = 0 in £ then {z € X: f(z) # 0} = {x € X: |f(x)| > 0} is null, and
therefore is locally null. Hence || f]|« = 0. Conversely, if ||f||« = 0 then {x € X: |f(z)| >
0} ={z € X: f(z) # 0} is locally null, and thus f =0 in £*.

(i) ||lcflls« = |||l f]|+ for each ¢ € C and f € L.
If c=0then ¢f =0 and {x € X: |cf(z)] > 0} = &, hence |lcf|[« =0 = |c|||f]|+- Assume
c#0, then {x € X: |cf(x)| > a} ={z € X:|f(z)| > a/|c|}. Thus

0: {x € X: |cf(x)] > a} is locally null}

0: {x € X:|f(x)] >a/|c|} is locally null}
= inf{a|c| 2 0: {r € X: |f(x)| > a} is locally null}

>0: {z € X:|f(x)] > a} is locally null}

lefll = inf{a >
>

= inf{a

= |c|inf{a

= [elll F1]+

(ii1) If f, g € L2, then [[f + g[l. < [ fl« + llgll+
Note that

{z e X:[f(2) + g(@)[ > [IF]l« + llgll}
CHz e Xo[f(@)] > [Ifll} U{z € X [g(2)] > llgll,

and hence {z € X: |f(z) + g(x)| > [|f[l+ + [lgl[} is locally null, thus || f + gll. < [[f]l« + llgl].-
Finally we prove that (£, ] - ||.) is a Banach space. To that end let {f,} be a Cauchy
sequence in L. Define E = (7, _{z € X: |fu(2) — fu(2)| < Ifu — finll«} Then

E° = U {ZE € X: |fn($) - fm($)| > ”fn - fm||*}7
n,m=1

and E° is locally null, since all sets on the right hand side are locally null. Now given ¢ > 0
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there exists ng € N such that || f, — fin|l« < € for n,m > ng. Thus for x € E we have

|fn(x)_fm(x)| < ||fn_fm||* < € fOI" all n7m>n07
thus {f,(x)} is a Cauchy sequence in C. We can define

lim f,(x) forxe€ F,

fla) = w=
0 for x € E°.

Thus f is a measurable function and making m — oo, for x € E we have

[fu(z) = f(2)] <€

and therefore f,, — f uniformly on E. Hence {x € X : |f,(z) — f(x)| > €} C E° for n > ny,
therefore || f, — f||« < € for n > ng and hence f,, — f in £>°. Thus £ is a Banach space.

Using item (a), it is easy to see that, when p is semifinite, the concepts of locally null

sets and null sets are the same. Also, the concept of equality a.e. is equality in £>°. Hence

LX = L>.

EXERCISE 24. If g € £ (see Exercise 23), then ||g[l. = sup{|[ fg| : [ f|ly = 1}, so the

map g — ¢, is an isometry from £ into (L')*. Conversely, if M (g) < oo as in Theorem

533 then g € £~ and M (g) = [lg].

Solution. Let g € £* and f € L'. We will prove that Holder’s inequality holds in this
case. Let F' = {x € X: f(x) # 0}, which is o-finite since f € L', and write F' = |2, F,,
with {F,} C M a disjoint sequence and u(F,,) < oo for all n € N.

Hence pu(F, N {x € X: |g(x)| > ||gll+}) = 0, since {x € X: |g(x)| > ||g||+} is locally null.
Thus |g(x)| < ||g]|« a.e. on F, for each n € N, hence |g(x)| < ||g]+ a.e. on F' and thus

/ fol = / fol < / Fllgll. = / gl = 171 lgll.

From this it follows easily that o := sup{!f fg} =1 < gl

Now given € > 0, let A = {x € X: |g(x)| > a + €}. Assume that A is not locally
null, then there exists F' € M with u(F) < oo with (AN F) > 0 (and clearly we have
p(ANF) < p(F) < oo and we can assume that F' C A, for otherwise we take AN F' instead
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of F). Setting f = p(F) 'xrSgn g we obtain || f]j; =1 and

oz [fo=uF)" [ 1oz a+e
F

which is a contradiction. Hence A is locally null, which implies that ||g||. < a + €. Since
e > 0 is arbitrary we obtain ||g||. < o. Therefore ||g|l. = o = sup{|[ fg| : || f]1 = 1}.

This last part work as well with M, (g) replacing «, and we obtain ||g||. < My (g), so
g € L. Holder’s inequality shows that M (g) < ||g||« and the equality holds.

EXERCISE 25. Suppose u is decomposable (see Exercise 15 in Section . Then every
¢ € (L')* is of the form ¢(f) = [ fg for some g € £, and hence (L')* = L (see Exercises
23 and 24), where = means they are isometrically isomorphic. (If F is a decomposition of
and f € L', there exists {E;} C F such that f = Zj‘;l fxg, where the series converges in
L')

Solution. Let F C M a decomposition of i (see the properties of F in Exercise 15 of
Section . In each F' € F, we identify £>(F') with the subset of £ composed by function

that are zero (in £>°) outside F. Since u(F) < oo, using item (b) of Exercise 23 we have
LX(F) = L>®(F). Also if h € L®(F) then ||| peo(r) = [|h]|+,coo(r) and

{o € X: [h@)| >[hllmy} = {x € F: [h@)] > [1hllmgy} U e € Fo: [h(@)] > bl
C {x € F: |h(a)] > |hlli=(my} U {x € F: h(z) # 0}
= {z € F: |h(@)| > |hllcw)} U{z € F°: hiz) # 0},

thus {z € X: |h(x)| > ||h|[z(p} is locally null, then [|A][. < ||h]|Lo (-

Also, we identify L'(F) with the subset of L' composed of functions that are zero a.e.
outside I

From Theorem [5.3.3] for each F© € F we obtain a function gr € L>(F) such that

lgrlls < llgrllee < 110l and ¢(f) = [ fgr for each f € LI(F).
Define g = gr in each F' € F. For a Borelian B C C, we have

g~ (B)NF = (9r)"'(B) € M

since g is measurable for each F', and property (iv) of the definition of decomposability, we

obtain g measurable. Also

{veX:|gx)|>a} = J{z € F:lgr(z)| > a}.
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Taking a = suppcr ||gr|«, we have a < ||¢|| and the above inclusion gives us ||g|l. < a < |||

Now given f € L', for each n € N, the set A, = {x € X: |f(x)| > 1/n} has finite measure
and using item (iii) of definition of decomposability we obtain p(A,) = Y~ per (A N F),
and since this sum is finite, we obtain p(A4, N F) = 0 for all except a countable number of
F € F. The collection of all these sets (for all n € N) is also countable subset of F, and we

will enumerate them as {E}}.

We now will prove that f =0 a.e. in B = (U;’il Ej)c = Urgp, I For F ¢ {E;} and
A={z e X: f(z) # 0} we have

AnF=JA.nF
n=1
and hence p(ANF) = 0. Now assume that f is not zero a.e. in B, that is, there exists C' C B
with p(C) > 0 such that p(ANC) > 0. Since ANC =, (A, NC) we have u(A,NC) >0
for some n € N. Since p(A, NC) < oo we obtain

A NC) =D p(A,NCNF),
FeF
and hence p(A, NC'NF) > 0 for some F' € F. Since C' C B, this set F' cannot be any {£}},
but then
0<pu(A,NCNE)<u(ANF)=0,

which is a contradiction, hence f = 0 a.e. in B. Hence f = Zj; [xE; a.e. and since

=270 fxe;| <2If| € L, from the DCT we obtain

—0 asn — oo,

/‘f—;fx@

that is f =372, fxg, in L', thus

o(f) =) o(fxe) = fop, = faxe,
z - z/ . ;/gm
= li / j:r / "L Ej»
&;/mvﬂfmﬂ

and since fgx 5 — fg ae. and |foxyr gl < |fg] € L' (using Holder for f € L' an
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g € L), from the DCT applied in the last equality we obtain

o(f) ZT}ggo/ngU;lEj = /fg-
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(M, N)-measurable,
C! diffeomorphism, {163
F,-sets, [9]

F,s-sets, [0

Gs-sets, [9]

Gso-sets, [9]
M-measurable, [73]
p-almost everywhere,
p-null set,
p¥-measurable,
p-almost everywhere, [24]
(*-measurable,
o-additivity,
o-algebra,

o-algebra generated, [74]

o-algebra of countable or co-countable sets, []

o-finite, 20}
o-finite for p, [20]
o-ring, [I4]
o-additivity,
o-finite set,

fo = fin L', [I02
x-section, [T40]
y-section, [I40]

a.e., [24]

absolutely continuous, [185

algebra,
Borel o-algebra, [9]
generated o-algebra, [0]
o-algebra, []

almost every z,

almost everywhere,

a.e., [24]

almost uniform convergence, [12§|

beta function, [111
Borel
o-algebras, [9)
sets, [9]
Borel o-algebra, [9]
Borel measure,
Borel sets, [J]

borelians, [9]

Cantor function, [63]

Cantor set,
Cantor-Lebesgue function,
Cantor-Lebesgue function.,
Cauchy in measure,
characteristic function, [77]
complete,

completion,

completion of o-algebra,

INDEX
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complex measure, 196
conditional expectation, [196
conjugate exponent, 205
conjugate exponents, 210]
convergence in L', [102]
converges in measure, [120|
coordinate map, [7]
countable additivity,
countable or co-countable
o-algebra, [0]
counting measure, 22]

cube,

decomposable,
determinant,

Dirac measure,
distribution function,

elementary family,

elementary type transformations, [I59
essential range,

essential supremum,

extended p-integrable, [I7§]

extended real numbers,

finite, [20]
finite additivity,

finitely additive measure, [I9]
for almost every x,
fractional integral,

gamma function,
generalized Cantor set, [63]

generated, [6]

h-intervals,
Holder inequality,
Hahn decomposition of v,
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indicator function, [77]
inner, [I57]

inner approximation, [I56|
inner measure, [43]
integrable, 98],

integrable function, [98]
integrable on F,

integrable on a measurable set,
integral, [89]

Jordan content, [I57]
Jordan decomposition of v,

Lebesgue (Borel) measurable,
Lebesgue decomposition, (188
Lebesgue integral,

Lebesgue integrals, [110

Lebesgue measurable sets, [60]

Lebesgue measure,
Lebesgue-Stieltjes measure,

locally measurable,
locally measurable set, [32]

locally null,
lower integrals,

lower sums, [106

measurable,
measurable function on a subset, [74]
measurable on E, [74]
measurable sets, [19)
measurable space,
measure, 19
o-finite measure,
Borel measure,
complete measure,
completion measure,

counting measure, 22]



Dirac measure, product measure, [139
finite measure, @ product space, |Z|

finitely additive measure,
Radon-Nikodym derivative, [188

Radon-Nikodym theorem, (188
rectangles, [I13§]

Riemann integrable,
Riemann integrable function, {106

Riemann integral,
ring, [T
o-ring, [14]

inner measure, [43]
measure space, [20]
outer measure, [35]
point mass measure, 22|
saturated measure,
semifinite measure,

measure space, [20]

mesh,
mesh of a partition, o-algebra generated by a family of functions,
monotone class, e\
generated, saturated,
mutually singular, saturation, [32]
section,
negative, [I7| semi ﬁni‘?@

negative part, [76]

semifinite part,
negative parts, [70|

sides, [152]

sign function, [70]

signed measure,
simple function, [77]

negative variations, [I8]]

null,
null set,

-null set, |23
prnull set, 23 singular with respect to u, [180

open middle ot?, standard representation, [7§|
outer approximation, [I50]
outer content, [I57]

outer measure, [35]

total variation,
total variation of v, [I8]]

uniformly integrable, [19]]
partition, [106] upper, [[05]

point mass, 22]

polar decomposition,
positive, [76], [[78] [I8]]
positive measures, [I77]
positive part, [70]
premeasure, 3§

product o-algebra, [7]
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