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CHAPTER 1

MEASURE SPACES

1.1 σ-ALGEBRAS

In this section X is a nonempty set, N = {1, 2, 3, · · · } represents the positive integers and
N0 = {0, 1, 2, 3, · · · } represents the nonnegative integers.

Definition 1.1.1. An algebra of sets in X is a nonempty collection A of subsets of X
such that given A,B ∈ A we have

A ∪B ∈ A and Ac = X \ A ∈ A.

In other words, A is an algebra if it is closed under unions and complements.

It is clear that if A is an algebra then given A,B ∈ A we have A ∩ B ∈ A, since
A ∩B = (Ac ∪Bc)c. Now if n is a fixed positive integer and E1, · · · , En ∈ A then

n⋃
i=1

Ei ∈ A and
n⋂
i=1

Ei ∈ A.

Moreover we have the following:

Proposition 1.1.2. If A is an algebra in X then ∅ ∈ A and X ∈ A.

Proof. Since A is nonempty, there exists a set A ∈ A. Therefore we have ∅ = A ∩ Ac ∈ A
and also X = ∅c ∈ A. �

Definition 1.1.3. A σ-algebra A in X is an algebra A which is closed under countable

unions, that is, if {En}n∈N ⊂ A and E =
∞⋃
n=1

En then E ∈ A.
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Clearly a σ-algebra A is also closed by countable intersections, since
⋂
n

En = (
⋃
n

Ec
n)c.

Remark 1.1.4. It is worth to point out that an algebra A is a σ-algebra if it is closed
under disjoint unions. In fact let {En}n∈N ⊂ A. Then given k ∈ N we have

Fk = Ek \
( k−1⋃
n=1

En

)
= Ek ∩

( k−1⋃
n=1

En

)
∈ A.

Hence the sequence {Fk}k∈N is in A, is pairwise disjoint and

∞⋃
n=1

En =
∞⋃
k=1

Fk ∈ A.

Example 1.1.5. Given a nonempty set X, are σ-algebras:

1. A = {∅, X}.

2. A = P(X), the collection of all subsets of X.

3. If X is uncountable:

A = {E ⊂ X : E is countable or Ec is countable}.

In fact, given A,B ∈ A then A ∪ B is countable if both A and B are countable and
(A∪B)c = Ac ∩Bc is countable if at least one of them has countable complement. Also
Ac ∈ A, thus A is an algebra. A similar argument shows that

⋃
n∈NEn ∈ A if En ∈ A

for all n ∈ N, and hence A is a σ-algebra.

This σ-algebra is called the σ-algebra of countable or co-countable sets.

Proposition 1.1.6. Let {Aλ}λ∈Λ be a collection of σ-algebras in X, indexed over a set
Λ. Then ⋂

λ∈Λ

Aλ = {E ⊂ X : E ∈ Aλ for all λ ∈ Λ}

is also a σ-algebra in X.

Proof. It is straightforward. �

Let E ⊂ P(X). Then, using Proposition 1.1.6, there is a unique smallest σ-algebraM(E)

which contains E , namely, the intersection of all σ-algebras in X which contain E (there is
always at least one, namely P(X)).
M(E) is called the σ-algebra generated by E .
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Lemma 1.1.7. If E ⊂M(F) thenM(E) ⊂M(F).

Proof. SinceM(F) is a σ-algebra containing E , by definition, it containsM(E). �

1.2 PRODUCT σ-ALGEBRAS
Let {Xλ}λ∈Λ be a collection of nonempty sets and consider the product space

X =
∏
λ∈Λ

Xλ =
{
f : Λ→

⋃
λ∈Λ

Xλ such that f(λ) ∈ Xλ for each λ ∈ Λ
}
.

We denote for simplicity the function f by (xλ)λ∈Λ, where xλ = f(λ) for each λ ∈ Λ.
Consider also for each α ∈ Λ the coordinate map πα : X → Xα, given by

πα((xλ)λ∈Λ) = xα.

Now consider a σ-algebraMλ in Xλ for each λ ∈ Λ. For a fixed α ∈ Λ and E ∈ Mα,
consider the set

π−1
α (E) = {(xλ)λ∈Λ : xα ∈ E},

and also the collection of sets
E =

⋃
α∈Λ

⋃
E∈Mα

π−1
α (E).

The σ-algebra generated by E is called the product σ-algebra in X and is denoted by
⊗λ∈ΛMλ. If Λ = {1, · · · , n} we denote ⊗λ∈ΛMλ = ⊗ni=1Mi =M1 ⊗ · · · ⊗Mn.

Proposition 1.2.1. If Λ is countable, them ⊗λ∈ΛMλ is the σ-algebra generated by

F =
{∏
λ∈Λ

Eλ : Eλ ∈Mλ

}
.

Proof. Given Eλ ∈Mλ, define Eβ = X for all β 6= λ. Hence

π−1
λ (Eλ) = {(xβ)β∈Λ : xλ ∈ Eλ} =

∏
β∈Λ

Eβ,

which means that E ⊂ F and hence ⊗λ∈ΛMλ =M(E) ⊂M(F).
On the other hand given

∏
λ∈ΛEλ ∈ F we have

∏
λ∈Λ

Eλ =
⋂
λ∈Λ

π−1
λ (Eλ)

(∗)
∈ M(E) = ⊗λ∈ΛMλ,
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where in (∗) we used the fact that Λ is countable and ⊗λ∈ΛMλ is a σ-algebra. Hence
F ⊂ ⊗λ∈ΛMλ, and by Lemma 1.1.7 we obtain M(F) ⊂ ⊗λ∈ΛMλ, which concludes the
proof. �

Proposition 1.2.2. Suppose thatMλ is generated by Eλ. Then

(a) ⊗λ∈ΛMλ is generated by
E1 =

⋃
λ∈Λ

⋃
E∈Eλ

π−1
λ (E).

(b) if Λ is countable then ⊗λ∈ΛMλ is generated by

F1 =
{∏
λ∈Λ

Eλ : Eλ ∈ Eλ
}
.

Proof. (a). ClearlyM(E1) ⊂ ⊗λ∈ΛMλ. For the converse, fix λ ∈ Λ and define the set M̃λ as

M̃λ = {E ⊂ Xλ : π−1
λ (E) ∈M(E1)}.

We claim that M̃λ is a σ-algebra that contains Eλ. In fact, if {An}n∈N ⊂ M̃λ we have

π−1
λ (An) ∈M(E1) for each n ∈ N.

Hence
π−1
λ

( ⋃
n∈N

An

)
=
⋃
n∈N

π−1
λ (An) ∈M(E1),

and also
π−1
λ (Ac1) = (π−1

λ (A1))c ∈M(E1),

which proves that M̃λ is a σ-algebra. Now if E ∈ Eλ then π−1
λ (E) ∈ E1, and hence

π−1
λ (E) ∈M(E1), which shows that Eλ ⊂ M̃λ, and concludes the proof of our claim.

Now, using Lemma 1.1.7, we haveMλ ⊂ M̃λ. This proves that π−1
λ (E) ∈M(E1) for all

E ∈ Mλ, which means that E ⊂ M(E1), and another application of Lemma 1.1.7 gives us
⊗λ∈ΛMλ ⊂M(E1), and proves (a).

(b). This follows from (a) as in the proof of Proposition 1.2.1. �

1.3 BOREL σ-ALGEBRAS ON TOPOLOGICAL SPACES
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Definition 1.3.1. Let (X, τ) be a topological space and BX be the σ-algebra generated by
τ , that is, BX =M(τ). This σ-algebra is called the Borel σ-algebra in X and its sets are
called Borel sets or simply borelians.

It is clear that, from the definition of σ-algebra, BX is also the σ-algebra generated by
the closed subsets of X.

On BX we have sets of the form:

0. all the open and closed sets of X;

1. countable intersection of open sets, which are called Gδ-sets;

2. countable union of closed sets, which are called Fσ-sets;

3. countable union of Gδ-sets, which are called Gδσ-sets;

4. countable intersection of Fσ-sets, which are called Fσδ-sets;

5. and so on...

Proposition 1.3.2. Let (X1, τi) be topological spaces, for i = 1, · · · , n and consider the

product space
n∏
i=1

Xi with the product topology. Then ⊗ni=1BXi ⊂ BX . Moreover, if each Xi

has a countable basis for τi, then ⊗ni=1BXi = BX .

Proof. By Proposition 1.2.2 item (b), we know that ⊗ni=1BXi is generated by the family

F1 =
{ n∏
i=1

Ei : Ei is open in Xi

}
,

which is a family of open sets in X with the product topology, hence ⊗ni=1BXi ⊂ BX .
Now assume that each Xi has a countable basis Ei for τi. Hence each BXi is generated

by Ei and again, using Proposition 1.2.2, ⊗ni=1BXi is generated by F2 = {
∏n

i=1Ei : Ei ∈ Ei}.
But an open set E in X is a set of the form E =

∏n
i=1Ei, where each Ei is open in Xi.

Each Ei can be written as a countable union of elements in Ei, which implies that E is a
countable union of elements in F2 and hence E ∈M(F2) = ⊗ni=1BXi . By Lemma 1.1.7, we
have BX ⊂ ⊗ni=1BXi , and we conclude the proof. �

In R with the usual topology, the Borel σ-algebra BR has several sets that generate it.
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Proposition 1.3.3. The Borel σ-algebra BR is generated by any of the following collec-
tions:

E1 = {(a, b) : a < b}, E2 = {[a, b] : a < b}, E3 = {[a, b) : a < b},

E4 = {(a, b] : a < b}, E5 = {(−∞, a) : a ∈ R}, E6 = {(a,∞) : a ∈ R},

E7 = {(−∞, a] : a ∈ R} and E8 = {[a,∞) : a ∈ R}.

Proof. Since each open set in R is the countable union of open intervals, we have BR =M(E1).
We will show now that each element of the collections Ej, j = 2, · · · , 8, can be written using
only elements of E1 and operations that are closed for σ-algebras.

We have

[a, b] =
∞⋂
n=1

(a− 1
n
, b+ 1

n
), [a, b) =

∞⋂
n=1

(a− 1
n
, b), (a, b] =

∞⋂
n=1

(a, b+ 1
n
),

(−∞, a) =
∞⋂

n=da+1e

(−n, a), (a,∞) =
∞⋂

n=da+1e

(a, n)

(∞,−a] =
∞⋂

n=da+1e

(−n, a+ 1
n
) and [a,∞) =

∞⋂
n=da+1e

(a− 1
n
, n),

and thus we conclude that each Ej generates the same σ-algebra as E1, which is BR. �

As a direct consequence of Proposition 1.3.2, we have

BRn = ⊗ni=1BR. (1.3.1)

1.3.1 THE EXTENDED REAL NUMBERS

We define the set of the extended real numbers as

R = R ∪ {−∞,∞} = [−∞,∞],

which is the usual real line R, together with the symbols −∞ and ∞.

The order in R is the usual order of R, together with the relations

−∞ < x <∞ for all x ∈ R.

As for operations, we have the usual sum (+) and product (·) on R, together with the

- 10 -



operations

∞ · x =

∞ if x > 0 or x =∞,

−∞ if x < 0 or x = −∞.
and −∞ · x =

−∞ if x > 0 or x =∞,

∞ if x < 0 or x = −∞.

Here we will set, by convention, that ∞ · 0 = −∞ · 0 = 0. The expressions ∞−∞ and
−∞+∞ are indeterminations.

The topology τ in R is generated by the sets of the form [−∞, a) and (a,∞], for each
a ∈ R. Clearly, since (a, b) = [−∞, b) ∩ (a,∞] for a < b, we can see that each open set in R
is also open in R.

Let BR be the Borel σ-algebra of R, which is generated by the sets of the form [−∞, a)

or by the sets of the form (a,∞], with a ∈ R. Clearly BR ⊂ BR. Furthermore, we have the
following:

Theorem 1.3.4. A ∈ BR if and only if A ∩ R ∈ BR.

Proof. First note that {∞} =
⋂∞
n=1(n,∞] ∈ BR and {−∞} =

⋂∞
n=1[−∞, n) ∈ BR, and we

can decompose each subset A of R as A = (A ∩ R) ∪ (A ∩ {∞}) ∪ (A ∩ {−∞}). Hence, if
A ∩ R ∈ BR then A ∈ BR.

Now define
M = {E ⊂ R : E ∩ R ∈ BR}.

From the above, M ⊂ BR. To prove the converse inclusion, we prove that M is a
σ-algebra that contains all subsets of the form [−∞, a), for a ∈ R. ThusM will contain BR.

It is clear that [−∞, a) ∈ M, since [−∞, a) ∩ R = (−∞, a) ∈ BR. In particular, M is
nonempty. If {Ei} ⊂ M, we have

( ∞⋃
i=1

Ei

)
∩ R =

∞⋃
i=1

(Ei ∩ R)︸ ︷︷ ︸
∈BR

∈ BR,

and this
∞⋃
i=1

Ei ∈M.

Now if E ∈M, then

(R \ E) ∩ R = R \ E = R \ (E ∩ R)︸ ︷︷ ︸
∈BR

∈ R,

and thus R \ E ∈M, and concludes the proof.

�
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We can turn R into a metric space. The function d : R× R→ [0,∞) given by

d(x, y) = | arctan(x)− arctan(y)| for all x, y ∈ R, (1.3.2)

is a metric. Clearly, if x, y ∈ R, then

d(x, y) 6 sup
z∈R

1

1 + z2
· |x− y| 6 |x− y|, (1.3.3)

using the Mean Value Theorem. If τ̃ the topology in R generated by the metric d, we have:

Proposition 1.3.5. τ̃ = τ , that is, the topology induced by the metric d is τ .

Proof. This result follows from the fact that arctan: R→ [−π
2
, π

2
] is continuous with continu-

ous inverse, defining obviously tan(−π
2
) = −∞ and tan(π

2
) =∞. �

1.4 ELEMENTARY FAMILIES

Definition 1.4.1. Let X be a nonempty set. A collection E of subsets of X is called an
elementary family if it satisfies:

(i) ∅ ∈ E;

(ii) if E,F ∈ E then E ∩ F ∈ E;

(iii) if E ∈ E then Ec is a finite disjoint union of elements of E.

Let E be an elementary family in X. Define

A = {A ⊂ X : A is a finite disjoint union of elements of E}. (1.4.1)

Lemma 1.4.2. If A ∈ A and B ∈ E then A ∪B ∈ A.

Proof. We have A =
⋃n
i=1Ei and B

c =
⋃m
j=1 Fj where Ei, Fj ∈ E and the unions are disjoint.

Now

Ei \B = Ei ∩Bc =
m⋃
j=1

Ei ∩ Fj for each i = 1, · · · , n,

and therefore

A \B =
n⋃
i=1

(Ei \B) =
n⋃
i=1

m⋃
j=1

Ei ∩ Fj,
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which, since Ei ∩ Fj ∈ E , is a finite disjoint union of elements of E and therefore is in A.
But A ∪B = (A \B) ∪B, which again is a finite disjoint unions of elements of E (recall

that B ∈ E), and thus A ∪B ∈ A. �

Corollary 1.4.3. If A1, · · · , An ∈ E then
⋃n
i=1Ai ∈ A.

Proof. Assume that the result is true for n > 2 (the case n = 2 is Lemma 1.4.2), and we have

n+1⋃
i=1

Ai =
( n⋃
i=1

Ai

)
∪ An+1,

and Lemma 1.4.2 proves the result, since
⋃n
i=1Ai ∈ A, by induction, and An+1 ∈ E by

hypothesis. �

Proposition 1.4.4. If A,B ∈ A then A ∪B ∈ A.

Proof. Write A =
⋃
i=1,··· ,nEi and B =

⋃m
j=1 Fj, Ei, Fj ∈ E and both are disjoint unions.

Defining Gk = Ek for k = 1, · · · , n and Gk = Fk−n for k = n+ 1, · · · , n+m, we have

A ∪B =
n+m⋃
k=1

Gk ∈ A,

by Corollary 1.4.3, since Gk ∈ E for k = 1, · · · , n+m.
�

Proposition 1.4.5. If A ∈ A then Ac ∈ A.

Proof. We write A =
⋃n
i=1 Ei with Ei ∈ E and Ei ∩ Ej = ∅ for i 6= j. Now we can write

Ec
i =

mi⋃
j=1

Fi,j where Fi,j ∈ E ,

and the union is disjoint. Therefore

Ac =
n⋂
i=1

Ec
i =

n⋂
i=1

mi⋃
j=1

Fi,j =
⋃{

F1,j1 ∩ · · · ∩ Fn,jn : ji = 1, · · · ,mi, i = 1, · · · , n
}
,

which is a finite disjoint union of elements in E , and is henceforth in A. �

With these results, the proof of the following theorem is immediate.

Theorem 1.4.6. Given an elementary family E , the collection A defined in (1.4.1) is an
algebra.
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Proof. Since E ⊂ A we have ∅ ∈ A. Now Propositions 1.4.4 and 1.4.5 show that A is closed
under union and complements, and hence it is an algebra. �

1.5 σ-RINGS

The section is the Exercise 1 in Page 24 of [1].

Definition 1.5.1. A collection R of subsets of a nonempty set X is called a ring if given
A,B ∈ R we have

A ∪B ∈ R and A \B ∈ R.

Definition 1.5.2. A collection R of subsets of a nonempty set X is called a σ-ring if it
is a ring and given {An}n∈N ⊂ R we have

A =
∞⋃
n=1

An ∈ R.

Clearly if R is a nonempty ring, then ∅ ∈ R, since given A ∈ R we have ∅ = A \A ∈ R.

Proposition 1.5.3. Given a ring R and A,B ∈ R we have A ∩B ∈ R.

Proof. If A,B ∈ R then A \B ∈ R and A ∩B = A \ (A \B) ∈ R. �

Proposition 1.5.4. If R is a σ-ring and {An}n∈N ⊂ R then A =
⋂∞
n=1An ∈ R.

Proof. Just write A = A1 \
(⋃∞

n=2(A1 \ An)
)
∈ R. �

Proposition 1.5.5. Let R be a nonempty ring (σ-ring). Then R is an algebra (σ-algebra)
if and only if X ∈ R.

Proof. It is clear that if X ∈ R then for each A ∈ R we have Ac = X \ A ∈ R and hence R
is an algebra (or σ-algebra).

Now for the converse if R is a nonempty algebra (or σ-algebra) we have ∅ ∈ R and hence
X = ∅c ∈ R. �

Proposition 1.5.6. If R is a nonempty σ-ring then the collection

M = {A ⊂ X : A ∈ R or Ac ∈ R}

is a σ-algebra.
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Proof. First we note that ∅ ∈ R, hence ∅ ∈ M. Now let A,B ∈ M. If A,B ∈ R then
A ∪ B ∈ R and hence A ∪ B ∈ M. When Ac and Bc are in R, and we get (A ∪ B)c =

Ac ∩Bc ∈ R and again A ∪B ∈M. Now, for the last case, if Ac ∈ R and B ∈ R we have
(A ∪B)c = Ac \B ∈ R, and so A ∪B ∈M.

Now if A ∈ M and A ∈ R then (Ac)c = A ∈ R and hence Ac ∈ M. If Ac ∈ R then
directly we obtain Ac ∈M, and henceM is a σ-algebra.

Now consider a countable collection {An}n∈N ⊂ M. The case where all An ∈ R or all
Acn ∈ R is analogous to the case with only two sets. We will focus in the case where there
exists a disjoint decomposition of N into two subsequences {nk}k∈N and {mk}k∈N such that
Ank ∈ R and Acmk ∈ R for all k. We write

( ∞⋃
n=1

An

)c
=
( ∞⋃
k=1

Acmk

)
︸ ︷︷ ︸

∈R

\
( ∞⋃
k=1

Ank

)
︸ ︷︷ ︸

∈R

∈ R,

and thereforeM is a σ-algebra. �

Proposition 1.5.7. If R is a nonempty σ-ring then the collection

M = {A ⊂ X : A ∩ F ∈ R for all F ∈ R}

is a σ-algebra.

Proof. Since R is nonempty, we have ∅ ∈ R and since ∅ ∩ F = ∅ ∈ R for all F ∈ R, we
have ∅ ∈M. In this case we also have X ∈M, since X ∩ F = F ∈ F for all F ∈M.

If {An}n∈N ⊂M then given F ∈ R we have

( ∞⋃
n=1

An

)
∩ F =

∞⋃
n=1

(An ∩ F )︸ ︷︷ ︸
∈R

∈ R,

and hence
⋃∞
n=1 An ∈M.

Now if A ∈M, we write Ac ∩ F = (X \ A) ∩ F = F \ (A ∩ F ) ∈ R, since F and A ∩ F
are in R, hence Ac ∈M, and concludes the proof thatM is a σ-algebra. �

1.6 SOLVED EXERCISES FROM [1, PAGE 24]

Exercise 1.
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Solution. This exercise is completely solved in Section 1.5.

Exercise 2.

Solution. This exercise is completely done in Proposition 1.3.3.

Exercise 3. In this subsection we show that ifM is an infinite σ-algebra then

(a) M contains an infinite sequence of nonempty disjoint sets.

(b) card(M) > c.

Solution to (a). Let {An}n∈N a sequence with distinct nonempty sets inM, which exist
sinceM is infinite.

We can assume that An+1 \ An 6= ∅, for all n ∈ N. In fact, if An+1 ⊂ An, then
An \ An+1 6= ∅ since otherwise we would have An = An+1 which would contradict the
assumption that the An’s are all distinct, and we replace An with An \ An+1 and we have

An+1 \ (An \ An+1) = An+1 6= ∅.

Now define Bn =
⋃n
i=1 Ai for each n ∈ N. Since M is a σ-algebra, Bn ∈ M for each

n ∈ N, and moreover Bn ⊂ Bn+1 for each n ∈ N, and from the previous assumption, we have
Bn+1 \ Bn 6= ∅. Setting now C1 = B1 and Cn = Bn \ Bn−1 for each n > 2. Thus Cn ∈ M
for each n ∈ N. Also, if x ∈ Ci ∩ Cj for i > j then we have x /∈ Bi−1 and x ∈ Bj, where
i− 1 > j, which gives us a contradiction and proves that {Cn}n∈N is an infinite sequence of
nonempty disjoint sets inM.
Solution to (b). Assume thatM is countable. By (a), we can assume that there exists a
sequence E = {An}n∈N of disjoint nonempty elements ofM.

Now we will construct the following function: given a nonempty subset J ⊂ N we define

ψ(J) =
⋃
j∈J

Aj ∈M(E) ⊂M,

and we complete the definition setting ψ(∅) = ∅. Thus we have constructed a function
ψ : P(N)→M, and since the family E is made of pairwise disjoint sets, we can see that ψ is
injective, which shows that card(M) > c.

Exercise 4. We show that an algebra A is a σ-algebra if and only if it is closed under
countable increasing unions, that is, if {En}n∈N ⊂ A and En ⊂ En+1 for each n ∈ N then
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⋃∞
n=1En ∈ A.

Solution. In fact, is it clear that if A is a σ-algebra, then it is closed by any countable
unions, and in particular, it is closed by countable increasing unions. Now for the converse,
assume that {An}n∈N is any countable sequence of elements in A.

Define Bn =
⋃n
k=1 Ak for each n ∈ N. Since A is an algebra, it is closed by finite unions,

and hence Bn ∈ A for each n ∈ N. Also, {Bn}n∈N is an increasing sequence and we have

∞⋃
n=1

An =
∞⋃
n=1

Bn ∈ A,

and thus A is a σ-algebra.

Exercise 5. LetM be the σ-algebra generated by a collection E of subsets of a nonempty
set X. Then

M =
⋃
F

M(F),

where F ranges over all countable subsets of E .
Hint: Show that the latter object is a σ-algebra.

Solution. We note that since F ⊂ E , we haveM(F) ⊂M(E) =M, and hence

⋃
F

M(F) ⊂M.

For the converse, note that E ⊂
⋃
FM(F). Thus, if we prove that

⋃
FM(F) is a

σ-algebra, then we obtain the other inclusion.
We denote M̃ =

⋃
FM(F). Clearly ∅ ∈ M̃. Now if {An}n∈N ⊂ M̃, for each n ∈ N

there exists a countable subset Fn of E such that An ∈M(Fn).
The union F =

⋃∞
n=1Fn is also a countable subset of E and

∞⋃
n=1

An ∈M(F),

and hence
⋃∞
n=1 An ∈ M̃. This shows that M̃ is a σ-algebra and completes the proof.
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CHAPTER2

MEASURES

2.1 BASIC NOTIONS AND DEFINITIONS
Let X be a nonempty set with a σ-algebraM.

Definition 2.1.1. A measure µ on (X,M) (or simply onM, or simply on X ifM is
understood) is a function µ : M→ [0,∞] such that

1. µ(∅) = 0.

2. if {En} is a pairwise disjoint sequence inM then

µ

(
∞⋃
n=1

En

)
=
∞∑
n=1

µ(En).

Condition (2) is called σ-additivity or countable additivity. This condition implies
finite additivity:

2∗. if E1, · · · , En are pairwise disjoint sets inM then

µ

(
n⋃
i=1

Ei

)
=

n∑
i=1

µ(Ei),

just by taking Ej = ∅ for j > n.
A function µ that satisfies (1) and (2∗), but not necessarily (2), is called a finitely

additive measure.

Definition 2.1.2. If X is a nonempty set andM is a σ-algebra on X, the pair (X,M)

is called a measurable space, and the sets inM are called measurable sets.
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If µ is a measure on (X,M), the triple (X,M, µ) is called a measure space.

Let (X,M, µ) be a measure space. We say that

(a) µ is finite if µ(X) <∞.

(b) µ is σ-finite if X =
⋃∞
j=1Ej where Ej ∈M and µ(Ej) <∞ for all j.

(c) semifinite if for each E ∈ M with µ(E) = ∞ then there exists F ∈ M with F ⊂ E

and 0 < µ(F ) <∞.

Following item (b) of this definition, we say that a subset E of X is called σ-finite for

µ if E =
⋃∞
j=1Ej where Ej ∈M and µ(Ej) <∞ for all j. If µ is finite then µ(E) <∞ for

each E ∈M since µ(X) = µ(E) + µ(Ec).

Theorem 2.1.3. Let (X,M, µ) be a measure space. Then

(a) (monotonicity) if E,F ∈M and E ⊂ F then µ(E) 6 µ(F ).

(b) (subadditivity) if {Ej} ⊂ M then µ
(⋃∞

j=1Ej

)
6
∑∞

j=1 µ(Ej).

Proof. (a) If E,F ∈M and E ⊂ F we have

µ(F ) = µ[E ∪ (F \ E)] = µ(E) + µ(F \ E),

and since µ(F \ E) > 0 we have µ(F ) > µ(E).

(b) Let F1 = E1 and Fj = Ej \
(⋃j−1

k=1 Ek

)
. Then {Fj} is a pairwise disjoint sequence inM,⋃∞

j=1Ej =
⋃∞
j=1 Fj and

µ

(
∞⋃
j=1

Ej

)
= µ

(
∞⋃
j=1

Fj

)
=
∞∑
j=1

µ(Fj) 6
∞∑
j=1

µ(Ej).

�

Proposition 2.1.4. If µ is a σ-finite measure on (X,M) then there exists a sequence
{Fj} of pairwise disjoint sets inM such that X =

⋃∞
j=1 Fj and µ(Fj) <∞ for all j.

Proof. Since µ is σ-finite, we have X =
⋃∞
j=1Ej where Ej ∈ M and µ(Ej) < ∞ for all j.

Now we set F1 = E1 and Fj = Ej \
(⋃j−1

k=1Ek

)
. Then the sequence {Ff} is pairwise disjoint,⋃∞

j=1 Fj =
⋃∞
j=1Ej = X and µ(Fj) 6 µ(Ej) <∞ by Theorem 2.1.3 item (a), which concludes

the proof of this result. �
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Example 2.1.5. Let X be a nonempty set, M = P(X) and f : X → [0,∞] a function.
Consider Af = {x ∈ X : f(x) > 0} and construct a measure µ onM as follows:

(i) µf (∅) = 0;

(ii) if E ∈ P(X) then we have two cases to consider: if E ∩ Af is uncountable, then
µf (E) =∞. Otherwise, we set

µf (E) =
∑

x∈E∩Af

f(x).

To prove that µf is a measure, it remains to prove the σ-additivity property. To that end
consider {Ej} ⊂ P(X) and E =

⋃∞
j=1Ej with disjoint unions. If Ej ∩ Af is uncountable for

some j, then E ∩ Aj is also uncountable, hence

µf (E) =∞ =
∞∑
j=1

µ(Ej).

Assume that Ej ∩ Af is countable, then E ∩ Af is also countable, and by the absolute
convergence and rearrangements property we have

µf (E) =
∑

x∈E∩Af

f(x) =
∞∑
j=1

∑
x∈Ej∩Af

f(x) =
∞∑
j=1

µf (Ej),

since {Ej ∩ A} is a pairwise disjoint sequence.

We obtain properties on the measure µf if we have properties of f .

Property 1. If f(x) <∞ for all x ∈ X then µf is semifinite.

Assume that µf (E) =∞. If f(x) = 0 for all x ∈ E then µf (E) = 0 by definition, which
is a contradiction. Hence there exists x ∈ E such that f(x) > 0 and considering F = {x} we
have F ⊂ E and 0 < µf (F ) = f(x) <∞. Thus µf is semifinite.

Property 2. µf is σ-finite if and only if µ is semifinite and Af is countable.

Assume that µf is σ-finite. Using Proposition 2.1.4 there exists a sequence of pairwise
disjoint sets {Fj} such that µf(Fj) < ∞ for all j and X =

⋃∞
j=1 Fj. If E is such that

µf (E) =∞. If µf (E ∩ Fj) = 0 for all j, then

µf (E) = µf (E ∩X) = µf

(
∞⋃
j=1

(E ∩ Fj)

)
=
∞∑
j=1

µf (E ∩ Fj) = 0,

which is a contradcition, hence there exists j such that µf (E ∩ Fj) > 0. Setting F = E ∩ Fj
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then F ⊂ E and 0 < µf (F ) 6 µf (Fj) <∞, which means that µf is semifinite.
Also if Af =

⋃∞
j=1Af ∩Fj and since µf (Af ∩Fj) 6 µf (Fj) <∞ we have Af ∩Fj countable

for all j. Hence Af is countable.
For the converse, if µf (X) <∞ there is nothing to prove (just take E1 = X and Ej = ∅

for j > 2). So consider that µf(X) = ∞. Since Af is countable, consider Af = {xj}
where the sequence consists of distinct elements and define Fj = {xj} for all j. Then
0 < µf (Fj) = f(xj) <∞ and setting F0 = Acf we have µf (F0) = 0 and

X = Af ∪ Acf =
∞⋃
j=0

Fj,

which shows that µf is σ-finite.
Two particular cases are very important. If f(x) = 1 for all x ∈ X, then µf is called

counting measure. If f(x0) = 1 and f(x) = 0 for x 6= x0 then µf is called point mass or
the Dirac measure.

Example 2.1.6. Let X be an uncountable set and M the σ-algebra of countable or
co-countable sets. Define µ onM by setting

µ(E) =

0, if E is countable,

1, if Ec is countable.

We prove that µ is a measure on M. Clearly µ(∅) = 0. Now if {Ej} ⊂ M and
E =

⋃∞
j=1 Ej with disjoint union, then if Ej is countable for all j we have µ(Ej) = 0 for all

j, E is countable and

µ(E) = 0 =
∞∑
j=1

µ(Ej).

On the other hand, if Ec
j0

is countable for some Ej0 then Ec =
⋂∞
j=1 E

c
j ⊂ Ec

j0
is also

countable. Since the {Ej} is a pairwise disjoint sequence
⋃
j 6=j0 Ej ⊂ Ec

j0
is also countable,

hence Ej is countable for each j 6= j0, and we have

µ(E) = 1 = µ(Ej0) =
∞∑
j=1

µ(Ej).

Example 2.1.7. Let X be an infinite set andM = P(X). Define µ(E) = 0 if E is finite
and µ(E) =∞ if E is infinite. Then µ is a finitely additive measure but not a measure.

Clearly if E1, · · · , En is a finite sequence of subsets of X, then we have two cases: if all
Ei are finite then E =

⋃n
i=1Ei is also finite and hence µ(E) = 0 =

∑n
i=1 µ(Ei). If, however,

- 22 -



one of them is infinite then E is infinite and µ(E) =∞ =
∑n

i=1 µ(Ei). Hence µ is a finitely
additive measure.

Now if {xn} is an infinite sequence of distinct elements of X then defining En = {xn}
and E =

⋃∞
n=1 En, we can easily see that µ is not a measure.

Theorem 2.1.8. Let (X,M, µ) be a measure space and {Ej} a sequence inM.

(a) (Continuity from below) If Ej ⊂ Ej+1 for all j then

µ

(
∞⋃
j=1

Ej

)
= lim

j→∞
µ(Ej).

(b) (Continuity from above) If Ej ⊃ Ej+1 and µ(E1) <∞ then

µ

(
∞⋂
j=1

Ej

)
= lim

j→∞
µ(Ej).

Proof. (a) If µ(Ej0) =∞ for some j0 then µ(Ej) =∞ for all j > j0 and µ
(⋃∞

j=1Ej

)
=∞

hence µ
(⋃∞

j=1 Ej

)
=∞ = limj→∞ µ(Ej).

Now assume that µ(Ej) <∞ for all j. Hence setting E0 = ∅ we have

µ(Ej) = µ(Ej−1) + µ(Ej \ Ej−1),

and hence, by the finiteness of µ(Ej) for all j, we have µ(Ej \Ej−1) = µ(Ej)−µ(Ej−1). Thus
we have

µ

(
∞⋃
j=1

Ej

)
= µ

(
∞⋃
j=1

(Ej \ Ej−1)

)
=
∞∑
j=1

µ(Ej \ Ej−1) = lim
j→∞

j∑
k=1

µ(Ek \ Ek−1) = lim
j→∞

µ(Ej).

(b) Let Fj = E1 \ Ej, then Fj ⊂ Fj+1 for all j, µ(E1) = µ(Fj) \ µ(Ej) and
⋃∞
j=1 Fj =

E1

(⋂∞
j=1Ej

)
. Using item (a) we have

µ(E1) = µ

(
∞⋂
j=1

Ej

)
+ lim

j→∞
µ(Fj) = µ

(
∞⋂
j=1

Ej

)
+ lim

j→∞
[µ(E1)− µ(Ej)],

and since µ(E1) <∞ we obtain the result by subtracting µ(E1) from both sides. �

Let (X,M, µ) be a measure space. A set E ∈ M such that µ(E) = 0 is called a null

set. If more precision is needed to specify the measure, we say a µ-null set. Using the

- 23 -



subadditivity property, we know that any countable union of null sets is a null set.

Let P be a property, and define P (x) as meaning: x satisfies the property P . If there
exists a µ-null set N such that P (x) for all x ∈ X \N , we say that property P holds almost

everywhere (abbreviated by a.e.) or for almost every x. If more precision is needed for
the measure, we use µ-almost everywhere.

Assume that P holds µ-almost everywhere. If ∼ P (x) means that x does not satisfy the
property P , we point out that F = {x ∈ X : ∼ P (x)} doesn’t need to have zero measure,
since it is not required that F ∈M. However, it does imply that F ⊂ N for some N ∈M
with µ(N) = 0.

If µ(E) = 0 and F ⊂ E then µ(F ) = 0 if F ∈M. But this last statement does not need
to be true in general. A measure that contains all subsets of null sets is called complete.
Complete measures simplify the theoretical results, and can be always achieved by enlarging
(if necessary) the domain of the measure µ, as follows:

Theorem 2.1.9. Suppose that (X,M, µ) is a measure space. Let N = {N ∈M : µ(N) =

0} and
M = {E ∪ F : E ∈M and F ⊂ N for some N ∈ N}.

ThenM is a σ algebra, and there exists a unique extension µ of µ to a complete measure
onM.

Proof. We prove first thatM is a σ-algebra. Since ∅ ∈M and µ(∅) = 0 we haveM⊂M.
Assume that {Aj} is a sequence inM with pairwise disjoint sets. Then Aj = Ej ∪ Fj with
Ej ∈M and Fj ⊂ Nj with Nj ∈ N . Then

∞⋃
j=1

Aj =

(
∞⋃
j=1

Ej

)
︸ ︷︷ ︸
∈M

∪

(
∞⋃
j=1

Fj

)
︸ ︷︷ ︸
⊂

⋃∞
j=1Nj

, (2.1.1)

and
⋃∞
j=1 Nj ∈ N , by the subadditivity property.

Now if A = E ∪ F ∈M with E ∈M and F ⊂ N ∈ N , then considering F1 = F \E and
N1 = N \ E we have F1 ⊂ N1 ∈ N and A = E ∪ F1 with E ∩ F1 = ∅. Hence we can always
assume that E ∩N = ∅ (and hence E ∩ F = ∅). Thus we have

Ac = (E ∪ F )c = (E ∪N)c︸ ︷︷ ︸
∈M

∪ (N \ F )︸ ︷︷ ︸
⊂N∈N

∈M,

thereforeM is a σ-algebra.
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Now for A = E ∪ F , with E ∈M and F ⊂ N , where N ∈ N , we define

µ(A) = µ(E).

First we have to prove that µ is well defined, that is, if A = E1 ∪ F1 = E2 ∪ F2 where
E1, E2 ∈M and Fi ⊂ Ni ∈ N for i = 1, 2. We have E1 ⊂ E2 ∪ F2 ⊂ E2 ∪N2 and hence

µ(E1) 6 µ(E2 ∪N2) 6 µ(E2) + µ(N2)︸ ︷︷ ︸
=0

= µ(E2).

Analogously we have µ(E2) 6 µ(E1) and therefore µ(E1) = µ(E2).
If E ∈M then µ(E) = µ(E), hence µ is an extension of µ. Now assume that {Aj} is a

sequence of pairwise disjoint sets inM. Then Aj = Ej ∪ Fj where Ej ∈ M and Fj ⊂ Nj,
with Nj ∈ N . Since they are disjoint, we have in particular that {Ej} is a sequence of
pairwise disjoint sequences inM. Then (2.1.1) hold and

µ

(
∞⋃
j=1

Aj

)
= µ

(
∞⋃
j=1

Ej

)
=
∞∑
j=1

µ(Ej) =
∞∑
j=1

µ(Aj),

which shows that µ is a measure onM.
Now we have to show that µ is complete. Assume that A ⊂ B where B ∈M and µ(B) = 0.

Then B = E ∪ F where E ∈M with µ(E) = 0 and F ⊂ N where N ∈ N . Since µ(E) = 0

we have also E ∈ N and hence A = ∅ ∪ [(E ∪ F ) ∩ A], where (E ∪ F ) ∩ A ⊂ E ∪ F ∈ N ,
and proves that A ∈M.

Finally, it remains to prove the uniqueness of µ. To that end, assume that ν is a measure
inM which is an extension of µ, that is, ν = µ inM. First, note that if F ⊂ N ∈ N then
F = ∅ ∪ F ∈ M and ν(F ) 6 ν(N) = µ(N) = 0. Now if A ∈ M, where A = E ∪ F with
E ∈M, F ⊂ N ∈ N , and we can assume that E ∩ F = ∅. Therefore

ν(A) = ν(E ∪ F ) = ν(E) + ν(F ) = ν(E) = µ(E) = µ(A),

which proves that ν = µ, and completes the proof of the theorem. �

The measure µ of this previous theorem is called the completion of µ, andM is called
the completionM with respect to µ.

Proposition 2.1.10. Let (X,M, µ) be a measure space and let (X,M, µ) be its com-
pletion. If E ∈ M is such that µ(E) = 0 then there exists N ∈ M with µ(N) = 0 and
E ⊂ N .
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Proof. If E ∈M, then by definition, there exists G ∈M and F ⊂ N1 ∈ N with E = G ∪ F .
Since 0 = µ(E) = µ(G), we also have G ∈ N . Hence E = G ∪ F ⊂ N := G ∪ N1 and
N ∈ N . �

2.2 SOLVED EXERCISES FROM [1, PAGE 27]

Exercise 6.

Solution. This is done in Theorem 2.1.9.

Exercise 7. If µ1, · · · , µn are measure on (X,M) and a1, · · · , an ∈ [0,∞) then σni=1aiµi

is a measure on (X,M).

Solution. We set ν =
∑n

i=1 aiµi. Clearly

ν(∅) =
n∑
i=1

µi(∅) = 0.

Now if {Ej} is a sequence of pairwise disjoint elements ofM and E =
⋃∞
j=1Ej then

ν(E) =
n∑
i=1

aiµi(E) =
n∑
i=1

ai

∞∑
j=1

µi(Ej) =
∞∑
j=1

n∑
i=1

aiµi(Ej),

where in the last equality we used the rearrangement properties of absolute convergence of
series, and hence

ν(E) =
∞∑
j=1

ν(Ej).

Exercise 8. Definition: If {Ej} is a sequence of sets in X then we set lim inf Ej =⋃∞
j=1

⋂∞
n=j En and lim supEj =

⋂∞
j=1

⋃∞
n=j En.

Now if (X,M, µ) is a measure space and {Ej} ⊂ M then µ(lim inf Ej) 6 lim inf
j→∞

µ(Ej).

Also µ(lim supEj) > lim sup
j→∞

µ(Ej) provided that µ
(⋃∞

j=1Ej

)
<∞.

Solution. Note that {
⋂∞
n=j En}j is an increasing sequence of sets in M. From the

continuity from below (Theorem 2.1.8, item (a)), we have

µ(lim inf Ej) = µ

(
∞⋃
j=1

∞⋂
n=j

En

)
= lim

j→∞
µ

(
∞⋂
n=j

En

)
6 lim inf

j→∞
µ(Ej), .
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since
⋂∞
n=j En ⊂ Ej for each j.

For the other inequality, note that the sequence {
⋃∞
n=j En}j is decreasing and µ

(⋃∞
j=1Ej

)
<

∞. From the continuity from above (Theorem 2.1.8, item (b)) we have

µ(lim supEj) = µ

(
∞⋂
j=1

∞⋃
n=j

En

)
= lim

j→∞
µ

(
∞⋃
n=j

En

)
> lim sup

j→∞
µ(Ej),

since
⋃∞
n=j En ⊃ Ej for each j.

Exercise 9. If (X,M, µ) is a measure space and E,F ∈M then

µ(E) + µ(F ) = µ(E ∪ F ) + µ(E ∩ F ). (2.2.1)

Solution. In fact, if µ(E) = ∞ then µ(E ∪ F ) = ∞ and (2.2.1) is trivial, and the
same is true if µ(F ) = ∞. Assume then both µ(E) and µ(F ) are finite. Since E ∪ F =

(E \ F ) ∪ (E ∩ F ) ∪ (F \ E) we have

µ(E ∪ F ) = µ(E \ F ) + µ(E ∩ F ) + µ(F \ E),

but µ(E \ F ) = µ(E)− µ(E ∩ F ) and µ(F \ E) = µ(F )− µ(E ∩ E) and hence

µ(E ∪ F ) = µ(E) + µ(F )− µ(E ∩ F ),

which proves the result.

Exercise 9. Given a measure (X,M, µ) and E ∈M, define µE(A) = µ(A ∩ E) for each
A ∈M. Then µE is a measure.

Solution. Clearly µE(∅) = µ(A ∩ ∅) = µ(∅) = 0. Now if {Aj} is a sequence of a
pairwise disjoint sets inM then

µE

(
∞⋃
j=1

Aj

)
= µ

(
E ∩

∞⋃
j=1

Aj

)
= µ

(
∞⋃
j=1

(E ∩ Aj)

)
=
∞∑
j=1

µ(E ∩ Aj),

since {E ∩ Aj} is a pairwise disjoint sequence inM. Therefore µE is a measure onM.

Exercise 11. Let µ be a finitely additive measure. Then
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(a) µ is a measure if and only if µ is continuous from below.

(b) if µ(X) <∞, then µ is a measure if and only if it is continuous from above.

Solution to (a) If µ is a measure then the continuity from below follows from item (a)
of Theorem 2.1.8. Now assume that µ is continuous from below and let {Ej} be a pairwise
disjoint sequence inM. Set Fj =

⋃j
k=1 Ek for each j. Then {Fj} is an increasing sequence

of sets inM and by the finitely additive property of µ we have

µ(Fj) =

j∑
k=1

µ(Ek)

and

µ

(
∞⋃
j=1

Ej

)
= µ

(
∞⋃
j=1

Fj

)
= lim

j→∞
µ(Fj) = lim

j→∞

j∑
k=1

µ(Ek) =
∞∑
j=1

µ(Ej).

Solution to (b) Again, if µ is a measure, then it is continuous from above by item (b) of
Theorem 2.1.8. Now assume that µ(X) < ∞ and µ is a finitely additive continuous form
above measure. We will show that µ is continuous from below and the conclusion will follow
from item (a).

Let {Ej} be an increasing sequence of measurable sets. Then setting Fj = X \ Ej for all
j we have a decreasing sequence {Fj} of measurable sets, and by the continuity from above
we obtain

µ

(
X \

∞⋃
j=1

Ej

)
= µ

(
∞⋂
j=1

Fj

)
= lim

j→∞
µ(Fj) = lim

j→∞
µ(X \ Ej),

and since µ(X) <∞ we have

µ(X)− µ

(
X \

∞⋃
j=1

Ej

)
= lim

j→∞
[µ(X)− µ(Ej)],

which concludes the results.

Exercise 12. Definition: Define E∆F = (E \ F ) ∪ (F \ E) for E,F ⊂ X.
Let (X,M, µ) be a finite measure space.

(a) If E,F ∈M and µ(E∆F ) = 0 then µ(E) = µ(F ).

(b) Say that E ∼ F if µ(E∆F ) = 0. Then ∼ is an equivalence relation onM.

(c) For E,F ∈M, define ρ(E,F ) = µ(E∆F ). Then ρ defines a metric on the spaceM/ ∼.
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Solution to (a) Note first that µ(E∆F ) = µ(E \ F ) + µ(F \E) and since µ(E∆F ) = 0

we have µ(E \ F ) = µ(F \ E) = 0.

Also, writing E = (E \ F ) ∪ (E ∩ F ) and F = (F \ E) ∪ (F ∩ E) we have

µ(E) = µ(E \ F ) + µ(E ∩ F ) and µ(F ) = µ(F \ E) + µ(F ∩ E),

and hence µ(E) = µ(E ∩ F ) = µ(F ).

Solution to (b) We prove that ∼ is an equivalence relation ofM.

(i) (Reflexive) Since E∆E = ∅, we have µ(E∆E) = 0, hence E ∼ E.

(ii) (Symmetric) If E ∼ F , since E∆F = F∆E then F ∼ E.

(iii) (Transitive) Let E ∼ F and F ∼ G. Now E \ G ⊂ (E \ F ) ∪ (F \ G) and G \ E ⊂
(G \ F ) ∪ (F \ E), hence

E∆G ⊂ (E∆F ) ∪ (F∆G), (2.2.2)

and the subadditivity property of µ shows that

µ(E∆G) 6 µ(E∆F ) + µ(F∆G) = 0,

and therefore E ∼ G.

Solution to (c) Consider the spaceM/ ∼ of equivalence classes of ∼. Clearly ρ(E,F ) =

ρ(F,E) for each E,F ∈M.

Let us show that this metric is well defined: if E1 ∼ E2 and F ∈ M then using (2.2.2)
we have

E1∆F ⊂ (E1∆E2) ∪ (E2∆F ) and E2∆F ⊂ (E2∆E1) ∪ (E1∆F ),

and we obtain ρ(E1, F ) = ρ(E2, F ). Now if F1 ∼ F2 we have

ρ(E1, F1) = ρ(E2, F1) = ρ(E2, F2),

and proves that ρ is well defined. The symmetric property of ρ follows from the symmetric
property of ∆. Lastly, in item (b) we have proven that µ(E∆G) 6 µ(E∆F ) + µ(F∆G), and
hence ρ satisfy the triangle property. Thus ρ is a metric inM/ ∼.

Exercise 13. If µ is a σ-finite measure then µ is semifinite.
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Solution. We know that X =
⋃∞
j=1 Ej where {Ej} is a pairwise disjoint sequence

in M with µ(Ej) < ∞ for all j (see Proposition 2.1.4). If µ(E) = ∞, we can write
E = E ∩ X =

⋃∞
j=1(E ∩ Ej), with disjoint union and hence µ(E) =

∑∞
j=1 µ(E ∩ Ej),

with µ(E ∩ Ej) < ∞ for all j. If µ(E ∩ Ej) = 0 for all j then µ(E) = 0, which is a
contradiction, therefore there exists j0 such that µ(E ∩Ej0) > 0, and hence E ∩Ej ⊂ E and
0 < µ(E ∩ Ej) <∞, which means that µ is semifinite.

Exercise 14. If µ is a semifinite measure and µ(E) =∞, the for any given c > 0, there
exists F ⊂ E with c < µ(F ) <∞.

Solution. Set J(E) = {F : F ⊂ E with 0 < µ(F ) < ∞}. Clearly, since µ is semifinite,
the set J(E) is nonempty. Take s = supF∈J(E) µ(F ). The result is proven if we show that
s =∞.

To that end, suppose by absurd that s < ∞ and choose a sequence {Fj} with Fj ⊂ E,
0 < µ(Fj) < ∞ and lim

j→∞
µ(Fj) = s. Define G =

⋃∞
j=1 Fj, then µ(G) > µ(Fj) for all j and

hence µ(G) > s.
If µ(G) <∞ then µ(E \G) =∞ and we can choose G1 ⊂ E \G such that 0 < µ(G1) <∞.

Then G ∪ G1 ⊂ E and µ(G ∪ G1) = µ(G) + µ(G1) > s, which contradicts the fact that
s = supF∈J(E) µ(F ), since G ∪G1 ∈ J(E).

If µ(G) =∞, then by the continuity from below, we have

µ(G) = lim
n→∞

µ

(
n⋃
j=1

Fj

)
,

and hence there exists n such that µ
(⋃n

j=1 Fj

)
> s, which again contradicts the fact that

s = supF∈J(E) µ(F ).
Thus, we must have s =∞ and the result is proven.

Exercise 15. Given a measure space (X,M, µ), define µ0 onM by

µ0(E) = sup{µ(F ) : F ⊂ E and µ(F ) <∞}.

(a) µ0 is a semifinite measure, called the semifinite part of µ.

(b) If µ is semifinite, then µ = µ0.

(c) There is a measure ν onM (in general, not unique) which assumes only values 0 and ∞
such that µ = µ0 + ν.
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Solution to (a). Let us prove first that µ0 is a measure onM. Clearly µ0(∅) = 0. If
{Ej} is a pairwise disjoint sequence inM and E =

⋃∞
j=1Ej. Let F ⊂ E with µ(F ) < ∞.

Setting Fj = F ∩ Ej then F ∩ Ej ⊂ Ej and µ(F ∩ Ej) < ∞ then µ(F ∩ Ej) 6 µ0(Ej) and
hence

µ(F ) =
∞∑
j=1

µ(F ∩ Ej) 6
∞∑
j=1

µ0(Ej).

Since this is true for all F ⊂ E with µ(F ) <∞ then

µ0(E) 6
∞∑
j=1

µ0(Ej).

Now if Fj ⊂ Ej with µ(Fj) <∞ for all j, then Gn =
⋃n
j=1 Fj ⊂ E for each n and Gn ⊂ E

and µ(Gn) <∞ for alll n, thus

µ0(E) > µ(Gn) =
n∑
j=1

µ(Fj) for all n.

Since this is true for all Fj ⊂ Ej with µ(Fj) < ∞, taking the supremum of such Fj for
each j = 1, · · · , n we have

µ0(E) >
n∑
j=1

µ0(Ej) for all n,

and making n→∞ we have µ0(E) >
∑∞

j=1 µ0(Ej), which concludes the proof that µ0 is a
measure onM.

Now we prove that µ0 is semifinite. To that end, we first prove that if µ(E) <∞ then
µ0(E) = µ(E). Clearly if µ(E) <∞ then µ(E) 6 µ0(E). Now if F ⊂ E then µ(F ) 6 µ0(E)

and hence, taking the supremum over F , we have µ0(E) 6 µ(E).

Assume that µ0(E) = ∞, then by definition of supremum, there exists F ⊂ E with
0 < µ(F ) <∞, and since µ(F ) = µ0(F ) we obtain the result.

Solution to (b). We have already proven in item (a) that µ = µ0 for measurable sets with
finite µ-measure. Now assume that µ(E) =∞. Since µ is semifinite, by Exercise 14 above,
for each positive integer n, there exists Fn ⊂ E with c < µ(Fn) <∞. Hence µ0(E) > µ(Fn)

for all n, which implies that µ0(E) =∞ and concludes the result.

Solution to (c). We say that a set E is σ-finite for µ if E =
⋃∞
j=1 Ej with disjoint union

and µ(Ej) <∞ for all j. Set ν onM as follows:

ν(E) =

0, if E is σ-finite for µ,

∞, if E is not σ-finite for µ.

- 31 -



We will prove first that if E is σ-finite for µ then µ(E) = µ0(E). If E is σ-finite for µ then

µ(E) =
∞∑
j=1

µ(Ej) =
∞∑
j=1

∑
µ0(Ej) = µ0(E),

since µ = µ0 for µ-finite measurable sets. Then µ(E) = µ0(E) = µ0(E) + ν(E) if E is a
σ-finite sets.

Now note that E is not σ-finite for µ then µ(E) = ∞, and hence µ(E) = ν(E) =

µ0(E) + ν(E). Therefore we have µ = µ0 + ν.

It only remains to prove that ν is a measure onM. Clearly ν(∅) = 0. Now let {Ej} be a
pairwise disjoint sequence onM and E =

⋃∞
j=1Ej. If Ej is σ-finite for µ for all j then E is

also σ-finite, hence

ν(E) = 0 =
∞∑
j=1

ν(Ej).

Assume that Ej0 is not σ-finite for µ for some j0 and suppose that E is. Then E =
⋃∞
k=1 Fk

with disjoint union, Fk ∈ M and µ(Fk) <∞. Hence Ej0 = Ej0 ∩ E =
⋃∞
k=1(Ej0 ∩ Fk) and

hence Ej0 is σ-finite for µ which is a contradiction, and hence E is not σ-finite for µ, thus

ν(E) =∞ = ν(Ej0) >
∞∑
j=1

ν(Ej) =∞,

hence ν(E) =
∞∑
j=1

ν(Ej), and ν is a measure onM.

Exercise 16. Let (X,M, µ) be a measure space. A set E ⊂ X is called locally

measurable if E ∩ A ∈M for all A ∈M such that µ(A) <∞. Let M̃ be the collection of
all locally measurable sets. We know thatM⊂ M̃. IfM = M̃ then µ is called saturated.

(a) If µ is σ-finite then µ is saturated.

(b) M̃ is a σ-algebra.

(c) Define µ̃ on M̃ by µ̃(E) = µ(E) is E ∈ M and µ̃(E) = ∞ otherwise. Then µ̃ is a
saturated measure on M̃ called the saturation of µ.

(d) If µ is complete, so is µ̃.

(e) Suppose that µ is semifinite. For E ∈ M̃, define µ(E) = sup{µ(A) : A ∈M and A ⊂ E}.
Then µ is a saturated measure on M̃ that extends µ.

- 32 -



(f) Let X1, X2 be disjoint uncountable sets, X = X1 ∪X2 andM is the σ-algebra of the
countable ou co-countable sets in X. Let µ0 be the counting measure on P(X1) and
define µ onM by µ(E) = µ0(E ∩X1). Then µ is a measure onM, M̃ = P(X), and
in the notation of parts (c) and (e), then µ̃ 6= µ.

Solution to (a). Let E be a locally measurable set. Since σ-finite is X =
⋃∞
j=1 Ej with

disjoint union and µ(Ej) <∞ for all j. Hence

E = E ∩X = E ∩

(
∞⋃
j=1

Ej

)
=
∞⋃
j=1

(E ∩ Ej)︸ ︷︷ ︸
∈M

∈M,

by the locally measurability of E. Hence M̃ ⊂M and µ is saturated.
Solution to (b). Clearly ∅ ∈ M̃. Now if {Ej} ⊂ M̃ and A ∈M with µ(A) <∞ then(

∞⋃
j=1

Ej

)
∩ A =

∞⋃
j=1

(Ej ∩ A)︸ ︷︷ ︸
∈M

∈M,

and hence
⋃∞
j=1 Ej ∈ M̃. If E ∈ M̃ and A ∈M with µ(A) <∞ then

Ec ∩ A = A \ (E ∩ A) ∈M,

and hence Ec ∈ M̃. Thus M̃ is a σ-algebra.
Solution to (c). We prove now that µ̃ is a measure on M̃. Let E =

⋃∞
j=1Ej with disjoint

union, with Ej ∈ M̃ for all j.
If E ∈M and µ(E) <∞ then, since Ej ∈ M̃, we have Ej = Ej ∩ E ∈M, by definition

of M̃, for all j. Thus

µ̃(E) = µ(E) =
∞∑
j=1

µ(Ej) =
∞∑
j=1

µ̃(Ej).

Now if E ∈M, µ(E) =∞ and Ej ∈M then µ̃(Ej) = µ(Ej) and µ̃(E) = µ(E), and the
result follows in this case.

Now assume that E ∈M \M. If Ej ∈M for all j we have E ∈M, which implies that
since E ∈ M̃ \M there exists j0 such that Ej0 ∈ M̃ \M. Therefore, in this case

µ̃(E) =∞ = µ̃(Ej0) 6
∞∑
j=1

µ̃(Ej) 6∞,

and hence µ̃(E) =∞ =
∞∑
j=1

µ̃(Ej). Therefore µ̃ is a measure on M̃.
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It remains to prove that µ̃ is saturated. To this end, we show that if E ∈ ˜̃M then E ∈ M̃.
In fact, if E ∈ ˜̃M then for each A ∈ M̃ with µ̃(A) < ∞ we have E ∩ A ∈ M̃. Now if
B ∈ M is such µ(B) < ∞ then B ∈ M̃ and µ̃(B) = µ(B) < ∞, hence E ∩ B ∈ M̃ and
E ∩B = (E ∩B) ∩B ∈M.

Hence ˜̃M⊂ M̃ and µ̃ is saturated.

Solution to (d). Now assume that µ is complete, let N ⊂ M̃ with µ̃(N) = 0 and F ⊂ N .
Since µ̃(N) = 0 <∞ we have N ∈M, and since µ is complete, F ∈M. This implies that
F ∈ M̃ and concludes the proof.

Solution to (e). We prove first that µ is a measure on M. Clearly µ(∅) = 0. Now let
E =

⋃∞
j=1Ej with disjoint union with Ej ∈ M̃ for all j, F ∈M with F ⊂ E. If µ(F ) <∞

then, by definition of M̃, we have F ∩ Ej ∈M for all j and

µ(F ) = µ(F ∩ E) =
∞∑
j=1

µ(F ∩ Ej) 6
∞∑
j=1

µ(Ej).

If µ(F ) =∞ the exists a sequence {Fn} ⊂ M such that Fn ⊂ E and n < µ(Fn) <∞ for
each n. Hence, for each fixed n, by the computation above, we have

n < µ(Fn) 6
∞∑
j=1

µ(Ej),

and making n→∞ we obtain

∞∑
j=1

µ(Ej) =∞ = µ(F ).

Joining these two cases, we can write

µ(F ) 6
∞∑
j=1

µ(Ej),

and taking the supremum over F we get µ(E) 6
∑∞

j=1 µ(Ej).

For the other inequality, note that if Fj ∈M and Fj ⊂ Ej for all j, then Gn =
⋃n
j=1 Fj ∈

M and Gn ⊂ E for each n, hence

n∑
j=1

µ(Fn) = µ(Gn) 6 µ(E),

- 34 -



and taking the supremum over Fj for each j = 1, · · · , n we have

n∑
j=1

µ(Ej) 6 µ(E),

and finally, making n→∞ we have
∑∞

j=1 µ(Ej) 6 µ(E), and concludes the proof that µ is a
measure on M̃.

Now we prove that µ extends µ. If E ∈M, then clearly µ(E) 6 µ(E). Now if F ∈M and
F ⊂ E we have µ(F ) 6 µ(E), and taking the supremum of all such F we have µ(E) 6 µ(E).
This completes the proof that µ = µ onM.

It remains to prove that µ is saturated. Let E be such that for all A ∈ M̃ with µ(A) <∞
then E ∩ A ∈ M̃. We have to show that E ∈ M̃.

To that end let B ∈M be such that µ(B) <∞. Since B ∈M we have µ(B) = µ(B) <∞
and E ∩ B ∈ M and E ∩ B = (E ∩ B) ∩ B ∈ M, which proves that E ∈ M̃ and thus µ is
saturated.

Solution to (f). We prove first that µ is a measure. Clearly µ(∅) = µ0(∅) = 0. Now let
E =

⋃∞
j=1 Ej with disjoint union and Ej ∈M for all j. Then {Ej ∩X1} is a disjoint sequence

on P(X1) and hence

µ(E) = µ0(E ∩X1) = µ0

(
∞⋃
j=1

(Ej ∩X1)

)
=
∞∑
j=1

µ0(Ej ∩X1) =
∞∑
j=1

µ(Ej),

hence µ is a measure onM.

Now fix E ⊂ P(X) and A ∈M with µ(A) <∞. This implies that µ0(A ∩X1) <∞ and
hence A ∩X1 is finite. But since X1 is uncountable, we have X1 \ A uncountable, and since
X \ A ⊃ X1 \ A, this implies that X \ A is uncountable. Since A ∈ M we must have A
countable. Therefore E∩A is countable, which means that E∩A ∈M, and thus M̃ = P(X).

Now fix x1 ∈ X1 and consider E = {x1}∪X2 ⊂ X. We have µ(E) = 1 and thus µ(E) = 1.
But E is neither countable nor co-countable, hence E /∈M and µ̃(E) =∞, and thus µ̃ 6= µ.

2.3 OUTER MEASURES

Definition 2.3.1. An outer measure on a nonempty set X is a function µ∗ : P(X)→
[0,∞] that satisfies:
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(i) µ∗(∅) = 0,

(ii) µ∗(A) 6 µ∗(B) if A ⊂ B,

(iii) µ∗
(
∞⋃
j=1

Aj

)
6

∞∑
j=1

µ∗(Aj).

Proposition 2.3.2. Let E ⊂ P(X) and µ : E → [0,∞] be such that ∅ ∈ E, X ∈ E and
µ(∅) = 0. For any A ⊂ X, define

µ∗(A) = inf

{
∞∑
j=1

µ(Ej) : Ej ∈ E and A ⊂
∞⋃
j=1

Ej

}
.

Then µ∗ is an outer measure.

Proof. Given A ⊂ X, there exists {Ej}∞j=1 ⊂ E such that A ⊂
⋃∞
j=1Ej (taking Ej = X for all

j, for instance), so the definition µ∗ makes sense. Obviously µ∗(∅) = 0, just taking Ej = ∅
for all j.

If A ⊂ B, then each cover of B by subsets of E is also a cover of A, and hence µ∗(A) 6

µ∗(B).
To prove the countable subadditivity, assume that {Aj}∞j=1 ⊂ P(X) and ε > 0. For each

j there exists a cover {Ej,k}∞k=1 ⊂ E such that

∞∑
k=1

µ(Ej,k) 6 µ∗(Aj) +
ε

2j
,

but then if A =
∞⋃
j=1

Aj then A ⊂
⋃∞
j,k=1Ej,k and

∞∑
j=1

∞∑
k=1

µ(Ej,k) 6
∞∑
j=1

µ(Aj) + ε,

hence µ∗(A) 6
∞∑
j=1

µ∗(Aj) + ε. Since ε > 0 is arbitrary, the result is proven. �

Given an outer measure µ∗ on X, a set A ⊂ X is called µ∗-measurable if

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac) for all E ⊂ X.

Clearly, for all E ⊂ X we have µ∗(E) 6 µ∗(E∩A)+µ∗(E∩Ac), hence A is µ∗-measurable
if and only if µ∗(E) > µ∗(E ∩A) + µ∗(E ∩Ac), and this latter is trivial if µ∗(E) =∞. Hence
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A ⊂ X is µ∗-measurable if and only if

µ∗(E) > µ∗(E ∩ A) + µ∗(E ∩ Ac) for all E ⊂ X with µ∗(E) <∞.

Theorem 2.3.3 (Caratheódory’s Theorem). If µ∗ is an outer measure on X, then the
collection

M = {A ⊂ X : A is µ∗-measurable},

is a σ-algebra, and the restriction of µ∗ toM is a complete measure.

Proof. We begin proving thatM is an algebra. Clearly ∅ ∈ M. Now let A,B ∈ M and
E ⊂ X. Since A ∈M, we have

µ∗(E) = µ∗(E ∩ A) + µ∗(E ∩ Ac),

and since B ∈M we have

µ∗(E ∩ A) = µ∗(E ∩ A ∩B) + µ∗(E ∩ A ∩Bc)

and
µ∗(E ∩ Ac) = µ∗(E ∩ Ac ∩B) + µ∗(E ∩ Ac ∩Bc),

thus

µ∗(E) = µ∗(E ∩ A ∩B) + µ∗(E ∩ A ∩Bc) + µ∗(E ∩ Ac ∩B) + µ∗(E ∩ Ac ∩Bc)︸ ︷︷ ︸
=µ∗(E∩(A∪B)c)

.

But A ∪B = (A ∩B) ∪ (A ∩Bc) ∪ (Ac ∩B), and hence µ∗(E ∩ (A ∪B)) 6 µ∗(E ∩ A ∩
B) + µ∗(E ∩ A ∩Bc) + µ∗(E ∩ Ac ∩B), which implies that

µ∗(E) > µ∗(E ∩ (A ∪B)) + µ∗(E ∩ (A ∪B)c),

and thus A ∪B ∈M, andM is an algebra.

Now let {Aj} be a pairwise disjoint sequence inM and A =
⋃∞
j=1Aj. Set Bj =

⋃j
k=1Aj

for all j, and sinceM is an algebra, {Bj} ⊂ M.

Now, setting B0 = ∅, for each fixed j and E ⊂ X, since Aj ∈M, we have

µ∗(E ∩Bj) = µ∗(E ∩Bj ∩ Aj) + µ∗(E ∩Bj ∩ Acj)

= µ∗(E ∩ Aj) + µ∗(E ∩Bj−1),
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and hence µ∗(E ∩Bj) =
∑j

k=1 µ
∗(E ∩ Ak). Now

µ∗(E) = µ∗(E ∩Bj) + µ∗(E ∩Bc
j) =

j∑
k=1

µ∗(E ∩ Ak) + µ∗(E ∩Bc
j)

>
j∑

k=1

µ∗(E ∩ Ak) + µ(E ∩ Ac),

and letting n→∞, we obtain

µ∗(E) >
∞∑
j=1

µ∗(E ∩ Aj) + µ(E ∩ Ac)

> µ∗
( ∞⋃
j=1

(E ∩ Aj)
)

+ µ(E ∩ Ac) = µ∗(E ∩ A) + µ∗(E ∩ Ac) > µ∗(E),

which shows us that A ∈M. Moreover, taking E = A in the above gives us

µ∗(A) =
∞∑
j=1

µ∗(Aj),

and hence µ∗ is countably additive inM, hence µ∗ restricted toM is a measure.

To show that it is complete, note that if µ∗(A) = 0 then

µ∗(E) 6 µ∗(E ∩ A) + µ∗(E ∩ Ac) = µ∗(E ∩ Ac) 6 µ∗(E),

and therefore A ∈M, and µ∗ is a complete measure inM. �

The first application of CarathÃ©odory’s Theorem is to extend measures from algebras
to σ-algebras. More precisely, let A ⊂ P(X) be an algebra. A function µ0 : A → [0,∞] is
called a premeasure if

1. µ0(∅) = 0,

2. if {Aj} is a pairwise disjoint sequence of sets in A such that
∞⋃
j=1

Aj ∈ A then

µ0

( ∞⋃
j=1

Aj

)
=
∞∑
j=1

µ0(Aj).

In particular, a premeasure if finitely additive, since one can take Aj = ∅ for all but a
finite number of j. The notions of finite and σ-finite premeasures are defined just as for
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measures. If µ0 is a premeasure on A ⊂ P(X), it induces an outer measure on X, namely

µ∗(E) = inf

{
∞∑
j=1

µ0(Aj) : Aj ∈ A, E ⊂
∞⋃
j=1

Aj

}
. (2.3.1)

Proposition 2.3.4. If µ0 is a premeasure on an algebra A and µ∗ is defined as (2.3.1),
then:

(a) µ∗|A = µ0.

(b) every set in A is µ∗-measurable.

Proof. (a). Clearly, if E ∈ A then µ∗(E) 6 µ0(E). Now, if E ∈ A, let {Aj} be a sequence
in A with E ⊂

⋃∞
j=1Aj. Define B1 = A1 and Bj = Aj \

(⋃j−1
k=1 Ak

)
for j > 1. Thus {Bj} is

a pairwise disjoint sequence in A,
⋃∞
j=1Bj =

⋃∞
j=1Aj, and we have

µ0(E) = µ0

(
E ∩

∞⋃
j=1

Bj

)
= µ0

( ∞⋃
j=1

E ∩Bj

)
(?)
=

∞∑
j=1

µ0(E ∩Bj)

6
∞∑
j=1

µ0(E ∩ Aj) 6
∞∑
j=1

µ0(Aj)

where in (?) we used that fact that µ0 is a premeasure. Since this holds for every cover of E
in A, we have µ0(E) 6 µ∗(E).

(b). Let A ∈ A, E ⊂ X and ε > 0. By definition of µ∗, there exists {Bj} ⊂ A such that
E ⊂

⋃∞
j=1 Bj with

∑∞
j=1 µ0(Bj) 6 µ∗(E) + ε. Hence

µ∗(E) + ε >
∞∑
j=1

µ0(Bj)
(?)
=

∞∑
j=1

[
µ0(Bj ∩ A) + µ0(Bj ∩ Ac)

]
=
∞∑
j=1

µ0(Bj ∩ A) +
∞∑
j=1

µ0(Bj ∩ Ac) > µ∗(E ∩ A) + µ∗(E ∩ Ac),

where in (?) we used the fact that µ0 is a premeasure in A and Bj, A ∈ A. Since ε > 0 is
arbitrary, we obtain µ∗(E) > µ∗(E ∩ A) + µ∗(E ∩ Ac), and thus A is µ∗-measurable. �

Theorem 2.3.5. Let A ⊂ P(X) be an algebra, µ0 a premeasure on A, and M be the
σ-algebra generated by A. Then:

(i) µ = µ∗|M, where µ∗ is given as in (2.3.1) is a measure onM whose restriction to A is
µ0;
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(ii) if ν is another measure onM that extends µ0 then ν(E) 6 µ(E) for all E ∈M, with
equality when µ(E) <∞;

(iii) if µ0 is σ-finite, then µ is the unique extension of µ0 to a measure onM.

Proof. (i). Using CarathÃ©odory’s Theorem, µ∗ is a measure when restricted to the σ-
algebra of the µ∗-measurable sets. By item (b) of the previous proposition, this σ-algebra
contains A and hence it containsM. Thus, the restriction of µ∗ toM is a measure which,
by item (a) of the previous proposition, extends µ0.

(ii). Let ν be a measure onM that extends µ0. Then if E ∈ M and {Aj} ⊂ A with
E ⊂

⋃∞
j=1 Aj then

ν(E) 6 ν
( ∞⋃
j=1

Aj

)
6

∞∑
j=1

ν(Aj) =
∞∑
j=1

µ0(Aj),

and hence ν(E) 6 µ∗(E) = µ(E), since E ∈M.

Setting A =
⋃∞
j=1Aj, we have A ∈M and also

ν(A) = lim
n→∞

ν
( n⋃
j=1

Aj︸ ︷︷ ︸
∈A

)
= lim

n→∞
µ0

( n⋃
j=1

Aj

)
= lim

n→∞
µ
( n⋃
j=1

Aj

)
= µ(A).

Now let E ∈M with µ(E) <∞. Given ε > 0, there exists a pairwise disjoint sequence
{Aj} ⊂ A with E ⊂ A =

⋃∞
j=1Aj and

∑∞
j=1 µ0(Aj) < µ∗(E) + ε = µ(E) + ε. Thus

µ(A) =
∞∑
j=1

µ(Aj) =
∞∑
j=1

µ0(Aj) < µ(E) + ε,

and since µ(E) <∞, we have µ(A \ E) < ε. Thus

µ(E) 6 µ(A) = ν(A) = ν(E) + ν(A \ E) 6 ν(E) + µ(A \ E) < ν(E) + ε,

and since ε > 0 is arbitrary, we obtain µ(E) 6 ν(E).

(iii). Suppose that µ0 is σ-finite, that is, there exists a pairwise disjoint sequence
{Aj} ⊂ A with µ0(Aj) <∞ and X =

⋃∞
j=1Aj. Then if E ∈M we have

µ(E) =
∞∑
j=1

µ(E ∩ Aj)
(?)
=

∞∑
j=1

ν(E ∩ Aj) = ν(E),

where in (?) we used item (ii). Hence ν = µ onM. �
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This theorem shows more than the statement: in fact, µ0 can be extended to a measure
on the σ-algebraM∗ of the µ∗-measurable sets.

2.4 SOLVED EXERCISES FROM [1, PAGE 32])

Exercise 17. If µ∗ is an outer measure on X and {Aj} is a pairwise disjoint sequence of
µ∗-measurable sets, then

µ∗
(
E ∩

∞⋃
j=1

Aj

)
=
∞∑
j=1

µ∗(E ∩ Aj) for any E ⊂ X.

Solution. We assume, without loss of generality, that E ⊂
⋃∞
j=1Aj (if E is not a subset of

∞⋃
j=1

Aj , apply the result to F = E∩(
∞⋃
j=1

Aj). We thus have to prove that µ∗(E) =
∞∑
j=1

µ∗(E∩Aj).

Clearly, since E =
∞⋃
j=1

E ∩Aj and µ∗ is an outer measure, we have µ∗(E) 6
∞∑
j=1

µ∗(E ∩Aj).

Set Bj =
j⋃

k=1

Aj for each j, then Bj is µ∗-measurable and

µ∗(E ∩Bj) = µ∗(E ∩Bj ∩ Aj) + µ∗(E ∩Bj ∩ Acj) = µ∗(E ∩ Aj) + µ∗(E ∩Bj−1),

since Bj ∩ Acj = Bj−1. Using this argument j times, we obtain

µ∗(E ∩Bj) =

j∑
k=1

µ∗(E ∩ Ak),

and hence for each j we have

µ∗(E) > µ∗(E ∩Bj) =

j∑
k=1

µ∗(E ∩ Ak),

and making j →∞ we obtain the result.

Exercise 18. Let A ⊂ P(X) be an algebra. Let µ0 be a premeasure in A and µ∗ the
induced outer measure.

(a) For any E ⊂ X and ε > 0 there exists A ∈ Aσ with E ⊂ A and µ∗(A) 6 µ∗(E) + ε.
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(b) If µ∗(E) <∞, then E is µ∗-measurable if and only if there exists B ∈ Aσδ with E ⊂ B

and µ∗(B \ E) = 0.

(c) If µ0 is σ-finite, the restriction µ∗(E) <∞ in (b) is superfluous.

Solution to (a). By definition of µ, given ε > 0 there exists a sequence {Aj} ⊂ A, which
we can assume without loss of generality that it is pairwise disjoint, such that

∞∑
j=1

µ0(Aj) 6

µ∗(E) + ε. Setting A =
∞⋃
j=1

Aj, we have A ∈ Aσ and µ∗(A) 6
∞∑
j=1

µ∗(Aj) =
∞∑
j=1

µ0(Aj), since

µ∗ extends µ0. Hence µ∗(A) 6 µ∗(E) + ε.
Solution to (b). Assume first that there exists B ∈ Aσδ such that E ⊂ B and µ∗(B\E) = 0.
If F ⊂ X, since F ∩ Ec ⊂ (F ∩ (B \ E)) ∪ (F ∩Bc) we have

µ∗(F ∩ Ec) 6 µ∗(F ∩ (B \ E)) + µ∗(F ∩Bc) 6 µ∗(B \ E)︸ ︷︷ ︸
=0

+µ∗(F ∩Bc),

and since B is µ∗-measurable and E ⊂ B, we have

µ∗(F ) > µ∗(F ∩B) + µ(F ∩Bc) > µ∗(F ∩ E) + µ∗(F ∩ Ec)

and hence E is µ∗-measurable (this implication does not make use of the fact that µ∗(E) <∞,
and it also holds without the assumption that B ∈ Aσδ, B just need to be a µ∗-measurable
set).

For the converse, assume that µ∗(E) <∞ and E is µ∗-measurable. For each n ∈ N, using
item (a), there exists An ∈ Aσ with E ⊂ An and µ∗(An) 6 µ∗(E) + 1

n
. Define B =

∞⋂
n=1

An.

Hence B ∈ Aδσ, E ⊂ B and µ∗(B) 6 µ∗(An) 6 µ∗(E) + 1
n
for each n ∈ N. Making n→∞

we have µ∗(B) 6 µ∗(E). Since E ⊂ B, we have µ∗(E) 6 µ∗(B) and hence µ∗(B) = µ∗(E)

(until here the hypotheses that E is µ∗-measurable and µ∗(E) <∞ are not necessary).
Now since E andB are µ∗-measurable and µ∗ is a measure when restricted to µ∗-measurable

sets, we have
µ∗(E) = µ∗(B) = µ∗(B \ E) + µ∗(E),

and since µ∗(E) <∞, we obtain µ∗(B \ E) = 0.
Solution to (c). If µ0 is σfinite, there exists a pairwise disjoint sequence {Aj} in A such

that X =
∞⋃
j=1

Aj and µ0(Aj) <∞ for each j.

Let E be a µ∗-measurable set. For each j, Ej := E ∩ Aj is µ∗-measurable and µ∗(Ej) 6
µ∗(Aj) = µ0(Aj) <∞. From item (a), for each n ∈ N and j there exists a set Gj,n ∈ Aσ such
that Ej ⊂ Gj,n and µ∗(Gj,n) 6 µ∗(Ej) + 2−j

n
. Since µ∗(Ej) <∞, we have µ∗(Gj,n \Ej) 6 2−j

n
.
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Moreover, we can assume that Gj,n ⊂ Aj, for otherwise we could consider its intersection
with Aj (which is still in Aσ).

Now take Hn =
∞⋃
j=1

Gj,n, for each n ∈ N. Hence Hn ∈ Aσ and Hn \ E =
∞⋃
j=1

(Gj,n \ Ej),

therefore we have

µ∗(Hn \ E) = µ∗
( ∞⋃
j=1

Gj,n \ Ej
)
6

∞∑
j=1

µ∗(Gj,n \ Ej) 6
∞∑
j=1

2−j

n
=

1

n
,

for each n ∈ N.
Now take B =

∞⋂
n=1

Hn. We have B ∈ Aσδ and

µ∗(B \ E) ⊂ µ∗(Hn \ E) 6
1

n
,

for each n ∈ N. Making n→∞, we obtain the result.

Exercise 19. Let µ∗ be an outer measure on X induced from a finite premeasure µ0.
If E ⊂ X, define the inner measure of E to be µ∗(E) = µ0(X) − µ∗(Ec). Then E is
µ∗-measurable if and only if µ∗(E) = µ∗(E).

Hint: Use Exercise 18.

Solution. Note that µ∗(E) 6 µ∗(X) = µ0(X) <∞ for all E ⊂ X.
If E ⊂ X is µ∗-measurable, then we have

µ0(X) = µ∗(X) = µ∗(X ∩ E) + µ∗(X ∩ Ec) = µ∗(E) + µ∗(Ec),

and since µ∗ is always finite, we have µ∗(E) = µ0(X)− µ∗(Ec) = µ∗(E).
Now, if µ∗(E) = µ∗(E), we have µ0(X) = µ∗(E) + µ∗(Ec). We will apply the proof

of item (b) to both E and Ec to obtain B1, B2 ∈ Aσδ such that E ⊂ B1, Ec ⊂ B2 with
µ∗(B1) = µ∗(E) and µ∗(B2) = µ∗(Ec). Thus we obtain

µ0(X) = µ∗(E) + µ∗(Ec) = µ∗(B1) + µ∗(B2).

Also, since B2 is µ∗-measurable, we obtain

µ0(X) = µ∗(B2) + µ∗(Bc
2),

and by the finitude of µ∗ we obtain µ∗(B1) = µ∗(Bc
2). But Bc

2 ⊂ E ⊂ B1, and since B1 and
B2 are both measurable, we obtain µ∗(B1 \Bc

2) = 0.
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But B1 \ E ⊂ B1 \Bc
2 and hence µ∗(B1 \ E) 6 µ∗(B1 \Bc

2) = 0. Hence, from item (b) of
Exercise 18, E is µ∗-measurable.

Exercise 20. Let µ∗ be an outer measure on X,M∗ the σ-algebra of the µ∗-measurable
sets, µ = µ∗|M∗ , and µ+ the outer measure induce by µ as in (2.3.1) (with µ andM∗ replacing
µ0 and A).

(a) If E ⊂ X, we have µ∗(E) 6 µ+(E), with equality iff there exists A ∈ M∗ with E ⊂ A

and µ∗(A) = µ∗(E).

(b) If µ∗ is induced from a premeasure, then µ∗ = µ+. (Use Exercise 18(a)).

(c) If X = {0, 1}, there exists an outer measure µ∗ on X such that µ∗ 6= µ+.

Solution to (a). Let E ⊂ X and ε > 0. By definition of µ+, there exists B ∈M∗ such
that E ⊂ B and µ(B) 6 µ+(E) + ε. Since B ∈M∗, µ(B) = µ∗(B) and hence

µ∗(E) 6 µ∗(B) 6 µ+(E) + ε,

and since ε > 0 is arbitrary, we obtain µ∗(E) 6 µ+(E).

Now assume that there exists A ∈ M∗ with E ⊂ A and µ∗(A) = µ∗(E), then µ(A) =

µ∗(A) = µ∗(E), and since µ+(E) 6 µ(A), we obtain µ+(E) 6 µ∗(E), and the equality holds.

Conversely, if µ∗(E) = µ+(E) then given n ∈ N there exists An ∈M∗ such that E ⊂ An

and µ(A) 6 µ∗(E) + 1/n. Setting A =
⋂∞
n=1 An we have A ∈M∗, E ⊂ A and

µ∗(A) 6 µ+(A) 6 µ(A) 6 µ∗(E) 6 µ∗(A),

and thus µ∗(A) = µ∗(E).

Solution to (b). Assume that µ∗ is induced by a premeasure mu0 on an algebra A. From
item (a), it suffices to show that for each E ⊂ X, there exists B ∈ M∗ with E ⊂ B and
µ∗(B) = µ∗(E).

From item (a) of Exercise 18, given E ⊂ X and n ∈ N, there exists An ∈ Aσ such that
µ∗(E) 6 µ∗(A) 6 µ∗(E) + 1

n
. Setting B =

⋂∞
n=1An, we have E ⊂ B, B ∈ M∗ (sinceM∗

is a σ-algebra that contains A), and we have µ∗(E) 6 µ∗(B) 6 µ∗(An) 6 µ∗(E) + 1
n
for all

n ∈ N. Taking n→∞ concludes the result.

Solution to (c). Let µ∗ defined in P(X) by µ∗(∅) = 0, µ∗({0}) = µ∗({1}) = 1 and
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µ∗(X) = 3
2
. Then µ∗ is an outer measure on X. Now since

µ∗(X) =
3

2
< 2 = µ∗({0}) + µ∗({1}),

we see that neither {0} nor {1} are µ∗-measurable sets and henceM∗ = {∅, X}, µ(∅) = 0

and µ(X) = 3
2
.

But then µ+({0}) = µ+({1}) = 3
2
, and therefore µ∗ 6= µ+.

Exercise 21. Let µ∗ be an outer measure induced from a premeasure and µ the restriction
of µ∗ to the µ∗-measurable sets. Then µ is saturated.

Hint: Use Exercise 18.

Solution. LetM∗ be the σ-algebra of the µ∗-measurable sets. We need to prove that
a locally measurable set is also measurable. That is, if E ∩ A ∈ M∗ for all A ∈ M∗ with
µ(A) <∞, then E ∈M∗.

Now let F ⊂ X with µ∗(F ) < ∞ and ε > 0. From Exercise 18 item (a), there exists
A ∈ Aσ with F ⊂ A and µ(A) = µ∗(A) 6 µ∗(F ) + ε < ∞. Hence, since E is locally
measurable, E ∩ A ∈M∗ and hence

µ∗(A) = µ∗(A ∩ (E ∩ A)) + µ∗(A ∩ (E ∩ A)c) = µ∗(E ∩ A) + µ∗(A ∩ Ec)

> µ∗(F ∩ E) + µ∗(F ∩ Ec),

and thus
µ∗(F ) + ε > µ∗(A) > µ∗(F ∩ E) + µ∗(F ∩ Ec),

and since ε > 0 is arbitrary, we obtain µ∗(F ) > µ∗(F ∩ E) + µ∗(F ∩ Ec), which proves that
E is µ∗-measurable and therefore µ is saturated.

Exercise 22. Let (X,M, µ) be a measure space, µ∗ the outer measure induced by µ
according to (2.3.1),M∗ the σ-algebra of µ∗-measurable sets, and µ = µ∗|M∗ .

(a) If µ is σ-finite, then µ is the completion of µ (use Exercise 18).

(b) In general, µ is the saturation of the completion of µ (see Exercises 16 and 21).

Solution to (a). Let F ⊂ N where N ∈ N (see Theorem 2.1.9 for the notation).
Since N ⊂ M ⊂ M∗, by item (b) of Exercise 18, there exists B ∈ M with N ⊂ B and
µ∗(B \N) = 0. Therefore we have

µ∗(B \ F ) 6 µ∗(B \N) + µ∗(B ∩ (N \ F )) = 0,
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since µ∗(B \ N) = 0 and µ∗(B ∩ (N \ F )) 6 µ∗(N) = 0. Thus by Exercise 18 (b), F is
µ∗-measurable. This implies thatM⊂M∗ (sinceM⊂M∗).

Conversely, if E ∈ M∗, then also Ec ∈ M∗ and from item (c) of Exercise 18, there
exist B1, B2 ∈ M with E ⊂ B1, Ec ⊂ B2 such that µ∗(B1 \ E) = µ∗(B2 \ Ec) = 0. Now
Bc

2 ⊂ E ⊂ B1 and
E = Bc

2︸︷︷︸
∈M

∪E \Bc
2︸ ︷︷ ︸

⊂B1\Bc2

.

Since B1 \Bc
2 = (B1 \ E) ∪ (E \Bc

2), we have

µ∗(B1 \Bc
2) 6 µ∗(B1 \ E) + µ∗(E \Bc

2)︸ ︷︷ ︸
=µ∗(B2\Ec)

= 0,

and B1 \Bc
2 ∈ N . ThusM∗ ⊂M, and proves the equality.

It remains to prove that µ coincides with the completion of µ inM, which we will call ν.

Let E ∈ M∗, then E ∈ M and thus E = A ∪ B, where A ∈ M and B ⊂ N , where
N ∈ N , and without loss of generality, we can assume that A ∩B = ∅ (otherwise we could
write E = (A \N) ∪ (B ∪ (A ∩N))). By the previous computations we know that B ∈M∗

and thus
µ(E) = µ∗(E) = µ∗(A) + µ∗(B) = µ∗(A) = µ(A) = ν(E).

Thus µ = ν onM∗, and concludes the result.

Solution to (b). We know that by Exercise 21, µ is a saturated measure onM∗. Now let
M be the completion of M and, as before, ν be the completion of µ. Let E be a locally
measurable set for ν, we will show that E ∈M∗.

Let F ⊂ X with µ∗(F ) <∞ and ε > 0. From Exercise 18 item (a), there exists A ∈M
with F ⊂ A and µ(A) = µ∗(A) 6 µ∗(F ) + ε < ∞. Since A ∈ M ⊂M, ν(A) = µ(A) < ∞
and E is locally measurable for ν, we have E ∩ A ∈ M, and hence E ∩ A = B ∪ C, where
B ∩ C = ∅, B ∈M and C ⊂ N ∈ N .

We have

µ∗(F ∩ E)
F⊂A
= µ∗(F ∩ (E ∩ A)) 6 µ∗(F ∩B) + µ∗(F ∩ C)︸ ︷︷ ︸

=0

= µ∗(F ∩B)

and

µ∗(F ∩ Ec) = µ∗(F \ E) = µ∗(F \ (E ∩ A))
B⊂E∩A
6 µ∗(F \B) = µ∗(F ∩Bc),
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Thus, using the fact that B is µ∗ measurable and the two previous inequalities, we have

µ∗(F ) > µ∗(F ∩B) + µ∗(F ∩Bc) > µ∗(F ∩ E) + µ∗(F ∩ Ec),

which shows that E ∈M∗. Hence M̃ ⊂M∗.

Now let E ∈M∗. We want to show that E is locally measurable for ν. To that end, we
will prove some claims first.

Claim 1: If F ⊂ X is such that µ∗(F ) = 0, then there exists N ∈ N with F ⊂ N .

In fact, if F ⊂ X, then given n ∈ N, using item (a) of Exercise 18, we have Nn ∈ N with

F ⊂ Nn and µ(Nn) 6 1
n
. Then the set N =

∞⋂
n=1

Nn satisfies the required conditions.

Claim 2: If E ∈M∗ is such that µ∗(E) <∞, then E ∈M.

In fact, using item (b) of Exercise 18, there exists B ∈M with E ⊂ B and µ∗(B \E) = 0.
But B\E ∈M∗, and using again item (b) of Exercise 18, there exists C ∈M with B\E ⊂ C

and µ∗(C \ (B \ E)) = 0.

Let D = B ∩ C. Since B \ E ⊂ C, we have B \ E ⊂ D and hence B \D ⊂ E. We can
write E = (B \D) ∪ (E \ (B \D)), and B \D ∈M, since B,C and D are inM.

Now note that

E \ (B \D) = E ∩ (B ∩Dc)c = E ∩ (Bc ∪D) = E ∩D ⊂ E ∩ C ⊂ C \ (B \ E),

and therefore µ∗(E \ (B \D)) = 0. By Claim 1, there exists N ∈ N with E \ (B \D) ⊂ N ,
and concludes the proof of Claim 2.

Claim 3: If A ∈M then A ∈M∗ and µ∗(A) 6 ν(A).

In fact, we proved in item (a) that A ∈M. We can write A = G ∪H with G ∩H = ∅,
G ∈M and H ⊂ N ∈ N . Hence

µ∗(A) 6 µ∗(G) + µ∗(H) = µ∗(G) = µ(G) = ν(A),

and concludes the proof of this claim.

Now we can prove that is E ∈M∗ , then E is locally measurable for ν. To this end, let
A ∈M with ν(A) <∞. By Claim 3, µ∗(A) 6 ν(A) <∞ and A ∈M∗. Thus E ∩ A ∈M∗

and µ∗(E ∩ A) 6 µ∗(A) <∞, we by Claim 2, we obtain that E ∩ A ∈M, which shows the
local measurability of E.

ThereforeM∗ ⊂ M̃, and henceM∗ = M̃.

Now we have to prove that µ = ν̃ inM∗. But if E ∈M∗ then we have:

Case 1: If E ∈ M, we have E = A ∪ B with A ∩ B = ∅, and A ∈ M and B ⊂ N ∈ N .
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Thus
ν̃(E) = ν(E) = µ(A) = µ(A) 6 µ(E),

and
µ(E) = µ∗(E) = µ∗(A ∪B) 6 µ∗(A) = µ(A) = ν(E) = ν̃(E),

and proves that µ(E) = ν̃(E).
Case 2: If E ∈M∗ \M , then by Claim 2 we must have µ∗(E) =∞. Hence

µ(E) = µ∗(E) =∞ = ν̃(E),

since by definition ν̃(E) =∞ for E ∈M∗ \M.

Exercise 23. Let A be the collection of finite unions of sets of the form (a, b] ∩Q where
−∞ 6 a 6 b 6∞.

(a) A is an algebra on Q (Use Theorem 1.4.6).

(b) The σ-algebra generated by A is P(Q).

(c) Define µ0 on A by µ0(∅) = 0 and µ0(A) =∞ for A 6= ∅. Then µ0 is a premeasure on
A, and there is more then one measure on P(Q) whose restriction to A is µ0.

Solution to (a). Let E be the collection of the sets of the form (a, b] ∩ Q, where
−∞ 6 a 6 b 6∞, regarded as subsets of Q.

Then taking a = b = 0, we have ∅ = (0, 0] ∩Q ∈ E . If A = (a, b] ∩Q and B = (c, d] ∩Q,
then let r = max{a, c} and s = min{b, d}. We have A ∩ B = ∅ ∈ E if r > s and
A ∩B = (r, s] ∩Q ∈ E if r 6 s.

Now let E ∈ E . If E = ∅, then Ec = Q = (−∞,∞]∩Q ∈ E . If E 6= ∅, then E = (a, b]∩Q
and hence Ec = [(−∞, a] ∩Q] ∪ [(b,∞] ∩Q], which is a finite union of disjoint elements of E .

Therefore E is an elementary family, and the collection of finite disjoint unions of elements
of E , namely Ã is an algebra, by Theorem 1.4.6. It only remains to see that A = Ã. Clearly
Ã ⊂ A. For the reverse inclusion, let E1 = (a1, b1]∩Q and E2 = (a2, b2]∩Q be two elements
of E . We can write (a1, b1] ∪ (a2, b2] as follows:
Case 1: a1 6 a2 6 b2 6 b1.

In this case (a1, b1] ∪ (a2, b2] = (a1, b1].
Case 2: a1 6 a2 6 b1 6 b2.

In this case (a1, b1] ∪ (a2, b2] = (a1, a2] ∪ (a2, b1] ∪ (b1, b2].
Case 3: b1 = a2.

- 48 -



In this case (a1, b1] ∪ (a2, b2] = (a1, b2].
Case 4: b1 < a2.

In this case we do nothing.
We have four more cases, replacing a1 by a2, a2 by a1, b1 by b2 and b2 by b1. But

independently of which case we are, we can write E1∪E2 as a finite disjoint union of elements
os E , and hence E ∈ Ã, which concludes the proof.
Solution to (b). Note that if r ∈ Q then

{r} =
∞⋂
n=1

(r − 1
n
, r] ∩Q,

hence the σ-algebra generated by A contains all singletons (unitary sets). If Q ⊂ Q, Q is
countable and hence Q can be written as the countable unions of its points, which show us
that Q is in the σ-algebra generated by A. Since Q is an arbitrary subset of Q, we obtain
that the σ-algebra generated by Q is P(Q).
Solution to (c). Clearly µ0 is a premeasure on A. Is associated outer measure is

µ∗(E) =

∞, if E 6= ∅,

0, if E = ∅.

Thus the σ-algebra of the µ∗ measurable sets is P(Q) and hence µ∗ is a measure on P(Q)

which extends µ0.
Consider the counting measure ν on P(Q). Then if E ∈ E and E 6= ∅ then

ν(E) =∞ = µ0(E),

hence ν = µ0 on A, and hence ν = µ0 on A, but ν 6= µ∗, since ν({1}) = 1 6=∞ = µ∗({1}).

Exercise 24. Let µ be a finite measure on (X,M) and µ∗ be the outer measure induced
by µ. Suppose that E ⊂ X satisfies µ∗(E) = µ∗(X) (but not that E ∈M).

(a) If A,B ∈M and A ∩ E = B ∩ E then µ(A) = µ(B).

(b) LetME = {A ∩ E : A ∈ M}, and define the function ν onME by ν(A ∩ E) = µ(A)

(which makes sense by (a)). ThemME is a σ-algebra on E and ν is a measure onME.

Solution of (a). We have, since B ∈M, that

µ(B) + µ(Bc) = µ(X) = µ∗(E) = µ∗(E ∩B) + µ∗(E ∩Bc),
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and thus µ∗(E ∩B) = µ(B) + µ(Bc)− µ∗(E ∩Bc), and since µ∗(E ∩Bc) 6 µ∗(Bc) = µ(Bc),
we have µ∗(E ∩B) > µ(B) and therefore, since A ∩ E ⊂ A we have

µ(A) > µ∗(A ∩ E) = µ∗(B ∩ E) > µ(B).

Interchanging A and B we obtain µ(A) 6 µ(B), and thus we have the equality.

Solution to (b). We prove thatME is a σ-algebra on E. Clearly ∅ ∈ME, since ∅ ∈M.
Now let {Aj ∩ E} be a sequence of elements inME, that is {Aj} is a sequence inM. Thus

∞⋃
j=1

(Aj ∩ E) =
( ∞⋃
j=1

Aj

)
∩ E ∈ME,

since
∞⋃
j=1

Aj ∈M.

If A ∈ M, then E \ (A ∩ E) = Ac ∩ E, hence ME is closed under complements in E.
ThusME is a σ-algebra on E.

Now we have to prove that ν is a measure onME. Clearly ν(∅) = 0. Now let {Aj ∩ E}
be a pairwise disjoint sequence onME and consider the sequence {Aj} inM.

Claim: There exists a pairwise disjoint sequence {Bj} onM such that µ(Aj) = µ(Bj) for all
j.

In fact, if {Aj} is already a pairwise disjoint sequence onM, we have nothing to do. If
this is note the case, then we consider B1 = A1 and Bj = Aj \ (

⋃j−1
k=1Ak). Then the sequence

{Bj} is a pairwise disjoint sequence inM. Now we show that Bj ∩ E = Aj ∩ E. In fact,
since Bj ⊂ Aj we have Bj ∩ E ⊂ Aj ∩ E. Now if x ∈ Aj ∩ E then x ∈ Aj and x ∈ E. But
since {Aj ∩ E} is pairwise disjoint, we have x /∈ E ∩ Ai for all i < j, and since x ∈ E this
implies that x /∈ Ai for i < j, this means that x ∈ Bj and hence Aj ∩ E = Bj ∩ E. From
item (a), µ(Aj) = µ(Bj) and completes the proof of the claim.

To conclude, we have

ν
( ∞⋃
j=1

(Aj ∩ E)
)

= ν
(( ∞⋃

j=1

Aj

)
∩ E

)
= µ

( ∞⋃
j=1

Aj

)
= µ

( ∞⋃
j=1

Bj

)
=
∞∑
j=1

µ(Bj) =
∞∑
j=1

µ(Aj) =
∞∑
j=1

ν(Aj ∩ E),

and hence ν is a measure onME.
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2.5 BOREL MEASURES ON THE REAL LINE

Definition 2.5.1. A measure µ on a topological space (X, τ) is called a Borel measure

on X if its σ-algebra of definition is the Borel σ-algebra BX .

In this section, we will see how to construct Borel measures on R. Let us see first some
motivation: consider a finite Borel measure µ on R and define F : R→ R given by

F (x) = µ((−∞, x]) for x ∈ R.

Such function F is called distribution function of µ. This F is increasing and right
continuous, since (−∞, x] =

⋂∞
j=1(−∞, xj] for a sequence xj → x+. Moreover, if a < b then

(−∞, b] = (−∞, a] ∪ (a, b] and thus µ((a, b]) = F (b)− F (a).

The process we will present here does the opposite direction: from an increasing and
right-continuous function, we will construct a Borel measure µ on R. The particular case
F (x) = x will lead us to the usual definition of “lenght”.

Definition 2.5.2. Sets of the form (a, b], (a,∞) or ∅, for −∞ 6 a < b < ∞ will be
called h-intervals.

Proposition 2.5.3. We have:

(i) the intersection of two h-intervals is an h-interval;

(ii) the complement of an h-interval is either an h-interval or the disjoint union of two
h-intervals.

Proof. Follow the steps of the proof of Exercise 23, item (a). �

By Theorem 1.4.6, the collection A of finite disjoint unions of h-intervals is an algebra,
and using Proposition 1.3.3, the σ-algebra generated by A is BR.

Now we will construct a premeasure on the algebra A.

Definition 2.5.4. let F : R → R be an increasing and right continuous function. Set
F (∞) = lim

x→∞
F (x) and F (−∞) = lim

x→−∞
F (x) (both exist since F is increasing). We define:

1. µ0((a, b]) = F (b)−F (a), if −∞ 6 a 6 b <∞, and µ0((a,∞)) = F (∞)−F (a) if −∞ 6 a,
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2. if {Ij}nj=1 is finite pairwise disjoint sequence of h-intervals, define

µ0

( n⋃
j=1

Ij

)
=

n∑
j=1

µ0(Ij).

We have two remarks to make before continuing. First, note that taking a = b in (1) we
obtain µ0(∅) = 0. Also the difference F (∞) − F (−∞) is always well defined, since F (∞)

and F (−∞) cannot be simultaneously ∞ or −∞ (recall that F is increasing).

Lemma 2.5.5. The function µ0 defined above is well defined in A, that is, if E =
n⋃
j=1

Ij =

m⋃
k=1

Fk with {Ij}nj=1 and {Fk}mk=1 are two finite disjoint sequences of h-intervals then

n∑
j=1

µ0(Ij) =
m∑
k=1

µ0(Fk).

Proof. We will prove first that if I is an h-interval with I =
⋃r
p=1 Jp, where {Jp}rp=1 is a finite

disjoint sequence of h-intervals, then µ0(I) =
r∑
p=1

µ0(Jp). To that end, we have two cases to

consider:

Case 1: I = (a, b] with −∞ 6 a < b < ∞. In this case, each Jp must be of the form
Jp = (ap, bp] with −∞ 6 ap < bp <∞. We can reorder the index p, if necessary, to obtain
a = a1 < b1 = a2 < b2 < · · · < br−1 = ar < br = b, and we have

r∑
p=1

µ0(Jp) =
r∑
p=1

(F (bp)− F (ap)) = F (br)− F (a1) = F (b)− F (a) = µ0(I).

Case 2: I = (a,∞) with −∞ 6 a. In this case, exactly one of the Jp’s must be (ap,∞), and
all the others are of the form Jp = (ap, bp] with −∞ 6 ap < bp < ∞. We can reorder the
index, if necessary, to obtain a1 = a < b1 = a2 < · · · < br−1 = ar, and Jr = (ar,∞). Thus

∞∑
p=1

µ0(Jp) = F (∞)− F (ar) +
r−1∑
p=1

(F (bp)− F (ap)) = F (∞)− F (a1)

= F (∞)− F (a) = µ0(I).

With this result, consider the general case stated in the lemma. Using Proposition 2.5.3,
item (i), for each j = 1, · · · , n and k = 1, · · · ,m, the set Ij ∩ Fk is an h-interval. Moreover,

for each j we have Ij =
m⋃
k=1

(Ij ∩ Fk), and for each k we have Fk =
n⋃
j=1

(Ij ∩ Fk), hence from

- 52 -



what we proved

n∑
j=1

µ0(Ij) =
n∑
j=1

m∑
k=1

µ0(Ij ∩ Fk) =
m∑
k=1

n∑
j=1

µ0(Ij ∩ Fk) =
m∑
k=1

µ0(Fk),

which concludes the proof. �

Proposition 2.5.6. The function µ0 defined in Definition 2.5.4 is a premeasure on A.

Proof. We have to prove that if {Ij} is a pairwise sequence in A with
∞⋃
j=1

Ij ∈ A then

µ0(
∞⋃
j=1

Ij) =
∞∑
j=1

µ0(Ij). Since each Ij is a finite union of h-intervals (which we can assume to

be pairwise disjoint), we can assume, after relabelling the sequence, that each Ij is a single
h-interval. Also, since their union is in A, it consists of a finite union of pairwise disjoint
h-intervals, and we can partition each Ij in a finite number of h-interval such that the union
of the intervals in each subsequence of this partition is a single h-interval. Since µ0 is finitely
additive, we may assume that

∞⋃
j=1

Ij is a single h-interval I. In this case, we have

µ0(I) = µ0

( n⋃
j=1

Ij

)
+ µ0

(
I \

n⋃
j=1

Ij

)
> µ0

( n⋃
j=1

Ij

)
.

Now we prove the reverse inequality, and we will brake it into some cases:

Case 1: I = (a, b] with −∞ < a < b <∞.

In this case consider ε > 0. Since F is right continuous, there exists δ > 0 such that
F (a + δ) − F (a) < ε. Also, if Ij = (aj, bj], for each j there exists δj > 0 such that
F (bj + δj)−F (bj) < ε2−j . The open intervals (aj, bj + δj) cover the compact set [a+ δ, b], and
we can extract a finite subcover. If we discard any interval in this finite subcover which is
contained inside a larger interval and (possibly) relabelling the index j, we can assume that:

(i) the intervals (a1, b1 + δ1), · · · , (aN , bN + δN) cover [a+ δ, b],

(ii) bj + δj ∈ (aj+1, bj+1 + δj+1) for j = 1, · · · , N − 1.
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Then, we have:

µ0(I) = F (b)− F (a) < F (b)− F (a+ δ) + ε 6 F (bN + δN)− F (a1) + ε

= F (bN + δN)− F (aN) +
N−1∑
j=1

[F (aj+1)− F (aj)] + ε

6 F (bN + δN)− F (aN) +
N−1∑
j=1

[F (bj + δj)− F (aj)] + ε

<
N∑
j=1

[F (bj) + ε2−j − F (aj)] + ε

6
∞∑
j=1

µ0(Ij) + 2ε,

and since ε > 0 is arbitrary, this conclude the proof for this case.

Case 2: I = (−∞, b], with −∞ < b <∞.

Using the same notations as in Case 1, given M > 0, there is a finite subcover of [−M, b],
satisfying (i) (with [−M, b] instead of [a+ δ, b]) and (ii). Then

F (b)− F (−M) 6 F (bN + δN)− F (a1) 6
∞∑
j=1

µ0(Ij) + ε.

Since ε > 0 is arbitrary, we have F (b)− F (−M) 6
∑∞

j=1 µ0(Ij), and the result follows by
making M →∞.

Case 3: I = (a,∞) with −∞ < a <∞.

Using the same argument as in Case 2, we obtain F (M)− F (a) 6
∑∞

j=1 µ0(Ij), and the
result again follows by making M →∞.

Case 4: I = R.
In this case, we can find a finite subcover of [−M,N ] for any given M,N > 0, and we

obtain F (N)− F (−M) 6
∑∞

j=1 µ0(Ij), and the result is prove making M,N →∞ (in any
order). �

With this premeasure we can construct a Borel measure, and we have our following result.

Theorem 2.5.7. Let F : R → R be an increasing and right continuous function. Then
there exists a unique Borel measure µF on R such that µF ((a, b]) = F (a) − F (b) for all
a, b ∈ R. If G is another such function, then we have µF = µG if and only if F − G is
constant. Conversely, if µ is a Borel measure on R that is finite on all bounded Borel sets,
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and we define

F (x) =


µ((0, x]) if x > 0;

0 if x = 0;

− µ((x, 0]) if x < 0,

then F is increasing and right continuous, and µ = µF .

Proof. Using Proposition 2.5.6, we know that µ0 given in Definition 2.5.4 is a premeasure on
A. Moreover, since R =

⋃
j∈Z

(j, j + 1] and µ0((j, j + 1]) = F (j + 1)− F (j) <∞ for all j, the

premeasure µ0 is σ-finite on R. Hence, by Theorem 2.3.5, items (i) and (iii), there exists a
unique extension µF of µ0 to the σ-algebra generated by A, which is BR.

Now set k = F (0)−G(0). If x > 0, then

F (x)− F (0) = µF ((0, x]) = µG((0, x]) = G(x)−G(0),

and hence F (x)−G(x) = k. Now if x < 0 then

F (0)− F (x) = µF ((x, 0]) = µG((x, 0]) = G(0)−G(x),

and again we obtain F (x)−G(x) = k. Hence F −G is constant. For the converse, if F −G
is constant then µF and µG both coincide with µ0 on A and hence, by the uniqueness of the
extension, µF = µG.

For the last claim, if 0 6 x 6 y then (0, x] ⊂ (0, y] and F (x) = µ((0, x]) 6 µ((0, y]) = F (y),
by the monotonicity property of µ (see Theorem 2.1.3, item (a)). Now if x 6 y 6 0 then
(y, 0] ⊂ (x, 0], and again by monotonicity we have F (x) = −µ((x, 0]) 6 −µ((y, 0]) = F (y).
For x 6 0 6 y, we have F (x) 6 0 6 F (y), and therefore F is increasing.

Now let x > 0 and xn ↘ x as n→∞. Then (0, xn+1] ⊂ (0, xn] for all n, (0, x] =
∞⋂
n=1

(0, xn]

and µ((0, x1]) = F (x1) <∞. By the continuity from above (see Theorem 2.1.8, item (b)), we
have

F (x) = µ((0, x]) = µ
( ∞⋂
n=1

(0, xn]
)

= lim
n→∞

µ((0, xn]) = lim
n→∞

F (xn),

and proves that F is right continuous at x. For x < 0 the proof is analogous, and F is right
continuous.

Now if a, b ∈ R and 0 6 a 6 b, then (0, b] = (0, a] ∪ (a, b] and µ((a, b]) = µ((0, b]) −
µ((0, a]) = F (b) − F (a). If a 6 b 6 0 then (a, 0] = (a, b] ∪ (b, 0] and µ((a, b]) = µ((a, 0]) −
µ((b, 0]) = −F (a) + F (b) = F (b)− F (a). Now if a 6 0 6 b, then (a, b] = (a, 0] ∪ (0, b] and
again µ((a, b]) = F (b)− F (a). Hence, it is clear that µ coincides with µ0 in A, and by the
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uniqueness of the extension, µ = µF . �

It is worth to remark that this theory could be made with h-intervals of the form [a, b)

and left continuous functions. Also, if µ is a finite Borel measure on R, then µ = µF where
F (x) = µ((−∞, x]) is the cumulative distribution of the measure µ, and this function differs
from Theorem 2.5.7 by the constant µ((−∞, 0]).

The theory we developed before gives, for an increasing and right continuous function
F , not only a Borel measure on R, but a complete measure µF on a σ-algebra that contains
BR (see Theorem 2.1.9). We will see that µF is just the completion of µF and its domain is
always strictly larger than BR. To this complete measure, which we again denote by µF , we
give the name of Lebesgue-Stieltjes measure associated to F .

We will, from now on, explore further regularity properties of Lebesgue-Stieltjes measures.
To this end, we will fix a complete Lebesgue-Stieltjes measure µ on R associated to the
increasing and right continuous function F , and we denote byMµ the σ-algebra which is the
domain of µ (which contains BR). We know, from Theorem 2.3.5, that for each E ∈Mµ we
have

µ(E) = inf
{ ∞∑

j=1

[F (bj)− F (aj)] : E ⊂
∞⋃
j=1

(aj, bj]
}

= inf
{ ∞∑

j=1

µ((aj, bj]) : E ⊂
∞⋃
j=1

(aj, bj]
}
,

just noting that a set of the form (a,∞) can be written as (a,∞) =
∞⋃
n=1

(a+n− 1, a+n], and

we already know that µ0((a,∞)) =
∞∑
n=1

µ0((a+ n− 1, a+ n]), since µ0 is a premeasure on A.

First, we will see that we can compute the measure of E using open intervals, instead of
h-intervals.

Lemma 2.5.8. For any E ∈Mµ, we have

µ(E) = inf
{ ∞∑

j=1

µ((aj, bj)) : E ⊂
∞⋃
j=1

(aj, bj)
}
.

Proof. We define

ν(E) = inf
{ ∞∑

j=1

µ((aj, bj)) : E ⊂
∞⋃
j=1

(aj, bj)
}
.

First assume that E ⊂
⋃∞
j=1(aj, bj). We can assume, without loss of generality that

bj > aj (otherwise (aj, bj) is empty and we can discard it). Consider an strictly increasing
sequence {cj,k}k, with cj,1 = aj and cj,k → bj as k →∞, and define Ij,k = (cj,k, cj,k+1]. Hence
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(aj, bj) =
⋃∞
k=1 Ij,k and E ⊂

⋃∞
j,k=1 Ij,k. Thus

∞∑
j=1

µ((aj, bj)) =
∞∑
j=1

∞∑
k=1

µ(Ij,k) =
∞∑

j,k=1

µ(Ij,k) > µ(E).

Since this is true for any cover of E with open intervals, we have ν(E) > µ(E).

Now for the converse, let ε > 0. By definition of µ, there exists {(aj, bj]} with E ⊂⋃∞
j=1(aj, bj] and

∑∞
j=1 µ((aj, bj]) 6 µ(E) + ε. For each j, we choose δj > 0 such that

F (bj + δj)− F (bj) < 2−jε (this can be done since F is right continuous) and we have

ν(E) 6
∞∑
j=1

µ((aj, bj + δj)) 6
∞∑
j=1

µ((aj, bj + δj]) =
∞∑
j=1

µ((aj, bj]) +
∞∑
j=1

µ((bj, bj + δj])

6 µ(E) + ε+
∑
j=1∞

[F (bj + δj)− F (bj)] 6 µ(E) + ε+
∞∑
j=1

2−jε = µ(E) + 2ε,

and since ε > 0 is arbitrary, we obtain ν(E) 6 µ(E). �

Proposition 2.5.9. For E ∈Mµ we have

µ(E) = inf{µ(U) : E ⊂ U and U is open}.

Proof. Let µop(E) = inf{µ(U) : E ⊂ U and U is open}. Clearly if E ⊂ U , since U ∈ BR ⊂
Mµ, we have by the monotonicity property of µ that µ(E) 6 µ(U). Hence µ(E) 6 µop(E).

For the converse inequality, let ε > 0. By Lemma 2.5.8, there exists {(aj, bj)} such that
E ⊂

⋃∞
j=1(aj, bj) and

∑∞
j=1 µ((aj, bj)) 6 µ(E) + ε. Since

⋃∞
j=1(aj, bj) is open, we obtain

µop(E) 6 µ(E) + ε, and since ε > 0 is arbitrary, we have µop(E) 6 µ(E), which conclude the
proof. �

Proposition 2.5.10. For E ∈Mµ we have

µ(E) = sup{µ(K) : K ⊂ E and K is compact}.

Proof. Set µc(E) = sup{µ(K) : K ⊂ E and K is compact}. Clearly if K ⊂ E then µ(K) 6

µ(E) (µ(K) is defined since K is closed, and hence K ∈ BR ⊂ Mµ). Thus µc(E) 6 µ(E),
and we just have to prove the converse inequality.

Assume that E is bounded (hence µ(E) <∞). If E is closed then E is compact, and the
equality follows taking K = E. If E is not closed, let ε > 0 be fixed. By Proposition 2.5.9
we can choose an open set U with E \ E ⊂ U and µ(U) 6 µ(E \ E) + ε. Take K = E \ U ,
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which is compact and K ⊂ E. We have

µ(K) = µ(E)− µ(E ∩ U) = µ(E)− [µ(U)− µ(U \ E)]

= µ(E)− µ(U) + µ (U \ E)︸ ︷︷ ︸
⊃E\E

> µ(E)− µ(E \ E)− ε+ µ(E \ E)

= µ(E)− ε,

and hence µc(E) > µ(E) − ε, and since ε is arbitrary we obtain µc(E) > µ(E), if E is
bounded.

Now, if E is unbounded consider Ej = E ∩ (j, j + 1] for each j ∈ Z. Then Ej is bounded
and by the previous computations, for each j ∈ Z there exists a compact set Kj ⊂ Ej with
µ(Kj) > µ(Ej)− 2−|j|. Now, for each n ∈ N, define Hn =

⋃n
j=−nKj. Then Hn is compact,

Hn ⊂ E and

µc(E) > µ(Hn) = µ
( n⋃
j=−n

Kj

)
=

n∑
j=−n

µ(Kj) >
n∑

j=−n

[µ(Ej)− ε2−|j|]

=
n∑

j=−n

µ(Ej)− 3ε = µ
( n⋃
j=−n

Ej

)
− 3ε.

Therefore µc(E) > µ
( n⋃
j=−n

Ej

)
− 3ε, and since µ(E) = lim

n→∞
µ
( n⋃
j=−n

Ej

)
(continuity from

below), making n→∞ we obtain µc(E) > µ(E)− 3ε, and since ε is arbitrary, we obtain the
reverse inequality and conclude the result. �

Theorem 2.5.11. If E ⊂ R, the following conditions are equivalent:

(a) E ∈Mµ.

(b) E = V \N1 where V is a Gδ set and µ(N1) = 0.

(c) E = H ∪N2 where H is a Fσ set and µ(N2) = 0.

Proof. Clearly, since µ is complete by hypotheses, N1 and N2 are inMµ and hence (b) and
(c) clearly imply (a).

We will prove that (a) implies both (b) an (c). For (a) implies (b), for each j ∈ Z, we
set Ej = E ∩ (j, j + 1] and so we have µ(Ej) <∞. If j ∈ Z is fixed, for each k ∈ N we have
Ej ⊂ Uj,k, with Uj,k open and µ(Uj,k \ Ej) 6 k−12−|j|.
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Now take Uk =
∞⋃

j=−∞
Uj,k. We have Uk \ E ⊂

∞⋃
j=−∞

(Uj,k \ Ej) and hence µ(Uk \ E) 6

∞∑
j=−∞

µ(Uj,k \ Ej) 6 3
k
. Clearly each Uk is open and taking V =

∞⋂
k=1

Uk we have V a Gδ set

and V \ E ⊂ Uk \ E for all k, which implies that

µ(V \ E) 6 µ(Uk \ E) 6
3

k
for all k,

and hence µ(V \ E) = 0. Taking N1 = V \ E we prove that (a) implies (b).

For (a) implies (c), note that since E ∈Mµ then Ec ∈Mµ. Then using that (a) implies (b),
we can write Ec = V \N1 where V is a Gδ set and µ(N1) = 0. Thus E = (V \N1)c = V c∪N1,
where V c is a Fσ set, and concludes the proof. �

This theorem says roughly that all sets inMµ are reasonably simple (open or compact)
modulo sets of measure zero. Another useful proposition that states that measurable sets
with finite measure can be approximated by a finite union of open intervals is the following:

Proposition 2.5.12. If E ∈ Mµ and µ(E) <∞, then for every ε > 0 there is a set A
which is a finite union of open intervals such that µ(E∆A) < ε.

Proof. In fact, for a given ε > 0, there exists K ⊂ E ⊂ U with K compact and U open,
such that µ(U \ E) < ε

2
and µ(E \ K) < ε

2
. Now, since U is an open set of R, we can

write U =
∞⋃
j=1

(aj, bj), with aj < bj for all j. Since K ⊂ U is compact, the exists a finite

subcover of {(aj, bj)} that covers K, and after possible relabeling, we can assume that
K ⊂

⋃n
j=1(aj, bj) := A.

Thus we have K ⊂ A ⊂ U and

µ(A \ E) 6 µ(U \ E) <
ε

2
and µ(E \ A) 6 µ(E \K) <

ε

2
,

and hence µ(E∆A) = µ(E \ A) + µ(A \ E) < ε. �

2.5.1 THE LEBESGUE MEASURE ON THE REAL LINE

Now we will take a look at the properties of the most important measure on R, the
Lebesgue measure, which is the complete Lesbesgue-Stieltjes measure µF associated with
the function F (x) = x, and the measure of each interval is simply its length. The Lebesgue
measure will be denoted by m, and the σ-algebra of the m-measurable sets is called the class
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of the Lebesgue measurable sets, and will be denoted by L. The restriction of m to BR
will be also called Lebesgue measure.

Among the most important properties of Lebesgue measure are its invariance under
translations and simple behavior under dilations. For E ⊂ R, s, r ∈ R, we define

E + s = {x+ s : x ∈ E} and rE = {rx : x ∈ E}.

Theorem 2.5.13. Let E ∈ L. Then if s, r ∈ R, we have

(a) E + s ∈ L and m(E + s) = m(E),

(b) rE ∈ L and m(rE) = |r|m(E).

Proof. First note that the collection of all open intervals of R is invariant by translations
and dilations, and hence so is BR; that is, the translation and dilation of Borel sets are still
Borel sets. Hence, for s, r ∈ R and E ∈ BR we define

ms(E) = m(E + s) and mr(E) = m(rE).

Now if (a, b) is an open interval, we have

ms((a, b)) = m((a, b) + s) = m((a+ s, b+ s)) = (b+ s)− (a+ s) = b− a = m((a, b)),

and

mr((a, b)) = m(r(a, b)) =

m((ra, rb)) = rb− ra = r(b− a) = rm((a, b)) if r > 0,

m((rb, ra)) = ra− rb = −r(b− a) = −rm((a, b)) if r < 0

= |r|m((a, b)),

hence ms and mr agrees with m and |r|m, respectively. Therefore, they agree on finite unions
of intervals, and by uniqueness (see Theorem 2.5.7) they must agree on BR.

In particular, if E ∈ BR is such that m(E) = 0, then m(E+ s) = 0 and m(rE) = 0, which
shows that the class of Borel sets of zero measure is preserved by translations and dilations.
If E ∈ L is such that m(E) = 0, we know that there exists a Gδ set A ∈ BR such that E ⊂ A

and m(A) = 0 (take Un open with E ⊂ Un and µ(Un) < 1/n, and set A =
⋂∞
n=1 Un). Hence

E + s ⊂ A + s and rE ⊂ rA, with m(A + s) = m(A) = 0 and m(rA) = |r|m(A) = 0, and
since m is complete, E + s and rE are in L and they both have zero Lebesgue measure.

Now, using item (c) of Theorem 2.5.11, each Lebesgue set E is the union of a Borel set

- 60 -



and a set of Lebesgue measure zero. Thus its translation E + s and dilation rE are also
Lebesgue sets and m(E + s) = m(E) and m(rE) = |r|m(E). �

An impressive remark is that measure and topological properties contain some surprises.
In fact, since the Lebesgue measure of each point is zero, then the Lebesgue measure of each
countable set is also zero. In particular m(Q) = 0 and Q is a dense subset of R. But we can
make things more interesting still.

Consider an enumeration {rj} of Q in [0, 1]. Fix ε > 0 and consider Ij the interval centered
at rj of length 2−jε. The set U = (0, 1) ∩

⋃∞
j=1 Ij is an open dense subset of [0, 1] (which

is “large”, topologically speaking) but m(U) 6
∑∞

j=1 2−jε = ε (which is “small”, measurably
speaking). Furthermore, the set K = [0, 1] \ U is closed and nowhere dense (which is “small”,
topologically speaking) but m(K) > m([0, 1])−m(U) = 1− ε (which is “large”, measurably
speaking).

2.5.2 THE CANTOR SET

We will present an example of a Lebesgue null set, with the cardinality of the continuum,
namely the Cantor set.

Consider the set E0 = [0, 1]. Remove from E0 the middle third (1
3
, 2

3
) e let E1 = [0, 1

3
]∪[2

3
, 1].

Remove the middle third from each remaining interval and let

E2 = [0, 1
9
] ∪ [2

9
, 3

9
] ∪ [6

9
, 7

9
] ∪ [8

9
, 1],

and proceed with this construction, obtaining a set Ej in each step. We have E1 ⊃ E2 ⊃
E3 ⊃ · · · , and each Ej is the union of 2j disjoint closed intervals, each one with lenght 3−j

(ans thus m(Ej) = 2j3−j for each j).

Define C =
∞⋂
j=1

Ej. This set C is called the Cantor set, and it is clearly compact. Since

it is an intersection of a decreasing sequence of compact sets, it is nonempty. Clearly C ∈ BR,
and hence C is Lebesgue measurable and moreover

m(C) 6 m(Ej) =
(2

3

)j
→ 0 as j →∞,

and hence m(C) = 0.

We will explore some topological properties of C.
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Proposition 2.5.14. If 0 6 α < β 6 1, then there exist k,m ∈ N0 such that the interval
(α, β) contains an interval of the form (

3k+1
3m

, 3k+2
3m

)
. (2.5.1)

Proof. First, choose m ∈ N0 such that 4 < 3m(β − α). We have

3mβ − 2

3
− 3mα− 1

3
=

3m(β − α)− 1

3
>

4− 1

3
= 1,

and hence there exists an integer k ∈ (3mα−1
3

, 3mβ−2
3

), and therefore

3mα− 1

3
< k <

3mβ − 2

3
=⇒ α <

3k + 1

3m
and

3k + 2

3m
< β,

and concludes the proof. �

The intervals removed from [0, 1] to form the Cantor set are precisely the intervals of
the form (2.5.1). Since each interval contains an interval of the form (2.5.1) (by this last
proposition) the Cantor set C contains no interval. This implies that C is totally disconnected,
that is, the only connected subsets of C are points.

Proposition 2.5.15. Every point of C is a limit point of C. In other words, C has no
isolated points.

Proof. Let x ∈ C and I an open interval containing x. Let Ij be the interval of Ej that
contains x, and choose j large so that Ij ⊂ I. Choose xj as the endpoint of Ij with xj 6= x.
By construction of C, all the endpoints of the intervals of Ej are in C, and hence xj ∈ C,
which proves that x is a limit point of C. �

Let x ∈ [0, 1] and consider its expansion in base 3, that is, x =
∞∑
j=1

3−jaj, where aj ∈

{0, 1, 2}.

Lemma 2.5.16. x ∈ C if and only if its base 3 expansion x =
∞∑
j=1

3−jaj is such that aj 6= 1

for all j.

Proof. See [1, Page 38]. �

Proposition 2.5.17. We have card(C) = c.

Proof. Let x ∈ C and
∑∞

j=1 3−jaj its base 3 expansion. By the previous lemma, aj = 0 or 2

for all j, and we can define f : C → [0, 1] by f(x) =
∑∞

j=1 2−jbj, where bj =
aj
2
∈ {0, 1} for
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all j. Since each real number in [0, 1] can be written in base 2, this function f is surjective,
and hence card(C) > card([0, 1]) = c. Since C ⊂ [0, 1], we have the equality. �

One can see that if x, y ∈ C and x < y, then f(x) < f(y), unless x, y are the endpoints
of one subinterval removed from [0, 1] to form C, since in this case we would have f(x) = k

2m

for some m ∈ N0 and k ∈ {0, 1, · · · , 2m}, and f(y) is the other base two expansion of f(x).
Hence we can extend this function, from C to [0, 1] by setting f constant (and equal to f of
the endpoints) of each interval missing from C. This function f is still increasing, and since
f([0, 1]) = [0, 1], f can have no jump discontinuities, therefore f is continuous. This function
f is called the Cantor function or the Cantor-Lebesgue function

2.5.3 CANTOR-TYPE SETS OF POSITIVE MEASURE
In this subsection we will generalize the construction of the Cantor set done above, to

obtain sets which are compact, nowhere dense, totally disconnected, with no isolated points
and with the cardinality of the continuum, but with positive measure.

Let I = [a, b] be a bounded interval (a, b ∈ R and a < b) and α ∈ (0, 1). Set c = a+b
2

and
r = α(b−a)

2
. The interval (c− r, c+ r) ⊂ I is called the open middle αth of I, and we have

m((c− r, c+ r)) = 2r = α(b− a) = αm(I).
Now we make the construction as follows. Let {αj} any sequence of numbers in (0, 1) and

K0 = I = [a, b]. We obtain K1 be removing the open middle αth
1 of K0. Next K2 is obtained

by removing the open middle αth
2 of each one of the two intervals that make K1. Inductively,

Kj is obtained by removing the open middle αth
j of the 2j−1 intervals that make Kj−1.

Define K =
⋂∞
j=1Kj. This set is called the generalized Cantor set, and is nonempty,

compact, nowhere dense, totally disconnected, with no isolated points and has the cardinality
of the continuum. When K0 = [0, 1] and αj = 1

3
for all j we obtain the Cantor set C.

Now, at each step we obtain m(Kj) = (1− αj)m(Kj−1) and hence, using this process j
times, we have m(Kj) = (b− a)

∏j
n=1(1− αn). Using the continuity from above, we have

m(K) = lim
j→∞

m(Kj) = (b− a) lim
j→∞

j∏
n=1

(1− αn).

If αj = α ∈ (0, 1) for all j then m(K) = (b − a) lim
n→∞

(1 − α)n = 0. However, if αj → 0

sufficiently fast, we have chances to obtain m(K) > 0. In fact, for each β ∈ (0, 1), we

will see that we can choose a sequence αj → 0 such that lim
j→∞

j∏
n=1

(1 − αn) = β, and hence

m(K) = (b− a)β.

- 63 -



2.5.4 A SET NOT LEBESGUE MEASURABLE IN R

One question that has to be answered is the following: are all subsets of R Lebesgue
measurable? That is, L = P(R)?

In this subsection we will see that this is not the case, constructing a subset of R that is
not Lebesgue measurable. But it comes as no surprise that such a set has to be something
quite strange, that is, for a set to be not Lebesgue measurable, something has to be very
wrong!

To begin, consider E = [0, 1), and define in E the following relation: x ∼ y if and only
if x − y ∈ Q. Clearly ∼ is an equivalence relation and for each x ∈ [0, 1) we consider its
equivalence class [x]. Define E = {[x] : x ∈ E} and using the Axiom of Choice, consider
N ⊂ [0, 1) be a set with exactly one element of each equivalence class in E.

Consider now R = Q ∩ [0, 1) and for each r ∈ R define

Nr = {x+ r : x ∈ N ∩ [0, 1− r)} ∪ {x+ r − 1: x ∈ N ∩ [1− r, 1)},

that is, we shift N by r units to the right, but the part of this shift that sticks out of [0, 1)

we bring back by one unit. With this construction Nr ⊂ [0, 1) for each r ∈ R.
We have the following two properties:

Lemma 2.5.18.

(a) [0, 1) =
⋃
r∈RNr.

(b) Nr ∩Ns = ∅ if r, s ∈ R and r 6= s.

Proof. (a) Let x ∈ [0, 1). By the construction of N , there exists a representative of the
class [x], we call it x0, in N . If x0 6 x, set r = x − x0 ∈ R. Then x = x0 + r ∈ Nr, since
x0 ∈ N ∩ [0, 1− x+ x0) = N ∩ [0, 1− r). Now if x0 > x, define r = x− x0 + 1 ∈ R. In this
case x = x0 + r− 1 ∈ Nr, since x0 ∈ N ∩ [x0 − x, 1) = N ∩ [1− r, 1). In any of the two cases,
there exists r ∈ R such that x ∈ Nr, and proves (a).

(b) Assume that x ∈ Nr ∩ Ns, with r, s ∈ R and r 6= s. Then we have x = x0 + r (or
x = x0 + r − 1) for some x0 ∈ N and x = x1 + s (or x = x1 + s − 1) for some x1 ∈ N .
In any of the four possibilities, we obtain x0 − x1 ∈ Q, and since both x0, x1 are in N , by
construction of N , this implies that x0 = x1, which in turn implies that r = s or r = s+ 1 or
s = r + 1. Since r 6= s we have r = s+ 1 or s = r + 1, but since r, s ∈ R = Q ∩ [0, 1), this
gives us a contradiction. Therefore Nr ∩Ns = ∅. �
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Theorem 2.5.19. N is not Lebesgue measurable.

Proof. Assume that this is not the case, that is, assume that N is Lebesgue measurable.
Then, for each r ∈ R we have

m(N) = m(N ∩ [0, 1− r)) +m(N ∩ [1− r, 1))

= m(N ∩ [0, 1− r) + r) +m(N ∩ [1− r, 1) + r − 1)

= m(Nr),

using the translation invariance property of the Lebesgue measure. Hence, since R is countable,
using item (a) of the previous lemma we obtain

1 = m([0, 1)) = m
( ⋃
r∈R

Nr

)
=
∑
r∈R

m(Nr) =
∑
r∈R

m(N).

But thus last equality gives us a contradiction, since the last sum on the right can only
be 0 (if m(N) = 0) of ∞ (if m(N) > 0). Therefore N cannot be Lebesgue measurable. �

2.6 SOLVED EXERCISES FROM [1, PAGE 39]
Exercise 25. Complete the proof of Theorem 1.19.

Solution. See Theorem 2.5.11.

Exercise 26. Prove Proposition 1.20 (Use Theorem 1.18).

Solution. See Theorem 2.5.12.

Exercise 27. Prove Proposition 1.22a. (Show that is x, y ∈ C and x < y, there exists
z /∈ C such that x < z < y).

Solution. This result is proved in Subsection 2.5.2. To elaborate as the hint presented,
consider x = α, y = β. By Proposition 2.5.14, the interval (x, y) contains an interval of the
form (3k+1

3m
, 3k+2

3m
) for some integers m ∈ N0 and k ∈ {0, 1, · · · , 3m}. Since this interval has

empty intersection with C, any z in this interval is such that z /∈ C and x < z < y.

Exercise 28. Let F : R→ R be an increasing and right continuous function, and let µF
be the associated measure. Then µF ({a}) = F (a) − F (a−), µF ([a, b)) = F (b−) − F (a−),
µF ([a, b]) = F (b)− F (a−) and µF ((a, b)) = F (b−)− F (a).
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Recall that F (x0−) = lim
x→x−

0

F (x).

Solution. Note that {a} =
∞⋂
j=1

(a− 1
j
, a] and by the continuity from above, we have

µF ({a}) = lim
j→∞

µF ((a− 1
j
, a]) = lim

j→∞
[F (a)− F (a− 1

j
)] = F (a)− F (a−).

Now

µF ([a, b]) = µF ({a}) + µF ((a, b]) = F (a)− F (a−) + F (b)− F (a) = F (b)− F (a−),

µF ((a, b)) = µF ((a, b])− µF ({b}) = F (b)− F (a)− (F (b)− F (b−)) = F (b−)− F (a),

µF ([a, b)) = µF ({a}) + µF ((a, b)) = F (a)− F (a−) + F (b−)− F (a) = F (b−)− F (a−).

Exercise 29. Let E be a Lebesgue measurable set.

(a) If E ⊂ N , where N is the nonmeasurable set describe in Subsection 2.5.4, then m(E) = 0.

(b) If m(E) > 0, then E contais a nonmeasurable set. (If suffices to assume E ⊂ [0, 1])

Solution to (a). If E ⊂ N is measurable, then with the notation of Subsection 2.5.4 let
F =

⋃
r∈REr ⊂

⋃
r∈RNr = [0, 1), where

Er = {x+ r : x ∈ E ∩ [0, 1− r)} ∪ {x+ r − 1: x ∈ E ∩ [1− r, 1)},

and each Er is measurable (since E is measurable) and since E ⊂ N the sequence {Er} is
pairwise disjoint. Thus

m(F ) =
∑
r∈R

m(Er) =
∑
r∈R

m(E),

and since F ⊂ [0, 1), we have m(F ) 6 1 <∞ and this implies that m(E) = 0, for if m(E) > 0,
the previous equality would imply that m(F ) =∞.

P.S.: This item remains true if we replace N with Nr for some r ∈ R.
Solution to (b). Assume that m(E) > 0.

? Since m is semifinite, we can assume that m(E) <∞, since if m(E) =∞ there exists
F ⊂ E with 0 < m(F ) < m(E).

? Also we can assume that E is bounded, since if E is unbounded, since m is σ-finite, we
can write E =

⋃
j∈ZE ∩ (j, j + 1], and since 0 < m(E) <∞, this implies that at least one of

the E ∩ (j, j + 1] has positive measure.
? Finally, we can assume that E ⊂ [0, 1], since if this is not the case we take s =

|min{inf E, 0}| and Es = E + s ⊂ [0,∞) and if r = supEs + 1 then (1/r)E ⊂ [0, 1), and
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if the result is proven for (1/r)E with a nonmeasurable set N , then rN − s ⊂ E is also
nonmeasurable.

Thus we will prove the result for this case E ⊂ [0, 1) with m(E) > 0. Consider the
nonmeasurable set N described in Subsection 2.5.4. Since

⋃
r∈R

Nr = [0, 1), we have E =⋃
r∈R

E ∩ Nr. We have Nr nonmeasurable for each r ∈ R. In fact, if for some r ∈ R, Nr

is measurable then so is N , which is a contradiction. Assume now that each E ∩ Nr is
measurable. Then by item (a), with Nr instead of N , we obtain m(E ∩Nr) = 0 and hence
m(E) = 0, which is a contradiction. Hence E ∩Nr is nonmeasurable for some r ∈ R, and
this is a nonmeasurable set contained in E.

Exercise 30. If E ∈ L and m(E) > 0, for any α < 1 the is an open interval I such that
m(E ∩ I) > αm(I).

Solution. For α 6 0, the result holds with I = R. Now we prove the result for 0 < α < 1,
and to that end we consider two cases.

Case 1: Assume that m(E) <∞.

Assume to te contrary that there exists 0 < α < 1 such that m(E ∩ I) 6 αm(I) for all
open intervals I.

With this assumption, if {Ij} is a pairwise disjoint sequence of open intervals such that

E ⊂
∞⋃
j=1

Ij then

m(E) = m
(
E ∩

∞⋃
j=1

Ij

)
=
∞∑
j=1

m(E ∩ Ij) 6 α
∞∑
j=1

m(Ij). (2.6.1)

Now, take ε > 0. There exists an open set U with E ⊂ U and m(U) 6 m(E) + ε. Since U

is open, there exists a pairwise disjoint sequence {Ij} of open intervals such that U =
∞⋃
j=1

Ij.

By (2.6.1) we have

m(E) 6 α

∞∑
j=1

m(Ij) = αm(U) 6 αm(E) + αε,

which implies that m(E) 6 α
1−αε, for each ε > 0, since m(E) < ∞. Thus m(E) = 0, and

contradicts the assumption that m(E) > 0.

Case 2: m(E) =∞. Since m is semifinite, take F ⊂ E with 0 < m(F ) <∞. For such F , by
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Case 1, there exists an interval I such that m(F ∩ I) > αm(I). Hence

m(E ∩ I) > m(F ∩ I) > αm(I),

and concludes the results.

Exercise 31. If E ∈ L and m(E) > 0, the set E − E = {x − y : x, y ∈ E} contains
an interval centered at 0. (If I is an in Exercise 30, with α > 3

4
, then E − E contains

(−1
2
m(I), 1

2
m(I))).

Solution. Clearly 0 ∈ E−E and moreover, if z = x−y ∈ E−E then −z = y−x ∈ E−E.

Let 3
4
< α < 1. By Exercise 30, there exists an open interval I such thatm(E∩I) > 3

4
m(I),

and we can assume that I = (x0 − r, x0 + r) (we can assume that I is bounded, since the
previous inequality would not hold when I is not bounded). Note that r = 1

2
m(I). By the

considerations above, if we shows that (0, r) ⊂ E − E, the result is proven.

Let z ∈ (0, r) and assume that z /∈ E − E, hence z 6= x − y for all x, y ∈ E. Define
E1 = E ∩ (x0 − r, x0] and E2 = E ∩ (x0, x0 + r). If x ∈ E1 then x + z ∈ I and x + z /∈ E
(since if x+ z = y ∈ E then z = x− y ∈ E − E). Hence E1 + z ⊂ I \ E.

Analogously E2 − z ⊂ I \ E. Therefore

m(E1) = m(E1 + z) 6 m(I \ E) = m(I \ (E ∩ I)) = m(I)−m(E ∩ I)

m(E2) = m(E2 − z) 6 m(I \ E) = m(I)−m(E ∩ I),

and we obtain

m(E ∩ I) = m(E1 ∪ E2) = m(E1) +m(E2) 6 2[m(I)−m(E ∩ I)],

which implies that m(E ∩ I) 6 2
3
m(I). But then

3
4
m(I) < m(E ∩ I) 6 2

3
m(I),

which gives us a contradiction. Hence z ∈ E − E, and thus (0, α) ⊂ E − E, which concludes
the proof.

Exercise 32. Suppose {αj} ⊂ (0, 1).

(a)
∞∏
j=1

(1− αj) > 0 if and only if
∞∑
j=1

αj <∞ (compare
∞∑
j=1

log(1− αj) to
∞∑
j=1

αj).

- 68 -



(b) Given β ∈ (0, 1), exhibit a sequence {αj} such that
∞∏
j=1

(1− αj) = β.

Solution to (a). Note first that

∞∏
j=1

(1− αj) = lim
n→∞

n∏
j=1

(1− αj) = lim
n→∞

n∏
j=1

elog(1−αj) = lim
n→∞

e

n∑
j=1

log(1−αj)
,

and since all terms log(1− αj) are negative, we have

∞∏
j=1

(1− αj) = e

∞∑
j=1

log(1−αj)
= e

−
∞∑
j=1

log(1−αj)−1

.

Now we compare
∞∑
j=1

log(1 − αj)
−1 to

∞∑
j=1

αj. To do that, consider the real function

f : [0,∞)→ R given by f(x) = (1− x)ex. We have f(0) = 1 and f ′(x) = −xex < 0 for all
x ∈ (0, 1). Hence f is strictly decreasing and f(x) 6 1 for all x ∈ [0, 1), which means that
(1− x)ex 6 1 for all x ∈ [0, 1). Applying log on both sides, we obtain x 6 log(1− x)−1 for
all x ∈ [0, 1). Thus taking x = αj, the Comparison Test gives us that if

∑
log(1 − αj)−1

converges then
∑
αj converges.

For the other side, consider the function g : [0, 1/2) → R given by g(x) = (1 − x)e2x.
Thus g(0) = 1 and g′(x) = e2x(1− 2x) > 0 if x ∈ [0, 1/2). Hence g is strictly increasing and
1 6 g(x) for all x ∈ (0, 1/2), which implies that 1 6 (1− x)e2x for all x ∈ [0, 1/2). Applying
log on both sides, we obtain log(1 − x)−1 6 2x for all x ∈ [0, 1/2). Thus taking x = αj,
the Comparison Test gives us that if

∑
αj converges, then

∑
log(1− αj)−1 converges (since∑

αj converges, there exists j0 ∈ N such that αj ∈ (0, 1/2) for all j > j0, and we apply the
Comparison Test for j > j0).

This concludes the proof of (a), since
∞∏
j=1

(1 − αj) > 0 if and only if
∑

log(1 − αj)
−1

converges.

Solution to (b). Let us construct first the following: given γ < 0, construct a sequence
γj ⊂ (0, 1) such that

∑
log γj = γ.

Take r = 1 − 1
γ
. Then r > 1, since γ < 0, and for each j, define γj = e−r

−j . Thus
γj ∈ (0, 1) for all j. Now we have

∞∑
j=1

log γj = −
∞∑
j=1

r−j = − 1

r − 1
= γ.

Now for β ∈ (0, 1), set γ = log β and consider the sequence γj from the previous
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construction. Defining αj = 1− γj we have

∞∏
j=1

(1− αj) = e

∞∑
j=1

log(1−αj)
= e

∞∑
j=1

log γj
= eγ = β,

and we conclude the construction.

Explicitly we have

αj = 1− er−j for all j, where r = 1− 1

log β
.

Exercise 33. There exists a Borel set A ⊂ [0, 1] such that 0 < m(A ∩ I) < m(I) for
every subinterval I of [0, 1]. (Hint: every subinterval of [0, 1] contains Cantor-type sets of
positive measure).

Solution. Consider R = Q ∩ [0, 1] and I = {(a, b) : a, b ∈ R with a < b} the collection
of all intervals with rational endpoints in [0, 1]. We know that I is countable, thus we have
I = {Ij}.

There exists a Cantor-set type K1 ⊂ I1 with positive measure (K1 is compact and totally
disconnected). Since I1 \ K1 is open, there exists an open interval I∗1 ⊂ I1 \ K1, and a
Cantor-type setW1 ⊂ I∗1 with positive measure (W1 is also compact and totally disconnected).
Clearly K1 ∩ W1 = ∅, and since they are both compact and totally disconnected, so is
C1 = K1 ∪W1.

Now I2 \ C1 is open, hence there exists an interval I∗2 ⊂ I2 \ C2, and a Cantor-type
set K2 with positive measure. Also, there exists a Cantor-type set W2 ⊂ I∗2 \ K2 (since
the latter is open) with positive measure. Hence (K1 ∪ K2) ∩ (W1 ∪W2) = ∅, and C2 =

K1 ∪K2 ∪W1 ∪W2 ⊂ I1 ∪ I2 is compact and totally disconnected.

Assume we have constructedKj,Wj with (
⋃j
k=1 Kk)∩(

⋃j
k=1 Wk) = ∅ and Cj =

⋃j
k=1(Kk∪

Wk) ⊂
⋃j
k=1 Ik is compact and totally disconnected. Thus Ij+1 \ Cj is open and contains

an interval I∗j+1 which in turn contains a Cantor-type set Kj+1 of positive measure. Also
I∗j+1 \Kj+1 contains a Cantor-type set of positive measure Wj+1.

Therefore (
⋃j+1
k=1 Kk) ∩ (

⋃j+1
k=1 Wk) = ∅ and Cj+1 =

⋃j+1
k=1(Kk ∪Wk) ⊂

⋃j+1
k=1 Ik is compact

and totally disconnected.

Now we define A =
⋃∞
j=1Kj, which is a Borel set (countable union of compact sets). If I

is a subinterval of [0, 1], then there exists j0 such that Ij0 ⊂ I, and hence

m(A ∩ I) > m(A ∩ Ij0) > m(Kj0 ∩ Ij0)
Kj0⊂Ij0= m(Kj0) > 0.
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Also, since Wj0 is disjoint from Kj for all j ∈ N we have

m(A ∩ I) < m(A ∩ I) +m(Wj ∩ I) 6 m(I),

and thus 0 < m(A ∩ I) < m(I).
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CHAPTER3

INTEGRATION

3.1 MEASURABLE FUNCTIONS
Let (X,M) and (Y,N ) be two measurable spaces and f : X → Y a function. We define

f−1(N ) = {f−1(E) : E ∈ N}.

Proposition 3.1.1. The collection f−1(N ) is a σ-algebra on X.

Proof. This result follows since f−1 preserves unions, intersections and complements. �

Definition 3.1.2. f : X → Y is called (M,N )-measurable (or simply measurable if
M,N are understood) if f−1(N ) ⊂M, that is, if f−1(E) ∈M for all E ∈ N .

Proposition 3.1.3. If N is generated by E then f : X → Y is (M,N )-measurable if
and only if f−1(E) ∈M for all E ∈ E.

Proof. Clearly the only if part is trivial. The if part follows from the fact that {E ⊂
Y : f−1(E) ∈M} is a σ-algebra on X that contains E , and hence it contains N . �

Corollary 3.1.4. If X and Y are topological spaces, every continuous function f : X → Y

is (BX ,BY )-measurable.

Proof. This result follows from the fact that f is continuous if and only if f−1(U) is open in
X for every open subset U of Y . �

If (X,M) is a measurable space and f : X → R or f : X → C or f : X → R then it will
be calledM-measurable (or simply measurable), if it is (M,BR) or (M,BC) or (M,BR)

measurable. In particular f : R→ R or f : R→ C or f : R→ R is called Lebesgue (Borel)

measurable if it is (L,BR) ((BR,BR)) or (L,BC) ((BR,BC)) or (L,BR) ((BR,BR)) measurable,
respectively.
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Remark 3.1.5. If f, g : R→ R are Lebesgue measurable, it does not follow that f ◦ g is
Lebesgue measurable, even if g is continuous. If E ∈ BR we have f−1(E) ∈ L, but unless
f−1(E) ∈ BR there is no guarantee that g−1(f−1(E)) will be in L (we will see the existence
of a nonborelian Lebesgue measurable set in a following exercise).

However if f is Borel measurable then f ◦ g is Lebesgue or Borel measurable whenever g
is.

Proposition 3.1.6. If (X,M) is a measurable space and f : X → R, the following are
equivalent:

(a) f isM-measurable.

(b) f−1((a,∞)) ∈M for all a ∈ R.

(c) f−1([a,∞)) ∈M for all a ∈ R.

(d) f−1((−∞, a)) ∈M for all a ∈ R.

(e) f−1((−∞, a])) ∈M for all a ∈ R.

Proof. This follows from Propositions 3.1.3 and 1.3.3. �

We often need to consider the measurability of a function f on subsets of X. In this case,
if (X,M) is a measurable space, f is a (real or complex) function and E ∈M, we say that f
is measurable on E if f−1(B) ∩ E ∈M for all Borel sets B; or equivalently, if f |E isME

measurable, whereME = {F ∩ E : F ∈M}.
Given a nonempty set X, a family {(Yα,Nα)}α ∈ Λ a collection of measurable spaces and

fα : X → Yα is a map for each α ∈ Λ, there is a unique smallest σ-algebra on X such that all
fα are measurable, namely the σ-algebraM generated by the sets f−1

α (Eα) with Eα ∈ Nα
and α ∈ Λ. This σ-algebraM is called the σ-algebra generated by {fα}α∈Λ.

If X =
∏
α∈Λ

Yα, we see that the product σ-algebra on X (see Section 1.2) is the σ-algebra

generated by the coordinate maps πα : X → Yα, α ∈ Λ.

Proposition 3.1.7. Let (X,M) and {(Yα,Nα)}α∈Λ be measurable spaces, Y =
∏
α∈Λ

Yα,

N = ⊗α∈ΛNα, and πα : Y → Yα the coordinate maps for each α ∈ Λ. Then f : X → Y is
(M,N )-measurable if and only if fα = πα ◦ f is (M,Nα)-measurable for all α ∈ Λ.

Proof. Assume that f is (M,N )-measurable and fix α ∈ Λ. If Eα ∈ Nα, then by definition
of N , we have π−1

α (Eα) ∈ N and hence f−1
α (Eα) = (πα ◦ f)−1(Eα) = f−1(π−1

α (Eα)) ∈ M,
and fα if (M,Nα)-measurable.
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For the converse, since N is generated by the family E =
⋃
α∈α

⋃
Eα∈Nα

π−1
α (Eα) and fα is

(M,Nα)-measurable for all α ∈ Λ, we have

f−1(π−1
α (Eα)) = (πα ◦ f)−1(Eα) = f−1

α (Eα) ∈M.

Hence, by Proposition 3.1.3, it follows that f is (M,N )-measurable. �

Corollary 3.1.8. A function f : X → C isM-measurable if and only if Ref : X → R
and Imf : X → R areM-measurable.

Proof. This follows from Proposition 3.1.7 since BC = BR2 = BR ⊗ BR by (1.3.1). �

Proposition 3.1.9. Let f, g : X → K beM-measurable functions, where K can be C or
R. Then f + g and fg are alsoM-measurable.

Proof. Define F : X → K×K, φ : K×K→ K and ψ : K×K→ K by F (x) = (f(x), g(x)) for
x ∈ X, φ(x, y) = x+y and ψ(x, y) = xy for x, y ∈ K. By Proposition 1.3.2, BK×K = BK⊗BK,
and by Proposition 3.1.7, F is (M,BK×K)-measurable. By Corollary 3.1.4, φ and ψ are
(BK×K,BK)-measurable. Thus, f + g = φ ◦ F and fg = ψ ◦ F areM-measurable. �

This result holds for functions f, g : X → R, if we take care with the indetermination
∞−∞ and define by convention that 0 · ∞ = 0 · (−∞) = 0 (see Exercise 2 ahead).

Now we will see how measurable functions behave under limits.

Proposition 3.1.10. Let {fj} be a sequence of R valued measurable functions on (X,M).
Then the functions:

(a) g1(x) = sup
j
fj(x),

(b) g2(x) = lim sup
j→∞

fj(x),

(c) h1(x) = inf
j
fj(x),

(d) h2(x) = lim inf
j→∞

fj(x)

are all M-measurable. Also, if f(x) = lim
j→∞

f(x) exists for every x ∈ X, then f is also
M-measurable.

Proof. We prove that

g−1
1 ((a,∞]) =

∞⋃
j=1

f−1
j ((a,∞]).

In fact, let x ∈ g−1
1 ((a,∞]), hence g1(x) = sup

j
fj(x) > a. Thus there exists j0 such that

fj0(x) > a, for otherwise we would have g1(x) 6 a which is a contradiction, hence the ⊂
inclusion holds. The converse inclusion ⊃ is trivial. Thus g1 isM-measurable.
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Analogously, we can show that h−1
1 ([−∞, a)) =

⋃∞
j=1 f

−1
j ([−∞, a)), and thus h1 is also

M-measurable.

Now, for each k ∈ N, the function rk(x) = sup
j>k

fj(x) isM-measurable by (a), and hence

g2(x) = inf
k
rk(x) isM-measurable. Analogously h2 isM-measurable. When the limit exists,

we have f = g2 = h2, and f is alsoM-measurable. �

Corollary 3.1.11. If f, g : X → R are M-measurable, then so are max(f, g) and
min(f, g).

Proof. Use the previous result to the sequence f1 = f , f2 = g and fn = g for n > 3. �

Corollary 3.1.12. If {fj} is a sequence of complex-valued functions and f(x) = lim
j→∞

fj(x)

exists for all x, then f is measurable.

Proof. Just apply Corollary 3.1.8. �

3.1.1 DECOMPOSITIONS OF FUNCTIONS

For future use, we will present two useful decompositions of functions.

Definition 3.1.13. Let f : X → R. Then we define

f+(x) = max(f(x), 0) and f−(x) = max(−f(x), 0) = −min(f(x), 0),

the positive and negative parts of f , respectively.

Clearly we have
f = f+ − f− and |f | = f+ + f−,

and more specifically we have f(x) = f+(x) iff f(x) > 0 and f(x) = −f−(x) iff f(x) < 0.
Also, if f is measurable, then both f+ and f− are, by Corollary 3.1.11. Also, this implies
that if f is measurable, then |f | is also measurable (the converse is not true in general).

Before presenting the other decomposition, we recall the sign function in C, given by

sgn(z) =


z

|z|
if z 6= 0,

0 if z = 0.
(3.1.1)

Thus we have z = |z|sgn(z) for all z ∈ C.
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Definition 3.1.14. Let f : X → C. We define the polar decomposition of f as

f(x) = |f(x)|sgn(f(x)) for all x ∈ X.

Proposition 3.1.15. If f is measurable, then so are |f | and sgn(f).

Proof. The function z 7→ |z| is continuous on C, hence |f | is measurable if f is. Now, the
function z 7→ sgn(z) is continuous on C \ {0}. Hence, if U ⊂ C is open, then sgn−1(U) is
either open (when 0 /∈ U), or of the form V ∪{0} where V is open (when 0 ∈ U). In either one
of these cases, sgn−1(U) is a Borel set, hence sgn is Borel measurable. Hence sgn(f) = sgn◦ f
is measurable. �

3.1.2 SIMPLE FUNCTIONS
We will now discuss the concept of simple functions, which are the building block for the

theory of integration. To begin, we set (X,M) a measurable space, and we need first the
following definition:

Definition 3.1.16. Let E ⊂ X. The function defined by

χE(x) =

{
1 if x ∈ E,
0 if x /∈ E,

(3.1.2)

is called the characteristic function of E (also known as indicator function of E, and
also denoted by 1E).

Proposition 3.1.17. χE : X → R isM-measurable if and only if E ∈M.

Proof. If χE isM-measurable, then E = χ−1
E ([1,∞)) ∈M. Now if E ∈M, then

χ−1
E ([a,∞)) =


X if a 6 0,

E if 0 < a 6 1,

∅ if a > 1,

and χ−1
E ([a,∞)) ∈M in any case, hence χE isM-measurable. �

Definition 3.1.18. A function s : X → C is said to be a simple function if there exists
c1, · · · , cn ∈ C and E1, · · · , En ∈M such that

s(x) =
n∑
j=1

cjχEj(x) for all x ∈ X.
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The following proposition is straightforward.

Proposition 3.1.19. A function s : X → C is simple if and only if s isM-measurable
and s(X) is finite.

In fact, if s is simple, we can write

s(x) =
n∑
j=1

cjχEj(x) for each x ∈ X, (3.1.3)

where {cj}nj=1 is a finite sequence of distinct elements and Ej = s−1({cj}) for each j = 1, · · · , n.
The decomposition (3.1.3) is called the standard representation of s, and writes s as a
finite linear combination with distinct coefficients, of characteristic functions of disjoint
measurable sets whose union if the whole space X.

On note to remember that even if one of the cj is zero (that can happen), we still need to
envision cjχEj as a part of the standard representation, since the set Ej may have a role to
play when f interacts with other functions.

Clearly, when s and r are simple functions, then so are s+ r and sr. We will see that we
can approximate any measurable function by a sequence of simple functions, in a very well
behaved way.

Theorem 3.1.20. If f : X → R is aM-measurable function with f(x) > 0 for all x ∈ X,
then there exists a sequence {sn} of real simple functions such that 0 6 s1 6 s2 6 · · · 6 f

such that sn → f pointwise and sn → f uniformly on any set on which f is bounded.

Proof. Fix n ∈ N and we split [0,∞] in the following way:

J0
n = [0, 2−n] and Jkn = (k2−n, (k + 1)2−n],

for k = 1, · · · , 22n−1. Hence
22n−1⋃
k=0

Jkn = [0, 2n], and we set In = (2n,∞]. Thus {Jkn}22n−1
k=1 ∪{In}

is a finite sequence of disjoint sets whose union is [0,∞], for each n.
Now we define Ek

n = f−1(Jkn) and Fn = f−1(In), then {Ek
n}22n−1

k=1 ∪ {Fn} is a sequence of
pairwise disjoint sets whose union is X, and since f is measurable, each one of these sets
is measurable. Also 0 6 f(x) 6 2−n for x ∈ E0

n, k2−n < f(x) 6 (k + 1)2−n for x ∈ Ek
n

(k = 1, · · · , 22n − 1) and f(x) > 2n for x ∈ Fn.
Hence, for each n, define

sn(x) =
22n−1∑
k=0

k2−nχEkn(x) + 2nχFn(x) for each x ∈ X.
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Therefore, by construction, 0 6 sn 6 sn+1 6 f for each n, and also 0 6 f(x)−sn(x) 6 2−n

for each x ∈
22n−1⋃
k=0

Ek
n, and the result follows. �

One important thing to notice is that we are splitting the image of f in intervals, and
using these intervals to split the domain of f . This process is different from what we do in
the classical theory of Riemann integration, where we split the domain in intervals.

Corollary 3.1.21. If f : X → R is measurable, there exists a sequence {sn} of real
simple functions such that 0 6 |s1| 6 |s2| 6 · · · 6 |f |, sn → f pointwise and sn → f

uniformly on any set on which f is bounded.

Proof. Using Theorem 3.1.20 for f+ and f− we obtain sequences {qn} and {rn} of real simple
functions with 0 6 q1 6 q2 6 · · · 6 f+, 0 6 r1 6 r2 6 · · · 6 f−, with qn → f+ and rn → f−

pointwise, and uniformly for sets on which f+ and f− are bounded, respectively. Setting
A = f−1([0,∞]) and B = Ac, we know that A,B ∈M, A ∪B = X, qn|B = 0 and rn|A = 0

for each n (since 0 6 sn 6 f+ and 0 6 rn 6 f− for all n).

Set sn = qn− rn for each n. Then, for each n, we have 0 6 |sn| 6 qn + rn 6 f+ +f− = |f |,
and also f − sn = (f+ − qn)− (f− − rn), hence sn → f pointwise, and sn → f uniformly on
set which f is bounded.

Now if remains to prove that |sn| 6 |sn+1| for each n. If x ∈ A then |sn(x)| = qn(x) 6

qn+1(x) = sn+1(x) = |sn+1(x)| (since rn(x) = 0 for x ∈ A for all n). Analogously, if x ∈ B,
then |sn(x)| = rn(x) 6 rn+1(x) = |sn+1(x)| (since sn(x) = 0 for x ∈ B for all n), and we
conclude the proof. �

Proposition 3.1.22. If f : X → C is measurable, there exists a sequence {sn} of simple
functions such that 0 6 |s1| 6 |s2| 6 · · · 6 |f |, sn → f pointwise and sn → f uniformly on
any set on which f is bounded.

Proof. By Corollary 3.1.8, Ref : X → R and Imf : X → R are measurable, and hence, by
Corollary 3.1.21, there are sequences of simple functions {s1

n} and {s2
n} such that 0 6 |s1

n| 6
|s1

2| 6 · · · 6 |Re(f)|, 0 6 |s2
1| 6 |s2

2| 6 · · · 6 |Im(f)|, s1
n → Ref and s2

n → Imf pointwise,
and uniformly on sets which Ref and Imf are bounded respectively.

Thus the sequence sn = s1
n + is2

n for each n has the desired properties. �

3.1.3 MEASURABILITY OF FUNCTIONS ON COMPLETE MEASURE SPACES
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We fix (X,M, µ) a measure space. When we want study measurable functions, it is
advantageous to exclude the behavior of measurable functions on µ-null sets. On this note,
this study is much simpler when µ is complete.

Proposition 3.1.23. The following implications are true if and only if µ is complete.

(a) If f is measurable and f = g µ-a.e., then g is measurable.

(b) If fn is measurable for n ∈ N and fn → f µ-a.e., then f is measurable.

Proof. Assume that µ is a complete measure. We prove (a) and (b).

(a) Let N = {x ∈ X : f(x) 6= g(x)}. Then by hypothesis, N ∈M and µ(N) = 0. Thus

g−1((a,∞)) = (g−1((a,∞)) ∩N)︸ ︷︷ ︸
⊂N

∪ (f−1((a,∞)) ∩N c)︸ ︷︷ ︸
∈M

∈M,

since µ is complete (and thus g−1((a,∞)) ∩N ∈M). Therefore g is measurable.

(b) Let g = lim sup
n→∞

fn. Then g is measurable by Proposition 3.1.10, and g = f µ-a.e.. By

item (a), f is measurable.

Now we prove that if these implications are true, then µ is a complete measure. In fact,
assume that µ is not complete. Then there exists a µ-null set N (that is, N ∈ M and
µ(N) = 0) and a subset F of N which is not measurable.

Define f = χN and g = χF . Then if x /∈ N we have f(x) = g(x), thus f = g µ-a.e., but
f is measurable and g is not, thus (a) does not hold. For (b), define fn = (1 + 1

1+n
)χN for

n ∈ N and g = χF . Hence fn → f uniformly on X and thus fn → g µ-a.e., and (b) also does
not hold. �

However, there is no much harm if we forget about the completeness of the measure.

Proposition 3.1.24. Let (X,M, µ) be a measure space and let (X,M, µ) be its comple-
tion. If f is anM-measurable function on X, there is anM-measurable function g such that
f = g µ-almost everywhere.

Proof. First, assume that f = χE for some E ∈ M. Thus E = G ∪ F , where G ∈ M,
F ⊂ N ∈ N (see the notation in Theorem 2.1.9), and we can assume that G ∩ F = ∅. Set
g = χG, which is M-measurable. Then {x ∈ X : f(x) 6= g(x)} = F which is a µ-null set.
Thus the result is true if f is aM-measurable simple function. For the general case, let {φn}
be a sequence ofM-measurable simple functions such that φn → f , and for each n, choose a
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M-measurable simple function ψn, such that ψn = φn outside a set En ∈M with µ(En) = 0.

For each n, there exists a µ-null set Nn such that En ⊂ Nn. Hence, setting N =
∞⋃
n=1

Nn, we

have N ∈M, µ(N) = 0 and
∞⋃
n=1

En ⊂ N . Now define g = lim
n→∞

χX\Nψn. Then g is the limit

of a sequence ofM-measurable functions, hence g isM-measurable and

g(x) =

 lim
n→∞

ψn(x) = lim
n→∞

φn(x) = f(x) if x ∈ N c,

0 if x ∈ N,

since if x ∈ N c then x /∈
∞⋃
n=1

En and hence ψn = φn for all n. Therefore f = g except possibly

in N , which is a µ-null set (and thus a µ-null set). �

We end this section with a final result regarding properties that hold almost everywhere
and completion of measure.

Proposition 3.1.25. Let (X,M, µ) be a measure space and let (X,M, µ) be its comple-
tion. A property P holds µ-a.e. if and only if it hold µ-a.e.

Proof. Assume that P holds µ-a.e. SinceM⊂M and µ = µ onM, P holds µ-a.e.
Now assume that P holds µ-a.e. Thus there exists E ∈M with µ(E) = 0 and such that

P holds in X \ E. By Proposition 2.1.10, there exists N ∈ M with µ(N) = 0 and E ⊂ N .
Hence X \N ⊂ X \ E, and thus P holds in X \N . Therefore P holds µ-a.e. �

3.2 SOLVED EXERCISES FROM [1, PAGE 48]

In Exercises 1-7, (X,M) is a measurable space.
Exercise 1. Let f : X → R and Y = f−1(R). Then f is measurable iff f−1({−∞}) ∈M,
f−1({∞}) ∈M and f |Y : Y → R is measurable.

Solution. Assume that f is measurable. Firstly note that, since R ∈ BR, we have Y ∈M.
In Y we consider the σ-algebraMY = {E ∩ Y : E ∈M} ⊂M, and we have

(f |Y )−1((a,∞)) = f−1((a,∞))︸ ︷︷ ︸
∈M

∩Y ∈MY ,

since (a,∞) ∈ BR for each a ∈ R, and this implies that if B is a real Borel set, then
(f |Y )−1(B) ∈ M. Now {∞} =

⋂∞
n=1(n,∞] ∈ BR and hence f−1({∞}) ∈ M, since f is

measurable. Analogously for {−∞}.
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Conversely, note that Y = X \ f−1({±∞}), and since both X and {±∞} are inM (the
latter by hypothesis), we have Y ∈M and thusMY ⊂M. Let B ∈ BR. Hence

f−1(B) = f−1(B ∩ R) ∪ f−1(B ∩ {±∞}) = (f |Y )−1(B ∩ R)︸ ︷︷ ︸
∈MY ⊂M

∪ f−1(B ∩ {±∞})︸ ︷︷ ︸
∈M

∈M,

since B ∩ R ∈ BR by Theorem 1.3.4. Thus f is measurable.

Exercise 2. Suppose f, g : X → R are measurable.

(a) fg is measurable (where 0 · (±∞) = 0).

(b) Fix a ∈ R and define

h(x) =

{
a if f(x) = −g(x) = ±∞,

f(x) + g(x) otherwise.

Then h is measurable.

Solution to (b). We will firstly prove item (b). To that end, note that the set

Y∞ = {x ∈ X : f(x) = −g(x) = ±∞}

= f−1({∞}) ∩ g−1({−∞}) ∪ f−1({−∞}) ∩ g−1({∞})

is measurable, since f and g are measurable functions.

Now we have

h−1({∞}) = f−1(∞) ∩ g−1((−∞,∞]) ∪ f−1((−∞,∞]) ∩ g−1({∞})

and again, since both f and g are measurable, h−1({∞}) is measurable. Analogously for
h−1({−∞}). Now, let b ∈ R. We have

h−1((b,∞]) = h−1((b,∞)) ∪ h−1({∞}),

and

h−1((b,∞)) =

{
(f + g)−1((b,∞)) if a 6 b

(f + g)−1((b,∞)) ∪ Y∞ if b < a,

and since f |f−1(R) and g|g−1(R) are measurable, and Y∞ is a measurable set, we have h−1((b,∞))

measurable. Hence h−1((b,∞]) is measurable, and therefore h is measurable.
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Solution to (a). Let Q+ = {r ∈ Q : r > 0} and Q− = {r ∈ Q : r < 0}, which are countable
sets.

Before continuing, we will prove the following claim: let y1, y2 > 0 be such that y1y2 >

b > 0. Then there exists r ∈ Q+ such that y1 > r and y2 >
b
r
. Indeed, if b = 0, then choose

any r ∈ Q+ such that r < y1. Now we assume that b > 0. Then we choose r ∈ Q+ such that
r < y1 and ry2 > b (such r exists, for otherwise ry2 6 b for all r < y1, and by density of Q,
we obtain y1y2 6 b, which is a contradiction).

Now assume that f, g > 0 and b > 0. Using our claim, we can write

(fg)−1((b,∞]) = {x ∈ X : f(x)g(x) > b} =
⋃
r∈Q+

f−1((r,∞]) ∩ g−1((b/r,∞]),

and hence (fg)−1((b,∞]) is measurable. If b < 0 then (fg)−1((b,∞]) = X, also measurable.
Therefore fg is measurable.

Now for the general case, consider the measurable functions f+, f−, g+, g− > 0, which are
all measurable, such that f = f+ − f− and g = g+ − g−. We have

fg = (f+ − f−)(g+ − g−) = f+g+ + f−g−︸ ︷︷ ︸
:=F

−(f+g− + f−g+)︸ ︷︷ ︸
:=G

,

where F > 0 and −G > 0 are measurable by our previous computations (and hence G is also
measurable). Now we prove that {x ∈ X : F (x) = −G(x) =∞} = ∅.

If F (x) =∞ we have f+(x)g+(x) + f−(x)g−(x) =∞. We will brake this situation into
two cases:

Case 1: Either f+(x) = ∞ and g+(x) > 0 or f+(x) > 0 and g+(x) = ∞. In this case
f−(x) = g−(x) = 0 and we have G(x) = 0.

Case 2: Either f−(x) = ∞ and g−(x) > 0 or f−(x) > 0 and g−(x) = ∞. In this case
f+(x) = g+(x) = 0 and G(x) = 0.

Hence F (x) =∞ implies G(x) = 0 and thus {x ∈ X : F (x) = −G(x) =∞} = ∅. Thus
by item (b), fg = F +G is measurable.

Exercise 3. If {fn} is a sequence of measurable functions onX, then {x ∈ X : lim
n→∞

fn(x) exists}
is a measurable set.

Solution. As in Proposition 3.1.10, set

g2(x) = lim sup
n→∞

fn(x) and h2(x) = lim inf
n→∞

fn(x),
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which are measurable functions. Hence, by the previous exercise, the function

F (x) =

{
1 if g2(x) = h2(x) = ±∞

g2(x)− h2(x) otherwise,

is measurable. Furthermore {x ∈ X : lim
n→∞

fn(x) exists} = F−1(0), and thus it is a measurable
set.

Exercise 4. If f : X → R and f−1((r,∞]) ∈M for each r ∈ Q, then f is measurable.

Solution. Let a ∈ R and {rn} a decreasing sequence in Q such that a = limn→∞ rn.
Then

f−1((a,∞]) =
∞⋃
n=1

f−1((rn,∞]) ∈M,

hence f is measurable.

Exercise 5. If X = A ∪ B where A,B ∈ M, a function on X is measurable iff f is
measurable on A and B.

Solution. Let fA = f |A and fB = f |B. If f is measurable, then for each C ∈ BR we have

(fJ)−1(C) = f−1(C) ∩ J ∈M,

for J = A,B. Hence fA and fB are measurable. Now for the converse, note that

f−1(C) = (f−1(C) ∩ A) ∪ (f−1(C) ∩B) = (fA)−1(C) ∪ (fB)−1(C) ∈M,

and thus f is measurable.

Exercise 6. The supremum of an uncountable family of measurable R-valued functions
on X can fail to be measurable (unless the σ-algebraM is very special).

Solution. Assume that X is uncountable andM is σ-algebra such that {x} ∈ M (and
therefore each countable set is measurable). Assume that there exists a nonmeasurable set F
in X. Define, for each x ∈ X, the function fx : X → R by

fx(y) = χ{x}(y) for each y ∈ X.
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Hence {fx}x∈F is an uncountable family of measurable functions and

sup
x∈N

fx(y) = χF (y) for all y ∈ X,

which is not a measurable function.

Exercise 7. Suppose that for each α ∈ R we are given a set Eα ∈ M such that
Eα ⊂ Eβ whenever α < β,

⋃
α∈R

Eα = X and
⋂
α∈R

Eα = ∅. Then there is a measurable function

f : X → R such that f(x) 6 α on Eα and f(x) > α on Ec
α for every α (Use Exercise 4).

Solution. We define

f(x) = inf{α ∈ R : x ∈ Eα} for each x ∈ R.

We claim that this function satisfies all the required conditions. First, note that by
construction, we have f(x) 6 α if x ∈ Eα. Also, if x ∈ Ec

α then x /∈ Eα and hence x /∈ Eβ for
all β 6 α, hence f(x) > α.

Now, since
⋃
α∈R

Eα = X =
⋃
α∈R

Ec
α (since

⋂
α∈R

Eα = ∅), for any given x ∈ X there exist

α, β ∈ R such that x ∈ Eα ∩ Ec
β, this implies that α 6 β and

−∞ < β 6 f(x) 6 α <∞,

and thus we have shown that f(X) ⊂ R.
It remains to prove the measurability of f . To that end, note that if f(x) < r then there

exists α ∈ R such that f(x) < α < r and x ∈ Eα. Since Eβ ⊂ Eα for β < α, then for any
α < q < r with q ∈ Q we have x ∈ Eq. Conversely if q ∈ Q is such that q < r and x ∈ Eq
then f(x) 6 q < r. We have just proved that

f−1((−∞, r)) =
⋃

q<r, q∈Q

Eq ∈M.

Thus
f−1([r,∞)) =

⋂
q<r, q∈Q

Ec
q ∈M,

for each r ∈ Q. Therefore, by Exercise 4, f is measurable.

Exercise 8. If f : R→ R is monotone, then f is Borel measurable.

Solution. Since f is measurable iff −f is measurable, we can assume without loss of
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generality that f is monotonically increasing. Now let a ∈ R and x ∈ f−1([a,∞)), that is,
f(x) > a. If y > x, then a 6 f(x) 6 f(y), which implies that y ∈ f−1([a,∞)).

In other words, we have proven that if x ∈ f−1([a,∞)) then the ray [x,∞) ⊂ f−1([a,∞)),
and thus f−1([a,∞)) is an interval. Therefore f is Borel measurable.

Exercise 9. Let f : [0, 1]→ [0, 1] be the Cantor function and let g(x) = f(x) + x.

(a) g is a bijection from [0, 1] to [0, 2] and h = g−1 is continuous from [0, 2] to [0, 1].

(b) If C is the Cantor set m(g(C)) = 1.

(c) Be Exercise 29 of Chapter 1, g(C) contains a Lebesgue nonmeasurable set A. Let
B = g−1(A). Then B is Lebesgue measurable but no Borel.

(d) There exist a Lebesgue measurable function F and a continuous function G on R such
that F ◦G is not Lebesgue measurable.

Solution to (a). g is a continuous (sum of two continuous functions) and increasing
(sum of two increasing functions) such that g(0) = 0 and g(1) = f(1) + 1 = 2. If we show
that g is strictly increasing, the g will be a bijection. Let 0 6 x < y 6 1. Then f(x) 6 f(x)

and x < y, then g(x) < g(y), and g is strictly increasing. Since [0, 1] is compact and R is a
Hausdorff space, its inverse h = g−1 is continuous (see [2, Theorem 26.6])
Solution to (b). Using that g is a bijection, we can write

[0, 2] = g([0, 1]) = g(([0, 1] \ C) ∪ C) = g([0, 1] \ C) ∪ g(C),

and hence
m(g(C)) = 2−m(g([0, 1] \ C)).

Now C is closed, and hence [0, 1] \ C is open, and can be written as a countable union of

disjoint open intervals, namely [0, 1] \ C =
∞⋃
n=1

In, where {In = (an, bn)} is a pairwise disjoint

family of open intervals. Hence

m(g([0, 1] \ C)) = m
(
g
( ∞⋃
n=1

In

))
= m

( ∞⋃
n=1

g(In)
))

=
∞∑
n=1

m(g(In)) =
∞∑
n=1

m((f(an) + an, f(bn) + bn))

=
∞∑
n=1

[f(bn)− f(an) + bn − an],

- 86 -



and recalling that f is constant in each interval outside C, hence is constant on each In, we
have f(bn) = f(an) for all n and thus

m(g([0, 1] \ C)) =
∞∑
n=1

[bn − an] = m
( ∞⋃
n=1

In

)
= m([0, 1] \ C) = m([0, 1])−m(C) = 1,

since m(C) = 0. Therefore m(g(C)) = 1.

Solution to (c). Note that since A ⊂ g(C), then B = g−1(A) ⊂ C. But m(C) = 0 and m is
a complete measure, thus B is Lebesgue measurable. Now assume that B is Borel measurable.
Since g−1 is continuous, A = g(B) = (g−1)−1(B) is a Borel set, which is a contradiction, since
A is not Lebesgue measurable.

Solution to (d). Define F = χB and G = g−1. Thus F is Lebesgue measurable (since B is
a Lebesgue measurable set), and G is continuous. But

(F ◦G)−1((1/2,∞)) = g(F−1((1/2,∞))) = g(B) = A,

which is not Lebesgue measurable. Hence F ◦G is not Lebesgue measurable.

Exercise 10. Prove Proposition 3.1.23.

Exercise 11. Suppose that f is a function defined on R× Rk such that f(x, ·) is Borel
measurable for each x ∈ R and f(·, y) is continuous for each y ∈ Rk. For n ∈ N, define fn as
follows. For i ∈ Z let ai = i/n, and for ai 6 x 6 ai+1 let

fn(x, y) =
f(ai+1, y)(x− ai)− f(ai, y)(x− ai+1)

ai+1 − ai
.

Then fn is Borel measurable on R×Rk and fn → f pointwise; hence f is Borel measurable
on R × Rk. Conclude by induction that every function of Rn that is continuous in each
variable separately is Borel measurable.

Solution. Note first that if (x, y) ∈ R× Rk we have

fn(x, y)− f(x, y) =
(f(ai+1, y)− f(x, y))(x− ai)− (f(ai, y)− f(x, y))(x− ai+1)

ai+1 − ai
.

But ai+1 − ai = 1/n, |x− ai| 6 1/n and |x− ai+1| 6 1/n. Therefore

|fn(x, y)− f(x, y)| 6 |f(ai+1, y)− f(x, y)|+ |f(ai, y)− f(x, y)|,
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and by the continuity of f(·, y), we have fn(x, y)→ f(x, y) as n→∞.

Now for the Borel measurability of fn we proceed as follows: since n > 1 is fixed, we write
R =

⋃
i∈Z

[ai, ai+1]. In Ai = [ai, ai+1] × Rk, fn|Ai is the sum of product of Borel measurable

functions with continuous functions, and hence, it is Borel measurable. Using a simple
generalization of Exercise 5 (writing R × Rk =

⋃
i∈ZAi), we have fn Borel measurable on

R× Rk.

Now we prove the last argument by induction. For n = 2 the claim follows from what
we just proved, since if f : R2 → R is continuous in each variable separately then f(x, ·) is
continuous (hence Borel measurable) and f(·, y) is continuous. Assume that the claim is
true for n and assume that f : Rn+1 = Rn × R → R is a function which is continuous in
each variable separately. Using the induction, fRn is a function which is continuous in each
variable separately, hence it is Borel measurable, that is, f(x, ·) is Borel measurable for each
x ∈ Rn. Also by assumption f(·, y) is continuous for each y ∈ R, and therefore it is Borel
measurable.

3.3 INTEGRATION OF NONNEGATIVE FUNCTIONS

From now on, we consider fixed a measure space (X,M, µ) and we define

L+ = L+(X,M) = {f : X → [0,∞] : f is measurable}.

Lemma 3.3.1. Assume that φ ∈ L+ is a simple function with φ =
∑n

j=1 ajξEj =
∑m

k=1 bkχFk

with {Ej}nj=1 and {Fk}mk=1 finite sequences of disjoint measurable sets. Then

n∑
j=1

ajµ(Ej) =
m∑
k=1

bkµ(Fk).

Proof. For each j = 1, · · · , n and k = 1, · · · ,m we define Gj,k = Ej ∩ Fk. We have
Ej =

⋃m
k=1Gj,k and Fk =

⋃n
j=1Gj,k for each j = 1, · · · , n and k = 1, · · · ,m. Moreover if

Gj,k 6= ∅, letting x ∈ Gj,k we have aj = φ(x) = bk. Hence we define

cj,k =

{
aj if Gj,k 6= ∅,
0 if Gj,k = ∅.
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Thus we have

n∑
j=1

ajµ(Ej) =
n∑
j=1

m∑
k=1

cj,kµ(Gj,k) =
m∑
k=1

n∑
j=1

cj,kµ(Gj,k) =
m∑
k=1

bkµ(Fk),

and the proof is complete. �

Definition 3.3.2. If φ ∈ L+ is a simple function with standard representation φ =
n∑
j=1

ajχEj , we define the integral of φ with respect to µ by

∫
φdµ =

n∑
j=1

ajµ(Ej),

with the convention (as always) that 0 · ∞ = 0.

We note that
∫
φdµ may be ∞, if µ(Ej) =∞ for some j on which aj > 0. When there is

no confusion on which is the measure µ, we will write
∫
φ instead of

∫
φdµ. Also, sometimes

it is convenient to display the argument of φ explicitly, and we can also use the notation∫
φ(x)dµ(x) (or

∫
φµ(dx)). This integral is well defined, by Lemma 3.3.1.

Proposition 3.3.3. Let φ ∈ L+ be a simple function and A ∈ M. Then φχA is also a
simple function in L+ and ∫

φχAdµ =
n∑
j=1

ajµ(A ∩ Ej).

Proof. Just note that φχA =
n∑
j=1

ajχEj∩A is the standard representation for φχA, if
n∑
j=1

ajχEj

is the standard representation for φ. �

Definition 3.3.4. If φ ∈ L+ is a simple function and A ∈M, we define

∫
A

φdµ =

∫
φχAdµ =

n∑
j=1

ajµ(A ∩ Ej).

The same remarks for
∫
φdµ also apply to

∫
A
φdµ. Note also that

∫
X

=
∫
.

Proposition 3.3.5. Let φ, ψ ∈ L+ be simple functions and c > 0. Then we have the
following properties of the integral:

(a)
∫
cφ = c

∫
φ;

(b)
∫

(φ+ ψ) =

∫
φ+

∫
ψ;
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(c) if φ 6 ψ then
∫
φ 6

∫
ψ;

(d) the mapM3 A 7→
∫
A
φdµ is a measure onM.

Proof. First of all we write φ =
n∑
j=1

ajχEj and ψ =
m∑
k=1

bkχFk as their standard decompositions.

(a). Note that cφ =
n∑
j=1

cajχEj is the standard decomposition of the simple function cφ ∈ L+.

Hence ∫
cφ =

n∑
j=1

cajµ(Ej) = c

n∑
j=1

ajµ(Ej) = c

∫
φ.

(b). We note that, for each j and k we have

Ej =
m⋃
k=1

(Ej ∩ Fk) and Fk =
n⋃
j=1

(Ej ∩ Fk),

since X =
n⋃
j=1

Ej =
m⋃
k=1

Fk. Hence φ+ψ is a L+ simple function, with standard representation

φ+ ψ =
n∑
j=1

m∑
k=1

(aj + bk)χEj∩Fk ,

and hence ∫
(φ+ ψ) =

n∑
j=1

m∑
k=1

(aj + bk)µ(Ej ∩ Fk)

=
n∑
j=1

m∑
k=1

ajµ(Ej ∩ Fk) +
n∑
j=1

m∑
k=1

bkµ(Ej ∩ Fk)

=
n∑
j=1

ajµ
( m⋃
k=1

(Ej ∩ Fk)
)

+
m∑
k=1

bkµ
( n⋃
j=1

(Ej ∩ Fk)
)

=
n∑
j=1

ajµ(Ej) +
m∑
k=1

bkµ(Fk) =

∫
φ+

∫
ψ.

(c). Note that, by the decomposition made on item (b), we can write φ =
n∑
j=1

m∑
k=1

ajχEj∩Fk

and ψ =
n∑
j=1

m∑
k=1

bkχEj∩Fk . If x ∈ Ej ∩ Fk, since φ 6 ψ, we must have aj 6 bk, and hence

∫
φ =

n∑
j=1

m∑
k=1

ajµ(Ej ∩ Fk) 6
n∑
j=1

m∑
k=1

bkµ(Ej ∩ Fk) =

∫
ψ.
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(d). It is clear that
∫
∅ φ = 0. Now assume that {Ai} is a pairwise disjoint sequences of sets

inM and A =
∞⋃
i=1

Ai. Then

∫
A

φ =
n∑
j=1

ajµ(Ej ∩ A) =
n∑
j=1

ajµ
( ∞⋃
i=1

(Ej ∩ Ai)
)

=
n∑
j=1

aj

∞∑
i=1

µ(Ej ∩ Ai)

=
∞∑
i=1

n∑
j=1

ajµ(Ej ∩ Ai) =
∞∑
i=1

∫
Ai

φ,

and proves thatM3 A 7→
∫
A
φdµ is a measure onM. �

Definition 3.3.6. If f ∈ L+ we define the integral of f with respect to µ as∫
fdµ = sup

{∫
φdµ : 0 6 φ 6 f, φ ∈ L+ is simple

}
.

Using item (c) of this last proposition, if f = ψ is an L+ simple function, then this
definition coincides with the first one.

Proposition 3.3.7. Let f, g ∈ L+ and c > 0. Then:

(a)
∫
cf = c

∫
f ;

(b)
∫
f 6

∫
g if f 6 g.

Proof. (a). This follows from Proposition 3.3.5 item (a) and the fact that sup(cE) = c supE

for E ⊂ R and c > 0.

(b). If 0 6 φ 6 f and φ ∈ L+ is simple, then 0 6 φ 6 g, and the result follows. �

The same remark applies here, that is, if A ∈ M, then we define
∫
A
f =

∫
fχA. This

definition also coincides with∫
A

f = sup

{∫
A

φdµ : 0 6 φ 6 f in A, φ ∈ L+ is simple
}
.

We will now begin to state and prove the fundamental theorems in the theory of integration.

Theorem 3.3.8 (Monotone Convergence Theorem (MCT)). If {fn} is a sequence in L+

such that fn 6 fn+1 for all n and f = lim
n→∞

fn(= sup
n
fn), then

∫
f = lim

n→∞

∫
fn.
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Proof. Since fn 6 fn+1 for all n, Proposition 3.3.7 item (b), the sequence {
∫
fn} is increasing,

hence its limit exists in R. Moreover, since fn 6 f for all n, we also have
∫
fn 6

∫
f for all n

and therefore
lim
n→∞

∫
fn 6

∫
f.

To achieve the other inequality, we fix α ∈ (0, 1) and let φ ∈ L+ be a simple function
with 0 6 φ 6 f . Define En = {x ∈ X : fn(x) > αφ(x)}.
Claim 1: each En is a measurable set.

In fact, since both fn and φ are measurable, the function gn = fn − αφ is measurable.
Also En = g−1

n ([0,∞]), and thus En is a measurable set.
Claim 2: En ⊂ En+1 for all n.

In fact if x ∈ En then fn(x) > αφ(x). But fn(x) 6 fn+1(x) and hence fn+1(x) > fn(x) >

αφ(x), that is x ∈ En+1, and prove the claim.
Claim 3: X =

⋃∞
n=1En.

In fact, fix x ∈ X. If fn(x) < αφ(x) for all n, we would have f(x) 6 αφ(x), which is a
contradiction, since φ 6 f and α ∈ (0, 1), and hence x must belong to some En.

Hence, since αφχEn 6 fnχEn 6 fn we have∫
fn >

∫
En

fn >
∫
En

αφ = α

∫
En

φ.

Thus, using the fact thatM3 A 7→
∫
A
φ is a measure onM, the property of continuity

from below of measures and the fact that X =
∞⋃
n=1

En, we have lim
n→∞

∫
fn > α

∫
φ. Taking

the supremum over all φ ∈ L+ which are simple and such that 0 6 φ 6 f , we obtain
lim
n→∞

∫
fn > α

∫
f , and since this is true for any α ∈ (0, 1), taking the limit when α→ 1−, we

obtain
lim
n→∞

∫
fn >

∫
f,

which concludes the proof. �

The monotone convergence is essential. It states that to compute
∫
f , we only need to

compute
∫
φn where {φn} is an increasing sequences of simple functions in L+ that converge

pointwise to f , which exists from Theorem 3.1.20. With this theorem, we can also prove the
additivity of the integral.

Theorem 3.3.9. If {fn} is a finite of infinite sequence in L+ and f =
∑
n

fn, then

∫
f =

∑
n

∫
fn.
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Proof. Assume that f1 and f2 are L+ functions. Using Theorem 3.1.20 we can find increasing
sequences {φj} and {ψj} of simple functions in L+ such that lim

j→∞
φj = f1 and lim

j→∞
ψj = f2.

Using the MCT and the properties of the integral for simple functions we have∫
(f1 + f2) = lim

j→∞

∫
(φj + ψj) = lim

j→∞

∫
φj + lim

j→∞

∫
ψj =

∫
f1 +

∫
f2.

An induction argument concludes the case for a finite number of functions. Now assume
that we have an infinite sequence {fn}. For each n, set gn =

∑n
k=1 fk. Then {gn} is an

increasing sequence in L+ that converges to f , and by the MCT and the previous case of
finite sequences we have∫

f = lim
n→∞

∫
gn = lim

n→∞

∫ n∑
k=1

fk = lim
n→∞

n∑
k=1

∫
fk =

∞∑
k=1

∫
fk.

�

Proposition 3.3.10. If f ∈ L+ then
∫
f = 0 if and only if f = 0 a.e.

Proof. Assume first that f is simple, that is, f =
n∑
j=1

ajχEj and hence
∫
f =

n∑
j=1

ajµ(Ej).

If f = 0 a.e. then the sets on which aj > 0 we must have µ(Ej) = 0, hence
∫
f = 0.

Reciprocally, if
∫
f = 0, then either aj = 0 or µ(Ej) = 0, and hence f = 0 a.e..

If f is not simple, let φ be a simple L+ function with 0 6 φ 6 f . If f = 0 a.e. then φ = 0

a.e. and
∫
f = supφ

∫
φ = 0. For the converse we will write

{x ∈ X : f(x) > 0} =
∞⋃
n=1

En where En = {x ∈ X : f(x) > 1/n}.

So if it is false that f = 0 a.e., then we must have µ(En) > 0 for some n. But then if
φ = 1/nχEn and f > fχEn > φ > 0 and φ ∈ L+ is a simple function, hence∫

f >
∫
φ = 1

n
µ(En) > 0,

and contradicts the fact that
∫
f = 0. �

Corollary 3.3.11 (Improved MCT). If {fn} ⊂ L+, f ∈ L+, fn 6 fn+1 for all n and
lim
n→∞

fn(x) = f(x) a.e., then ∫
f = lim

n→∞

∫
fn.

Proof. Assume that lim
n→∞

fx(x) = f(x) for all x ∈ E, where µ(Ec) = 0. Then we have the
following:
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(i) {fnχE} is an increasing sequence in L+ that converges to fχE ∈ L+ (for all x ∈ X);

(ii) f − fχE = 0 and fn − fnχE = 0 a.e. (that is, they are equal for all x in E).

From (i), (ii), the previous proposition and the MCT we have∫
f =

∫
fχE = lim

n→∞

∫
fnχE = lim

n→∞

∫
fn.

�

They hypothesis that the sequence {fn} is increasing is fundamental for the MCT.
Consider, for instance, X = R and µ the Lebesgue measure. Then

χ(n,n+1) → 0 and nχ(0,1/n) → 0

pointwise, but
∫
χ(n,n+1) =

∫
nχ(0,1/n) = 1 for all n.

However, if we remove this hypothesis, one inequality still holds.

Lemma 3.3.12 (Fatou’s Lemma). If {fn} is any sequence in L+ then∫
lim inf
n→∞

fn 6 lim inf
n→∞

∫
fn.

Proof. For each k > 1 we have inf
n>k

fn 6 fj for all j > k, hence
∫

infn>k fn 6
∫
fj for all

j > k, and thus ∫
inf
n>k

fn 6 inf
j>k

∫
fj.

But {inf
n>k

fn}k is an increasing sequence of L+ functions that converges to lim inf
k→∞

fk, and
by the MCT we have∫

lim inf
k→∞

fk = lim
k→∞

∫
inf
n>k

fn 6 lim
k→∞

inf
j>k

∫
fj = lim inf

k→∞

∫
fk.

�

Corollary 3.3.13. If {fn} ⊂ L+, f ∈ L+ and fn → f a.e., then∫
f 6 lim inf

n→∞

∫
fn.

Proof. If the convergence is everywhere, this is a direct consequence of Fatou’s Lemma, since
f = lim inf

n→∞
fn. If the convergence is only a.e., we modify f and fn on a null set, as done in

the Improved MCT. �
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Proposition 3.3.14. If f ∈ L+ and
∫
f < ∞ then {x ∈ X : f(x) = ∞} is a null set

and {x ∈ X : f(x) > 0} is a σ-finite set.

Proof. Set E∞ = {x ∈ X : f(x) = ∞}. Since f is measurable, E∞ is a measurable set. If
µ(E∞) > 0, then f > fχE∞ > nχE∞ for all n, hence∫

f >
∫
nχE∞ = nµ(E∞),

and making n→∞ we obtain that
∫
f =∞, which is a contradiction. Therefore µ(E∞) = 0.

For the second part, let En = {x ∈ X : f(x) > 1/n} for each n and E = {x ∈ X : f(x) >

0}. Then E =
∞⋃
n=1

En and each En is a measurable set. We will show that µ(En) < ∞ for

each n. Assume by absurd that µ(En) = ∞ for some n. Then f > fχEn > (1/n)χEn and
hence ∫

f >
∫

(1/n)χEn = (1/n)µ(En) =∞,

which is a contradiction and proves that E is σ-finite. �

3.4 SOLVED EXERCISES FROM [1, PAGE 52]
Exercise 12. Prove Proposition 3.3.14.

Solution. It is already proven in the text.

Exercise 13. Suppose {fn} ⊂ L+, fn → f pointwise and
∫
f = lim

∫
fn < ∞. Then∫

E
f = lim

∫
E
fn for all E ∈M. However, this need not to be true if

∫
f = lim

∫
fn =∞.

Solution. By Fatou’s Lemma, since fnχE → fχE, we have∫
E

f 6 lim inf

∫
E

fn.

If we can prove that lim sup
∫
E
fn 6

∫
E
f , then we are done. To that end, note that if

E ∈M we have fχE 6 f and hence∫
E

f =

∫
fχE 6

∫
f <∞,

and thus
∫
E
f <∞ for all E ∈M. Since f = fχE + fχEc and fn = fnχE + fnχEc we have∫
f =

∫
E

f +

∫
Ec
f and

∫
fn =

∫
E

fn +

∫
Ec
fn for all n.
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But then Fatou’s Lemma we have∫
f −

∫
E

f =

∫
Ec
f 6 lim inf

(∫
fn −

∫
E

fn

)
=

∫
f − lim sup

∫
E

fn,

and since everything is finite, we have

lim sup

∫
E

fn 6
∫
E

f.

Now we show that this result can fail if
∫
f = lim

n→∞

∫
fn = ∞. Let X = R and µ the

Lebesgue measure. Consider f = χ[2,∞), fn = χ[2,∞) + nχ(0,1/n] and E = (0, 1]. Then fn → f

pointwise,
∫
f =

∫
fn =∞ for all n and∫

E

fn =

∫
nχ(0,1/n] = nµ((0, 1/n]) = 1 for all n,

but
∫
E
f = 0.

Exercise 14. If f ∈ L+, let λ(E) =
∫
E
fdµ for E ∈M. Then λ is a measure onM and

for any g ∈ L+,
∫
gdλ =

∫
gfdµ (first suppose that g is simple).

Solution. Let {Aj} be a pairwise disjoint sequence inM and A =
∞⋃
j=1

Aj. Then, since

χA =
∞∑
n=1

χAn we have

λ(A) =

∫
A

fdµ =

∫
fχAdµ =

∞∑
j=1

∫
fχAjdµ =

∞∑
j=1

∫
Aj

fdµ =
∞∑
j=1

λ(Aj).

Hence λ is a measure onM.

Now for the other claim, assume that g ∈ L+ is a simple function, with g =
n∑
j=1

ajχEj ,

with X =
n⋃
j=1

Ej and {Ej}nj=1 is a pairwise disjoint finite sequence. Then

∫
gdλ =

n∑
j=1

ajλ(Ej) =
n∑
j=1

aj

∫
Ej

fdµ =

∫ n∑
j=1

ajχEjfdµ =

∫
f

n∑
j=1

ajχEjdµ =

∫
fgdµ.

Now if g ∈ L+ let {φj} be an increasing sequence in L+ of simple functions that converges
to g. Then, using the result for simple function and the MCT we have∫

gdλ = lim
j→∞

∫
φjdλ = lim

j→∞

∫
φjfdµ =

∫
gfdµ,
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and the last equality follows also from the MCT, since φjf increases to fg.

Exercise 15. If {fn} ⊂ L+, fn decreases pointwise to f , and
∫
f1 < ∞, then

∫
f =

lim
∫
fn.

Solution. Before we begin, we note that since f 6 fn 6 f1 for all n, we have∫
f 6

∫
fn 6

∫
f1 <∞,

and hence all the integrals are finite.

By Fatou’s Lemma, we have
∫
f 6 lim inf

∫
fn. The proof is complete if we can prove

that lim sup
∫
fn 6

∫
f . To that end define gn = f1 − fn. Then {gn} ⊂ L+ and gn increases

pointwise to f1 − f . Hence by the MCT we have∫
(f1 − f) = lim

(∫
f1 − fn

)
= lim inf

(∫
f1 − fn

)
=

∫
f1 − lim sup

∫
fn.

Now note that of g = f1 − f , then f1 = g + f and
∫
f1 =

∫
g +

∫
f , and since all the

integrals are finite, we have
∫
g =

∫
f1 −

∫
f , that is

∫
(f1 − f) =

∫
f1 −

∫
f , thus we obtain∫

f1 −
∫
f =

∫
(f1 − f) =

∫
f1 − lim sup

∫
fn,

and hence
∫
f = lim sup

∫
fn, and the proof is complete.

Exercise 16. If f ∈ L+ and
∫
f < ∞, for every ε > 0 there exists E ∈ M such that

µ(E) <∞ and
∫
E
f > (

∫
f)− ε.

Solution. By Exercise 12, the set A = {x ∈ X : f(x) > 0} is σ-finite, and we can write
A =

⋃∞
j=1 Aj with µ(Aj) < ∞ for all j. Without loss of generality, we can assume that

Aj ⊂ Aj+1 for all j (taking Bj =
⋃j
k=1Aj if necessary).

SinceM 3 B 7→ λ(B) =
∫
B
fdµ is a measure and f = fχA, from the continuity from

below for the measure λ, we have∫
f =

∫
A

f = λ(A) = lim
j→∞

λ(Aj) = lim
j→∞

∫
Aj

f.

Also fχAj 6 f , and
∫
Aj
f 6

∫
f . Thus, since

∫
f < ∞, given ε > 0 we can choose j

sufficiently large so that
0 6

∫
f −

∫
Aj

f < ε.
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Taking E = Aj concludes the result.

Exercise 17. Assume Fatou’s Lemma and deduce the MCT from it.

Solution. Let {fn} ⊂ L+ a sequence that increases to f . Then since fn 6 f for all n,
we have

∫
fn 6

∫
f for all n and hence lim sup

∫
fn 6

∫
f .

By Fatou’s Lemma,
∫
f 6 lim inf

∫
fn, but then∫

f 6 lim inf

∫
fn lim sup

∫
fn 6

∫
f,

so all inequalities are equalities and lim
∫
fn =

∫
f , which is the MCT.

3.5 INTEGRATION OF COMPLEX FUNCTIONS

We continue our work with a fixed measure space (X,M, µ).

Definition 3.5.1 (Integral for extended-real valued functions). If f : X → R is a
measurable function, then both f+ and f− are in L+ (see Definition 3.1.13). If at least one
of the integrals

∫
f+ and

∫
f− is finite, we define∫

f =

∫
f+ −

∫
f−.

When both integrals are finite, we say that f is integrable.

Proposition 3.5.2. A measurable function f : X → R is integrable iff
∫
|f | <∞.

Proof. This follows directly from the fact that |f | = f+ + f−. �

Proposition 3.5.3. The set of integrable functions f : X → R is a real vector space, and
the integral is a linear functional on it.

Proof. Assume that f, g : X → R are integrable and a, b ∈ R. Then, since |af + bg| 6
|a||f |+ |b||g|, it follows that af + bg is integrable, hence it is a real vector space.

Now we show that the integral is a linear functional on it. If a > 0 then (af)+ = af+

and (af)− = af− then
∫
af = a

∫
f . Now (−f)+ = f− and (−f)− = f+ hence∫

(−f) =

∫
(−f)+ −

∫
(−f)− =

∫
f− −

∫
f+ = −

∫
f,
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and the result for a < 0 follows from the previous two cases, therefore
∫
af = a

∫
f for any

a ∈ R.

Now take h = f + g. Then h = h+ − h−, but h = f + g = f+ − f− + g+ − g− and hence
h+ − h− = f+ − f− + g+ − g−, therefore h+ + f− + g− = h− + f+ + g+. But the additivity
of the integral in L+ we have∫

h+ +

∫
f− +

∫
g− =

∫
h− +

∫
f+ +

∫
g+,

and hence ∫
(f + g) =

∫
f +

∫
g,

which concludes the result. �

Definition 3.5.4 (Integral for complex functions). We say that a complex valued function
f : X → C is integrable if

∫
|f | < ∞. More generally, if E ∈ M, we say that f is

integrable on E if
∫
E
|f | <∞.

Since |f | 6 |Ref | + |Imf | 6 2|f |, we see that f is integrable iff both Ref and Imf are
integrable, and in this case, we define∫

f =

∫
Ref + i

∫
Imf.

It follows as in Proposition 3.5.3 that the space of complex-valued integrable functions is
a complex vector space, and the integral is a complex-linear functional on it.

Exercise 3.5.5. Prove these last claims.

We will denote this space by L1(µ) (or L1(X,µ), or L1(X), or simply L1, depending on
the context).

Proposition 3.5.6. If f ∈ L1, then∣∣∣∣∫ f

∣∣∣∣ 6 ∫ |f |.
Proof. This is trivial if

∫
f = 0, since

∫
|f | > 0. If f is real, we have∣∣∣∣∫ f

∣∣∣∣ =

∣∣∣∣∫ f+ −
∫
f−
∣∣∣∣ 6 ∫ f+ +

∫
f− =

∫
|f |.
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Now assume that f is complex and
∫
f 6= 0. Let α = sgn(

∫
f), then

α

∫
f = αα

∣∣∣∣∫ f

∣∣∣∣ = |α|2︸︷︷︸
=1

∣∣∣∣∫ f

∣∣∣∣ =

∣∣∣∣∫ f

∣∣∣∣ ,
and in particular

∫
αf is real. Hence∣∣∣∣∫ f

∣∣∣∣ = Re

∫
αf =

∫
Re(αf) 6

∫
|Re(αf)| 6

∫
|αf | =

∫
|f |.

�

Proposition 3.5.7. We have the following:

(a) if f ∈ L1, then {x ∈ X : f(x) 6= 0} is σ-finite.

(b) if f, g ∈ L1, then
∫
E
f =

∫
E
g for all E ∈M iff

∫
|f − g| = 0 iff f = g a.e.

Proof. (a). We have

{x ∈ X : f(x) 6= 0} = {x ∈ X : f+(x) > 0} ∪ {x ∈ X : f−(x) > 0},

and the result follows since each one of the sets on the right side is σ-finite (by Proposition
3.3.14).

(b). The equivalence that
∫
|f − g| = 0 iff f = g a.e. follows by Proposition 3.3.10, since

|f − g| ∈ L+ and |f − g| = 0 a.e. iff f = g a.e.

If
∫
|f − g| = 0 then if E ∈M, we have∣∣∣∣∫

E

f −
∫
E

g

∣∣∣∣ 6 ∫
E

|f − g| =
∫
χE|f − g| 6

∫
|f − g| = 0,

and hence
∫
E
f =

∫
E
g.

Now we prove that if
∫
E
f =

∫
E
g then f = g a.e., which completes the proof. Assume

that it is false that f = g a.e. and consider h = f − g, then it is false that h = 0 a.e. Writing
u = Reh and v = Imh and considering

Er,s = {x ∈ X : rs(x) > 0} for r = u, v and s = ±,

then at least one of the Er,s must have positive measure. Assume, for instance that Eu,+ has
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positive measure. Then

Re
(∫

Eu,+

f −
∫
Eu,+

g
)

= Re

∫
Eu,+

h =

∫
u+ > 0,

since u− = 0 in Eu,+. This implies that
∫
Eu,+

h 6= 0 and gives us a contradiction. Analogously
for the other three cases. �

With this proposition, we can make some additional remarks, that are significantly
important for the theory of integration.

First: this proposition shows us that when we are integrating a function, its definition on
any null set is irrelevant. That is, we can change the definition of f anyway we want in any
null set and we obtain the same result when integrating. Hence, if f : X → R is integrable,
we have already seen that {x ∈ X : f(x) =∞} is a null set, and hence {x ∈ X : f(x) = ±∞}
is also a null set. Redefining f to be, for instance, 0 in this set, then we can look at f as
a real valued function. This means that, under integration, one does not need to consider
integrable functions taking values in the extended real line, but only real values.

Hence, we will redefine L1(µ) as follows:

Definition 3.5.8. Consider f, g complex-valued integrable functions. We say that f ∼ g

iff f = g a.e.

This relation ∼ is an equivalence relation in the set of complex-valued functions, and we
can define L1(µ) as the set of all such equivalence classes. This new L1(µ) is still a complex
vector space. But although now L1(µ) is a space of equivalence classes, we will still write
f ∈ L1(µ) with the meaning that “f is an a.e.-defined integrable function”. This is an abuse
of notation, but it does not cause major confusions.

Proposition 3.5.9. If µ is the completion of µ, then there exists a one-to-one correspon-
dence between L1(µ) and L1(µ).

Proof. Assume that f ∈ L1(µ), that is f : X → C is anM-measurable function. Then, by
Proposition 3.1.24, there exists aM-measurable function g : X → C such that f = g µ-a.e.
Thus to each f we associate Ψ(f) = g. If Ψ(f1) = Ψ(f2) then f1 = f2 µ-a.e., and hence
f1 = f2 in L1(µ), so this association is injective.

If g : X → C is an M-measurable function, then g is also an M-measurable function,
sinceM⊂M, hence Ψ is surjective, since Ψ(g) = g.

It remains to show that if f ∈ L1(µ) and Ψ(f) = g, then g ∈ L1(µ). Since f ∈ L1(µ) and
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f = g µ-a.e., we have |f | = |g| µ-a.e. and∫
|g|dµ =

∫
|g|dµ =

∫
|f |dµ <∞,

and the first equality follows from the fact that g isM-measurable and µ is the completion
of µ, therefore g ∈ L1(µ). �

Hence we can (and shall) identify the spaces L1(µ) and L1(µ).

Definition 3.5.10. For f, g ∈ L1(µ) we define

ρ(f, g) =

∫
|f − g|.

Proposition 3.5.11. The function ρ is a metric on L1.

Proof. It is clear that 0 6 ρ(f, g) <∞ for all f, g ∈ L1. Also ρ(f, g) = 0 iff f = g a.e., that is,
iff f = g in L1. It is trivial that ρ(f, g) = ρ(g, f), and finally, since |f − g| 6 |f − h|+ |h− g|,
we have the triangle inequality. �

Definition 3.5.12 (Convergence in L1). Consider a sequence {fn} ⊂ L1. We say that
fn → f in L1 if f ∈ L1 and ρ(fn, f)→ 0 as n→∞, that is, if

∫
|fn − f | → 0 as n→∞.

Now, together with the MCT and Fatou’s Lemma, the next theorem form the three
fundamental convergence theorems of the theory of integration.

Theorem 3.5.13 (The Dominated Convergence Theorem (DCT)). Let {fn} be a sequence
in L1 such that

(a) fn → f a.e.

(b) there exists a nonnegative g ∈ L1 such that |fn| 6 g a.e. for all n.

Then f ∈ L1 and
∫
f = lim

n→∞

∫
fn.

Proof. Using Propositions 3.1.23 and 3.1.24, after perhaps a redefinition on a null set, f is a
measurable function. Since |f | 6 g a.e., f ∈ L1. Taking real and imaginary parts, we can
assume that fn, f are real-valued, and hence g+ fn > 0 and g− fn > 0 for all n. Thus, using
Fatou’s Lemma, we have∫

g +

∫
f 6 lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn
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and ∫
g −

∫
f 6 lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn,

therefore lim sup
∫
fn 6

∫
f 6 lim inf

∫
fn, which concludes the result. �

Theorem 3.5.14. Suppose that {fj} is a sequence in L1 such that
∞∑
j=1

∫
|fj| <∞. Then

∞∑
j=1

fj converges a.e. to a function in L1 and

∫ ∞∑
j=1

fj =
∞∑
j=1

∫
fj.

Proof. By Theorem 3.3.9,
∫ ∞∑
j=1

|fj| =
∞∑
j=1

∫
|fj| <∞, so the function g =

∞∑
j=1

|fj| is in L1. By

Proposition 3.3.14,
∞∑
j=1

|fj(x)| is finite for a.e. x, and for such x, the series
∞∑
j=1

fj(x) converges.

Thus

∣∣∣∣∣ n∑j=1

fj

∣∣∣∣∣ 6 g a.e for all n and we can apply the DCT to the sequence of partial sums to

obtain ∫ ∞∑
j=1

fj =
∞∑
j=1

∫
fj.

�

Theorem 3.5.15. If f ∈ L1(µ) and ε > 0, there exists an integrable simple function
φ =

∑
ajχEj such that

∫
|f − φ|dµ < ε; that is, the integrable simple functions are dense in

L1 in the L1 metric.

If µ is a Lebesgue-Stieltjes measure on R, then the sets Ej in the definition of φ can be
taken to be finite unions of bounded open intervals; moreover, there is a continuous function
g that vanishes outside a bounded interval such that

∫
|f − g|dµ < ε.

Proof. Since f is measurable, using Proposition 3.1.22, there exists a sequence {φn} of simple
functions such that 0 6 |φ1| 6 |φ2| 6 · · · 6 |f | and φn → f pointwise. Clearly, since f ∈ L1,
each φn is in L1 and φn − f → 0 pointwise. Since |φn − f | 6 |φn| + |f | 6 2|f | ∈ L1, using
the DCT, we obtain ∫

|φn − f | → 0,

and given ε > 0 we can choose n such that
∫
|φn − f | < ε.

For the second part, we assume that µ is a Lebesgue-Stieltjes measure. We write φ = φn

and consider its standard decomposition φ =
m∑
j=1

ajχEj . We can assume that the aj are all
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nonzero and the Ej are disjoint, discarding the sets on which φ is zero from the decomposition,
and hence

µ(Ej) =

∫
χEj = |aj|−1

∫
Ej

|φ| 6 |aj|−1

∫
|f | <∞.

Before continuing, note that for measurable sets E and F , we have µ(E∆F ) = ρ(χE, χF ) =∫
|χE − χF |, since χE∆F = |χE − χF |. Hence, for each j, given ε > 0, using Proposition

2.5.12, there exists a set Aj which is a finite union of open bounded intervals such that
µ(Ej∆Aj) <

ε
m|aj | , and considering φ̃ =

∑
ajχAj we have

∫
|φ̃− φ| =

∑
|aj|

∫
|χEj − χAj | =

∑
|aj|µ(Ej∆Aj) < ε,

and hence
∫
|φ̃− f | < 2ε.

Hence, we can write φ̃ =
p∑

k=1

bkχIk , where Ik = (ck, dk] with ck, dk ∈ R for each k, and

we can again assume that all bk are nonzero and that the finite family {Ik} of intervals is
pairwise disjoint (here we use h-intervals and approximate then from the inside with open
intervals). Now for each k, we will construct a continuous function gk : R→ R as follows:

(i) choose δk > 0 such that

µ((ck, ck + δk]) + µ((dk, dk + δk]) <
ε

p|bk|
,

and define gk = 1 on [ck + δk, dk];

(ii) gk = 0 on (−∞, ck] ∪ [dk + δk,∞);

(iii) define gk linear from 0 to 1 in [ck, ck + δ] and linear from 1 to 0 on [dk, dk + δk].

Thus
∫
|bkχIk−bkgk| 6 |bk|

(
µ((ck, ck+δ])+µ((dk−δ, dk])

)
< ε/p. Therefore, g =

∑
bkgk

is continuous, vanishes outside
⋃p
k=1(ck, dk + δk] and∫

|g − φ̃| 6
p∑

k=1

∫
|bk||χIk − gk| < ε,

and then ∫
|f − g| < 3ε.

�

The next theorem gives us a criterion for the validity of the interchange limits and
derivatives with integrals.
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Theorem 3.5.16. Suppose that f : X × [a, b] → C with −∞ < a < b < ∞ and that
f(·, t) : X → C is integrable for each t ∈ [a, b]. Define

F (t) =

∫
X

f(x, t)dµ(x) for each t ∈ [a, b].

Then

(a) if there exists g ∈ L1(µ) such that |f(x, t)| 6 g(x) for all x, t and lim
t→t0

f(x, t) = f(x, t0)

for every x then lim
t→t0

F (t) = F (t0). In particular, if f(x, ·) is continuous for every x,
then F is continuous.

(b) if ∂f/∂t exists and there exists h ∈ L1(µ) such that |(∂f/∂t)(x, t)| 6 h(x) for all x, t
then F is differentiable and

F ′(t) =

∫
X

∂f

∂t
(x, t)dµ(x) for all t ∈ [a, b].

Proof. (a). Let {tn} be any sequence in [a, b] such that tn → t0 and define fn(x) = f(x, tn)

and f0(x) = f(x, t0) for every x ∈ X. Hence fn → f0 pointwise and |fn| 6 g for all n. Thus,
applying the DCT we have

∫
f0 = lim

∫
fn, that is,

F (t0) =

∫
X

f(x, t0)dµ(x) =

∫
f0 = lim

∫
fn = lim

∫
X

f(x, tn)dµ(x) = limF (tn).

Since this is true for every sequence {tn} in [a, b] converging to t0, the result follows.

(b). Take again any sequence {tn} in [a, b] with tn → t0, such that tn 6= t0 for all n, and
define

hn(x) =
f(x, tn)− f(x, t0)

tn − t0
for all n and x ∈ X.

Define also h0(x) = (∂f/∂t)(x, t0) for all x ∈ X. Hence hn → h0, and since each hn is
measurable, it follows that h0 is measurable. By the Mean Value Theorem we have

|hn(x)| = |f(x, tn)− f(x, t0)|
|tn − t0|

6 sup
t∈[a,b]

∣∣∣∣∂f∂t (x, t)

∣∣∣∣ 6 h(x) for all x ∈ X,

and we can again apply the DCT to obtain
∫
h0 = lim

∫
hn, that is,

F ′(t0) = lim
F (tn)− F (t0)

tn − t0
= lim

∫
hn(x)dµ(x) =

∫
h0(x)dµ(x) =

∫
X

∂f

∂t
(x, t0)dµ(x).

�
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The use of sequential limits is fundamental to treat continuous limits, since the DCT only
deal with sequences. However, in similar situations in the future, we will just say t → t0,
with the understanding that we are taking sequential limits.

In the particular case when µ = m is the Lebesgue measure in R, this integral we have
just developed is called the Lebesgue integral.

3.5.1 COMPARISON BETWEEN THE RIEMANN AND LEBESGUE INTEGRALS

We will use Darboux’s characterization of the Riemann integral, in terms of upper and
lower sums, to compare it with the Lebesgue integral.

Let [a, b] be a compact interval. By a partition of [a, b], we mean a finite sequence
P = {tj}nj=0 such that a = t0 < t1 < · · · < tn = b.

Let f be an arbitrary bounded real-valued function defined on [a, b]. For each partition
P , we define

SPf =
n∑
j=1

Mj(tj − tj−1) and sPf =
n∑
j=1

mj(tj − tj−1),

where Mj = sup
x∈[tj−1,tj ]

f(x) and mj = inf
x∈[tj−1,tj ]

f(x). The sums SPf and sPf are called upper

and lower sums of f on P , respectively.
Then we define

I
b

a(f) = inf
P
SPf and Iba(f) = sup

P
sPf,

where the infimum are taken over all partitions P of [a, b]. They’re called respectively the
upper and lower integrals of f in [a, b].

When Iba(f) = Iba(f), their common value is the Riemann integral
∫ b
a
f(x)dx and f is

called Riemann integrable.

Theorem 3.5.17. Let f be a bounded real-valued function on [a, b]. If f is Riemann
integrable then f is Lebesgue measurable (and hence Lebesgue integrable on [a, b], since it is
bounded), and ∫ b

a

f(x)dx =

∫
[a,b]

fdm.

Proof. For each partition P of [a, b] define

GP =
n∑
j=1

Mjχ(tj−1,tj ] and gP =
n∑
j=1

mjχ(tj−1,tj ],

- 106 -



with the same notation as above. Thus SPf =
∫
GPdm and sPf =

∫
gPdm.

We can choose a sequence {Pk} of partitions of [a, b] such that Pk ⊂ Pk+1 for all k, whose
mesh (= max

j=1,··· ,n
(tj − tj−1)) converges to zero and such that SPkf and sPkf both converge to∫ b

a
f(x)dx.
Since Pk ⊂ Pk+1 for all k, {GPk} is a decreasing sequence and {gPk} is an increasing

sequence. We can thus define G = limGPk and g = lim gPk , which are measurable functions,
since they are limits of sequences of simple measurable functions. Since gPk 6 f 6 GPk for
all k, where M = sup f , we have g 6 f 6 G and using twice the DCT, we have∫

Gdm = lim

∫
GPkdm = limSPkf =

∫ b

a

f(x)dx = lim sPkf = lim

∫
gPkdm =

∫
gdm.

Therefore
∫

(G− g)dm = 0, which implies that G = g a.e. on [a, b] by Proposition 3.3.10.
Hence, since g 6 f 6 G, we have f = g = G a.e. on [a, b], thus f is measurable (since it is
equal a.e. to a measurable function and m is complete) and∫

fdm =

∫
Gdm =

∫
gdm =

∫ b

a

f(x)dx.

�

Now we will characterize the set of Riemann integrable function on an interval [a, b]. To
that end, let f : [a.b]→ R be a bounded function and define

H(x) = lim
δ→0+

sup
|y−x|6δ

f(y) and h(x) = lim
δ→0+

inf
|y−x|6δ

f(y).

Lemma 3.5.18. f is continuous at x ∈ [a, b] iff H(x) = h(x).

Proof. Assume that f is continuous at x. Then given ε > 0, there exists δ0 > 0 such that if
0 < δ < δ0 and |y−x| < δ we have |f(y)−f(x)| < ε, thus f(y)−f(x) < ε and f(x)−f(y) < ε

for all y such that |y − x| < δ. Hence

sup
|y−x|<δ

f(y)− f(x) 6 ε and f(x)− inf
|y−x|<δ

f(y) 6 ε,

and then

sup
|y−x|<δ

f(y)− inf
|y−x|<δ

f(y) 6 sup
|y−x|<δ

f(y)− f(x) + f(x)− inf
|y−x|<δ

f(y) 6 2ε.

Taking the limit when δ → 0+ we have H(x)− h(x) 6 2ε, and since ε > 0 is arbitrary, we

- 107 -



obtain H(x)− h(x) 6 0. Since H(x) > h(x) for each x, we have H(x) = h(x).

For the converse, assume that H(x) = h(x) = α. Hence given η > 0, there exists δ0 > 0

such that for 0 < δ < δ0 we have

|α− sup
|y−x|<δ

f(y)| < η/2 and |α− inf
|y−x|<δ

f(y)| < η/2,

which implies that sup
|y−x|<δ

f(y)− inf
|y−x|<δ

f(y) < η. But then for |y − x| < δ we have

|f(y)− f(x)| 6 sup
|y−x|<δ

f(y)− inf
|y−x|<δ

f(y) < η,

and proves that f is continuous at x. �

Lemma 3.5.19. In the notation of the proof of Theorem 3.5.17 we have H = G and h = g

a.e.

Proof. Consider the sequence of partitions {Pk} used in the proof of Theorem 3.5.17 and set
E = {points of Pk for all k}. Since each Pk has a finite number of points, E is countable and
hence has zero Lebesgue measure.

We will show that H = G in [a, b] \ E. If x ∈ [a, b] \ E, then GPk(x) > H(x), since if
x ∈ (tj−1, tj) we have GPk(x) = sup

y∈(tj−1,tj ]

f(y) > H(x). Hence G(x) > H(x).

If H(x) < G(x), choose a ∈ R such that H(x) < a < G(x). By definition of H, there
exists δ0 > 0 such that if 0 < δ < δ0 we have f(y) < a if |y − x| < δ. But since the mesh of
the partitions Pk tends to zero, for large k, x ∈ (tj−1, tj) and tj − tj−1 < δ, hence

GPk(x) = Mj = sup
y∈(tj−1,tj ]

f(y) 6 a.

Since the sequence {GPk} is decreasing, we have G(x) 6 GPk(x) 6 a < G(x), which gives
us a contradiction, hence H = G in [a, b] \ E, therefore H = G a.e.

Analogously we show that h = g a.e. �

Corollary 3.5.20. H and h are measurable,
∫

[a,b]
Hdm = I

b

a(f) and
∫

[a,b]
hdm = Iba(f).

Proof. Since G and g are measurable, H = G, h = g a.e. and m is a complete measure, H
and h are measurable. Moreover∫

[a,b]

Hdm =

∫
[a,b]

Gdm = lim

∫
[a,b]

GPkdm = limSPkf = I
b

a(f),
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and ∫
[a,b]

hdm =

∫
[a,b]

gdm = lim

∫
[a,b]

gPkdm = lim sPkf = Iba(f),

�

Theorem 3.5.21. Let f be a bounded real-valued function. Then f is Riemann integrable
iff D(f) = {x ∈ [a, b] : f is discontinuous at x} has zero Lebesgue measure.

Proof. If f is Riemann integrable, using the notation of the previous results, by Corollary
3.5.20, we have ∫

[a,b]

Hdm =

∫ b

a

f(x)dx =

∫
[a,b]

hdm,

hence H = h a.e. by Proposition 3.5.7. Thus D(f) has zero Lebesgue measure by Lemma
3.5.18.

Conversely, if D(f) has zero Lebesgue measure, H = h a.e. by Lemma 3.5.18 and hence
by Proposition 3.5.7 and Corollary 3.5.20 we obtain

I
b

a(f) =

∫
[a,b]

Hdm =

∫
[a,b]

hdm = Iba(f),

hence f is Riemann integrable. �

These results show that the proper Riemann integral is contained in a particular case
of the Lebesgue integral. Some improper Riemann integrals can be interpreted as Lebesgue
integrals immediately, but others still require a limiting procedure. Consider the follow
example.

Example 3.5.22. If f is a Riemann integrable function in [0, b] for all b > 0 and Lebesgue
integrable on [0,∞), then ∫

[0,∞)

fdm = lim
b→∞

∫ b

0

f(x)dx.

In fact consider the “sequence” fb = fχ[0,b]. Then fb → f pointwise as b → ∞ and
|fb| 6 |f |, hence by the DCT we have∫

[0,∞)

fdm = lim
b→∞

∫
[0,∞)

fχ[0,b]dm = lim
b→∞

∫
[0,b]

fdm = lim
b→∞

∫ b

0

f(x)dx.

However, the limit on the right side may exist even when f is not Lebesgue integrable.
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For instance, consider f =
∞∑
n=1

(−1)n

n
χ(n,n+1]. Thus

∫
[0,∞)

|f |dm =
∞∑
n=1

1

n
=∞,

and hence f is not Lebesgue integrable in [0,∞), but

lim
b→∞

∫ b

0

f(x)dx = lim
b→∞

 bbc∑
n=1

(−1)n

n
+

(−1)bbc+1

bbc+ 1
(b− bbc)

 =
∞∑
n=1

(−1)n

n
,

which is convergent.

The Lebesgue theory offers two real and useful advantages over the Riemann theory. First,
we have more powerful convergence theorem. Such results are not true in general for Riemann
integrals. Also, there are much more Lebesgue integrable functions the Riemann ones. One
simple example is the function χQ. Since is everywhere discontinuous, it is not Riemann
integrable on any closed interval, however, it is Lebesgue integrable and ∈[a,b] χQdm = 0.

Also, metric spaces on which the metric is defined with Lebesgue integrals are complete,
but not when defined with the Riemann integral.

From now on, for real-valued functions, we will use the notation
∫ b
a
f(x)dx for Lebesgue

integrals.

3.5.2 THE GAMMA FUNCTION

In this subsection we discuss the gamma function. To begin, let z ∈ C with Rez > 0

and define fz : (0,∞)→ C by fz(t) = tz−1e−t, where tz−1 = exp[(z − 1) ln t].

Proposition 3.5.23. If z ∈ C is such that Rez > 0 then fz ∈ L1((0,∞)).

Proof. We must show that
∫∞

0
|fz(t)|dt <∞. To that end, first note that, since |tz−1| = tRez−1,

for 0 < t < 1 we have |fz(t)| 6 tRez−1 and thus∫ 1

0

|fz(t)|dt 6
∫ 1

0

tRez−1dt =
tRez

Rez

∣∣∣1
0

=
1

Rez
<∞ since Rez > 0.

Now, for t > 1, set α = Rez − 1 and g(t) = tαe−t/2. Hence |fz(t)| = g(t)e−t/2 and since
lim
t→∞

g(t) = 0, g is a bounded function for t > 1, which ensures us that there exists a constant

- 110 -



C > 0 such that |fz(t)| 6 Ce−t/2. Thus∫ ∞
1

|fz(t)|dt 6 C

∫ ∞
1

e−t/2dt = −2Ce−t/2
∣∣∣∞
1

= 2Ce−1/2 <∞,

and joining the two estimates, we have fz ∈ L1((0,∞)). �

Using this proposition we can make the following definition.

Definition 3.5.24 (Gamma function). We define for Rez > 0 the gamma function of
z by

Γ(z) =

∫ ∞
0

tz−1e−tdt.

Proposition 3.5.25. For Rez > 0 we have Γ(z + 1) = zΓ(z).

Proof. Let a, b > 0. Using the comparison between the Lebesgue and Riemann integrals, we
can use integration by parts to obtain∫ b

a

tze−tdt = −tze−t
∣∣∣b
a

+ z

∫ b

a

tz−1e−tdt,

and letting a→ 0+ and b→∞ (and recalling that fx ∈ L1((0,∞))), we obtain the result. �

Thus, if −1 < Rez < 0, we can define the gamma function for z by the formula

Γ(z) =
Γ(z + 1)

z
,

since Rez + 1 > 0. Inductively, we can use this procedure to define Γ for the entire complex
plane, except for Rez = m, where m is a nonpositive integer.

Proposition 3.5.26. For every nonnegative integer n, we have Γ(n+ 1) = n!.

Proof. We have Γ(n+ 1) = nΓ(n) = n(n− 1)Γ(n− 1) · · ·n!Γ(1), for each nonnegative integer
n. It remains to show that Γ(1) = 1, but this follows easily since

Γ(1) =

∫ ∞
0

e−tdt = −e−t
∣∣∣∞
0

= 1.

�

Together with the gamma function, we also have the beta function. It is defined by

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt for x, y > 0.
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Proposition 3.5.27. For x, y > 0 we have

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

Proof. This proof we be done later, as it requires some further definitions and results (See
Exercise 60). �

3.6 SOLVED EXERCISES FROM [1, PAGE 59]

Exercise 18. Fatou’s Lemma remains valid if the hypothesis that fn ∈ L+ is replaced by
the hypothesis that fn > −g where g ∈ L+ ∩ L1. What is the analogue of Fatou’s lemma for
nonpositive functions?

Solution. Fatou’s Lemma. Assume that {fn} is a sequence of measurable functions such
that fn > −g for some g ∈ L+ ∩ L1. Thus∫

lim inf fn 6 lim inf

∫
fn.

Before proving the result, we will prove the following lemma:

Lemma. If f > −g, f is measurable and g ∈ L+ ∩ L1, then
∫

(f + g) =
∫
f +

∫
g.

Proof. Indeed, if f ∈ L1 the result is given in Theorem 3.5.14. Assume now that f is
not integrable and write f = f+ − f−. Let E− = {x ∈ X : f(x) < 0}. Since f > −g we
have f(x) = −f−(x) for x ∈ E− and hence −f−(x) > −g(x), thus f−(x) 6 g(x). Hence∫
f− =

∫
E−

f− 6
∫
E−

g 6
∫
g <∞. Thus, if f is not integrable, this means that

∫
f+ =∞

and hence
∫
f =∞. It remains to prove that

∫
(f + g) =∞. If h = f + g (which is in L+)

we have h = f+ − f− + g and hence h+ f− = f+ + g, hence∫
h+

∫
f− =

∫
(h+ f−) =

∫
f+ +

∫
g,

and since
∫
g and

∫
f− are finite, this follows that

∫
h =∞. Hence, in any case

∫
(f + g) =∫

f +
∫
g. ♠

Now we can prove this version of Fatou’s Lemma. Since fn > −g we have fn + g > 0 for
all n, and we can apply Fatou’s Lemma together with our previous lemma to obtain∫

lim inf fn +

∫
g =

∫
lim inf(fn + g) 6 lim inf

∫
(fn + g) = lim inf

∫
fn +

∫
g,
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and since g ∈ L1, the result holds.

Fatou’s Lemma for nonpositive functions. If {fn} is a sequence of measurable functions
with fn 6 0 for all n then

lim sup

∫
fn 6

∫
lim sup fn.

Proof: Apply Fatou’s Lemma for {−fn}.

Exercise 19. Suppose {fn} ⊂ L1(µ) and fn → f uniformly.

(a) If µ(X) <∞ then f ∈ L1(µ) and
∫
fn →

∫
f .

(b) If µ(X) = ∞, the conclusion of (a) can fail. (Find examples on R with the Lebesgue
measure).

Solution to (a). Since fn → f uniformly, there exists n0 such that |fn − f | 6 1 for
n > n0. Hence

|f | 6 |f − fn0|+ |fn0| 6 1 + |fn0|,

and since µ(X) <∞, the constant function 1 is in L1(µ), hence f ∈ L1(µ).

Now ∣∣∣∣∫ fn −
∫
f

∣∣∣∣ 6 ∫ |fn − f | 6 sup
x∈X
|fn(x)− f(x)|µ(X)→ 0

as n→∞, since µ(X) <∞, hence lim
∫
fn =

∫
f .

Solution to (b). Consider fn = 1
n
χ[0,n]. Hence fn → f ≡ 0 uniformly on R but

∫
fn = 1

for all n and
∫
f = 0.

Exercise 20. (A generalized Dominated Convergence Theorem) If fn, gn, f, g ∈ L1,
fn → f and gn → g a.e., |fn| 6 gn and

∫
gn →

∫
g then

∫
fn →

∫
f . (Rework the proof of

the dominated convergence theorem).

Solution. We have gn + fn > 0 and gn− fn > 0 for all n. Using Fatou’s Lemma, we have∫
g +

∫
f 6 lim inf

∫
(gn + fn) =

∫
g + lim inf

∫
fn

and ∫
g −

∫
f 6 lim inf

∫
(gn − fn) =

∫
g − lim sup

∫
fn,

and we obtain the desired result.
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Exercise 21. Suppose fn, f ∈ L1 and fn → f a.e. Then
∫
|fn − f | → 0 iff

∫
|fn| →

∫
|f |.

(Use Exercise 20).

Solution.

Assume that
∫
|fn| →

∫
|f |. We have |fn − f | 6 |fn|+ |f | for all n, |fn|+ |f | → 2|f | a.e.

and
∫
|fn| +

∫
|f | → 2

∫
|f |. Thus, since since fn − f → 0 a.e., we can use Exercise 20 to

conclude that
∫
|fn − f | → 0.

For the converse, assume that
∫
|fn − f | → 0. Since ||fn| − |f || 6 |fn − f | for all n

and |fn| − |f | → 0 a.e., we can use Exercise 20 to conclude that
∫

(|fn| − |f |) → 0, hence∫
|fn| →

∫
|f |.

Exercise 22. Let µ be the counting measure on N. Interpret Fatou’s lemma, the MCT
and the DCT as statements about infinite series.

Solution. Let f : N → R any function. Then since M = P(N), f is automatically
measurable. We write f(n) = an for all n. If f > 0 then

∫
f(n)dµ(n) =

∞∑
n=1

f(n)µ({n}) =
∞∑
n=1

an.

If f is any function, the f is integrable iff
∫
|f | <∞ iff

∞∑
n=1

|an| is convergent.

Fatou’s Lemma. If {an,k} is a doubly indexed real sequence with an,k > 0 for all n, k then

∞∑
k=1

lim inf
n→∞

an,k 6 lim inf
n→∞

∞∑
k=1

an,k.

MCT. If {an,k} is a doubly indexed real sequence and {bk} is a real sequence with 0 6 a1,k 6

a2,k 6 · · · 6 bk and lim
n→∞

an,k = bk If {an,k} is a doubly indexed real sequence with an,k > 0

for all n, k, then

lim
n→∞

∞∑
k=1

an,k =
∞∑
k=1

bk.

DCT. Assume that {an,k} is a doubly indexed sequence in R with
∞∑
k=1

an,k absolutely con-

vergent for all n, lim
n→∞

an,k = bk for all k, and there exists a nonnegative sequence {ck} with
∞∑
k=1

ck convergent and |an,k| 6 ck for all k, then
∞∑
k=1

bk is absolutely convergent and

∞∑
k=1

bk = lim
n→∞

∞∑
k=1

an,k.
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Exercise 23.

This is done in Subsection 3.5.1.

Exercise 24. Let (X,M, µ) be measure space with µ(X) <∞ and let (X,M, µ) be its
completion. Suppose that f : X → R is bounded. Then f isM-measurable (and hence in
L1(µ)) iff there exist sequences {φn} and {ψn} ofM-measurable simple functions such that
φn 6 f 6 ψn and

∫
(ψn − φn)dµ < n−1. In this case lim

∫
φndµ = lim

∫
ψndµ =

∫
fdµ.

Solution. Assume that f ifM-measurable. Then, by Proposition 3.1.24, there exists a
M-measurable function g such that f = g µ-a.e., and since f is bounded, g is also bounded.

We will adapt the proof of Theorem 3.1.20. Choose n0 such that −2n0 6 g 6 2n0 . For
n > n0 and we define

Jn,0 = [−2n,−2n + 2−n] and Jn,k = (−2n + k2−n,−2n + (k + 1)2−n]

for k = 1, · · · , 22n+1 − 1. Hence
22n+1−1⋃
k=1

Jn,k = [−2n, 2n] for all n.

Define En,k = g−1(Jn,k) for k = 0, · · · , 22n+1 − 1. Since g(X) ⊂ [−2n0 , 2n0 ] ⊂ [−2n, 2n]

for n > n0, we have
22n+1−1⋃
k=0

En,k = X and the finite sequence of sets {En,k}k is inM and is

pairwise disjoint. Now we can define

φn =
22n+1−1∑
k=0

(−2n + k2−n)χEn,k and ψn =
22n+1−1∑
k=0

(−2n + (k + 1)2−n)χEn,k

for k = 0, · · · , 22n+1− 1. Thus φn0 6 φn0+1 6 · · · 6 g 6 · · · 6 ψn0+1 6 ψn0 and moreover, for
n > n0 we have ∫

(ψn − φn)dµ =
22n+1−1∑
k=0

2−nµ(En,k) 6 2−nµ(X).

If n1 is such that for n > n1 we have n2−nµ(X) < 1 then for n > max{n0, n1} we obtain∫
(ψn − φn)dµ < n−1. (?)

Clearly, φn 6 f 6 ψn µ-a.e. Let A be the set on which φn 6 f fails, then A ⊂ N where
N ∈M is a null set. We can redefine φn on N by setting φn(x) = α = inf

x∈X
f(x) for x ∈ N ,
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thus

φn =
22n+1−1∑
k=0

(−2n + k2−n)χEn,k∩Nc + αχN ,

is still a simpleM-measurable function and φn 6 f . The same can be done with ψn using
sup
x∈X

f(x), and hence f 6 ψn. Since integration does not see null sets, inequality (?) remains

unchanged.

Now we prove the converse. To that end, if φn 6 f 6 ψn for all n and
∫

(ψn−φn)dµ < n−1.
Define φ = lim supφn and ψ = lim inf ψn, which areM-measurable by Proposition 3.1.10, and
well defined real-valued functions, since φn 6 f 6 ψn and f is bounded (hence φn 6 inf

x∈X
f(x)

and ψn > sup
x∈X

f(x) for all n). Thus φ 6 f 6 ψ and by Fatou’s Lemma

∫
(ψ−φ)dµ =

∫
(lim inf ψn−lim supφn)dµ =

∫
lim inf(ψn−ψn)dµ 6 lim inf

∫
(ψn−φn)dµ = 0,

hence
∫

(ψ − φ)dµ = 0. Using Proposition 3.5.7 we have ψ = φ µ-a.e. Since φ 6 f 6 ψ, we
have φ = ψ = f µ-a.e. Thus f is µ-a.e. equal to aM-measurable function. Assume that A
is a µ-null set such that f 6= φ. Then if B ⊂ R is a Borel set, we have

f−1(B) = (f−1(B) ∩ Ac) ∪ (f−1(B) ∩ A) = (φ−1(B) ∩ Ac)︸ ︷︷ ︸
∈M

∪ (f−1(B) ∩ A)︸ ︷︷ ︸
⊂A

,

hence f−1(B) ∈M, and f isM-measurable.

Exercise 25. Let f(x) = x−1/2 if 0 < x < 1, f(x) = 0 otherwise. Let {rn} be an

enumeration of the rational, and set g(x) =
∞∑
n=1

2−nf(x− rn).

(a) g ∈ L1(m), and in particular g <∞ a.e.

(b) g is discontinuous a.e. and unbounded on every interval, and it remains so after any
modification on a Lebesgue null set.

(c) g2 <∞ a.e., but g2 is not integrable on any interval.

Solution to (a). First note that f |(−∞,0]∪[1,∞) ≡ 0 and hence it is measurable. Also f |(0,1)

is continuous, hence measurable. Thus by Exercise 5 of Section 3.2, f is measurable. For
each n, the translation hn(x) = x− rn is continuous, hence measurable. Thus fn = 2−nf ◦ hn
is measurable for each n, and thus g is measurable.
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Clearly g > 0, and hence, by Proposition 3.3.9 we have∫
gdm =

∞∑
n=1

2−n
∫
f(x− rn)dm(x).

But note that 0 < x− rn < 1 iff rn < x < rn + 1, hence∫
f(x− rn)dm(x) =

∫ rn+1

rn

(x− rn)−1/2dx = 2(x− rn)
∣∣∣rn+1

rn
= 2,

and hence ∫
gdm =

∞∑
n=1

2−n+1 =
∞∑
n=0

2−n = 2,

and g ∈ L1(m). By Proposition 3.3.14, g <∞ a.e.

Solution to (b). First, we show that g is unbounded on every interval. Let I ⊂ R be
a nondegenerated interval (that is, I is neither a single point nor empty). Thus there
exists a rational rn which is an interior point of I. Let M > 0 choose δ ∈ (0, 1) such that
(rn, rn + δ) ⊂ I and 2−n(x− rn)−1/2 > M for x ∈ (rn, rn + δ). Hence, for x ∈ (rn, rn + δ) we
have 0 < x− rn < δ < 1 and

g(x) > 2−nf(x− rn) = 2−n(x− rn)−1/2 > M,

and this proves that g is unbounded in I. Furthermore (rn, rn + δ) ⊂ g−1((M,∞)), and hence
m(g−1((M,∞))) > δ, so any redefinition of g in a Lebesgue null set will yield an unbounded
function on every interval.

Since g <∞ a.e. and g is unbounded on every interval, g is discontinuous a.e.

Solution to (c). Since g <∞ a.e, then g2 <∞ a.e.

Now, fix a nondegenerated interval I, choose rn a interior rational point of I and δ ∈ (0, 1)

such that (rn, rn + δ) ⊂ I. Thus we have∫
I

g2dm >
∫
I

(2−nf(x− rn))2dm(x) = 2−2n

∫
I

f 2(x− rn)dm(x)

> 2−2n

∫ rn+1

rn

(x− rn)−1dm(x) =∞,

hence g is not integrable on I.

Exercise 26. If f ∈ L1(m) and F (x) =
∫ x
−∞ f(t)dt, then F is continuous on R.

Solution. Since χ(−∞,x]|f | 6 |f |, χ(−∞,x]f is integrable and F is well defined for every
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x ∈ R. Now let x ∈ R and xn → x. Then

|F (xn)− F (x)| =
∣∣∣∣∫ xn

−∞
f(t)dt−

∫ x

−∞
f(t)dt

∣∣∣∣ =

∣∣∣∣∫ (χ(∞,xn]f − χ(−∞,x]f
)
dm

∣∣∣∣
6
∫
|χ(∞,xn]f − χ(−∞,x]f |dm.

Let gn = |χ(∞,xn]f − χ(−∞,x]f | for each n. We have

gn(t) = χ(min{xn,x},max{xn,n}]|f(t)|.

Thus, since xn → x, we have gn(t) → 0 as n → ∞ for all t 6= x. Hence gn → 0 a.e.
Moreover |gn| 6 2|f | ∈ L1(m) and by the DCT, we have

|F (xn)− F (x)| 6
∫
|gn|dm→ 0 as n→∞,

and thus F is continuous at x.

Exercise 27. Let fn(x) = ae−nax − be−nbx where 0 < a < b.

(a)
∞∑
n=1

∞∫
0

|fn(x)|dx =∞.

(b)
∞∑
n=1

∞∫
0

fn(x)dx = 0.

(c)
∞∑
n=1

fn ∈ L1([0,∞),m) and
∞∫
0

∞∑
n=1

fn(x)dx = ln(b/a).

Solution to (a). We have∫ ∞
0

|fn(x)|dx >
∫ ∞

1/na

|fn(x)|dx >
∣∣∣∣∫ ∞

1/na

fn(x)dx

∣∣∣∣
=

∣∣∣∣∫ ∞
1/na

(ae−nax − be−nbx)dx
∣∣∣∣ =

∣∣∣∣(e−nbxn
− e−nax

n

)∣∣∣∞
1/na

∣∣∣∣
=

1

n
·
∣∣e−b/a − e−1

∣∣ ,
and hence

∞∑
n=1

∞∫
0

|fn(x)|dx >
∣∣e−b/a − e−1

∣∣ ∞∑
n=1

1

n
=∞.
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Solution to (b). Note that for each n we have∫ ∞
0

fn(x)dx =

∫ ∞
0

(ae−nax − be−nbx)dx =
(e−nbx

n
− e−nax

n

)∣∣∣∞
0

= 0,

and hence
∞∑
n=1

∞∫
0

fn(x)dx = 0.

Solution to (c). Note that

∞∑
n=1

fn(x) =
∞∑
n=1

(ae−nax − be−nbx) = a

∞∑
n=1

e−nax − b
∞∑
n=1

e−nbx,

since bot series in the right hand side converge absolutely for each x > 0, hence

∞∑
n=1

fn(x) = a
( e−ax

1− e−ax
)
− b
( e−bx

1− e−bx
)

=
a

eax − 1
− b

ebx − 1
.

Set f(x) =
a

eax − 1
− b

ebx − 1
for x > 0. But

eax − 1

a
=
∞∑
n=1

an−1xn

n!
6

∞∑
n=1

bn−1xn

n!
=
ebx − 1

b
,

hence f(x) > 0 for all x > 0. Define gn = χ[1/n,∞)f . Clearly gn > 0, gn is measurable for
each n and gn increases to f , and from the MCT we obtain∫

f = lim
n→∞

∫
gn = lim

n→∞

∫ ∞
1/n

f(x)dx = lim
n→∞

∫ ∞
1/n

( a

eax − 1
− b

ebx − 1

)
dx.

It just remains to compute the integral
∫ c

ecx − 1
dx, for c = a, b. To that end, make the

substituition u = ecx − 1, hence du = c(u+ 1)dx to obtain∫
c

ecx − 1
dx =

∫
1

u(u+ 1)
du =

∫ (1

u
− 1

u+ 1

)
du = ln

∣∣∣ u

u+ 1

∣∣∣+ k = ln
∣∣∣1− e−cx∣∣∣+ k,

and using the limits of integration, we obtain∫ ∞
1/n

c

ecx − 1
dx = − ln(1− e−c/n).

Therefore ∫
f = lim

n→∞
ln
(1− e−b/n

1− e−a/n
)

= ln(b/a),

- 119 -



where in the last equality the L’Hôpital Rule was used. Thus, the result is complete.

Exercise 28. Compute the following limits and justify the calculations.

(a) lim
n→∞

∞∫
0

sin(x/n)

(1 + x/n)n
dx.

(b) lim
n→∞

1∫
0

1 + nx2

(1 + x2)n
dx.

(c) lim
n→∞

∞∫
0

n sin(x/n)

x(1 + x2)
dx.

(d) lim
n→∞

∞∫
a

n

1 + n2x2
dx. (The answer depends on whether a > 0, a = 0 or a < 0. How does

this accord with the various convergence theorems?)

Solution to (a). Define fn(x) =
sin(x/n)

(1 + x/n)n
for each n and x > 0. Hence fn(0) = 0 for

each n and for each x > 0, fn(x)→ 0 as n→∞. Also, since (1 + x/n)n > 1 + x+ x2/4 for
n > 2 and x > 0, we have

|fn(x)| 6 1

1 + x+ x2/4
and

∫ ∞
0

1

1 + x+ x2/4
dx <∞.

Hence, by the DCT we have
∫∞

0
fn(x)dx→ 0.

Solution to (b). Define fn(x) =
1 + nx2

(1 + x2)n
for each n and x > 0. We have f1(x) = 1 for all

x > 0, fn(0) = 1 for all n and

|fn(x)| 6 1 + nx2

1 + nx2 + ( n2 )x4
6 1,

and 1 ∈ L1([0, 1],m). Since fn(x)→ 0 for 0 < x 6 1, from the DCT we have
∫ 1

0
fn(x)dx→ 0.

Solution to (c). Define fn(x) =
n sin(x/n)

x(1 + x2)
for each n and x > 0. From the first fundamental

limit, we have fn(x)→ 1
1+x2

for all x > 0. Since

|fn(x)| 6 1

1 + x2
and

∫ ∞
0

1

1 + x2
dx =

π

2
<∞,

by the DCT we have
∫∞

0
fn(x)dx→ π

2
.
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Solution to (d). We can compute this limit directly:

lim
n→∞

∫ ∞
a

n

1 + (nx)2
dx = lim

n→∞

(
arctan(nx)

∣∣∣∞
a

)
=
π

2
− lim

n→∞
arctan(na),

and thus we have

lim
n→∞

∫ ∞
a

n

1 + (nx)2
dx =


0 if a > 0

π/2 if a = 0

π if a < 0.

Now for the application of the convergence theorems in each case. Let

f(x) = lim
n→∞

n

1 + n2x2
=

{
0 if x 6= 0

∞ if x = 0

Since
∫∞
a
f(x)dx = 0 for each a ∈ R, we could apply a convergence theorem for a > 0,

but there is no chance of applying a convergence theorem for a 6 0.

Hence for a 6 0, there can be no L1([a,∞),m) function g such that |fn(x)| 6 g a.e. in
[a,∞). Also, for a 6 0 the sequence {fn} is not increasing. We can apply Fatou’s Lemma to
obtain

0 6
∫ ∞
a

f(x)dx 6 lim inf
n→∞

∫ ∞
a

fn(x)dx,

but this has no new information, since {fn} is nonnegative.

For a > 0, since |fn(x)| 6 1

x2
for all x > 0 and

∫∞
a

1
x2
dx <∞, we can apply the DCT.

Exercise 29. Show that
∫ ∞

0

xne−xdx = n! by differentiating the equation
∫ ∞

0

e−txdx =

1

t
. Similarly, show that

∫ ∞
−∞

x2ne−x
2

dx = (2n)!
√
π/4nn! by differentiating the equation∫ ∞

−∞
e−tx

2

dx =
√
π/t.

Solution. Define f(x, t) = e−tx for x > 0 and t ∈ [a, b] with 0 < a < 1 < b. Since f is

continuous, f is measurable. Also
∞∫
0

e−txdx = 1/t < ∞ for each t ∈ [a, b]. Moreover f is

differentiable and ∂f/∂t = −xe−tx for all x, t > 0 and∣∣∣∣∂f∂t (x, t)

∣∣∣∣ 6 xe−ax and
∫ ∞

0

xe−axdx = 1/a2 <∞,
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hence from Theorem 3.5.16, applied for F (t) =
∫∞

0
f(x, t)dx = 1/t, we have

1

t2
= −F ′(t) =

∫ ∞
0

xe−txdx.

Using induction on this last equation together with Theorem 3.5.16 we obtain

n!

tn+1
=

∫ ∞
0

xne−txdx,

and taking t = 1 we obtain the result. Analogously, we obtain the second part.

Exercise 30. Show that lim
k→∞

∫ k

0

xn
(

1− x

k

)k
dx = n!.

Solution. Fix n and define fk(x) = χ(0,k)(x)xn
(

1 − x
k

)k
. We have fk(x) → xne−x for

x > 0. Since fk > 0 for all k and fn → f = xne−x > 0. Now for 0 < x < k we have

h(x) = k ln
(

1− x

k

)
+ x 6 0,

since h(0) = 0 and h′(x) < 0 for 0 < x < k.

Applying the DCT and using Exercise 29 we have

lim
k→∞

∫ k

0

xn
(

1− x

k

)k
dx = lim

k→∞

∫ ∞
0

fk(x)dx =

∫ ∞
0

xne−xdx = n!.

Exercise 31. Derive the following formulas by expanding part of the integrand into an
infinite series and justifying the term-by-term integration. Exercise 29 may be useful (Note:
in (d) and (e), term-by-term integration works, and the resulting series converges only for
a > 1, but the formulas as stated are actually valid for all a > 0).

(a) For a > 0,
∫ ∞
−∞

e−x
2

cos(ax) =
√
πe−a

2/4.

(b) For a > −1,
∫ 1

0

xa(1− x)−1 ln(x)dx = −
n∑
k=1

1

(a+ k)2
.

(c) For a > 1,
∫ ∞

0

xa−1(ex − 1)−1dx = Γ(a)ζ(a), where ζ(a) =
∞∑
n=1

1

na
.

(d) For a > 1,
∫ ∞

0

e−axx−1 sin(x)dx = arctan(a−1).
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(e) For a > 1,
∫ ∞

0

e−axJ0(x)dx =
1√

1 + a2
, where J0(x) =

∞∑
n=0

(1−)nx2n

4n(n!)2
is the Bessel function

of order zero.

Solution to (a). For all x, a ∈ R we have cos(ax) =
∞∑
n=0

(−a2)nx2n

(2n)!
. Also using Exercise

29 we have ∫
|fn| 6

∫ ∞
−∞

e−x
2 a2nx2n

(2n)!
dx =

a2n
√
π

4nn!
,

and hence
∑∫

|fn| <∞ where fn(x) = e−x
2 (−a2)nx2n

(2n)!
. By Theorem 3.5.14 we have

∫ ∞
−∞

e−x
2

cos(ax) =
√
π
∞∑
n=0

(−a2/4)n

n!
=
√
πe−a

2/4.

Solution to (b). For 0 < x < 1 we have

xa ln(x)

1− x
= xa ln(x)

∞∑
n=0

xn =
∞∑
n=0

xa+n ln(x) = −
∞∑
n=0

xa+n ln(1/x).

Since the functions (0, 1) 3 x 7→ xa+n ln(1/x) are nonnegative, by Theorem 3.3.9 we have

∫ 1

0

xa(1− x)−1 ln(x)dx = −
∞∑
n=0

∫ 1

0

xa+n ln(1/x)dx.

Using integration by parts and the fact that a > −1 we obtain∫ 1

0

xa+n ln(1/x)dx =
1

(a+ n+ 1)2
,

hence ∫ 1

0

xa(1− x)−1 ln(x)dx = −
∞∑
n=0

1

(a+ n+ 1)2
= −

∞∑
k=1

1

(a+ k)2
.

Solution to (c). We write

xa−1

ex − 1
=
xa−1e−x

1− e−x
= xa−1e−x

∞∑
n=0

e−nx =
∞∑
n=0

xa−1e−(n+1)x =
∞∑
k=1

xa−1e−kx.

Since fn(x) = xa−1e−(n+1)x are nonnegative functions for x > 0, Theorem 3.3.9 gives us

∫ ∞
0

xa−1

ex − 1
dx =

∞∑
k=1

∫ ∞
0

xa−1e−kxdx.
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Making the change u = kx we have du = kdx and∫ ∞
0

xa−1

ex − 1
dx =

∞∑
k=1

1

ka

∫ ∞
0

ua−1e−udu = ζ(a)Γ(a).

Solution to (d). We write

e−axx−1 sin(x) =
∞∑
n=0

(−1)nx2n

(2n+ 1)!
e−ax,

and for fn(x) = (−1)nx2n

(2n+1)!
e−ax for x > 0, we have

∫ ∞
0

|fn(x)|dx =
1

(2n+ 1)!

∫ ∞
0

x2ne−axdx =
1

(2n+ 1)!a2n+1

∫ ∞
0

u2ne−udu

=
Γ(2n+ 1)

(2n+ 1)!a2n+1
=

1

(2n+ 1)a2n+1
,

and hence
∑∫

|fn| <∞ if a > 1. Thus

∫ ∞
0

e−axx−1 sin(x)dx =
∞∑
n=0

∫ ∞
0

(−1)nx2n

(2n+ 1)!
e−axdx =

∞∑
n=0

(−1)n

(2n+ 1)a2n+1
= arctan(a−1).

Solution to (e). For fn(x) =
(−1)nx2n

4n(n!)2
e−ax for x > 0 we have

∫ ∞
0

|fn(x)|dx =

∫ ∞
0

x2n

4n(n!)2
e−axdx =

Γ(2n+ 1)

4n(n!)2a2n+1
=

(2n)!

4n(n!)2a2n+1

and
∑∫

|fn| is convergent (using the Ratio Test) if a > 1. Therefore

∫ ∞
0

e−axJ0(x)dx =
∞∑
n=0

(−1)n(2n)!

4n(n!)2a2n+1
.

To conclude, note that for |x| < 1 we have

1√
1 + x

=
∞∑
n=0

(−1)n1.3.5 . . . (2n− 1)xn

2nn!
=
∞∑
n=0

(−1)n(2n)!xn

4n(n!)2
,

since 1.3.5 . . . (2n− 1) =
(2n)!

2.4.6 . . . 2n
=

(2n)!

2nn!
. For a > 1, taking x = 1/a2 we have 0 < x < 1
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and
1√

a2 + 1
=

1

a
√

1 + 1
a2

=
∞∑
n=0

(−1)n(2n)!

4n(n!)2a2n+1
=

∫ ∞
0

e−axJ0(x)dx.

3.7 MODES OF CONVERGENCE

If we consider a sequence {fn} of complex functions on a set X, the statement fn → f

can have several distinct meanings, for instance, uniformly or pointwise. In the case where
X is a measure space, we can speak of a.e.-convergence or L1-convergence. Clearly uniform
convergence implies pointwise convergence, and the latter implies a.e convergence (the
converses are not true in general). None of these convergences (without further hypotheses)
imply L1 convergence, neither vice versa.

Example 3.7.1. Consider in R with the Lebesgue measure the following example.

(i) fn = n−1χ(0,n),

(ii) fn = χ(n,n+1),

(iii) fn = nχ[0,1/n],

(iv) fn = χ[j/2k,(j+1)/2k] for n = 2k + j for 0 6 j < 2k.

In (i), sup
x∈R
|fn(x)| = 1/n → 0 as n → 0, that is, fn → 0 uniformly. In (ii), fn → 0

pointwise, but sup
x∈R
|fn(x)| = 1 and

∫
fn = 1 for all n. In (iii), fn(x)→ 0 for all x 6= 0, but

fn(0) = n→∞, hence fn → 0 a.e. but
∫
fn = 1 for all n.

In (iv), since
∫
|fn| = 2−k → 0 with 2k 6 n < 2k+1 and hence

∫
|fn| → 0, that is fn → 0

in L1. But fn(x) does not converge for any x ∈ [0, 1], since fn(x) = 0 for infinitely many n
and fn(x) = 1 for infinitely many n.

We will see now another mode of convergence, that we be useful.

Definition 3.7.2. Let {fn} be a sequence of measurable complex-valued functions on
(X,M, µ). We say that {fn} is Cauchy in measure if for every ε > 0,

µ({x ∈ X : |fn(x)− fm(x)| > ε})→ 0 as n,m→∞,
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and that {fn} converges in measure to f (which has to be measurable) if for every ε > 0,

µ({x ∈ X : |fn(x)− f(x)| > ε})→ 0 as n→∞.

Proposition 3.7.3. If fn → f in measure, then {fn} is Cauchy in measure.

Proof. Let ε > 0 be given. If x ∈ X is such that |fn(x)−fm(x)| > ε then ε 6 |fn(x)−fm(x)| 6
|fn(x) − f(x)| + |f(x) − fm(x)|. If |fn(x) − f(x)| < ε/2 and |f(x) − fm(x)| < ε/2 then
|fn(x)−fm(x)| < ε. Hence x /∈ {x ∈ X : |fn(x)−f(x)| < ε/2}∩{x ∈ X : |fm(x)−f(x)| < ε/2}
and therefore we have

{x ∈ X : |fn(x)− fm(x)| > ε}

⊂ {x ∈ X : |fn(x)− f(x)| > ε/2} ∪ {x ∈ X : |f(x)− fm(x)| > ε/2},

and since the measure of the two sets on the right hand side converge to zero as n,m→∞,
{fn} is Cauchy in measure. �

In (i) of the previous example, given ε > 0 we have

m({x ∈ R : |fn(x)| > ε}) = 0 for all n > ε−1,

hence fn → 0 in measure.

In (iii) we have
m({x ∈ R : |fn(x)| > ε}) = 1/n for n > ε,

hence fn → 0 in measure.

In (iv) we have

m({x ∈ R : |fn(x)| > ε}) = 2−k for 2k 6 n < 2k+1,

hence fn → 0 in measure.

But in (ii) we have for n 6= m and 0 < ε < 1 then

m({x ∈ R : |fn(x)− fm(x)| > ε}) = 2,

since |fn(x)− fm(x)| = 1 for x ∈ (n, n+ 1) ∪ (m,m+ 1). Therefore {fn} is not Cauchy in
measure.

Proposition 3.7.4. If fn → f in L1 then fn → f in measure.
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Proof. Let En,ε = {x ∈ X : |fn(x)− f(x)| > ε}. Then∫
|fn − f | >

∫
En,ε

|fn − f | > εµ(En,ε),

thus µ(En,ε) 6 ε−1
∫
|fn − f | → 0 as n→∞, that is, fn → f in measure. �

The converse of this result is clearly false, by (i) and (iii) of the previous examples.

Theorem 3.7.5. Suppose that {fn} is Cauchy in measure. Then there is a measurable
function f such that fn → f in measure, and there is a subsequence {fnj} that converges to
f a.e. Moreover, if also fn → g in measure, then g = f a.e.

Proof. First we fix j = 1. Since {fn} is Cauchy in measure, we can find n1 such that

µ({x ∈ X : |fn(x)− fn1(x)| > 2−1}) 6 2−1 for n,m > n1. (3.7.1)

Set g1 = fn1 . Likewise, we can choose n2 > n1 such that

µ({x ∈ X : |fn(x)− fm(x)| > 2−2}) 6 2−2 for n,m > n2.

Set g2 = fn2 and E1 = {x ∈ X : |g1(x)− g2(x)| > 2−1}. Then by (3.7.1) we have µ(E1) 6

2−1. Inductively we can choose nj+1 > nj , gj = fnj and Ej = {x ∈ X : |gj(x)−gj+1(x)| > 2−j}
with µ(Ej) 6 2−j.

Now for each k, set Fk =
⋃∞
j=k Ej then µ(Fk) 6

∞∑
j=k

2−j = 21−k, and for x /∈ Fk and

i > j > k we have

|gj(x)− gi(x)| 6
i−1∑
p=j

|gp(x)− gp+1(x)| 6
i−1∑
p=j

2−p 6 21−j, (3.7.2)

and thus {gj} is pointwise Cauchy on F c
k . If F =

⋂∞
k=1 Fk = lim supEj, then µ(F ) =

lim
j→∞

µ(Ej) = 0, and {gj} is pointwise Cauchy on F c. Set f(x) = lim gj(x) for x ∈ F c and

f(x) = 0 for x ∈ F (by Exercises 3 and 5, f is measurable). Hence gj → f a.e.

Using (3.7.2) and making i→∞ for each x ∈ F c
k , we have |gj(x)− f(x)| 6 21−j and since

µ(Fk)→ 0 as k →∞, gj → f in measure. Now

{x ∈ X : |fn(x)− f(x)| > ε}

⊂ {x ∈ X : |fn(x)− gj(x)| > ε/2} ∪ {x ∈ X : |gj(x)− f(x)| > ε/2},
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and thus fn → f in measure, since the measure of both sets on the right side converge to
zero as n, j →∞.

Now assume that fn → g in measure and fix k ∈ N. We have

{x ∈ X : |f(x)− g(x)| > k−1}

⊂ {x ∈ X : |f(x)− fn(x)| > k−1/2} ∪ {x ∈ X : |fn(x)− g(x)| > k−1/2},

for all n, and making n→∞ we obtain µ({x ∈ X : |f(x)− g(x)| > k−1}) = 0. Thus, since
{x ∈ X : f(x) 6= g(x)} =

⋂∞
n=1{x ∈ X : |f(x) − g(x)| > k−1}, we have µ({x ∈ X : f(x) 6=

g(x)}) = 0 and hence f = g a.e. �

The fact that fn → f a.e. alone is not enough to ensure that fn → f in measure, as item
(ii) of the previous example shows. However, this does hold, with even stronger conclusions,
if X has finite measure, as we will show in the next result.

Theorem 3.7.6 (Egoroff’s Theorem). Suppose that µ(X) <∞ and fn → f a.e. (fn and
f are all measurable complex-valued functions). Then for every ε > 0 there exists E ⊂ X

with µ(E) < ε and fn → f uniformly on Ec.

Proof. Assume first that fn → f pointwise on X. For k, n ∈ N define

En(k) =
∞⋃
j=n

{x ∈ X : |fj(x)− f(x)| > k−1}.

If k is fixed, then {En(k)}n is a decreasing sequence and since fj(x)→ f(x) as j →∞ for
each x ∈ X, we have

⋂∞
n=1En(k) = ∅. Since µ(X) <∞, from the continuity from above, we

have µ(En(k))→ 0 as n→∞. Given ε > 0 and k ∈ N, choose nk such that µ(Enk(k)) < ε2−k

and let E =
⋃∞
k=1Enk(k). Then µ(E) < ε and |fn(x)− f(x)| < k−1 for n > nk and x /∈ E.

Thus fn → f uniformly on Ec.

Now if fn → f a.e., let F ⊂ X be the set with µ(F ) = 0 such that fn → f everywhere
on F c. Thus, from the previous result (with F c instead of X), given ε > 0 there exists a
set E ⊂ F c with µ(E) < ε and fn → f uniformly on Ec. Thus taking A = E ∪ F then
µ(A) = µ(E)+µ(F ) = µ(E) < ε and Ac = Ec∩F c = Ec, hence fn → f uniformly on Ac. �

The convergence in Egoroff’s Theorem is often called almost uniform convergence,
and it implies a.e. convergence and convergence in measure (see Exercise 39).

Proposition 3.7.7. fn → f in measure iff Refn → Ref and Imfn → Imf in measure.
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Proof. Note that |Refn − Ref | 6 |fn − f |, |Imfn − Imf | 6 |fn − f | and |fn − f |2 =

|Refn − Ref |2 + |Imfn − Imf |2, hence

{x ∈ X : |Refn(x)− Ref(x)| > ε} ⊂ {x ∈ X : |fn(x)− f(x)| > ε},

{x ∈ X : |Imfn(x)− Imf(x)| > ε} ⊂ {x ∈ X : |fn(x)− f(x)| > ε},

and

{x ∈ X : |fn(x)− f(x)| > ε}

⊂ {x ∈ X : |Refn − Ref | > ε/
√

2} ∪ {x ∈ X : |Imfn − Imf | > ε/
√

2},

which concludes the proof. �

3.8 SOLVED EXERCISES FROM [1, PAGE 63]

Exercise 32. Suppose µ(X) <∞. If f and g are complex-valued measurable functions
on X, define

ρ(f, g) =

∫
|f − g|

1 + |f − g|
dµ.

Then ρ is a metric on the space of complex-valued measurable functions defined on X, if
we identify that function are equal a.e. and fn → f with respect to this metric iff fn → f in
measure.

Solution. First of all, since µ(X) < ∞ and 0 6 |f−g|
1+|f−g| < 1 for all f, g measurable we

have ∫
|f − g|

1 + |f − g|
dµ < µ(X) <∞,

and ρ(f, g) is well defined.

We have ρ(f, g) = 0 iff |f − g| = 0 a.e., that is, iff f = g a.e. Clearly ρ(f, g) > 0 and
ρ(f, g) = ρ(g, f) for all measurable f, g.

To show the triangle inequality, consider the real function u(s) = s(1 + s)−1 for s > 0.
Then u′(s) = (1 + s)−2 > 0, and hence u is increasing. Thus, since |f − g| 6 |f − h|+ |h− g|
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we have

|f − g|
1 + |f − g|

= u(|f − g|) 6 u(|f − h|+ |h− g|) =
|f − h|+ |h− g|

1 + |f − h|+ |h− g|

=
|f − h|

1 + |f − h|+ |h− g|
+

|h− g|
1 + |f − h|+ |h− g|

6
|f − h|

1 + |f − h|
+
|h− g|

1 + |h− g|
,

and integration on both sides yields ρ(f, g) 6 ρ(f, g) + ρ(h, g) for f, g, h measurable.
Now assume that ρ(fn, f)→ 0. We will prove that fn → f in measure. To this end let

ε > 0 and consider En = {x ∈ X : |fn(x)− f(x)| > ε}. Thus using the increasing property of
the function u above, for x ∈ En we have

ρ(fn, f) >
∫
En

|fn − f |
1 + |fn − f |

=

∫
En

u(|fn − f |) >
∫
En

u(ε) =

∫
En

ε

1 + ε
=

ε

1 + ε
µ(En),

thus µ(En) 6 ε−1(1 + ε)ρ(fn, f)→ 0 as n→∞. Hence fn → f in measure.
If fn → f in measure, let ε > 0, n ∈ N and En,ε = {x ∈ X : |fn(x)− f(x)| > ε}. Thus

ρ(fn, f) =

∫
|fn − f |

1 + |fn − f |
=

∫
En,ε

|fn − f |
1 + |fn − f |

+

∫
Ecn,ε

|fn − f |
1 + |fn − f |

6 µ(En,ε) + εµ(X),

since 0 6 |fn−f |
1+|fn−f | < 1 in X, |fn−f |

1+|fn−f | <
ε

1+|fn−f | < ε in Ec
n,ε and µ(Ec

n,ε) 6 µ(X). Therefore
ρ(fn, f)→ 0 as n→∞.

Exercise 33. If fn > 0 is measurable for all n and fn → f in measure then
∫
f 6

lim inf
∫
fn.

Solution. Let {fnk} be a subsequence of {fn} such that
∫
fnk → lim inf

∫
fn =: α. Since∫

fn > 0, we have α > 0. Since fn → f in measure, fnk → f is measure as well. Hence by
Theorem 3.7.5 there exists a subsequence {fnkj } of {fnk} such that fnkj → f a.e. as j →∞.
Hence, by Fatou’s Lemma∫

f 6 lim inf

∫
fnkj = lim

∫
fnkj = lim

∫
fkn = α = lim inf

∫
fn.

Exercise 34. Suppose |fn| 6 g ∈ L1 and fn → f in measure.

(a)
∫
f = lim

∫
fn.

(b) fn → f in L1.
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Using Proposition 3.7.7, we can assume that fn and f are all real. Also we note that
since |

∫
fn| 6

∫
|fn| 6

∫
g < ∞, the sequence {

∫
fn} is bounded and has a convergent

subsequence (which we will call {
∫
fnk}). From this subsequence, since fnk → f in measure,

there exists a subsequence (which we call {fnkj }) and a measurable function h, with h = f

a.e., such that fnkj → h a.e. But then by the DCT, since |fnkj | → |h| a.e. and |fnkj | 6 g we
have ∫

|f | =
∫
|h| = lim

j→∞

∫
|fnkj |,

and since {
∫
|fn|} is bounded, f ∈ L1. Now we can solve the exercise.

Solution to (a).

Now we have g + fn > 0 and g − fn > 0 for all n and since fn → f in measure, we have
g + fn → g + f and g − fn → g − f in measure. Using Exercise 33, we have∫

g +

∫
f =

∫
(g + f) 6 lim inf

∫
(g + fn) =

∫
g + lim inf

∫
fn

and ∫
g −

∫
f =

∫
(g − f) 6 lim inf

∫
(g − fn) =

∫
g − lim sup

∫
fn,

and since g ∈ L1, we have
∫
f 6 lim inf

∫
f 6 lim sup fn 6

∫
f , hence all inequalities are

equalities and
∫
f = lim

∫
fn.

Solution to (b). Since for given ε > 0 we have

{x ∈ X : ||fn(x)− f(x)| − 0| > ε} = {x ∈ X : |fn(x)− f(x)| > ε},

we see that fn → f in measure iff |fn − f | → 0 in measure. Also |fn − f | 6 g + |f | ∈ L1,
hence we can apply part (a) to |fn − f | to conclude that∫

|fn − f | → 0,

that is, fn → f in L1.

Exercise 35. fn → f in measure iff for every ε > 0 there exists N ∈ N such that
µ({x ∈ X : |fn(x)− f(x)| > ε}) < ε for every n > N .

Solution. If fn → f in measure, the conclusion is straightforward from the definition of
convergence in measure. Now for the converse, assume that given ε > 0 there exists N ∈ N
such that µ({x ∈ X : |fn(x)− f(x)| > ε}) < ε for every n > N . Assume also that {fn} does
not converge to f in measure. This implies that exist ε0, η0 > 0 and a sequence nk →∞ as
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k →∞ such that

µ({x ∈ X : |fnk(x)− f(x)| > ε0}) > η0 for all k.

Set ε = min{ε0, η0} > 0. We have

{x ∈ X : |fnk(x)− f(x)| > ε} ⊃ {x ∈ X : |fnk(x)− f(x)| > ε0},

and thus

µ({x ∈ X : |fnk(x)− f(x)| > ε}) > µ({x ∈ X : |fnk(x)− f(x)| > ε0}) > η0 > ε,

for all k, and contradicts the hypothesis.

Exercise 36. If µ(En) <∞ for n ∈ N and χEn → f in L1, then f is (a.e. equal to) the
characteristc function of a measurable set.

Solution. Since χEn → f , then there exists a subsequence {Enj} such that χEnj → f

a.e. Let E ⊂ X be the measurable set on which χEnj (x)→ f(x) for x ∈ E, and µ(Ec) = 0.
But since χEnj (x) = 0 or 1 for every x ∈ X, we must have f(x) = 0 or f(x) = 1 on E.

If A = {x ∈ E : f(x) = 1} = E ∩ f−1({1}) then A is measurable and f = χA a.e., since
f(x) = χA(x) for all x ∈ E.

Note. The hypothesis µ(En) <∞ for all n is only to ensure that χEn ∈ L1 for all n.

Exercise 37. Suppose that fn and f are measurable complex functions and φ : C→ C.

(a) If φ is continuous and fn → f a.e., then φ ◦ fn → φ ◦ f a.e.

(b) If φ is uniformly continuous and fn → f uniformly, almost uniformly, or in measure,
then φ ◦ fn → φ ◦ f uniformly, almost uniformly, or in measure, respectively.

(c) There are counterexamples when the continuity assumptions on φ are note satisfied.

Solution to (a). Let E ⊂ X be the null set such that fn(x)→ f(x) for every x ∈ Ec.
Then, since φ is continuous, φ(fn(x))→ φ(f(x)) for each x ∈ Ec, hence φ ◦ fn → φ ◦ f a.e.
Solution to (b). Given ε > 0 there exists δ > 0 such that |φ(z)− φ(w)| < ε if |z − w| < δ.

Assume that fn → f uniformly. Then for δ > 0 above, there exists N ∈ N such that
|fn(x)− f(x)| < δ for all x ∈ X. Hence

|φ(fn(x))− φ(f(x))| < ε for all x ∈ X,
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hence φ ◦ fn → φ ◦ f uniformly.

If fn → f almost uniformly, there exists a measurable set E with µ(E) < ε and fn → f

uniformly on Ec. From the above, φ ◦ fn → φ ◦ f on Ec uniformly and hence φ ◦ fn → φ ◦ f
almost uniformly.

If fn → f in measure, then

{x ∈ X : |fn(x)− f(x)| < δ} ⊂ {x ∈ X : |φ(fn(x))− φ(f(x))| < ε},

thus
{x ∈ X : |fn(x)− f(x)| > δ} ⊃ {x ∈ X : |φ(fn(x))− φ(f(x))| > ε},

and hence

µ({x ∈ X : |fn(x)− f(x)| > δ}) > µ({x ∈ X : |φ(fn(x))− φ(f(x))| > ε}),

and since the measure on the left side converges to zero as n→∞ we have φ ◦ fn → φ ◦ f in
measure.

Solution to (c). We can assume, without loss of generality that we have real-valued
functions and φ : R→ R.

For a counterexample of (a), take fn(x) ≡ 1/n for all n ∈ N and f ≡ 0 (thus fn → f

uniformly in R) and φ(x) = 0 for x 6= 0 and φ(0) = 1. Thus φ ◦ fn = 0 and φ ◦ f = 1 and
{(φ ◦ fn)(x)} does not converge to (φ ◦ f)(x) for any x ∈ R.

Counterexample of (b). Define fn(x) = x + 1/n and f(x) = x for all x ∈ R and n ∈ N.
Thus fn → f uniformly (and hence almost uniformly and in measure). Take φ(x) = x2 (which
is continuous but not uniformly continuous). But

{x ∈ R : |(φ ◦ fn)(x)− (φ ◦ f)(x)| > ε} = {x ∈ R : |2x
n

+ 1
n2 | > ε} ⊃ [ εn

2−1
2n

,∞),

for all ε > 0 and n ∈ N, hence fn does not converge to f in measure (and hence it does not
converge neither almost uniformly nor uniformly, see Exercise 39).

Exercise 38. Suppose fn → f and gn → g in measure.

(a) fn + gn → f + g in measure.

(b) fngn → fg in measure if µ(X) <∞, but not necessarily if µ(X) =∞.
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Solution to (a). Given ε > 0, we have

{x ∈ X : |(fn + gn)(x)− (f + g)(x)| > ε}

⊂ {x ∈ X : |fn(x)− f(x)| > ε/2} ∪ {x ∈ X : |gn(x)− g(x)| > ε/2},

and from this it follows that fn + gn → f + g in measure.

Solution to (b). Recall that fn, f, gn, g are complex-valued functions. We will prove first
that f 2

n → f 2 in measure, and to this end, we will brake the proof into a few claims.

We define for M > 0, the set AM(h) = {x ∈ X : |h(x)| >M}, for h = fn or h = g.

Claim 1: given η > 0 we can choose M > 0 such that µ(AM(f)) < η.

We have Am+1(f) ⊂ Am(f) for all m, and
∞⋂
m=1

Am(f) = ∅. Since µ(X) < ∞, we have

from the continuity from above lim
m→∞

µ(Am(f)) = µ(
∞⋂
m=1

Am(f)) = µ(∅) = 0, hence the claim

holds.

Claim 2: given η > 0 andM > 0 as above, we can choose N ∈ N such that µ(AM+1(fn)) <

2η for all n > N .

Indeed, since fn → f in measure, we have µ({x ∈ X : |fn(x)−f(x)| > 1})→ 0 as n→∞,
hence there exists N ∈ N such that |fn(x)− f(x)| < 1 on a set Bc, with µ(B) < η. Hence
|fn(x)| < 1 + |f(x)| on Bc and

AM+1(fn) = {x ∈ Bc : |fn(x)| >M + 1} ∪ {x ∈ B : |fn(x)| >M + 1}

⊂ {x ∈ Bc : |f(x)| >M} ∪B

⊂ AM(f) ∪B,

for all n > N , hence µ(AM+1(fn)) < 2η, which proves Claim 2.

Since AM+1(f) ⊂ AM(f), we can join these two claims to obtain the following: given
η > 0, we can choose M,N > 0 such that for all n > N we have

µ(AM(f)) < η and µ(AM(fn)) < 2η.

Given ε > 0, since fn → f in measure choose N1 > N such that for n > N1 we have

µ({x ∈ X : |fn(x)− f(x)| > ε/2M}) < η.

Thus if |f(x)| < M , |fn(x)| < M and |fn(x)− f(x)| < ε/2M we have

|f 2
n(x)− f 2(x)| = |fn(x)− f(x)||fn(x) + f(x)| < 2M |fn(x)− f(x)| < ε,
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hence

{x ∈ X : |f 2
n(x)− f 2(x)| > ε} ⊂ AM(f) ∪ AM(fn) ∪ {x ∈ X : |fn(x)− f(x)| > ε},

and thus
µ({x ∈ X : |f 2

n(x)− f 2(x)| > ε}) 6 4η,

for n > N1. Thus f 2
n → f 2 in measure.

Since fngn = 1
2

[
(fn + gn)2− f 2

n− g2
n

]
and fg = 1

2

[
(f + g)2− f 2− g2

]
, we have fngn → fg

in measure, using item (a).

Now for the counterexample, see the counterexample of Exercise 37 (c).

Exercise 39. If fn → f almost uniformly, then fn → f in measure.

Solution. Given ε > 0, choose a measurable set E with µ(E) < ε such that fn → f

uniformly on Ec. Also, choose N ∈ N such that |fn(x)− f(x)| < ε for n > N and all x ∈ Ec.
Thus if n > N we have

{x ∈ X : |fn(x)− f(x)| > ε} ⊂ E,

and hence µ({x ∈ X : |fn(x)− f(x)| > ε}) < ε. Thus by Exercise 35, fn → f in measure.

Exercise 40. In Egoroff’s theorem, the hypothesis “µ(X) < ∞” can be replaced by
“|fn| 6 g for all n, where g ∈ L1(µ)”.

Solution. From the DCT
∫
|f | 6

∫
g and f ∈ L1(µ). As in the proof of Egoroff’s

Theorem, we can assume without loss of generality that fn → f pointwise, and we set

En(k) =
∞⋃
j=n

{x ∈ X : |fj(x)− f(x)| > k−1}.

If we can prove that µ(E1(k)) <∞ for all k, then as in the proof of Egoroff’s Theorem, it
will follow that µ(En(k))→ 0 as n→∞ and the rest of the proof remains unchanged.

Now, if x ∈ E1(k) then there exists j ∈ N such that |fj(x)− f(x)| > k−1. Hence

µ(E1(k)) =

∫
χE1(k)dµ =

∫
E1(k)

dµ 6 k

∫
E1(k)

|fj(x)− f(x)|dµ

6 k

∫
E1(k)

(|fj(x)|+ |f(x)|)dµ 6 2k

∫
E1(k)

gdµ 6 2k

∫
gdµ <∞,

since g ∈ L1(µ). Therefore the result follows.
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Exercise 41. If µ is σ-finite and fn → f a.e., there exist measurable E1, E2, · · · ⊂ X

such that µ
(( ∞⋃

j=1

Ej

)c)
= 0 and fn → f uniformly on each Ej.

Solution. Since µ is σ-finite, we can write X =
∞⋃
j=1

Aj with µ(Aj) <∞ and the sequence

{Aj} ⊂ M disjoint. Since fn → f a.e. on X, fn → f a.e. on each Aj.

Now we fix j. Given k ∈ N, from Egoroff’s Theorem applied to Aj, there exists a
measurable set Ej,k ⊂ Aj with µ(Aj \ Ej,k) < k−12−j and fn → f uniformly on Ej,k.

Hence

µ
(( ∞⋃

j=1

Ej,k

)c)
6 µ

( ∞⋃
j=1

(Aj \ Ej,k)
)

=
∞∑
j=1

µ(Aj \ Ej,k) 6
1

k
for all j,

and thus µ
(( ∞⋃

k=1

∞⋃
j=1

Ej,k

)c)
= µ

( ∞⋂
k=1

( ∞⋃
j=1

Ej,k

)c)
6 1

k
for each k.

Therefore fn → f uniformly on each Ej,k and µ
(( ∞⋃

j,k=1

Ej,k

)c)
= 0. Relabelling the Ej,k’s

we have the result.

Exercise 42. Let µ be the counting measure on N. Then fn → f in measure iff fn → f

uniformly.

Solution. Assume that fn → f in measure. Thus, given ε > 0, there exists n ∈ N such
that

µ({m ∈ N : |fn(m)− f(m)| > ε}) < 1,

since µ is the counting measure, then µ({m ∈ N : |fn(m)− f(m)| > ε}) = 0, which implies
that {m ∈ N : |fn(m) − f(m)| > ε} = ∅, and thus |fn(m) − f(m)| < ε for all m ∈ N and
n > N , that is, fn → f uniformly.

The converse is straightforward.

Exercise 43. Suppose that µ(X) < ∞ and f : X × [0, 1] → C is a function such that
f(·, y) is measurable for each y ∈ [0, 1] and f(x, ·) is continuous for each x ∈ X.

(a) If 0 < ε, δ < 1 then Eε,δ = {x ∈ X : |f(x, y)− f(x, 0)| 6 ε for all y < δ} is measurable.

(b) For any ε > 0, there is a set E ⊂ X such that µ(E) < ε and f(·, y)→ f(·, 0) uniformly
on Ec as y → 0.
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Solution to (a). Define

Fε,δ = {x ∈ X : |f(x, y)− f(x, 0)| 6 ε for all y < δ with y ∈ Q},

thus Fε,δ =
⋂
{x ∈ X : |f(x, y)− f(x, 0)| 6 ε} where the intersection is taken over rational

y < δ, and thus, since f(·, y) is measurable for each y ∈ [0, 1], it is a countable union of
measurable sets, which is measurable.

To conclude (a), we will prove that Eε,δ = Fε,δ. Clearly Eε,δ ⊂ Fε,δ. Now if x ∈ Fε,δ, then
|f(x, y)− f(x, 0)| 6 ε for all y < δ in Q. But f(x, ·) is continuous, and by density of Q, it
follows that |f(x, y)− f(x, 0)| 6 ε for all y < δ. Hence Fε,δ ⊂ Eε,δ.

Solution to (b). Fix ε, η > 0. For each n ∈ N, define An = Eη,1/n, which is measurable by
item (a). We have An ⊂ An+1 for all n. Since f(x, y) → f(x, 0) as y → 0 for each x ∈ X
we have

∞⋂
n=1

Acn = ∅ and from the continuity from above (since µ(X) <∞) we can choose

N ∈ N such that µ(AcN) < ε. On AN we have |f(x, y)− f(x, 0)| 6 η for y < 1/N .

Now we will use this procedure as follows. Fix ε > 0 and j ∈ N. From the previous
construction, we can choose Nj ∈ N and a set ANj = E1/j,1/Nj , with µ(AcNj) 6 ε2−j and
|f(x, y)− f(x, 0)| 6 1/j on ANj for y < 1/Nj.

Take E =
∞⋃
j=1

AcNj . Thus µ(E) 6 ε and given η > 0, choose j such that 1/j < η and for

x ∈ Ec =
∞⋂
j=1

ANj we have

|f(x, y)− f(x, 0)| < 1/j < η for y < 1/Nj,

which means that f(·, y)→ f(·, 0) uniformly on Ec as y → 0.

Exercise 44. Lusin’s Theorem. If f : [a, b] → C is Lebesgue measurable and ε > 0,
there is a compact set E ⊂ [a, b] such that m(Ec) < ε and f |E is continuous (Use Egoroff’s
Theorem and Theorem 3.5.15).

Solution. Take ε > 0. For each j ∈ N, set Aj = {x ∈ [a, b] : |f(x)| 6 j}. Thus

[a, b] =
∞⋃
j=1

Aj, Aj ⊂ Aj+1 for all j and since m([a, b]) = b − a < ∞, using the lower

semicontinuity of m we can choose j0 such that m([a, b] \ Aj0) < ε.

Define g = χAj0f . Using Theorem 3.5.15, for each n there exists a continuous function
gn : [a, b]→ C such that

∫ b
a
|gn(x)− g(x)|dx < 1/n.

Thus gn → g in L1([a, b],m) and hence it converges in measure. Thus there exists a
subsequence {gnk} that converges a.e. to g. Now we can use Egoroff’s Theorem to ensure
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that there exists a set F ⊂ [a, b] with µ(F ) < ε and gnk → g uniformly on [a, b] \ F .
By inner regularity of m, there exists a compact set E ⊂ Aj0 \ F such that m(Aj0 \ F ) 6

m(E) + ε. Thus

m([a, b] \ E) = m([a, b])−m(E) 6 m([a, b])−m(Aj0)︸ ︷︷ ︸
<ε

+m(F )︸ ︷︷ ︸
<ε

+ε < 3ε.

Since E ⊂ [a, b] \ F , gnk → g uniformly on E, hence g|E is continuous. Also E ⊂ Aj0 ,
hence f |E = g|E, so f |E is continuous and concludes the result.

3.9 PRODUCT MEASURES
Let (X,M, µ) and (Y,N , ν) be measure spaces. We have already constructed the product

σ-algebra M⊗N , which is generated by the family E = {E × F : E ∈ M and F ∈ N}.
Now, using µ and ν, we want to define a measure onM⊗N .

First, the elements on E are called rectangles.

Lemma 3.9.1. The family E of rectangles is an elementary family.

Proof. Clearly ∅ = ∅×∅ is a rectangle, thus ∅ ∈ E . Now if A×B, C ×D are rectangles,
we have

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D) ∈ E ,

and
(A×B)c = (X ×Bc) ∪ (Ac ×B),

which is a finite disjoint union of rectangles. Thus E is an elementary family. �

Using Proposition 1.4.6, the family A given by finite disjoint union of rectangles is an
algebra (and A also generatesM⊗N ).

Assume that A × B is a rectangle given as a (finite or countable) disjoint union of
rectangles Aj ×Bj. Then for x ∈ X and y ∈ Y we have

χA(x)χB(y) = χA×B(x, y) =
∑

χAj×Bj(x, y) =
∑

χAj(x)χBj(y).

Integrating with respect to x and using Theorem 3.3.9, we obtain

µ(A)χB(y) =

∫
χA(x)χB(y)dµ(x) =

∑∫
χAj(x)χBj(y)dµ(y) =

∑
µ(Aj)χBj(y).
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Now integrating with respect to y and again using Theorem 3.3.9 we have

µ(A)ν(B) =
∑

µ(Aj)ν(Bj).

Definition 3.9.2 (Product premeasure). If E ∈ A is the disjoint union of rectangles
{Ai ×Bi}ni=1, we define

π(E) =
n∑
i=1

µ(Ai)ν(Bi),

with the convention 0 · ∞ = 0.

Then π is well defined by our previous argument, since any two representations of E as a
finite disjoint union of rectangles have a common refinement), and it is a premeasure on A.

Exercise 3.9.3. Prove that π is a premeasure on A.

Using Theorem 2.3.5, π generates an outer measure whose restriction to M⊗N is a
measure that extends π. This measure is called the product measure of µ and ν, and it is
denoted by µ× ν.

If both µ and ν are σ-finite, say X =
∞⋃
j=1

Aj and Y =
∞⋃
k=1

Bk with µ(Aj) < ∞ and

ν(Bk) < ∞ for all j, k, then X × Y =
⋃
j,k

Aj × Bk and µ × ν(Aj × Bk) = µ(Aj)ν(Bk) < ∞

for all j, k, so µ× ν is also σ-finite, and Theorem 2.3.5 ensures us that µ× ν is the unique
measure onM⊗N that µ× ν(A×B) = µ(A)ν(B) for all rectangles A×B.

Proposition 3.9.4. If µ and ν are σ-finite, then there exists an increasing sequence of
rectangles {Aj ×Bj} with finite product measure, such that X × Y =

⋃
j(Aj ×Bj).

Proof. We can write X =
⋃
j Aj and Y =

⋃
j Bj with {Aj} and {Bj} increasing sequences

of measurable sets of µ and ν finite measures on X and Y , respectively. Thus {Aj × Bj}
is an incrasing sequence of rectangles in X × Y with finite µ × ν measure and X × Y =⋃
j(Aj ×Bj). �

The same construction works for any finite number of factors. That is, if (Xi,Mi, µi) are
measure spaces for i = 1, · · · , n, defining a rectangle as sets of the form A1 × · · · × An with
Ai ∈Mi, then the collection A of disjoint unions of rectangles is an algebra and the same
procedure used above can be applied to produce a measure µ1 × · · · × µn onM1 ⊗ · · · ⊗Mn

such that

µ1 × · · · × µn(A1 × · · · × An) =
n∏
i=1

µi(Ai).

- 139 -



Moreover, if all µi’s are σ-finite, µ1 × · · · × µn is the unique measure onM1 ⊗ · · · ⊗Mn

that extends the defined premeasure on A. In this case, the obvious associativity properties
hols, for example, identifying X1×X2×X3 with (X1×X2)×X3, we haveM1⊗M2⊗M3 =

(M1 ⊗M2)⊗M3 (the former is generated by sets of the form A1 × A2 × A3 with Ai ∈Mi

and the latter by sets of the form B × A3 with B ∈ M1 × M2 and A3 ∈ M3), and
µ1 × µ2 × µ3 = (µ1 × µ2)× µ3 (since they agree on sets of the form A1 ×A2 ×A3, and hence
in general by uniqueness).

We will presente the results for n = 2, just for simplicity, but they hold for any finite
number of factors. Hence from now on we will just consider the case of two measure spaces
(X,M, µ) and (Y,N , ν).

Definition 3.9.5. If E ⊂ X × Y we define:

(i) for each x ∈ X the x-section Ex of E as the subset of Y given by

Ex = {y ∈ Y : (x, y) ∈ E},

(ii) for each y ∈ Y the y-section Ey of E as the subset of X given by

Ey = {x ∈ X : (x, y) ∈ E}.

Also, if f is a function defined in X × Y , we define the x-section fx and y-section f y

of f by
fx(y) = f y(x) = f(x, y).

Example 3.9.6. If E ⊂ X × Y , then (χE)x = χEx and (χE)y = χEy . In fact, if x ∈ X
then χE(x, y) = 1 iff y ∈ Ex and if y ∈ Y then χE(x, y) = 1 iff x ∈ Ey.

Proposition 3.9.7.

(a) If E ∈M⊗N then Ex ∈ N for all x ∈ X and Ey ∈M for all y ∈ Y .

(b) If f isM⊗N -measurable, then fx is N -measurable for all x ∈ X and f y isM-measurable
for all y ∈ Y .

Proof. (a). Define

R = {E ⊂ X × Y : Ex ∈ N for all y ∈ Y and Ey ∈M for all x ∈ X}.
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Since
( ∞⋃
j=1

Ei

)
x

=
⋃∞
j=1(Ei)x for all x ∈ X and

( ∞⋃
j=1

Ei

)y
=
⋃∞
j=1(Ei)

y, we see that

R is closed under countable unions. Also, since for E ∈ R we have (Ec)x = (Ex)
c and

(Ec)y = (Ey)c, R is closed under complements.

Also each rectangle A × B is in R, since (A × B)x = B if x ∈ A and (A × B)x = ∅ if
x ∈ Ac, and (A × B)y = A if y ∈ B and (A × B)y − ∅ if y ∈ Bc. Hence R is a σ-algebra
that contains all rectangles, and thusM⊗N ⊂ R, and concludes the proof of (a).

(b). We have for any set J

(fx)
−1(J) = {y ∈ Y : fx(y) ∈ J} = {y ∈ Y : f(x, y) ∈ J} = (f−1(J))x

and (f y)−1(J) = (f−1(J))y, hence (b) follows from (a) and from theM⊗N -measurability
of f . �

3.9.1 MONOTONE CLASSES

Before proceeding, we will need some technical lemmas, that will help us further.

Definition 3.9.8. Let X be a nonempty set. A subset C of P(X) is called a monotone

class if C is closed under countable increasing unions and countable decreasing intersections,
that is, if {Ej} ⊂ C and Ej ⊂ Ej+1 for all j then

⋃
j Ej ∈ C and if {Ej} ⊂ C and Ej+1 ⊂ Ej

for all j then
⋂
j Ej ∈ C.

Clearly, every σ-algebra is a monotone class. Also, it is simple to see that if {Cλ}λ∈Λ is
a family of monotone classes in X, then

⋂
λ∈Λ

Cλ is also a monotone class. Hence, given any

subset E of P(X), there exists a unique smallest monotone class containing E , called the
monotone class generated by E , denoted by C(E).

Lemma 3.9.9 (The monotone class lemma). If A is an algebra of subsets of X, then the
monotone class C generated by A coincides with the σ-algebraM generated by A.

Proof. Since M is also a monotone class, we have C ⊂ M. If we can show that C is a
σ-algebra, thenM⊂ C and the result is proven.

To show that C is a σ-algebra, for each E ∈ C we define

C(E) = {F ∈ C : E \ F, F \ E and E ∩ F are in C}.
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Clearly ∅, E ∈ C(E) and also E ∈ C(F ) iff F ∈ C(E). It also follows easily that C(E) is
a monotone class.

If E ∈ A, then F ∈ C(E) for all F ∈ A, since A is an algebra, that is, A ⊂ C(E) for all
E ∈ A. Hence C ⊂ C(E) for all E ∈ A. Thus if E ∈ A and F ∈ C, then F ∈ C(E) and hence
E ∈ C(F ). Therefore A ⊂ C(F ), for all F ∈ C, which in turn implies that A ⊂ C(F ) for all
F ∈ C.

Conclusion: if E,F ∈ C then E \F , F \E and E ∩F are in C. Since X ∈ A ⊂ C, C is an
algebra.

Now if {Ej} ⊂ C, we have
n⋃
j=1

Ej ∈ C for each n (since C is an algebra), and since C is

closed under countable increasing unions we have

∞⋃
j=1

Ej =
∞⋃
n=1

n⋃
j=1

Ej ∈ C,

that is, C is a σ-algebra. �

3.9.2 THE FUBINI-TONELLI THEOREM

Now we will relate integrals in X × Y with integrals on X and Y .

Theorem 3.9.10. Suppose (X,M, µ) and (Y,N , ν) are σ-finite measure spaces. If
E ∈M⊗N , then the functions X 3 x 7→ ν(Ex) and Y 3 y 7→ µ(Ey) are measurable on X
and Y , respectively, and

µ× ν(E) =

∫
ν(Ex)dµ(x) =

∫
µ(Ey)dν(y).

Proof. First we assume that both µ and ν are finite measures, and let C be the set of all
E ∈M⊗N for which the conclusions of the theorem are true.

If E = A×B is a rectangle, then since Ex = B if x ∈ A and Ex = ∅ if x ∈ Ac we have

ν(Ex) =

{
ν(B) if x ∈ A

0 if x ∈ Ac
= χA(x)ν(B),

and analogously µ(Ey) = µ(A)χB(y). Hence the result holds for all the rectangles.

Now we show that C is a monotone class. To that end, let {En} ⊂ C be an increasing
sequence and E =

⋃
nEn. Since Ex =

⋃
n(Ei)x, the functions fn(x) = ν((En)x) are
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measurable for all n and they increase pointwise to f(x) = ν(Ex). Hence f is measurable
and by the MCT together with the continuity from below of µ× ν we have∫

ν(Ex)dµ(x) = lim

∫
ν((En)x)dµ(x) = limµ× ν(En) = µ× ν(E).

The same reasoning shows that µ× ν(E) =
∫
µ(Ey)dν(y), and E ∈ C.

Now let {En} ⊂ C be a decreasing sequence and E =
⋂
nEn. Since Ex =

⋂
n(En)x, the

functions fn(x) = ν((En)x) are measurable for all n, decrease pointwise to f(x) = ν(Ex) and
fn(x) 6 ν((E1)x) 6 ν(Y ) < ∞. Hence we can use the DCT together with the continuity
from above of µ × ν to show that µ × ν(E) =

∫
ν(Ex)dµ(x). Analogously we show that

µ× ν(E) =
∫
µ(Ey)dν(y), and hence E ∈ C.

Thus C is a monotone class that contain all rectangles, and by additivity of µ, ν and µ×ν,
it contains the algebraM of all the finite disjoint unions of rectangles. By the Monotone
Class Lemma (Lemma 3.9.9) C containsM⊗N . This concludes the case when µ and ν are
finite.

If µ and ν are σ-finite, from Proposition 3.9.4 we can write X × Y =
⋃
j(Aj ×Bj) with

{Aj ×Bj} an increasing sequences of rectangles with finite µ× ν measure. If E ∈M⊗N ,
then we can apply the previous argument to E ∩ (Aj ×Bj) for each j, which gives us

µ× ν(E ∩ (Aj ×Bj)) =

∫
χAj(x)ν(Ex ∩Bj)dµ(x),

since (E ∩ (Aj ×Bj))x = Ex ∩Bj if x ∈ Aj and (E ∩ (Aj ×Bj))x = ∅ if x ∈ Acj.
The same applies to show that

µ× ν(E ∩ (Aj ×Bj)) =

∫
µ(Ey ∩ Aj)χBj(y)dν(y),

and an application of the MCT on both equalities proves the result. �

Theorem 3.9.11 (The Fubini-Tonelli Theorem). Suppose that (X,M, µ) and (Y,N , ν)

are σ-finite measure spaces.

(a) (Tonelli) If f ∈ L+(X × Y ) then the functions g(x) =
∫
fxdν and h(y) =

∫
f ydµ are in

L+(X) and L+(Y ), respectively, and∫
fd(µ× ν) =

∫ [∫
f(x, y)dν(y)

]
dµ(x) =

∫ [∫
f(x, y)dµ(x)

]
dν(y). (3.9.1)

(b) (Fubini) If f ∈ L1(µ × ν) then fx ∈ L1(ν) a.e. x ∈ X, f y ∈ L1(µ) a.e. y ∈ Y ,
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the a.e.-defined functions g(x) =
∫
fxdν and h(y) =

∫
f ydµ are in L1(µ) and L1(ν),

respectively, and (3.9.1) holds.

Proof. (a). When E ∈M⊗N and f = χE, then g(x) =
∫
χExdν = ν(Ex) and h(y) = µ(Ey),

and item (a) reduces to Theorem 3.9.10. By additivity, item (a) holds for nonnegative simple
functions.

Now if f ∈ L+(X × Y ) then consider a sequence {φn} of nonnegative simple functions
that increases pointwise to f , hence {(φn)x} increases to fx for each x ∈ X and {(φn)y}
increases pointwise to f y for each y ∈ Y . Now define

gn(x) =

∫
(φn)xdν and hn(y) =

∫
(φn)ydµ,

for x ∈ X and y ∈ Y , respectively. The MCT implies that

lim gn(x) = lim

∫
(φn)xdν =

∫
lim(φn)xdν =

∫
fxdν = g(x),

for each x ∈ X. Hence, g is measurable. Analogously, h is measurable.

Using that (a) holds for each (φn) and the MCT, we have∫
gdµ = lim

∫
(φn)xdµ = lim

∫
φnd(µ× ν) =

∫
fd(µ× ν),

and analogously
∫
hdν =

∫
fd(µ× ν). This proves (a).

(b). From (a), we have if f ∈ L+(X × Y ) and
∫
fd(µ × ν) < ∞ then

∫
gdµ < ∞ and

hence g < ∞ a.e., which in turn, since g =
∫
fxdν, implies that fx ∈ L1(ν) a.e. x ∈ X.

Analogously we show that f y ∈ L1(µ) a.e. y ∈ Y .

Thus if f ∈ L1(µ × ν) is a real function, part (b) follows from part (a) applied to f+

and f−. If f ∈ L1(µ× ν), then (b) follows from (b) for real functions applied to Ref and
Imf . �

We will omit the brackets from now on, that is,∫ [∫
f(x, y)dν(y)

]
dµ(x) =

∫∫
f(x, y)dν(y)dµ(x) =

∫∫
fdνdµ.

In general, the Fubini and Tonelli theorems are used in sequence: one wants to reverse the
order of integration in a double integral

∫∫
fdµdν. First we check that

∫
|f |d(µ× ν) <∞,

using Tonelli’s part to compute this integral as an iterated double integral, and only then we
apply Fubini’s part to conclude that

∫∫
fdµdν =

∫∫
fdνdµ
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Also, it is important to point out that the hypothesis of σ-finiteness is necessary (see
Exercise 46). Also the hypothesis f ∈ L+(X × Y ) or f ∈ L1(µ × ν) is necessary, in two
respects.

First, we can have fx and f y measurable for all x, y and for the iterated integrals
∫∫

fdµdν

and
∫∫

fdνdµ to exist, even if f is notM⊗N -measurable. However, the iterated integrals
can be different (see Exercise 47).

Second, if f is not nonnegative, it is possible for fx and fy to be integrable for all x, y
and for the iterated integrals

∫∫
fdµdν and

∫∫
fdνdµ to exist, even if

∫
|f |d(µ × ν) = ∞,

but again, in this case, these integrals can be different (see Exercise 48).
Even when µ and ν are complete, µ× ν is almost never complete. For instance, suppose

that A ∈ M is such that µ(A) = 0, that N 6= P(Y ) and take E ∈ P(Y ) \ N . Then using
item (a) of Proposition 3.9.7, we have A× E /∈M⊗N , since (A× E)x = E for all x ∈ A,
which is not in N . But A×E ⊂ A×Y and (µ× ν)(A×Y ) = µ(A)ν(Y ) = 0, since µ(A) = 0.
Thus we have a nonmeasurable set inside a zero measure measurable set, which means that
µ × ν is not complete. A concrete example is X = Y = R and µ = ν = m the Lebesgue
measure.

If one wants to work with complete measure, one can consider the completion of µ× ν.
In this scenario, the relationship between the measurability of a function on X × Y and
the measurability of its x-sections and y-sections is not so simple. However, when correctly
reformulated, the Fubini-Tonelli Theorem is still valid.

Theorem 3.9.12 (The Fubini-Tonelli Theorem for Complete Measures). Let (X,M, µ)

and (Y,N , ν) be complete and σ-finite measure spaces, and let (X×Y,L, λ) be the completion
of (X × Y,M⊗N , µ× ν).

(a) If f ∈ L+(X × Y, λ) then fx is N -measurable for a.e. x and f y is M-measurable for
a.e. y ∈ Y , X 3 x 7→

∫
fxdν and Y 3 y 7→

∫
f ydµ are measurable and∫

fdλ =

∫∫
fdµdν =

∫∫
fdνdµ. (3.9.2)

(b) If f ∈ L1(X × Y, λ) then fx is N -integrable for a.e. x and f y isM-integrable for a.e.
y ∈ Y , X 3 x 7→

∫
fxdν and Y 3 y 7→

∫
f ydµ are integrable and (3.9.2) holds.

The proof of this theorem is outlined in Exercise 49.

3.10 SOLVED EXERCISES FROM [1, PAGE 68]
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Exercise 45. If (Xj,Mj) is a measurable space for j = 1, 2, 3 thenM1 ⊗M2 ⊗M3 =

(M1 ⊗M2)⊗M3. Moreover, if µj is a σ-finite measure on (Xj,Mj) then µ1 × µ2 × µ3 =

(µ1 × µ2)× µ3.

Solution. Since F1 = {E1 × E2 : Ei ∈ Mi, i = 1, 2} generates M1 ⊗ M2, using
Proposition 1.2.2, (M1 ⊗M2)⊗M3 is generated by F2 = {A× E3 : A ∈ F1, E3 ∈M3}.

But F2 is naturally identified with E = {E1 × E2 × E3 : Ei ∈ Mi, i = 1, 2, 3}, which
generatedM1 ⊗M2 ⊗M3. Hence the equality follows.

We have

µ1 × µ2 × µ3(E1 × E2 × E3) = µ1(E1)µ2(E2)µ3(E3)

= µ1 × µ2(E1 × E2)µ3(E3) = [(µ1 × µ2)× µ3][(E1 × E2)× E3]

for all rectangles E1 × E2 × E3. Hence, using the countable additivity of both measures,
µ1 × µ2 × µ3(A) = [(µ1 × µ2)× µ3](A) if A is a disjoint finite union of rectangles. Hence, by
uniqueness of the extension given in Theorem 2.3.5 (using the σ-additivity of µi, i = 1, 2, 3,
we see that µ1 × µ2 × µ3 is σ-finite), µ1 × µ2 × µ3 = (µ1 × µ2)× µ3.

Exercise 46. Let X = Y = [0, 1], M = N = B[0,1], µ = Lebesgue measure and ν =

counting measure. If D = {(x, x) : x ∈ [0, 1]} is the diagonal in X × Y , then
∫∫

χDdµdν,∫∫
χDdνdµ and

∫
χDd(µ× ν) are unequal. (To compute

∫
χDd(µ× ν) = µ× ν(D), go back

to the definition of µ× ν).

Solution. First we note that D is measurable. Indeed, given n ∈ N, define In,k = [ k
n
, k+1

n
]

for k = 0, · · · , n− 1 and En =
n−1⋃
k=0

(In,k × In,k). Thus D =
⋂∞
n=1En ∈M⊗N .

We have ∫∫
χDdµdν =

∫
[0,1]

∫ 1

0

χD(x, y)dxdν(y),

but for each fixed y ∈ [0, 1], we have χD(x, y) = 0 if x 6= y and χD(x, y) = 1 if x = y, hence
χD(·, y) = 0 µ-a.e., and thus∫∫

χDdµdν =

∫
[0,1]

0dν(y) = 0 · ν([0, 1]) = 0 · ∞ = 0.

Now since ν({x}) = 1 for each x ∈ [0, 1] we have∫∫
χDdνdµ =

∫ 1

0

∫
[0,1]

χD(x, y)dν(y)dx =

∫ 1

0

1dx = 1.
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Lastly, to compute µ×ν(D), we will use the outer measure. Assume that D ⊂
∞⋃
j=1

(Aj×Bj)

where Aj, Bj ∈ B[0,1] for all j. Since D =
∞⋃
j=1

D ∩ (Aj × Bj), then given x ∈ [0, 1] we

have (x, x) ∈ (Aj × Bj) for some j, that is, x ∈ Aj ∩ Bj, and hence
∞⋃
j=1

Aj ∩ Bj = [0, 1].

Therefore there exists j ∈ N such that µ(Aj ∩ Bj) > 0, thus µ(Aj) > µ(Aj ∩ Bj) > 0 and
µ(Bj) > µ(Aj ∩ Bj) > 0, and in particular, ν(Bj) = ∞ (since if ν(Bj) < ∞ implies that

µ(Bj) = 0). Hence µ× ν(Aj ×Bj) =∞, and thus
∞∑
j=1

µ× ν(Aj ×Bj) =∞. Since this is true

for any cover of D by rectangles, we have µ× ν(D) =∞.

Exercise 47. Let X be an uncountable linearly ordered set such that for each x ∈ X,
the set {y ∈ X : y < x} is countable (Example: the set of countable ordinals). LetM be the
σ-algebra of countable or co-countable sets, and let µ = ν be defined onM by µ(A) = 0 if
A is countable or µ(A) = 1 if A is co-countable. Let E = {(x, y) ∈ X ×X : y < x}. Then
Ex and Ey are measurable for all x, y ∈ X and

∫∫
χEdµdν and

∫∫
χEdνdµ exist but are not

equal.

Solution. We have for each x ∈ X

Ex = {y ∈ X : (x, y) ∈ E} = {y ∈ X : y < x},

which is countable (hence inM), and ν(Ex) = 0. Then∫∫
χEdνdµ =

∫
ν(Ex)dµ(x) =

∫
0dµ = 0.

But for each y ∈ X we have Ey = {x ∈ X : y < x} = ({x ∈ X : x < y}∪{y})c, and hence
Ey is co-countable (hence inM), and µ(Ey) = 1. Thus∫∫

χEdµdν =

∫
µ(Ey)dν =

∫
1dν = 1ν(X) = 1,

since ν(X) = 1 (X is co-countable).

Exercise 48. Let X = N,M = P(N) and µ = ν = counting measure. Define f(m,n) = 1

if m = n, f(m,n) = −1 if m = n+ 1 and f(m,n) = 0 otherwise. Then
∫
|f |d(µ× µ) =∞,

and
∫∫

fdµdν and
∫∫

fdνdµ exist and are unequal.

Solution. First we note that µ × ν is also a counting measure, since µ × ν(A × B) =

µ(A)ν(B) on rectangles. Now if we let E =
⋃∞
n=1[(n, n) ∪ (n+ 1, n)], we have |f | = χE, and
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since µ× ν(E) =∞, we have∫
|f |d(µ× ν) =

∫
χEd(µ× ν) = µ× ν(E) =∞.

But ∫∫
fdµdν =

∫∫
f(m,n)dµ(m)dν(n) =

∞∑
n=1

∞∑
m=1

f(m,n) =
∞∑
n=1

0 = 0,

and ∫∫
fdνdµ

∫∫
f(m,n)dν(n)dµ(m) =

∞∑
m=1

∞∑
n=1

f(m,n) = f(1, 1) = 1.

Exercise 49. Prove Theorem 3.9.12 by using Theorem 3.9.11 and Proposition 3.1.24
together with the following lemmas.

(a) If E ∈M⊗N and µ× ν(E) = 0 then ν(Ex) = µ(Ey) = 0 for a.e. x and y.

(b) If f is L-measurable and f = 0 λ-a.e. then fx and f y are integrable for a.e. x and y, and∫
fxdν =

∫
f ydµ = 0 for a.e. x and y (Here the completeness of µ and ν are needed).

Solution to (a). This follows directly from Theorem 3.9.10.

Solution to (b). Let F = {(x, y) ∈ X × Y : f(x, y) 6= 0}. Since f = 0 λ-a.e. and λ is
complete we have λ(F ) = 0. But λ is the completion of µ× ν, and by definition, there exists
E ∈M⊗N such that F ⊂ E and µ× ν(E) = 0. By item (a), ν(Ex) = ν(Ey) = 0 a.e. x and
y. Since Fx ⊂ Ex and ν is complete, we have Fx ∈ N and ν(Fx) = 0 µ-a.e. x. Analogously
F y ∈M and µ(F y) = 0 ν-a.e. y.

Now {y ∈ Y : fx(y) 6= 0} = Fx and ν(Fx) = 0 µ-a.e. x, it follows that for µ-a.e. x, fx = 0

ν-a.e. By Proposition 3.1.23, since ν is complete, fx is measurable, and |fx| = 0 ν-a.e., hence∫
|fx|dν = 0. Therefore fx is integrable and

∫
fxdν = 0. Analogously f y is integrable and∫

f ydµ = 0.

Proof of Theorem 3.9.12. We prove first item (a). To that end, let f ∈ L+(X × Y, λ).
Hence by Proposition 3.1.24, there exists aM⊗N -measurable function h such that f = h

λ-a.e., and we can assume h > 0, after possible redefinition of h in a µ× ν-null set.
We define g = f − h. Then g = 0 λ-a.e. and by Proposition 3.1.23, g is measurable.

Using part (b), gx and gy are integrable for a.e. x and y and
∫
gxdν =

∫
gydµ = 0. Thus

fx = gx + hx is N -measurable for a.e. x ∈ X and f y = gy + hy is M-measurable for a.e.
y ∈ Y .

- 148 -



Also x 7→
∫
fxdν =

∫
(gx+hx)dν =

∫
hxdν isM-measurable for a.e. x and y 7→

∫
f ydµ =∫

(gy+hy)dµ =
∫
hydµ is N -measurable for a.e. y, using the fact that gx and gy are integrable

for a.e. x, y,
∫
gxdν =

∫
gydµ = 0 a.e. x, y and Theorem 3.9.11. Moreover∫∫

fdµdν =

∫ ∫
f ydµdν =

∫ ∫
hydµdν =

∫
hd(µ× ν)

and analogously
∫∫

fdνdµ =
∫
hd(µ× ν).

Now it remains to prove that
∫
fdλ =

∫
hd(µ× ν). If E ∈M⊗N then µ× ν(E) = λ(E)

and hence
∫
χEd(µ× ν) =

∫
χEdλ. By linearity, the result follows forM⊗N -measurable

nonnegative simple functions. Using the MCT, the result follows for allM⊗N -measurable
nonnegative functions. Since f = h λ-a.e. we have∫

fdλ =

∫
hdλ =

∫
hd(µ× ν).

Thus part (a) of Theorem 3.9.12 follows. Part (b) follows as in Theorem 3.9.11.

Exercise 50. Suppose (X,M, µ) is a σ-finite measure space and f ∈ L+(X) such that
f <∞ everywhere. Let

Gf = {(x, y) ∈ X × [0,∞) : y 6 f(x)}.

Then Gf isM⊗BR-measurable and µ×m(Gf ) =
∫
fdµ. The same is true if the inequality

y 6 f(x) is replaced by y < f(x) in the definition of Gf . (To show the measurability of
Gf , note that the map (x, y) 7→ f(x) − y is the composition of (x, y) 7→ (f(x), y) and
(z, y) 7→ z − y). This is the definitive statement of the familiar theorem from calculus: “the
integral of a function is the area under its graph”.

Solution. First we show the measurability of Gf . Consider the functions ψ : X× [0,∞)×
R2 and φ : R2 → R given by

ψ(x, y) = (f(x), y) and φ(z, w) = z − w,

for all x ∈ X, y ∈ [0,∞) and z, w ∈ R. By Proposition 3.1.7, ψ isM⊗BR-measurable. Now
if F (x, y) = φ ◦ ψ(x, y) for all x ∈ X and y ∈ [0,∞), we have

Gf = F−1([0,∞)) = ψ−1(φ−1([0,∞))),

but since φ is continuous, φ−1([0,∞)) is closed in R2, and hence a borelian set. Since ψ is
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measurable, Gf ∈M⊗BR (for the inequality y < f(x), use (0,∞) which is open, instead of
[0,∞)).

Now using the Fubini Tonelli’s Theorem, we have

µ×m(Gf ) =

∫
χGfd(µ×m) =

∫∫
χGf (x, y)dm(y)dµ(x)

=

∫
m([0, f(x)])dµ(x) =

∫
f(x)dµ(x) =

∫
fdµ.

With the inequality y < f(x), just note that m([0, f(x))) = f(x), and the result follow
the same.

Exercise 51. Let (X,M, µ) and (Y,N , ν) be arbitrary measure spaces (not necessarily
σ-finite).

(a) If f : X → C is M-measurable, g : Y → N is N -measurable and h(x, y) = f(x)g(y),
then h isM⊗N -measurable.

(b) If f ∈ L1(µ) and g ∈ L1(ν), then h ∈ L1(µ× ν) and
∫
hd(µ× ν) = [

∫
fdµ][

∫
gdν].

Solution to (a). Define ψ : X × Y → C2 by ψ(x, y) = (f(x), g(y)) for all x ∈ X and
y ∈ Y , and also define φ : C2 → C by φ(z, w) = zw, for all z, w ∈ C. Hence ψ isM⊗N -
measurable by Proposition 3.1.7 and φ is continuous. Hence h = φ ◦ψ isM⊗N -measurable.

Solution to (b). Assume that f = χA and g = χB for A ∈ M and B ∈ N . Hence
h = χA × χB = χA×B and∫
hd(µ× ν) = µ× ν(A×B) = µ(A)× ν(B) =

[ ∫
χAdµ

][ ∫
χBdν

]
=
[ ∫

fdµ
][ ∫

gdν
]
,

since µ× ν(A×B) = µ(A)× ν(B) by definition of the product measure.

Now assume that f is a simple nonnegative function f =
n∑
i=1

ciχAi and g = χB. We have

h =
n∑
i=1

ciχAi×B and thus

∫
hd(µ× ν) =

n∑
i=1

ciµ× ν(Ai ×B) =
n∑
i=1

ciµ(Ai)ν(B) =
[ ∫

fdµ
][ ∫

gdν
]
.

Now assume that both f and g areM andN measurable (respectively) simple nonnegative

functions. Hence g =
m∑
k=1

dkχBk and we set hk = dkfχBk for each k = 1, · · · ,m. Using the
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previous case, for each k = 1, · · · ,m we have∫
hkd(µ× ν) = dk

∫
fχBkd(µ× ν) = dk

[ ∫
fdµ

][ ∫
χBkdν

]
=
[ ∫

f
][ ∫

dkχBkdν
]
,

and summing up for k = 1, · · · ,m, we obtain the result for f and g in this case.

Assume that f ∈ L+(X) and g ∈ L+(Y ) are real. Then we have sequences {sn} and {rn}
of nonnegative simpleM and N -measurable functions that increase pointwise to f and g,
respectively. Consider hn = fngn, then each hn is in L+(X × Y ) by Proposition 3.1.9 and
{hn} increases to fg. Therefore the MCT implies that∫

hd(µ× ν) = lim
n→∞

∫
hnd(µ× ν) = lim

n→∞

[ ∫
fndµ

][ ∫
gndµ

]
=
[ ∫

fdµ
][ ∫

gdν
]
.

For f ∈ L1(µ) and g ∈ L1(ν) real functions, the result follows by applying the previous
case to f+g+, f+g−, f−g+ and f−g−. For complex functions, just apply the real L1 case to
RefReg, Ref Img, ImfReg and Imf Img.

Exercise 52. The Fubini-Tonelli Theorem if valid we (X,M, µ) is an arbitrary measure
space and Y is a countable set, N = P(Y ) and ν is the counting measure on Y . (Cf.
Theorems 3.3.9 and 3.5.14).

Solution. By using an enumeration {rn} of Y , we can assume that Y = N. We prove
first two lemmas:

Lemma 1. If f is a function defined in N then
∫
fdν =

∞∑
n=1

f(n).

Proof. Clearly every function defined in N is N = P(N)-measurable. Now if J ⊂ N and
f = χJ , then ∫

fdν =

∫
χJdν = ν(J) =

∞∑
n=1

χJ(n).

Now, by additivity it holds for nonnegative simple functions. Using the MCT it holds for
nonnegative functions. Applying to f+ and f− we have the result for real L1(ν) functions,
and applying it to the real and imaginary parts of f we have the result for L1(ν) functions.

�

Lemma 2. For f ∈ L+(X × Y ) or f ∈ L1(µ× ν), we have∫
fd(µ× ν) =

∫∫
fdµdν.
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Proof. Let A ∈ N and J ⊂ N. For f = χA×J we have

∫
fd(µ× ν) = µ× ν(A× J) = µ(A)ν(J) =

∞∑
n=1

µ(A)χJ(n) =
∞∑
n=1

∫
χA×J(x, n)dµ(x),

and using Lemma 1, we have
∫
fd(µ× ν) =

∫∫
fdµdν. Using the same steps of Lemma 2

(additivity, MCT, f+ and f−, real and imaginary parts of f), we prove the result. �

Now for any function f defined on X × N, we have

fx(n) = fn(x) = f(x, n) for all n ∈ N.

Hence if f ∈ L+(X × Y ), Theorem 3.3.9 implies that x 7→
∫
fx(n)dν(n) =

∞∑
n=1

fx(n) =

∞∑
n=1

fn(x) isM-measurable and that

∫∫
f(x, n)dν(n)dµ(x) =

∫ ∞∑
n=1

fn(x)dµ(x) =
∞∑
n=1

∫
fn(x)dµ(x) =

∫∫
f(x, n)dµ(x)dν(n).

The same conclusion holds if f ∈ L1(µ× ν), using Theorem 3.5.14.

3.11 THE n-DIMENSIONAL LEBESGUE INTEGRAL

The Lebesgue measure mn on Rn is the completion of the product m×· · ·×m, n-times,
of the Lebesgue measurem in R, that is, the completions ofm×· · ·×m on BR⊗· · ·⊗BR = BRn ,
or equivalently, the completion of m×· · ·×m on L⊗ · · ·⊗L. The domain Ln of mn is called
the class of Lebesgue measurable sets in Rn; and we will sometimes consider mn on the
smaller domain BRn . When there is no danger of confusion, we will omit the superscript n of
mn, and write m for mn as in the case n = 1, and write

∫
f(x)dx for

∫
fdm.

We begin establishing extensions of the results for Borel measures on the real line for the
Lebesgue measure m in Rn. If R =

∏n
j=1Rj is a rectangle in Rn, that is, each Rj ∈ L for

j = 1, · · · , n, we will call the sets Rj ⊂ R the sides of R.

Theorem 3.11.1. Suppose E ∈ Ln. Then

(a) m(E) = inf{m(U) : E ⊂ U, U open} = sup{m(K) : K ⊂ E, K compact}.

(b) E = A1 ∪N1 = A2 \N2, where A1 is an Fσ set, A2 is a Gδ set and m(N1) = m(N2) = 0.
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(c) If m(E) <∞, for any ε > 0 there exists a finite collection {Rj}pj=1 of disjoint rectangles
whose sides are open intervals such that m(E∆

⋃p
j=1Rj) < ε.

Proof. (a). As in Proposition 2.5.9, set µop(E) = inf{m(U) : E ⊂ U, U open}. By mono-
tonicity of m, if E ⊂ U then m(E) 6 m(U), hence m(E) 6 µop(E). If m(E) = ∞, then
by monotonicity µop(E) =∞. Now assume that m(E) <∞. By the definition of product
measures, for E ∈ Ln and ε > 0, there exists a sequence {Tj} of rectangles in Rn, with
Tj =

∏n
k=1 Rj,k, Rj,k ∈ L for each k = 1, · · · , p and j ∈ N, and E ⊂

⋃∞
j=1 Tj such that

∞∑
j=1

n∏
k=1

m(Rj,k) =
∞∑
j=1

m(Tj) 6 m(E) +
ε

2
.

Now fix j ∈ N. Given η > 0, for each k = 1, · · · , n, using Proposition 2.5.9 applied to
Rj,k ∈ L, there exists an open set Uj,k such that Rj,k ⊂ Uj,k and m(Uj,k) 6 m(Rj,k) + η. Set
Uj =

∏n
k=1 Uj,k, which is open in Rn and Tj ⊂ Uj. We have

m(Uj) =
n∏
k=1

m(Uj,k) 6
n∏
k=1

(m(Rj,k) + η) =
n∏
k=1

m(Rj,k) + η · Z(Rj,1, · · · , Rj,n, η),

where Z(Rj,1, · · · , Rj,n, η) is a function involving products of m(Rj,k), k = 1, · · · , n and
powers of η up to the power n − 1. Since m(E) < ∞ and {Rj,k}nk=1 is a finite collection
(remember that j is fixed for the moment), have Z(Rj,1, · · · , Rj,n, η) bounded, and hence we
can choose η > 0 small so that η · Z(Rj,1, · · · , Rj,n, η) < ε2−j−1.

Hence, for each j ∈ N, we have an open set Uj with Tj ⊂ Uj and m(Uj) 6 m(Tj) + ε2−j.
Defining U =

⋃∞
j=1 Uj, we have U open, E ⊂ U and hence

µop(E) 6 m(U) 6
∞∑
j=1

m(Uj) 6
∞∑
j=1

m(Tj) +
ε

2
6 m(E) + ε,

and since this is true for any ε > 0, we obtain µop(E) 6 m(E).

The proof that m(E) = sup{m(K) : K ⊂ E, K compact} is completely analogous to
the proof of Proposition 2.5.10. The only change is that, when m(E) = ∞, we consider
Rn =

⋃∞
j=1Bj where Bj = {x ∈ Rn : j − 1 6 ‖x‖ < j} for each j ∈ N, and set Ej = E ∩Bj

for each j ∈ N.

(b). The proof of (b) is analogous to the proof of Theorem 2.5.11.

(c). Suppose m(E) <∞. Using the construction made in (a), given ε > 0, there exists
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an open set U =
⋃∞
j=1 Uj, such that Uj =

∏n
k=1 Uj,k for each j ∈ N, with E ⊂ U and

m(U) 6
∞∑
j=1

m(Uj) =
∞∑
j=1

n∏
k=1

m(Uj,k) 6 m(E) + ε.

Now fix j ∈ N. Since Uj,k is open, we have Uj,k =
⋃∞
r=1 I

r
j,k where {Irj,k}∞r=1 is a disjoint

countable collection of open intervals. Since m(E) <∞, we have m(Uj,k) <∞ for all j ∈ N
and k = 1, · · · , n, and thus

∞∑
r=1

m(Irj,k) = m(Uj,k) <∞.

Therefore there exists r0 = r0(j) ∈ N such that
∑∞

r=r0+1m(Irj,k) < (ε2−j)1/n, for each
k = 1, · · · , p. Set Vj,k =

⋃r0
r=1 I

r
j,k and Vj =

∏n
k=1 Vj,k. We have Vj ⊂ Uj and

m(Uj \ Vj) =
n∏
k=1

m(Uj,k \ Vj,k) =
n∏
k=1

∞∑
r=r0+1

m(Irj,k) 6 ε2−j.

Since
∑∞

j=1m(Uj) <∞, choose N ∈ N such that
∑∞

j=N+1m(Uj) < ε. For V =
⋃N
j=1 Vj,

we have V ⊂ U , m(V \ E) 6 m(U \ E) 6 ε and

m(E \ V ) 6 m(U \ V ) 6 m
( N⋃
j=1

(Uj \ Vj)
)

+m
( ∞⋃
j=N+1

Uj

)
6 2ε,

hence m(E∆V ) 6 3ε. Now note that since each Vj, j = 1, · · · , N , is a rectangle whose
sides are finite unions of disjoint intervals, we can write

⋃N
j=1 Vj as a finite disjoint union of

rectangles whose sides are open intervals, and (c) is proven. �

Theorem 3.11.2. If f ∈ L1(m) and ε > 0, there is a simple function φ =
∑N

j=1 ajχRj ,
where each Rj is a product of intervals, such that

∫
|f − φ| < ε, and there is a continuous

function g that vanishes outside a bounded set such that
∫
|f − g| < ε.

Proof. Using Proposition 3.1.22, we can find a sequence {φj} of simple measurable functions
such that 0 6 |φ1| 6 |φ2| 6 · · · 6 |f |, φj → fi pointwise and φj → fi uniformly on any set
on which f is bounded.

Since f ∈ L1(m), using the DCT, since |φj−f | → 0 pointwise and |φj−f | 6 2|f | ∈ L1(m)

for all j, we obtain
∫
|φj−f | → 0 as j →∞. Thus given η > 0, we can choose j large enough

so that
∫
|φj − f | < η.

Assume that φj =
∑p

k=1 ckχEk , where each Ek ∈ L. As in Theorem 3.5.15, we can assume
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that all ak are nonzero and the Ek are disjoint. Aside from the Ek where φj is zero, we have

m(Ek) =

∫
χEk = |ak|−1

∫
Ek

|φj| 6 |ak|−1

∫
|f | <∞.

Now we can use part (c) of the previous theorem to find, for each k = 1, · · · , p, a
finite collection {Ri,k}nki=1 of disjoint rectangles whose sides are open intervals, such that
m(Ek∆

⋃nk
i=1Ri,k) <

η
p
. Setting φ =

∑p
k=1

∑nk
i=1 akχRi,k we have

∫
|φ− f | 6

∫
|φ− φj|+

∫
|φj − f | 6

p∑
k=1

m
(
Ek∆

nk⋃
i=1

Ri,k

)
+ η 6 2η.

Now, for each rectangle Ri,k =
∏n

j=1(ai,k,j, bi,k,j) we choose 0 < δi,k,j < min{1
2
(bi,k,j −

ai,k,j), η} and define Ti,k =
∏n

j=1[ai,k,j + δi,k,j, bi,k,j − δi,k,j]. Hence Ti,k ⊂ Ri,k is a rectangle
with closed intervals as sides. Thus, using Urysohn’s Lemma, we can construct a continuous
function g that vanishes outside

⋃p
k=1

⋃nk
i=1 Ri,k and coincides with φ on

⋃p
k=1

⋃nk
i=1 Ti,k, hence∫

|g − f | 6
∫
|g − φ|+

∫
|φ− f | 6 (C + 1)η,

where C =
∑p

k=1

∑nk
i=1

∑n
j=1 δi,k,j is a bounded constant. Taking η < min{ ε

C+1
, ε

2
}, the result

follows. �

With theses results, we can prove that the Lebesgue measure m in Rn is also translation
invariant.

Theorem 3.11.3. The Lebesgue measure m is translation invariant in Rn. More precisely,
for a ∈ Rn, define τa : Rn → Rn by τa(x) = x+ a for all x ∈ Rn, and we have:

(a) if E ∈ Ln then τa(E) ∈ Ln and m(τa(E)) = m(E),

(b) if f : Rn → C is Lebesgue measurable, then so if f ◦ τa. Moreover, if either f > 0 or
f ∈ L1(m) then

∫
(f ◦ τa)dm =

∫
fdm.

Proof. (a). First note that τa is invertible, with inverse τ−a for each a ∈ R. Also τa is
continuous for each a ∈ R, it preserves the class of open sets of Rn. Thus, the class of Borel
sets is preserved by τa. If E =

∏n
i=1Ei and a = (a1, · · · , an) then τa(E) =

∏n
i=1(Ei + ai) and

hence m(τa(E)) =
∏n

i=1 m(Ei + ai) =
∏n

i=1m(Ei) = m(E), since the Lebesgue measure in R
is translation invariant. By the uniqueness of the Lebesgue product measure on Borelians,
this formula remains true for all Borel sets. As for the one dimensional case, the set of
Lebesgue null sets is preserved by τa, and the result follows from Proposition 3.11.1, item (b).
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(b). If f is Lebesgue measurable and B is a Borel set in C, then f−1(B) = E ∪N where
E is e Borel set in Rn and N ∈ Ln with m(N) = 0. But τ−1

a (E) = τ−a(E) is also a Borel set
and m(τ−1

a (N)) = m(τ−a(N)) = 0, so (f ◦ τa)−1(B) = τ−1
a (E) ∪ τ−1

a (N) ∈ Ln, and f ◦ τa is
Lebesgue measurable.

The equality
∫

(f ◦ τa)dm =
∫
fdm reduces to m(τa(E)) = m(E) when f = χE. By

linearity, it follows for all simple functions, and by the MCT it follows for all nonnegative
measurable functions. Taking the positive and negative parts of real and imaginary parts
when f ∈ L1(m), we conclude the result. �

3.11.1 THE JORDAN CONTENT MEETS LEBESGUE MEASURE

In this subsection we compare the Lebesgue measure on Rn with the notion of Jordan
content from calculus of several variables.

Definition 3.11.4. A cube Q in Rn is a set of the form Q =
∏n

i=1[ai, bi] with −∞ <

ai 6 bi < ∞ for each i = 1, · · · , n, with bi − ai = b1 − a1 for each i = 2, · · · , n. That is, a
cube is a product of equal length closed intervals.

For each k ∈ Z we setQk as the collection of all cubes of the form
∏n

i=1[mi2
−k, (mi+1)2−k],

where mi ∈ Z for i = 1, · · · , n. So the length of the intervals of a cube in Qk is 2−k, hence
its volume is 2−nk. Clearly, the Lebesgue measure of such a cube is also 2−nk.

We note the following two properties of this collection:

(P1) any two distinct cubes in Qk have disjoint interiors;

(P2)
⋃
{Q : Q ∈ Qk} = Rn;

(P3) cubes in Qk+1 are obtained from cubes in Qk by bisecting each side of the cube.

Definition 3.11.5. If E ⊂ Rn we define the:

(a) inner approximation of E by Qk as

A(E, k) =
⋃
{Q ∈ Qk : Q ⊂ E}.

(b) outer approximation of E by Qk as

A(E, k) =
⋃
{Q ∈ Qk : Q ∩ E 6= ∅}.
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We always have A(E, k) ⊂ E ⊂ A(E, k), and A(E, k) may be empty, even if E is not
empty. However, if E is not empty, A(E, k) will always be nonempty. Here, we have again that
the volume of A(E, k) is simply p2−nk, where p is the number of cubes of Qk that lie inside
E. Also, this coincides with its Lebesgue measure m(A(E, k)), that is, m(A(E, k)) = p2−nk.

The same conclusion holds for A(E, k), but with p being the number of cubes that intersect
E. When E is unbounded, p =∞, and hence both the volume and the Lebesgue measure of
A(E, k) are ∞. We also have the following for each k ∈ Z:

A(E, k) ⊂ A(E, k + 1) and A(E, k) ⊃ A(E, k + 1),

since each cube in Qk+1 is the union of 2n cubes in Qk with disjoint interiors. Hence, we can
define the limits

κ(E) = lim
k→∞

m(A(E, k)) and κ(E) = lim
k→∞

m(A(E, k)),

called, respectively, the inner and outer content of E, and if they are equal, their common
value κ(E) is called the Jordan content of E. We note that if E ⊂ Rn is not bounded,
then κ(E) =∞, so the theory of Jordan content makes sense, and it meaningful, only when
E is bounded.

If E ⊂ R is bounded, define

A(E) =
∞⋃
k=1

A(E, k) and A(E) =
∞⋂
k=1

A(E, k).

Thus A(E) ⊂ E ⊂ A(E), both A(E) and A(E) are Borel sets, and using continuity from
below and above of m we have

κ(E) = m(A(E)) and κ(E) = m(A(E)).

Therefore, since m(A(E)) <∞ (recall that E is bounded), the Jordan content of E exists
iff m(A(E) \ A(E)) = 0. We have then the following result.

Proposition 3.11.6. Let E ⊂ Rn be a bounded set. If the Jordan content of E exists
then E ∈ Ln and m(E) = κ(E).

Proof. We write E = A(E) ∪ (E \ A(E)). If the Jordan content of E exists, then m(A(E) \
A(E)) = 0, and since E \A(E) ⊂ A(E)\A(E), the completeness of m shows that E \A(E) ∈
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Ln and m(E \ A(E)) = 0. Hence, using item (b) of Theorem 3.11.1, E ∈ Ln. Lastly

m(E) = m(A(E)) +m(E \ A(E)) = κ(E) + 0 = κ(E),

and the result is complete. �

Now we will establish further relations between the Lebesgue measure and the Jordan
content.

Lemma 3.11.7. If U ⊂ Rn is open, then U = A(U). Moreover, U is a countable union of
cubes with disjoint interiors.

Proof. If x ∈ U , since U is open, there exists δ > 0 such that {y ∈ Rn : ‖y − x‖ < δ} ⊂ U .
Let k ∈ Z be large enough so that 2−k

√
n < δ. Then if Q is a cube in Qk that contains x and

y ∈ Q we have ‖y − x‖ 6 2−k
√
n < δ (the worst case scenario is when x and y are complete

opposite vertices of the cube Q, and their distance is exactly 2−k
√
n). Hence Q ⊂ U , which

implies that x ∈ A(U, k) ⊂ A(U) ad therefore U ⊂ A(U). Since A(U) ⊂ U , we have the
equality.

For the second assertion, first write

U = A(U) =
∞⋃
k=0

A(U, k) = A(U, 0) ∪
∞⋃
k=1

[A(U, k) \ A(U, k − 1)].

Now A(U, 0) is a countable (or possibly finite) union of cubes in Q0 with disjoint interiors.
Also the closure of A(U, k) \ A(U, k − 1) is a countable (or possibly finite) union of cubes in
Qk with disjoint interiors, and hence the result follows. �

Corollary 3.11.8. If U ⊂ Rn is open we have m(U) = κ(U).

Corollary 3.11.9. If K ⊂ Rn is compact, then m(K) = κ(K).

Proof. Since K is compact, K is bounded, and we can find k0 ∈ Z and a cube Q0 ∈ Qk0 such
that K ⊂ int(Q0). If Q ∈ Qk, for k > k0, then either Q ∩K = ∅ or Q ⊂ Q0 \K, hence

m(A(K, k)) +m(A(Q0 \K, k)) = m(Q0),

and letting k →∞ we obtain

κ(K) + κ(Q0 \K) = m(Q0).
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But Q0 \K = (int(Q0) \K)∪ ∂Q0, with disjoint union, where ∂Q0 is the boundary of Q0

which has zero Jordan content, so κ(Q0 \K) = κ(int(Q0) \K) = m(int(Q0) \K) = m(Q0).
Here we used the fact that int(Q0) \K is open, used the previous corollary and also the fact
the the Lebesgue measure of ∂Q0 is zero. From this it follows that

κ(K) = m(Q0)−m(Q0 \K) = m(K),

and concludes the result. �

Now we can see the true relationship between the Lebesgue measure and Jordan content.
The Jordan content is obtained approximating a bounded set E from the inside and outside
by a finite union of cubes with disjoint interiors. The Lebesgue measure, however, is obtained
with a two-step approximation process: first we approximate E from the outside with an
open set, and from the inside with a compact set, then we approximate this open set from the
inside and the compact set from the outside by finite unions of cubes with disjoint interiors.
The Lebesgue measurable sets are precisely those for which these outer-inner and inner-outer
approximations give the same answer in the limit.

3.11.2 THE CHANGE OF VARIABLES THEOREM

In this subsection we will see what happens to a measurable function f and its integral
when we compose it with a diffeomorphism G. But first, we need to investigate the simpler
case where G is a invertible linear transformation T .

Definition 3.11.10. We consider {ej}nj=1 the standard basis of Rn. If T : Rn → Rn is a
linear transformation, we consider the square matrix (Tij) = (ei · Tej). The determinant

of this matrix will be denoted by detT . We will denote by GL(n,R) the group of invertible
linear transformations of Rn.

We recall that det(T ◦ S) = detT detS for linear transformations T, S : Rn → Rn.

Definition 3.11.11. The following three kinds of linear transformations are called
elementary type transformations:

Type 1. Multiply one coordinate by a nonzero number:

T (x1, · · · , xj, · · · , xn) = (x1, · · · , cxj, · · · , xn) c 6= 0;
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Type 2. Add a multiple of one coordinate in another coordinate:

T (x1, · · · , xj, · · · , xn) = (x1, · · · , xj + cxk, · · · , xn) k 6= j;

Type 3. Interchange two coordinates:

T (x1, · · · , xj, · · · , xk, · · · , xn) = (x1, · · · , xk, · · · , xj, · · · , xn).

We sumarize the main properties of elementary types transformations.

Proposition 3.11.12. We have the following:

(a) Any elementary type transformation is invertible, and its inverse has the same type.

(b) If T is of type 1 then detT = c, if T is of type 2 then detT = 1, and if T is of type 3
then detT = −1.

(c) If T ∈ GL(n,R), there exists T1, T2, · · · , Tm elementary type transformations such that

T = Tm ◦ · · ·T2 ◦ T1,

that is, any invertible transformation is a finite composition of elementary type trans-
formations.

Proof. (a). This is clear from the fact that the inverse of a type 1 elementary transformation
is T (x1, · · · , xj, · · · , xn) = (x1, · · · , c−1xj, · · · , xn), the inverse of a type 2 transformation is
T (x1, · · · , xj, · · · , xn) = (x1, · · · , xj−cxk, · · · , xn), and the inverse of a type 3 transformation
is itself.

(b). This follows easily by computing the determinant of the matrix (Tij) in each of the
three cases.

(c). This follows from the fact that any invertible matrix can be row reduced to the
identity matrix. �

Now we will see how the Lebesgue integral behaves under linear transformations. We
begin with a lemma in R.

Lemma 3.11.13. Let f be a Lebesgue measurable function in R.

(a) If T1(x) = cx for all x ∈ R, with c 6= 0, then f ◦ T1 is Lebesgue measurable. If f > 0 or
f ∈ L1(m) then ∫

f(x)dx = |c|
∫
f(cx)dx.
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(b) If T2(x) = x+ a for all x ∈ R, with a ∈ R, then f ◦ T2 is Lebesgue measurable. If either
f > 0 and f ∈ L1(m) then ∫

f(x)dx =

∫
f(x+ a)dx.

Proof. If E ∈ L and f = χE, then for c 6= 0 we have f(cx) = χE(cx) = χc−1E(x). Using
Theorem 2.5.13, c−1E ∈ L and∫

f(x)dx =

∫
χE(x)dx = m(E) = |c|m(c−1E) = |c|

∫
χc−1E(x)dx = |c|

∫
f(cx)dx.

By additivity, the result follows for simple functions. Using the MCT, the result follows
for nonnegative measurable function. Using the positive and negative parts of the real and
imaginary parts, the result follows for L1(m)-functions, and (a) is proved. The proof of (b) is
completely analogous. �

Theorem 3.11.14. Suppose T ∈ GL(n,R).

(a) If f is a Lebesgue measurable function on Rn, the so is f ◦ T . If f > 0 or f ∈ L1(m),
then ∫

f(x)dx = | detT |
∫

(f ◦ T )(x)dx (3.11.1)

(b) If E ∈ Ln, then T (E) ∈ Ln and m(T (E)) = | detT |m(E).

Proof. First suppose that f is Borel measurable. Then f ◦ T is also Borel measurable, since
T is continuous. If (3.11.1) holds for linear transformations T and S, we have∫

f(x)dx = | detT |
∫

(f ◦ T )(x)dx = | detT || detS|
∫

((f ◦ T ) ◦ S)(x)dx

= | det(T ◦ S)|
∫

(f ◦ (T ◦ S))(x)dx,

and hence (3.11.1) holds also for T ◦S. Thus, it suffices to prove (3.11.1) for elementary type
transformations.

If T is a type 3 elementary transformation, then using the Fubini-Tonelli Theorem we
obtain ∫

f(x)dx =

∫
· · ·
∫
f(x1, · · · , xj, · · · , xk, · · · , xn)dx1 · · · dxj · · · dxk · · · dxn

=

∫
· · ·
∫
f(x1, · · · , xk, · · · , xj, · · · , xn)dx1 · · · dxk · · · dxj · · · dxn

=

∫
(f ◦ T )(x)dx = | detT |

∫
(f ◦ T )(x)dx,
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since detT = −1 for an elementary type 3 transformation.

If T is a type 1 transformation, again by using the Fubini-Tonelli Theorem we have∫
f(x)dx =

∫
· · ·
∫
f(x1, · · · , xj, · · · , xn)dx1 · · · dxj · · · dxn

=

∫
· · ·
∫ [ ∫

f(x1, · · · , xj, · · · , xn)dxj

]
dx1 · · · dxj−1dxj+1 · · · dxn,

and using Lemma 3.11.13 we obtain∫
f(x)dx =

∫
· · ·
∫ [
|c|
∫
f(x1, · · · , cxj, · · · , xn)dxj

]
dx1 · · · dxj−1dxj+1 · · · dxn

= |c|
∫
· · ·
∫
f(x1, · · · , cxj, · · · , xn)dx1 · · · dxj · · · dxn

= |c|
∫

(f ◦ T )(x)dx = | detT |
∫

(f ◦ T )(x)dx,

since detT = c for en elementary type 1 transformation.

Analogously for a type 2 elementary transformation, we use the Fubini-Tonelli Theorem
to integrate first in xj and Lemma 3.11.13 to conclude the result.

Thus, so far, we have proven that if f is Borel measurable and T ∈ GL(n,R), then f ◦ T
is Borel measurable and (3.11.1) holds.

To continue, we note that both T and T−1 are continuous, so if A is a Borel set, then so
is T (A). Applying what we have just proved to f = χT (A) and T we obtain

m(T (A)) =

∫
χT (A)(x)dx =

∫
f(x)dx = | detT |

∫
(f ◦ T )(x)dx

= | detT |
∫
χA(x)dx = | detT |m(A),

since (f ◦ T )(x) = χT (A)(Tx) = χA(x) for all x ∈ Rn. Hence if m(A) = 0 then m(T (A)) = 0,
and the class of Borel null sets is invariant under T (and hence also under T−1). If E ∈ Ln

and m(E) = 0, then there exists a Borel set A such that E ⊂ A and m(A) = 0. Hence
T (E) ⊂ T (A) and T (A) is a Borel null set, and since m is complete, T (E) ∈ Ln is a Lebesgue
null set. Writing a Lebesgue measurable set E = A ∪ N where A is a Borel set and N a
Lebesgue null set (using Theorem 3.11.1, item (b)) and we can assume A ∩N = ∅, we have
T (E) = T (A) ∪ T (N), where T (A) is a Borel set and T (N) is a Lebesgue null set, which
implies that T (E) ∈ Ln and

m(T (E)) = m(T (A)) +m(T (N)) = m(T (A)) = | detT |m(A) = | detT |m(E),
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and we conclude (b).
Now if f is Lebesgue measurable, T ∈ GL(n,R) and B is a Borel set in C we have

f−1(B) = A ∪ N , where A is a Borel set and m(N) = 0. But T−1(A) is a Borel set and
T−1(N) is a Lebesgue null set, hence

(f ◦ T )−1(B) = T−1(f−1(B)) = T−1(A) ∪ T−1(N) ∈ Ln,

and f is Lebesgue measurable.
Now from what we have proved above, (3.11.1) holds for characteristic functions of

Lebesgue measurable sets. By linearity it holds for simple functions. Using the MCT it
holds for nonnegative measurable functions and taking positive and negative parts of real
and imaginary parts it holds for L1(m)-functions. �

Corollary 3.11.15. Lebesgue measure is invariant under rotations.

Proof. A rotation is a linear maps satysfying TT ∗ = I, where T ∗ is the transpose of T . Since
detT = detT ∗, we must have | detT | = 1, and hence if E ∈ Ln we havem(T (E)) = m(E). �

Now we will treat the general case of C1 diffeomorphisms.

Definition 3.11.16. Let G = (g1, · · · , gn) be a map from an open set Ω ⊂ Rn into Rn,
whose components gj are C1, that is, have continuous first order partial derivatives. We
denote by DxG the linear map defined by the matrix ((∂gi/∂xj)(x)) of partial derivatives at x,
for each x ∈ Ω. Note that if G is linear, then DxG = G for all x ∈ Ω. The map G is called a
C1 diffeomorphism if G is injective and DxG is invertible for all x ∈ Ω. In this case, the
inverse function theorem guarantees that G−1 : G(Ω)→ Ω is also a C1 diffeomorphism and
that Dx(G

−1) = [DG−1(x)G]−1 for all x ∈ G(Ω).

Before stating and proving the Change of Variables Theorem, we set some notation and
prove a lemma. For x ∈ Rn and T = (Tij) ∈ GL(n,R)) we take

‖x‖ = max
i=1,··· ,n

|xi| and ‖T‖ = max
i=1,··· ,n

n∑
j=1

|Tij|.

Then we have ‖Tx‖ 6 ‖T‖‖x‖, and if a ∈ Rn and h > 0 the set {x ∈ Rn : ‖x− a‖ 6 h}
is the cube centered in a with side length 2h.

Lemma 3.11.17. Suppose that Ω is an open set in Rn and G : Ω→ Rn is a C1 diffeomor-
phism. If A ⊂ Ω is a Borel set we have

m(G(A)) 6
∫
A

| detDxG|dx.
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Proof. First consider a cube Q = {x ∈ Rn : ‖x− a‖ 6 h} ⊂ Ω. Given x ∈ Q, fix j = 1, · · · , n
and consider the function [0, 1] 3 t 7→ gj(tx + (1 − t)a) ∈ R, which is a C1 function in R.
Hence, by the Mean Value Theorem, there exists t0 ∈ (0, 1) such that

gj(x)− gj(a) =
d

dt
gj(t0x+ (1− t0)a) =

n∑
i=1

∂gj
∂xi

(t0x+ (1− t0)a)(xi − ai),

and therefore

‖G(x)−G(a)‖ = max
j=1,··· ,n

|gj(x)− gj(a)| 6 (sup
y∈Q
‖DyG‖) max

i=1,··· ,n
|xi − ai| 6 h sup

y∈Q
‖DyG‖,

since t0x+ (1− t0)a ∈ Q for any t0 ∈ (0, 1). This implies that G(Q) is contained in the cube
Q̃ = {y ∈ Rn : ‖y −G(a)‖ 6 h supy∈Q ‖DyG‖}, and thus

m(G(Q)) 6 m(Q̃) = (2h sup
y∈Q
‖DyG‖)n = (sup

y∈Q
‖DyG‖)nm(Q).

If T ∈ GL(n,R), then we can apply this formula for T−1◦G instead of G and use Theorem
3.11.14 to obtain

m(G(Q)) = | detT |m(T−1(G(Q))) 6 | detT |(sup
y∈Q
‖T−1DyG‖)nm(Q), (3.11.2)

since T−1 ◦G is a diffeomorphism and Dy(T
−1G) = T−1Dy(G) for all y ∈ Ω.

Now fix ε > 0. Since Ω 3 y 7→ DyG is continuous (and hence uniformly continuous in Q),
we can choose δ0 > 0 such that for all δ ∈ (0, δ0) we have

‖DzG−DyG‖ 6
ε

1 + supw∈Q ‖(DwG)−1‖
for all y, z ∈ Q with ‖z − y‖ < δ,

and since DzG−DyG = DzG(I − (DzG)−1DyG) we obtain

‖(DzG)−1DyG‖ 6 ‖I − (DzG)−1DyG‖+ 1 = ‖(DzG)−1‖‖DzG−DyG‖+ 1 < ε+ 1,

for z, y ∈ Q with ‖z − y‖ < δ. Now we subdivide Q into N cubes, Q1, · · · , QN , with disjoint
interiors, whose side lengths are smaller than δ, and we name x1, · · · , xN the centers of such
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cubes. Using (3.11.2) for Qj instead of Q and DxjG instead of T , we obtain

m(G(Q)) = m
( N⋃
j=1

G(Qj)
)
6

N∑
j=1

m(G(Qj))

6
N∑
j=1

| detDxjG|( sup
y∈Qj
‖(DxjG)−1DyG‖n)m(Qj)

6 (1 + ε)n
N∑
j=1

| detDxjG|m(Qj).

Now, the last sum of these inequalities is the integral (on Q) of the simple function
φδ =

∑N
j=1 | detDxjG|χQj\∂Qj (the dependence of δ is the dependence on the subdivision

{Qj} of Q), since m(∂Qj) = 0 for all j = 1, · · · , N . But from the uniform continuity of the
map Q 3 x 7→ DxG, we have φδ(x)→ | detDxG| m-a.e. in Q as δ → 0+, and the Dominated
Convergence Theorem shows us that making δ → 0+ (along a countable subsequence) we
obtain

N∑
j=1

| detDxjG|m(Qj) =

∫
Q

φδ(x)dx→
∫
Q

| detDxG|dx as δ → 0+.

Hence
m(G(Q)) 6 (1 + ε)n

∫
Q

| detDxG|dx,

and making ε→ 0 we obtain m(G(Q)) 6
∫
Q
| detDxG|dx.

Now if U ⊂ Ω is open, then by Lemma 3.11.7, we can write U =
⋃∞
j=1Qj where the Qj’s

are cubes with disjoint interiors Thus

m(G(U)) 6
∞∑
j=1

m(G(Qj)) 6
∞∑
j=1

∫
Qj

| detDxG|dx,

and since the boundaries ∂Qj have zero Lebesgue measure (and thus their union also have
zero Lebesgue measure), we obtain

∞∑
j=1

∫
Qj

| detDxG|dx =
∞∑
j=1

∫
Qj\∂Qj

| detDxG|dx =

∫
⋃∞
j=1(Qj\∂Qj)

| detDxG|dx

=

∫
U\

⋃∞
j=1 ∂Qj

| detDxG|dx =

∫
U

| detDxG|dx,

and therefore m(G(U)) 6
∫
U
| detDxG|dx.

Now let E ⊂ Ω be a Borel set with m(E) <∞. Using Theorem 3.11.1 item (a), we can
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construct a sequence {Uj} of open subsets of Ω with E ⊂ Uj and m(Uj) <∞ for all j, and
m(
⋂∞
j=1 Uj \ E) = 0 and thus χUj → χE m-a.e. Hence, by the DCT we have

m(G(E)) 6 m
(
G
( ∞⋂
j=1

Uj

))
= lim

j→∞
m(G(Uj))

6 lim
j→∞

∫
Uj

| detDxG|dx =

∫
E

| detDxG|dx.

Lastly, if E ⊂ Ω is any Borel set, since m is σ-finite, we can write E =
⋃∞
j=1Ej with

disjont Borel sets with m(Ej) <∞, then

m(G(E)) 6
∞∑
j=1

m(G(Ej)) 6
∞∑
j=1

∫
Ej

| detDxG|dx =

∫
E

| detDxG|dx.

�

Theorem 3.11.18. Suppose that Ω is an open set in Rn and G : Ω → Rn is a C1

diffeomorphism.

(a) If f is a Lebesgue measurable function on G(Ω) then f ◦ G is a Lebesgue measurable
function on Ω. If f > 0 or f ∈ L1(G(Ω),m), then∫

G(Ω)

f(x)dx =

∫
Ω

(f ◦G)(x)| detDxG|dx.

(b) If E ⊂ Ω and E ∈ Ln, then G(E) ∈ Ln and m(G(E)) =
∫
E
| detDxG|dx.

Proof. (a). Consider f a simple nonnegative Borel measurable function on G(Ω), that is,
f =

∑m
j=1 ajχAj , which Aj is a Borel set for each j. Using the previous lemma, we have

∫
G(Ω)

f(x)dx =
m∑
j=1

ajm(Aj) 6
m∑
j=1

aj

∫
G−1(Aj)

| detDxG|dx =

∫
Ω

(f ◦G)(x)| detDxG|dx.

Thus, if f ∈ L+(G(Ω)) then we can choose a sequence {sn} of nonnegative simple Borel
measurable functions that increases to f , and∫

G(Ω)

sn(x)dx 6
∫

Ω

(sn ◦G)(x)| detDxG|dx,

and since (sn ◦G)(x)| detDxG| increases to (f ◦G)(x)| detDxG| pointwise, the MCT implies
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that ∫
G(Ω)

f(x)dx 6
∫

Ω

(f ◦G)(x)| detDxG|dx.

Applying this reasoning to Ω replaced by G(Ω), G replaced by G−1 and f(x) replaced by
(f ◦G)(x)| detDxG|, so that∫

Ω

(f ◦G)(x)| detDxG|dx 6
∫
G(Ω)

(f ◦G ◦G−1)(x)| detDG−1(x)G|| detDxG
−1|dx

=

∫
G(Ω)

f(x)dx,

which concludes the case for f > 0 Borel measurable. For f real valued integrable Borel
measurable function, we see that (f ◦G)+ = f+ ◦G and (f ◦G)− = f− ◦G, and the result
follows easily. Using real and imaginary parts, the result is true for complex integrable Borel
measurable functions. The proof for Lebesgue measurable functions is analogous to the proof
of Theorem 3.11.14.

(b). This statement is just item (a) applied to f = χG(E). �

3.12 SOLVED EXERCISES FROM [1, PAGE 76]

Exercise 53. Fill in the details of the proof of Theorem 3.11.2.

Solution. It is already done.

Exercise 54. How much of Theorem 3.11.14 remains valid if T is not invertible?

Solution. First we see that applying a finite sequence of elementary type transformations,
we can assume that T (x1, · · · , xn) = (x1, · · · , xk, 0, · · · , 0) for some 0 6 k < n (for k = 0,
T ≡ 0). Setting A = {x ∈ Rn : xn = 0} we have A ∈ Ln (it is closed) and m(A) = 0.

If E ∈ Ln, then T (E) ∈ Ln since T (E) ⊂ A and m is complete. Moreover

m(T (E)) = 0 = | detT |m(E),

since detT = 0. Now we note that f ◦ T may not be Lebesgue measurable, even if f is. Let
B ⊂ Rk not Lebesgue measurable in Rk. We have B×{0} measurable in Ln (here 0 ∈ Rn−k),
since m is complete. Consider f = χB×{0}. Thus

T−1(f−1({1}) = T−1(B × {0}) = B × Rn−k
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which is not measurable in Rn (since at least one of its sections is B, which is not measurable
in Rk).

In fact, even when f ◦ T is Lebesgue measurable, (3.11.1) may not be true. Consider
f = χ[0,1]n , which is in L1(m) ∩ L+(Rn), and take T ≡ 0. Then f ◦ T = f(0) = 1 which is
not in L1(m). In this case we have f ◦ T ∈ L+(Rn) but

1 =

∫
f(x)dx 6= 0 = | detT |

∫
f ◦ T (x)dx.

Exercise 55. Let E = [0, 1]× [0, 1]. Investigate the existence and equality of
∫
E
fdm2,∫ 1

0

∫ 1

0
f(x, y)dxdy and

∫ 1

0

∫ 1

0
f(x, y)dydx for the following f :

(a) f(x, y) = (x2 − y2)(x2 + y2)−2.

(b) f(x, y) = (1− xy)−a, with a > 0.

(c) f(x, y) = (x− 1
2
)−3 if 0 < |y| < |x− 1

2
| and f(x, y) = 0 otherwise.

Solution to (a). Firstly, note that f is continuous from E \ {(0, 0)} to R, and hence f
is measurable. Now we fix y ∈ (0, 1] and we define F : [0, 1]→ R by F (x) = −x(x2 + y2)−1.
Then using the quotient rule we have

F ′(x) =
−x2 − y2 + 2x2

(x2 + y2)2
= f(x, y),

hence ∫ 1

0

f+(x, y)dx =

∫ 1

y

f(x, y) =

∫ 1

y

F ′(x)dx = F (1)− F (y) =
1

2y
− 1

1 + y2
,

for all y ∈ (0, 1], since f+(x, y) = 0 for 0 6 x < y. Analogously, for y ∈ (0, 1], we have∫ 1

0

f−(x, y)dx =

∫ y

0

(−f(x, y))dx = −
∫ y

0

F ′(x)dx = F (0)− F (y) =
1

2y
.

Applying Tonelli’s Theorem to f+ we obtain∫
E

f+dm2 =

∫ 1

0

∫ 1

0

f+(x, y)dxdy =

∫ 1

0

( 1

2y
− 1

1 + y2

)
dy.
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From the MCT, we have∫ 1

0

1

2y
dy = lim

n→∞

∫ 1

0

1

2y
χ[1/n,1)(y)dy = lim

n→∞

∫ 1

1/n

1

2y
dy = lim

n→∞

1

2
lnn =∞,

and since 1
1+y2

6 1 for all y ∈ [0, 1] we have
∫ 1

0
1

1+y2
dy 6 1 < ∞, which implies that∫

E
f+dm2 =∞. Again from Tonelli’s Theorem we have

∫
E

f−dm2 =

∫ 1

0

1

2y
dy =∞,

hence
∫
E
fdm2 is not defined. However

∫ 1

0

∫ 1

0

f(x, y)dxdy =

∫ 1

0

[∫ 1

0

f+(x, y)dx+

∫ 1

0

f−(x, y)dx

]
dy

= −
∫ 1

0

1

1 + y2
dy = arctan(0)− arctan(1) = −π

4
,

and since f(x, y) = −f(y, x) for all x, y ∈ [0, 1] we have∫ 1

0

∫ 1

0

f(x, y)dydx =
π

4
.

Solution to (b). Note that f(x, y) > 0 for all (x, y) ∈ E and since f is continuous,
f ∈ L+(E,m2) and hence by Tonelli’s Theorem, all three integrals exist and are equal.

Solution to (c). Note that f is measurable and

f+(x, y) =

{
(x− 1

2
)−3 if x ∈ (1

2
, 1] and 0 < y < x− 1

2

0 otherwise

=

{
(x− 1

2
)−3 if y ∈ [0, 1

2
] and y + 1

2
< x 6 1

0 otherwise

and

f−(x, y) =

{
(1

2
− x)−3 if x ∈ [0, 1

2
) and 0 < y < 1

2
− x

0 otherwise

=

{
(1

2
− x)−3 if y ∈ [0, 1

2
] and 0 6 x < 1

2
− y

0 otherwise
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Hence we have∫
E

f+dm2 Tonelli’s Th.
=

∫ 1

0

∫ 1

0

f+(x, y)dxdy =

∫ 1/2

0

∫ 1

y+1/2

(x− 1
2
)−3dxdy

Change of Var.
=

∫ 1/2

0

∫ 1/2

y

x−3dxdy
Fund. Th. Calc.

=
1

2

∫ 1/2

0

( 1

y2
− 4
)
dy

MCT
= lim

n→∞

1

2

∫ 1/2

1/n

( 1

y2
− 4
)
dy = lim

n→∞

n2 − 4n+ 4

2n
=∞.

Similarly we have∫
E

f−dm2 =

∫ 1

0

∫ 1

0

f−(x, y)dxdy =

∫ 1/2

0

∫ 1/2−y

0

(1

2
− x
)−3

dxdy

=

∫ 1/2

0

∫ 1/2

y

x−3dxdy =∞,

and hence
∫
E
fdm2 is not defined. We also prove above that

∫ 1

0
f+(x, y)dx = 1

2
( 1
y2
− 4) =∫ 1

0
f−(x, y)dx for y ∈ [0, 1

2
] and hence

∫ 1

0

∫ 1

0

f(x, y)dxdy =

∫ 1/2

0

[∫ 1

0

f+(x, y)dx−
∫ 1

0

f−(x, y)dx

]
dy = 0.

Note that for x ∈ [0, 1
2
) we have f+(x, y) = f(x, y) and hence

∫ 1

0

f(x, y)dy =

∫ 1

0

f+(x, y)dy =

∫ x−1/2

0

(
x− 1

2

)−3

dy =
(
x− 1

2

)−2

,

and for x ∈ (1
2
, 1] we have f−(x, y) = −f(x, y) and thus

∫ 1

0

f(x, y)dy = −
∫ 1

0

f−(x, y)dy = −
∫ 1/2−x

0

(1

2
− x
)−3

dy = −
(1

2
− x
)−2

.

Thus ∫ 1

0

(∫ 1

0

f(x, y)dy

)+

dx =

∫ 1

1/2

(
x− 1

2

)−2

dx =

∫ 1/2

0

x−2dx
MCT
= ∞,

and ∫ 1

0

(∫ 1

0

f(x, y)dy

)−
dx =

∫ 1/2

0

(1

2
− x
)−2

dx =

∫ 1/2

0

x−2dx
MCT
= ∞,

and therefore
∫ 1

0

∫ 1

0
f(x, y)dydx is not defined.
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Exercise 56. If f is Lebesgue integrable on (0, a) and g(x) =
∫ a
x
t−1f(t)dt, then g is

integrable on (0, a) and
∫ a

0
g(x)dx =

∫ a
0
f(x)dx.

Solution. Define F : (0, a)× (0, a)→ C by

F (t, x) =
f(t)

t
χA(t, x), where A = {(t, x) ∈ (0, a)× (0, a) : x < t}.

Since f is measurable, 1
t
is continuous (hence, measurable) and A is open, F is measurable.

Using Tonelli’s Theorem we have∫
|F |dm2 =

∫ a

0

∫ a

0

|F (t, x)|dxdt =

∫ a

0

∫ a

0

|f(t)|
t

χA(t, x)dxdt

=

∫ a

0

∫ t

0

|f(t)|
t

dxdt =

∫ a

0

|f(t)|dt <∞,

hence F ∈ L1 and hence

g(x) =

∫ a

x

f(t)

t
dt =

∫ a

0

f(t)

t
χ(x,a)(t)dt =

∫ a

0

f(t)

t
χA(t, x)dt =

∫ a

0

Fx(t)dt

is integrable (since for each x ∈ (0, a) we have χA(t, x) = χ(x,a)(t)) by Fubini’s Theorem, and
also∫ a

0

g(x)dx =

∫ a

0

∫ a

0

F (t, x)dxdt =

∫ a

0

∫ a

0

F (t, x)dtdx =

∫ a

0

∫ t

0

f(t)

t
dxdt =

∫ a

0

f(t)dt.

Exercise 57. Show that
∫∞

0
e−sxx−1 sinxdx = arctan(s−1) for s > 0 by integrating

e−sxy sinx with respect to x and y. (It may be useful to recall that tan(π
2
− θ) = (tan θ)−1

Cf. Exercise 31d.)

Solution. We have |e−sxy sinx| 6 xe−sxy for all x > 0 and y > 1. Hence f(x, y) =

e−sxy sinx is in L1(m2) on E = (0,∞)× [1,∞) since∫ ∞
0

xe−sxydx =
1

(sy)2
for all y > 1,

and hence by Tonelli’ Theorem we have∫
E

xe−sxydm2 =

∫ ∞
1

∫ ∞
0

xe−sxydxdy =

∫ ∞
1

1

(sy)2
dy =

1

s2
<∞.
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We have ∫ ∞
1

e−sxy sinxdy = s−1e−sxx−1 sinx for all x > 0,

and using integration by parts we have∫ ∞
0

e−sxy sinxdx =
1

1 + (sy)2
for all y > 1.

Using Fubini’s Theorem we obtain

s−1

∫ ∞
0

e−sxx−1 sinxdx =

∫ ∞
0

∫ ∞
1

e−sxy sinxdydx =

∫ ∞
1

∫ ∞
0

e−sxy sinxdxdy

=

∫ ∞
1

1

1 + (sy)2
dy = s−1

[π
2
− arctan(s)

]
= s−1 arctan(s−1).

Exercise 58. Show that
∫∞

0
e−sxx−1 sin2 xdx = 1

4
log(1 + 4s−2) for s > 0 by integrating

e−sx sin 2xy with respect to x and y.

Solution. Note that |e−sx sin 2xy| 6 e−sx for all x > 0 and y ∈ [0, 1], hence e−sx sin 2xy

is in L1(m2) in E = (0,∞)× [0, 1]. Also∫ 1

0

e−sx sin 2xydy = e−sxx−1 sin2 x,

and using integration by parts we have∫ ∞
0

e−sx sin 2xydx =
2y

s2 + 4y2
for all y ∈ [0, 1],

and ∫ 1

0

2y

s2 + 4y2
dy

t=s2+4y2

=
1

4

∫ s2+4

s2

1

t
dt =

1

4
log(1 + 4−s

2

),

and the result follows using Fubini’s Theorem.

Exercise 59. Let f(x) = x−1 sinx.

(a) Show that
∫∞

0
|f(x)|dx =∞

(b) Show that limb→∞
∫ b

0
f(x)dx = 1

2
π by integrating e−xy sinx with respect to x and y. (In

view of part (a), some care is needed in passing to the limit as b→∞).

Solution to (a). Note that for n ∈ N0 and x ∈ [(n+ 1
6
)π, (n+ 5

6
)π] we have | sinx| > 1

2
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and 1
(n+1)π

6 1
(n+ 5

6
)π
6 1

x
. Hence we have

∫ ∞
0

|f(x)|dx >
∫ ∞

0

∞∑
n=0

[
1

2(n+ 1)π
χ[(n+ 1

6
)π,(n+ 5

6
)π](x)

]
dx

(?)
=

∞∑
n=0

∫ ∞
0

1

2(n+ 1)π
χ[(n+ 1

6
)π,(n+ 5

6
)π](x)dx

=
1

3

∞∑
n=0

1

n+ 1
=∞,

where in (?) we used Theorem 3.3.9.

Solution to (b). Now fix b > 0. Since |e−xy sinx| 6 1 for all x, y ∈ (0, b), e−xy sinx is in
L1(m2) in E = (0, b)× (0, b). We have∫ b

0

e−xy sinxdy =
sinx

x
− e−bx sinx

x
for all x ∈ (0, b),

and integration by parts result in∫ b

0

e−xy sinxdx =
1− e−by cos b− ye−by sin b

1 + y2
for all y ∈ (0, b).

Using Fubini’s Theorem we have∫ b

0

sinx

x
dx−

∫ b

0

e−bx sinx

x
dx =

∫ b

0

∫ b

0

e−xy sinxdydx

=

∫ b

0

∫ b

0

e−xy sinxdxdy =

∫ b

0

1

1 + y2
dy −

∫ b

0

e−by
cos b− y sin b

1 + y2
dy

= arctan(b)−
∫ b

0

e−by
cos b− y sin b

1 + y2
dy for all b > 0.

(3.12.1)

To conclude we will note that∣∣∣∣∫ b

0

e−bx sinx

x
dx

∣∣∣∣ 6 ∫ b

0

e−bxdx =
1− e−b2

b
→ 0 as b→∞,

and∣∣∣∣∫ b

0

e−by
cos b− y sin b

1 + y2
dy

∣∣∣∣ 6 ∫ b

0

e−by
1 + y

1 + y2
dy

(♣)

6 C

∫ b

0

e−bydy = C
1− e−b2

b
→ 0 as b→∞,

where in (♣) we used that fact that (0,∞) 3 y 7→ 1+y
1+y2

is a bounded function (hence the
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bound C does not depend on b). Hence taking the limit in (3.12.1) we obtain

lim
b→∞

∫ b

0

sinx

x
dx = lim

b→∞
arctan(b) =

π

2
.

Exercise 60. Show that Γ(x)Γ(y)
Γ(x+y)

=
∫ 1

0
tx−1(1− t)y−1dt for all x, y > 0. (Write Γ(x)Γ(y)

as a double integral and use the argument of the exponential as a new variable of integration.
See Definition 3.5.24 and Proposition 3.5.27).

Solution. Using Exercise 51, for f(u, v) = ux−1e−uvy−1e−v (u, v) ∈ E = (0,∞)× (0,∞),
we have f ∈ L1(E,m2) and

Γ(x)Γ(y) =

∫ ∞
0

ux−1e−udu ·
∫ ∞

0

vy−1e−vdv =

∫
E

fdm2.

Set Ω = (0,∞)× (0, 1) and consider the map G : Ω× R2 given by G(s, t) = (st, s(1− t)).
Hence G(Ω) = E and G is a diffeomorphism. Hence∫

E

fdm2 =

∫
Ω

(f ◦G)(s, t)| detD(s,t) ·G|dm2

=

∫ 1

0

∫ ∞
0

(st)x−1e−stsy−1(1− t)y−1e−s(1−t)sdsdt =

=

∫ 1

0

∫ ∞
0

sx+y−1tx−1(1− t)y−1e−sdsdt

(♠)
=

∫ 1

0

tx−1(1− t)y−1dt ·
∫ ∞

0

sx+y−1e−sds

= Γ(x+ y)

∫ 1

0

tx−1(1− t)y−1dt,

where in (♠) we used again Exercise 51, and we conclude the result.

Exercise 61. If f is continuous on [0,∞), for α > 0 and x > 0 let

Iαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt.

Iαf is called the αth fractional integral of f .

(a) Iα+βf = Iα(Iβf) for all α, β > 0. (Use Exercise 60)

(b) If n ∈ N, Inf is an nth-order antiderivative of f .
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First we prove that for x > 0, the function [0, x) 3 t 7→ (x − t)α−1, denoted by f0,
is in L1([0, x),m). Clearly f0 ∈ L+([0, x)). Consider fn : [0, x) → R given by fn(t) =

χ[0,x− 1
n

](t)(x − t)α−1 (for sufficiently large n). Then {fn} ⊂ L+([0, x)) increases to f0

pointwise, and using the MCT we have∫
[0,x)

(x− t)α−1dt = lim
n→∞

∫
[0,x)

χ[0,x− 1
n

](t)(x− t)α−1dt =

= lim
n→∞

∫ x− 1
n

0

(x− t)α−1dt = lim
n→∞

∫ x

1
n

uα−1du = lim
n→∞

(xα
α
− 1

nαα

)
=
xα

α
<∞,

and thus f0 ∈ L1([0, x),m).
Moreover, using Theorem 3.5.16 item (a), Iαf is continuous in [0,∞).

Solution to (a). Using Fubini and Change of Variables we have

Iβ(Iαf)(x) =
1

Γ(β)

∫ x

0

(x− t)β−1 1

Γ(α)

∫ t

0

(t− s)α−1f(s)dsdt

=
1

Γ(β)Γ(α)

∫ x

0

∫ t

0

(x− t)β−1(t− s)α−1f(s)dsdt

=
1

Γ(β)Γ(α)

∫ x

0

∫ x

s

(x− t)β−1(t− s)α−1dtf(s)ds

(?)
=

1

Γ(β)Γ(α)

∫ x

0

(x− s)β+α−1

∫ 1

0

(1− u)β−1uα−1duf(s)ds = Iα+βf(x),

using Exercise 60, and in (?) the change of variable u = (t− s)(x− s)−1.
Solution to (b). For n = 1 this result is just the Fundamental Theorem of Calculus. If the
result holds for n, i.e. dn

dxn
Inf(x) = f(x) then

dn+1

dxn+1
In+1f(x) =

dn

dxn
d

dx
I1(Inf)(x) =

dn

dxn
Inf(x) = f(x),

and the result is complete.
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CHAPTER4

SIGNED MEASURES AND
DIFFERENTIATION

In this chapter, given two measures µ, ν on X, we want to give meaning to the expression
dν

dµ
, that is, we want to differentiate ν with respect to µ.

4.1 SIGNED MEASURES

Definition 4.1.1. Let (X,M) a measurable space. A signed measure on (X,M) is a
function ν : M→ [−∞,∞] such that

(i) ν(∅) = 0;

(ii) ν assumes at most one of the values ±∞;

(iii) if {Ej} is a disjoint sequence inM, then

ν
( ∞⋃
j=1

Ej

)
=
∞∑
j=1

ν(Ej),

where the series above converges absolutely when ν(
⋃∞
j=1Ej) is finite.

It is clear from this definition that every measure is a signed measure. To make the
distinction clear, sometimes we will refer to measures as positive measures.

Example 4.1.2. 1. Let µ1, µ2 measures in M such that at least one of them is finite.
Then ν = µ1 − µ2 is a signed measure onM.
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2. We say that a function f : X → [−∞,∞] is extended µ-integrable if at least one of∫
f+dµ and

∫
f−dµ is finite. Then the function

ν(E) =

∫
E

fdµ,

is a signed measure.

We will see that, indeed, the examples in Example 4.1.2 exhaust all possible signed
measures. That is, every signed measure can be represented by one of the two previous cases.

Proposition 4.1.3. Let ν be a signed measure on (X,M). Then ν is continuous from
below and from above.

Proof. Continuity from below: to show this, let {Ej} be an increasing sequence inM and
let E =

⋃∞
j=1Ej. If ν(Ej0) = ±∞ for some Ej0 , since

ν(Ej+1) = ν(Ej) + ν(Ej+1 \ Ej), (4.1.1)

(and recalling that ν can only assume one of ±∞) we have ν(Ej+1) = ±∞ for all j > j0,
and also since ν(E) = ν(Ej0) + ν(E \ Ej0) we have ν(E) = ±∞. Hence ν(E) = ±∞ =

limj→∞ ν(Ej).

Assume that ν(Ej) ∈ (−∞,∞) for all j ∈ N. From (4.1.1) we have ν(Ej+1 \ Ej) =

ν(Ej+1)− ν(Ej), and the proof is analogous to the case of positive measures.

Continuity from above: this is analogous to the case of positive measures (see Theorem
2.1.8). �

Definition 4.1.4. If ν is a signed measure on (X,M), a set E ∈M is called

(a) positive for ν is ν(F ) > 0 for all F ∈M with F ⊂ E.

(b) negative for ν is ν(F ) 6 0 for all F ∈M with F ⊂ E.

(c) null for ν is ν(F ) = 0 for all F ∈M with F ⊂ E.

For example, when ν(E) =
∫
E
fdµ for some extended µ-integrable function f , then E is

positive/negative/null for ν precisely when f > 0/f 6 0/ f = 0 µ-a.e. on E.

Lemma 4.1.5. Any measurable subset of a positive set is positive and the union of any
countable family of positive sets is positive.
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Proof. The first assertion is clear from the definitions of positivity. Now let {Pj} be a
countable family of positive sets. Considering Qj = Pj \

⋃j−1
k=1 Pk, we have Qj ⊂ Pj and hence

Qj is positive for ν, and also {Qj} is a countable disjoint family inM. Thus if E ∈ M is
such that E ⊂

⋃∞
j=1 Pj =

⋃∞
j=1 Qj then E =

⋃∞
j=1E ∩Qj and therefore

ν(E) =
∞∑
j=1

ν(E ∩Qj) > 0,

since ν(E ∩ Qj) > 0 for all j (recall that Qj is positive for ν and E ∩ Qj ∈ M and
E ∩Qj ⊂ Qj). �

Theorem 4.1.6 (The Hahn Decomposition Theorem). If ν is a signed measure on (X,M),
there exists a positive set P and a negative set N for ν such that P ∪N = X and P ∩N = ∅
If P̃ , Ñ is another such pair, then P∆P̃ = N∆Ñ is null for ν.

Proof. We can assume, without loss of generality, that ν does not assume that value ∞, for
otherwise we can consider −ν. Since ν(∅) = 0, we can define

α = sup{ν(E) : E is a positive set for ν} > 0.

There exists a sequence {Pj} of positive sets for ν such that limj→∞ ν(Pj) = α. Set
P =

⋃∞
j=1 Pj, which is positive by the previous lemma, and hence ν(P ) 6 α. Also setting

Qj =
⋃j
k=1 Pk, {Qj} is an increasing sequence of positive sets for ν, Pj ⊂ Qj for all j.

Now ν(Qj) = ν(Pj) + ν(Qj \ Pj) and since Qj \ Pj ⊂ Qj and Qj is positive for ν we have
ν(Qj \ Pj) > 0 and hence ν(Qj) > ν(Pj).

Now, using the continuity from below we obtain

ν(P ) = ν
( ∞⋃
j=1

Pj

)
=
( ∞⋃
j=1

Qj

)
= lim

j→∞
ν(Qj) > lim

j→∞
ν(Pj) = α,

and therefore ν(P ) = α. Since ν does not assume the value ∞, we conclude that α <∞.

Claim: the set N = X \ P is negative for ν.

In fact, assume that N is not negative for ν. First, note that if E ⊂ N is positive and
ν(E) > 0, then E ∪ P is positive and ν(E ∪ P ) = ν(E) + ν(P ) > α, which is a contradiction.
Hence N cannot contain any nonnull positive set.

Now if A ⊂ N and ν(A) > 0, since A cannot be positive, there exists C ⊂ A with
ν(C) < 0 and thus setting B = A \C we have ν(B) = ν(A)− ν(C) > ν(A). In conclusion, if
A ⊂ N and ν(A) > 0, there exists B ⊂ A with ν(B) > ν(A).
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Now, since N is not negative for ν, let n1 be the smallest positive integer for which there
exists a set B ⊂ N with ν(B) > n−1

1 (if no such integer exists, this means that ν(B) 6 0

for all B ⊂ N , and N would be negative for ν). Define A1 a set such that ν(A1) > n−1
1 .

Inductively, set nj as the smallest positive integer for which there exists B ⊂ Aj−1 with
ν(B) > ν(Aj−1) + n−1

j and name Aj such a set.
Define A =

⋂∞
j=1 Aj. Then ∞ > ν(A) = limj→∞ ν(Aj) >

∑∞
j=1 n

−1
j > 0, and hence

nj →∞ as j →∞. Also, since ν(A) > 0 there exists B ⊂ A such that ν(B) > ν(A) + 2n−1

for some integer n. Since B ⊂ Aj−1 for all j, we can find j sufficiently large such that n < nj

and ν(Aj−1) < ν(A) + n−1, which leads us to

ν(B) > ν(A) + n−1 + n−1 > ν(Aj−1) + n−1,

and since n < nj, this contradicts the definition of nj. Therefore N must be a negative set
for ν.

Finally, assume that P̃ , Ñ is such another pair. Thus P \ P̃ ⊂ P , hence P \ P̃ is positive
for ν. Also P \ P̃ ⊂ Ñ , and hence P \ P̃ is negative for ν, which implies that it must be null
for ν. Likewise P̃ \ P is null for ν. The fact that P∆P̃ = N∆Ñ is straightforward and the
proof is complete. �

A decomposition X = P ∪N of X as the disjoint union of a positive and a negative set
for ν is called Hahn decomposition of ν. It is usually not unique, since ν-null sets can be
transferred from P to N or vice-versa, but it leads to a canonical representation of ν as the
different of two positive measures, with at least one of them finite.

Definition 4.1.7. We say that two measures µ and ν on (X,M) are mutually singular,
or that ν is singular with respect to µ (or vice-versa), if there exists E,F ∈M, E∩F = ∅,
E∪F = X such that E is null for µ and F is null for ν. In this case, we denote this relationship
by

µ ⊥ ν.

Informally speaking, mutually singularity means that µ and ν live in disjoint subsets of
X.

Theorem 4.1.8 (The Jordan Decomposition Theorem). If ν is a signed measure, there
exist unique positive measures ν+ and ν− on (X,M) such that ν = ν+ − ν− and ν+ ⊥ ν−.

Proof. Let X = P ∪N a Hanh decomposition of ν. For E ∈M, define

ν+(E) = ν(E ∩ P ) and ν−(E) = −ν(E ∩N).
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Then clearly we have ν = ν+ − ν− and ν+ ⊥ ν−. Now if ν = µ+ − µ− with µ+ ⊥ µ−,
then let E,F ∈M be such that X = E ∪ F , E ∩ F = ∅, F is null for µ+ and E is null for
µ−. Then X = E ∪ F is a Hahn decomposition of ν, and since E is positive for ν and F is
negative for ν we have P∆E and N∆F null sets for ν. Therefore, if A ∈M we have

µ+(A) = µ(A∩E)+µ+(E ∩ F )︸ ︷︷ ︸
=0

= µ+(A∩E) = ν(A∩E) = ν(A∩P )+ν(A ∩ (E \ P ))︸ ︷︷ ︸
=0

= ν+(A),

hence µ+ = ν+, and analogously we show that µ− = ν− and conclude the proof. �

The measures ν+ and ν− are called the positive and negative variations of ν, and
ν = ν+ − ν− is called the Jordan decomposition of ν. Furthermore, we define the total
variation of ν as the positive measure |ν| defined by

|ν| = ν+ + ν−.

Proposition 4.1.9. We have the following:

(a) E ∈M is ν-null iff |ν|(E) = 0;

(b) ν ⊥ µ iff |ν| ⊥ µ iff ν+ ⊥ µ and ν− ⊥ µ.

Proof. (a). Assume that E ∈M is null for ν, that is, ν(F ) = 0 for all F ∈M with F ⊂ E.
Let X = P ∪N a Hahn decomposition of ν, then

ν+(E) = ν(E ∩ P ) = 0 and ν−(E) = −ν(E ∩N) = 0,

and thus |ν|(E) = ν+(E) + ν−(E) = 0. Reciprocally, if |ν|(E) = 0, then ν+(E) = ν−(E) = 0.
If F ∈M and F ⊂ E we have ν+(F ) = ν−(F ) = 0 and ν(F ) = ν+(F )− ν−(F ) = 0, thus E
is ν-null.

(b). Assume that ν ⊥ µ. Then X = E ∪ F with E,F ∈ M, E ∩ F = ∅, E µ-null and F
ν-null. From item (a), |ν|(F ) = 0 and hence |ν| ⊥ µ.

Now if |ν| ⊥ µ, let X = E ∪ F with E,F ∈M, E ∩ F = ∅, E is µ-null and |ν|(F ) = 0.
Then ν+(F ) = 0 and ν−(F ) = 0, which implies that ν+ ⊥ µ and ν− ⊥ µ.

Lastly, assume thatX = E1∪F1 = E2∪F2 with E1, E2, F1, F2 ∈M, E1∩F1 = E2∩F2 = ∅,
E1, E2 µ-null, ν+(F1) = ν−(F2) = 0. Set E = E1 ∪ E2 and F = X \ E = F1 ∩ F2. Hence
E is a µ-null set (union of two µ-null sets) and if A ⊂ F with A ∈ M we have A ⊂ F1

and A ⊂ F2, which implies that ν+(A) = ν−(A) = 0, thus ν(A) = 0 and F is a ν-null set.
Therefore ν ⊥ µ, and the proof is complete. �
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We observe that if ν omits the value ∞, then ν+(X) = ν(P ) <∞, so that ν+ is a finite
measure, and ν is bounded above by ν+(X). Similarly if ν omits the value −∞. In particular,
if the range of ν is contained in R, ν is bounded.

For a Hahn decomposition X = P ∪N of ν, we can write

ν(E) =

∫
E

fdµ for E ∈M,

where µ = |ν| and f = χP − χN , since

ν(E) = ν(E ∩ P ) + ν(E ∩N) = ν+(E ∩ P )− ν−(E ∩N)

= ν+(E ∩ P ) + ν−(E ∩ P )︸ ︷︷ ︸
=0

−[ν−(E ∩N) + ν+(E ∩N)︸ ︷︷ ︸
=0

]

= |ν|(E ∩ P ) + |ν|(E ∩N) =

∫
E

χPd|ν| −
∫
E

χNd|ν|.

Definition 4.1.10. If ν is a signed measure on (X,M), we define

L1(ν) = L1(ν+) ∩ L1(ν−),

and for f ∈ L1(ν) we define the integral of f by∫
fdν =

∫
fdν+ −

∫
fdν−.

Also, we say that a signed measure ν is finite (or σ-finite) is |ν| is finite (or σ-finite).

4.2 SOLVED EXERCISES FROM [1, PAGE 88]

Exercise 1. Prove Proposition 4.1.3.

Solution. Already proven in the text.

Exercise 2. Prove Proposition 4.1.9.

Solution. Already proven in the text.

Exercise 3. Let ν be a signed measure on (X,M).

(a) L1(ν) = L1(|ν|).
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(b) If f ∈ L1(ν),
∣∣∫ fdν∣∣ 6 ∫ |f |d|ν|.

(c) If E ∈M, |ν|(E) = sup{
∣∣∫
E
fdν

∣∣ : |f | 6 1}

Solution to (a). Let E ∈M. Then∫
χEd|ν| = |ν|(E) = ν+(E) + ν−(E) =

∫
χEdν

+ +

∫
χEdν

−.

Thus this result holds for simples functions by additivity of the integral, by the MCT for
nonnegative measurable functions, and hence for functions in L1(|ν|) (using the positive
and negative parts for real functions, and then the real and imaginary parts for complex
functions).

Hence if f is a measurable function, we have∫
|f |dν+ +

∫
|f |dν− =

∫
|f |d|ν|,

which shows that f ∈ L1(|ν|) iff f ∈ L1(ν+) ∩ L1(ν−) = L1(ν).

Solution to (b). If f ∈ L1(ν) then∣∣∣∣∫ fdν

∣∣∣∣ =

∣∣∣∣∫ fdν+ −
∫
fdν−

∣∣∣∣ 6 ∣∣∣∣∫ fdν+|
∣∣∣∣+

∣∣∣∣∫ fdν−
∣∣∣∣

6
∫
|f |dν+ +

∫
|f |dν− =

∫
|f |d|ν|.

Solution to (c). Define α(E) = sup{
∣∣∫
E
fdν

∣∣ : |f | 6 1}. If ν(E) ∈ (−∞,∞), from item
(b) applied to fχE, we have α(E) 6 |ν|(E). Note now that ν(E) ∈ {±∞} iff |ν|(E) = ∞,
and in this case taking f ≡ 1 we obtain α(E) =∞ = |ν|(E). Now if X = P ∪N is a Hanh
decomposition for ν, define f = χP − χN . Then |f | 6 1 and∣∣∣∣∫

E

fdν

∣∣∣∣ = ||ν(E ∩ P ) + ν(E ∩N)| = |ν+(E) + ν−(E)| = ν+(E) + ν−(E) = |ν|(E),

and hence |ν|(E) 6 α(E).

Exercise 4. If ν is a signed measure and λ, µ are positive measures such that ν = λ− µ
then λ > ν+ and µ > ν−.
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Solution. Let X = P ∪N be a Hahn decomposition of ν. We have

ν+(E) = ν(E ∩ P ) = λ(E ∩ P )− µ(E ∩ P ) 6 λ(E ∩ P ) 6 λ(E), and

ν−(E) = −ν(E ∩N) = µ(E ∩N)− λ(E ∩N) 6 µ(E ∩N) 6 µ(E).

Exercise 5. If ν1, ν2 are signed measures that both omit the value ∞ or −∞, then
|ν1 + ν2| 6 |ν1|+ |ν2| (Use Exercise 4).

Solution. Writing
ν1 + ν2 = ν+

1 + ν+
2︸ ︷︷ ︸

=λ

− (ν−1 + ν−2 )︸ ︷︷ ︸
=µ

,

we have ν1 + ν2 = λ− µ where λ, µ are positive measures. From Exercise 4 we have

λ > (ν1 + ν2)+ and µ > (ν1 + ν2)−,

hence
|ν1 + ν2| = (ν1 + ν2)+(ν1 + ν2)− 6 λ+ µ = |ν1|+ |ν2|.

Exercise 6. Suppose ν(E) =
∫
E
fdµ where µ is a positive measure and f is an extended

µ-integrable function. Describe the Hahn decompositions of ν and the positive, negative, and
total variations of ν in terms of f and µ.

Solution. Let P+ = {x ∈ X : f(x) > 0}, Z = {x ∈ X : f(x) = 0} and N− = {x ∈
X : f(x) < 0}. If P0, N0 ∈M are subsets of X such that Z = P0∪N0 and P0∩N0 = ∅, then
X = P ∪N is a Hahn decomposition of ν, where P = P+ ∪ P0 and N = N− ∪N0. Clearly,
these are all the possible Hahn decompositions of ν.

We have also

ν+(E) =

∫
E

f+dµ, ν−(E) =

∫
E

f−dµ and |ν|(E) =

∫
E

|f |dµ,

for every E ∈M.

Exercise 7. Suppose that ν is a signed measure on (X,M) and E ∈M.

(a) ν+(E) = sup{ν(F ) : F ∈M, F ⊂ E} and ν−(E) = − inf{ν(F ) : F ∈M, F ⊂ E}.

(b) |ν|(E) = sup{
∑n

j=1 |ν(Ej)| : n ∈ N, E1, · · · , En are disjoint, and
⋃n
j=1 Ej = E}.
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Solution to (a). Let X = P ∪N be a Hahn decomposition of ν. If F ∈M and F ⊂ E

we have
ν(F ) = ν(F ∩ P ) + ν(F ∩N) 6 ν(F ∩ P ) = ν+(F ) 6 ν+(E),

hence sup{ν(F ) : F ∈ M, F ⊂ E} 6 ν+(E). On the other hand E ∩ P ∈ M, E ∩ P ⊂ E

and ν(E ∩ P ) = ν+(E), and thus the equality follows. Analogously we have ν−(E) =

− inf{ν(F ) : F ∈M, F ⊂ E}.
Solution to (b). We consider the same Hahn decomposition of ν. If E1, · · · , En are

disjoint and
⋃n
j=1Ej we have

|ν(Ej)| = |ν(Ej ∩ P ) + ν(Ej ∩N)| = |ν+(Ej)− ν−(Ej)| 6 |ν|(Ej)

and hence
n∑
j=1

|ν(Ej)| 6
n∑
j=1

|ν|(Ej) = |ν|(E),

and thus sup{
∑n

j=1 |ν(Ej)| : n ∈ N, E1, · · · , En are disjoint, and
⋃n
j=1Ej = E} 6 |ν|(E).

For the converse, let E = E1 ∪ E2 with E1 = E ∩ P and E2 = E ∩ N . Then E1, E2 are
disjoint, E = E1 ∪ E2 and

|ν(E1)|+|ν(E2)| = |ν(E∩P )|+|ν(E∩N)| = |ν+(E)|+|−ν−(E∩N)| = ν+(E)+ν−(E) = |ν|(E),

and concludes the proof.

4.3 THE LEBESGUE-RADON-NIKODYM THEOREM

Definition 4.3.1. Assume that ν is a signed measure and µ is a positive measure in
(X,M). We say that ν is absolutely continuous with respect to µ, and we write ν � µ,
if ν(E) = 0 for all E ∈M for which µ(E) = 0.

Proposition 4.3.2. ν � µ iff |ν| � µ iff ν+ � µ and ν− � µ.

Proof. Consider X = P ∪N a Hanh decomposition for ν. Assume that ν � µ and E ∈M
is such µ(E) = 0. Then µ(E ∩ P ) = µ(E ∩N) = 0 and hence ν+(E) = ν(E ∩ P ) = 0 and
ν−(E) = −ν(E ∩N) = 0. Therefore ν+ � µ and ν− � µ.

If ν+ � µ and ν− � µ, then given E ∈M with µ(E) = 0 we have ν+(E) = ν−(E) = 0

and thus |ν|(E) = ν+(E) + ν−(E) = 0, that is, |ν| � µ.
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Finally, if |ν| � µ and E ∈ M is such that µ(E) = 0, we have |ν|(E) = 0 and thus
ν+(E) = ν−(E) = 0, which in turn implies that ν(E) = ν+(E)− ν−(E) = 0, and ν � µ. �

Absolute continuity is, in some sense, the antithesis of mutual singularity, that is, we have
the following result.

Proposition 4.3.3. If ν ⊥ µ and ν � µ then ν = 0.

Proof. Since ν ⊥ µ, there exists E,F ∈ M such that X = E ∪ F , E ∩ F = ∅, E is ν-null
and µ(F ) = 0. But since ν � µ, we have |ν| � µ and this implies that |ν|(F ) = 0, hence
X = E ∪ F is ν-null, that is, ν = 0. �

The name absolute continuity comes from the next result.

Theorem 4.3.4. Let ν be a finite signed measure and µ a positive measure on (X,M).
Then ν � µ iff for every ε > 0 there exists δ > 0 such that |ν(E)| < ε whenever µ(E) < δ.

Proof. Since ν � µ iff |ν| � µ and |ν(E)| 6 |ν|(E), it is sufficient to assume that ν is a
positive measure. It is clear that the ε-δ condition implies that ν � µ. For the converse,
assume that ν � µ and assume that the ε-δ condition does not hold. Then there exists ε0 > 0

such that for all n, we can find En ∈M with µ(En) 6 2−n and ν(En) > ε0.

Define Fk =
⋃∞
n=k En. Then {Fk} is a decreasing sequence and µ(Fk) 6 21−k and

ν(Fk) > ν(Ek) > ε0 for all k ∈ N. Now setting F =
⋂∞
k=1 we have µ(F ) = 0 and using the

continuity from above of ν (recall that ν is finite) we obtain ν(F ) = limk→∞ ν(Fk) > ε0,
which contradicts the fact that ν � µ. �

If µ is a positive measure and f is an extended µ-integrable function, the signed measure
ν defined by ν(E) =

∫
E
fdµ is clearly absolutely continuous with respect to µ, and it is finite

iff f ∈ L1(µ). We have then the following consequence of the previous theorem.

Corollary 4.3.5. if f ∈ L1(µ), for every ε > 0, there exists δ > 0 such that
∣∣∫
E
fdµ

∣∣ < ε

whenever µ(E) < δ.

Proof. Apply Theorem 4.3.4 to Ref and Imf . �

We will use the notation
dν = fdµ

to express the relationship ν(E) =
∫
E
fdµ, and sometimes, we will refer to fdµ as a signed

measure.

Before proving the main result of this section, we will make a technical lemma.
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Lemma 4.3.6. Suppose that ν and µ are finite positive measures on (X,M). Either ν ⊥ µ

or there exists ε > 0 such that µ(E) > 0 and ν > εµ on E (that is, E is a positive set for
ν − εµ).

Proof. Given ε > 0, choose n0 ∈ N such that n−1
0 < ε. For each n > n0, ν − n−1µ is a signed

measure on (X,M). Let X = Pn∪Nn be a Hahn decomposition for ν−n−1µ for each n > n0.
Let P =

⋃∞
n=n0

Pn and N =
⋂∞
n=n0

Nn = P c. Then N is a negative set for ν − n−1µ for all
n > n0, that is, 0 6 ν(N) 6 n−1µ(N) for all n > n0, and since µ is finite, this implies that
ν(N) = 0. If µ(P ) = 0 then µ ⊥ ν. If µ(P ) > 0, then µ(Pn) > 0 for some n > n0, and Pn
is a positive set for ν − n−1µ. Thus ν − εµ > ν − n−1µ > 0 in E := Pn, and the result is
proved. �

Theorem 4.3.7 (The Lebesgue-Radon-Nikodym Theorem). Let ν be a σ-finite signed
measure and µ a σ-finite positive measure on (X,M). There exist unique σ-finite signed
measures λ, ρ on (X,M) such that

λ ⊥ µ, ρ� µ and ν = λ+ ρ.

Moreover, there is an extended µ-integrable function f : X → R such that dρ = fdµ and
any two such functions are equal µ-a.e.

Proof. We will split the proof in three cases.

Case 1: ν and µ are finite positive measures.

In this case, define

F =

{
f ∈ L+(X) :

∫
E

fdµ 6 ν(E) for all E ∈M
}
.

Since ν is a positive measure, f ≡ 0 ∈ F , and thus F is nonempty. Also if f, g ∈ F then
h = max{f, g} ∈ F . In fact if A = {x ∈ X : f(x) > g(x)} we have∫

E

hdµ =

∫
E∩A

fdµ+

∫
E\A

gdµ 6 ν(E ∩ A) + ν(E \ A) = ν(E).

Let a = sup{
∫
fdµ : f ∈ F}, since a 6 ν(X) <∞, we can choose a sequence {fn} ⊂ F

such that
∫
fndµ→ a. Define gn = max{f1, · · · , fn} and f = sup fn. Then gn ∈ F for each

n ∈ N, gn increases pointwise to f and
∫
gndµ >

∫
fndµ for each n ∈ N. Thus from the MCT

we obtain ∫
fdµ = lim

n→∞

∫
gndµ > lim

n→∞

∫
fndµ = a.
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But another application of the MCT shows that for all E ∈M we have∫
E

fdµ = lim
n→∞

∫
E

gndµ 6 ν(E),

and hence f ∈ F , which implies that
∫
fdµ = a. Since a <∞, this implies in particular that

f <∞ µ-a.e., and we can redefine f , if necessary, so that f is a real-valued function.

Now we claim that the measure dλ = dν − fdµ (which is positive since f ∈ F) is singular
with respect to µ. If that is not the case, from Lemma 4.3.6, there exist E ∈ M and
ε > 0 such that µ(E) > 0 and λ > εµ on E. But then εχEdµ 6 dλ = dν − fdµ, that is,
(f + εχE)dµ 6 dν, so f + εχE ∈ F and

∫
(f + εχE)dµ = a + εµ(E) > a, which contradicts

the definition of a.

Thus the existence of λ, f and dρ = fdµ is proved. Now for the uniqueness, if dν =

dλ̃+ f̃dµ, we have dλ−dλ̃ = (f̃−f)dµ. But λ− λ̃ ⊥ µ (see Exercise 9), while (f̃−f)dµ� dµ,
hence dλ− dλ̃ = (f̃ − f)dµ = 0, so that λ = λ̃ and f = f̃ µ-a.e. (by Proposition 3.5.7), and
concludes the case of finite positive measures.

Case 2: Suppose that µ and ν are σ-finite positive measures.

In this case we can write X =
⋃∞
j=1 Aj with {Aj} ⊂ M a disjoint sequence with such

that µ(Aj), ν(Aj) <∞ for all j ∈ N. Define µj(E) = µ(E ∩ Aj) and νj(E) = ν(E ∩ Ej) for
all E ∈ M. Then applying Case 1, we have dνj = dλj + fjdµj for all j ∈ N, with λj ⊥ µj.
Since µj(Acj) = νj(A

c
j) = 0 we have λj(Acj) = νj(A

c
j)−

∫
Acj
fjdµj = 0, and we can assume that

fj = 0 on Acj. Define λ =
∑∞

j=1 λj and f =
∑∞

j=1 fj. Then

dν = dλ+ fdµ and λ ⊥ µ,

(see Exercise 9), and dλ and fdµ are σ-finite, as desired. The uniqueness follows as before.

Case 3: ν is a σ-finite signed measure.

Apply Case 2 to ν+ and ν− and subtract the results. The uniqueness follows again as in
Case 1. �

The decomposition ν = λ+ ρ where λ ⊥ µ and ρ� µ is called the Lebesgue decompo-

sition of ν with respect to µ. In the case where ν � µ, Theorem 4.3.7 says that dν = fdµ

for some f . This result is usually known as the Radon-Nikodym theorem, and f is called
the Radon-Nikodym derivative of ν with respect to µ. We denote it by dν

dµ
:

dν =
dν

dµ
dµ.
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Strictly speaking, dν
dµ

is the class of functions equal to f . The formulas suggested by the
differential notation are generally correct. For example, it is simple to see that

d(ν1 + ν2)

dµ
=
dν1

dµ
+
dν2

dµ
.

We also have the chain rule:

Proposition 4.3.8. Suppose that ν is a σ-finite signed measure and µ, λ are σ-finite
positive measures on (X,M) such that ν � µ and µ� λ.

(a) If g ∈ L1(ν), then g( dν
dµ

) ∈ L1(µ) and

∫
gdν =

∫
g
dν

dµ
dµ

(b) We have ν � λ and
dν

dλ
=
dν

dµ

dµ

dλ
λ-a.e..

Proof. (a). By considering ν+ and ν− separately, we may assume that ν > 0. The equation∫
gdν =

∫
g( dν

dµ
)dµ is true when g = χE, since by definition of dν

dµ
we have

∫
χEdν = ν(E) =

∫
E

dν

dµ
dµ.

Hence it hold by linearity for simple functions, by the MCT for nonnegative measurable
functions, and by linearity again for L1(ν) functions.

(b) Replacing ν, µ by µ, λ in (a), and taking g = χE( dν
dµ

) we obtain

ν(E) =

∫
gdµ =

∫
g
dµ

dλ
dλ =

∫
E

dν

dµ

dµ

dλ
dλ,

for all E ∈M, whence dν
dλ

= dν
dµ

dµ
dλ
λ-a.e. by Proposition 3.5.7. �

Corollary 4.3.9. If µ� λ and λ� µ then (dλ
dµ

)(dµ
dλ

) = 1 a.e. (with respect to either λ
or µ).

Example 4.3.10 (Nonexample). Let m the Lebesgue measure on R and ν the point mass
at zero on (R,BR), that is, for E ∈ BR we have

ν(E) =

{
1 if 0 ∈ E.
0 if 0 /∈ E.
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Then ν ⊥ µ, since R = {0} ∪ (R \ {0}), m({0}) = 0 and ν(R \ {0}) = 0.
The nonexistent Radon-Nikodym derivative dν

dµ
is popularly known as the Dirac δ-function.

We conclude this section with a simple, but useful, result.

Proposition 4.3.11. If µ1, · · · , µn are measures on (X,M), there is a measure µ such
that µj � µ for all j, namely, µ =

∑n
j=1 µj.

Proof. The proof is straightforward. �

4.4 SOLVED EXERCISES FROM [1, PAGE 92]

Exercise 8. ν � µ iff |ν| � µ iff ν+ � µ and ν− � µ.

Solution. This is Proposition 4.3.2.

Exercise 9. Suppose {νj} is a sequence of positive measures and µ a positive measure. If
νj ⊥ µ for all j then

∑∞
j=1 νj ⊥ µ, and if νj � µ for all j then

∑∞
j=1 νj � µ.

Solution. Assume that X = Ej ∪ Fj with Ej, Fj ∈ M, Ej ∩ Fj = ∅, νj(Fj) = 0 and
µ(Ej) = 0 for all j. Set E =

⋃∞
j=1Ej and F =

⋂∞
j=1 Fj = Ec. Then for ν =

∑∞
j=1 νj we have

νj(F ) = 0 for all j and

µ(E) 6
∞∑
j=1

µ(Ej) = 0 and ν(F ) =
∞∑
j=1

νj(F ) = 0,

and E,F ∈M, E ∩ F = ∅ and X = E ∪ F , hence ν ⊥ µ.
Now if νj � µ for all j and E ∈M is such µ(E) = 0, then νj(E) = 0 for all j and hence

ν(E) = 0, thus ν � µ.

Exercise 10. Theorem 4.3.4 mail fail when ν is not finite. Consider dν(x) = dx
x

and
dµ(x) = dx on (0, 1), or ν the counting measure and µ(E) =

∑
n∈E 2−n on N.

Solution. We know that ν � µ in the first case, since if µ(E) = 0 then ν(E) =
∫
E
dx
x

= 0.
But ν((0, δ)) =∞ and µ((0, δ)) = δ for all δ > 0.

As for the other case, clearly if µ(E) = 0 we must have E = ∅ and hence ν(E) = 0, thus
ν � µ. But for Ek = {k, k + 1, · · · } we have µ(Ek) = 21−k → 0 as k →∞ and ν(Ek) =∞
for all k.

Thus in both cases the conclusion of Theorem 4.3.4 is false.

- 190 -



Exercise 11. Let µ be a positive measure. A collection of functions {fα}α∈A ⊂ L1(µ) is
called uniformly integrable if for every ε > 0 there exists δ > 0 such that |

∫
E
fαdµ| < ε

for all α ∈ A whenever µ(E) < δ.

(a) Any finite subset of L1(µ) is uniformly integrable.

(b) If {fn} is a sequence in L1(µ) that converges to f in L1(µ), then {fn} is uniformly
integrable.

Solution to (a). The result is true for a single function by Corollary 4.3.5. Thus for
each ε, taking the minimum of the δ’s for each f in the finite subset we have the result.

Solution to (b). For ε > 0, choose n0 ∈ N such that∫
|fn − f | <

ε

2
for all n > n0.

Now for {f1, · · · , fn0−1} we know from item (a) that exists δ > 0 such that∣∣∣∣∫
E

fndµ

∣∣∣∣ < ε for all 1 6 n 6 n0 − 1 and
∣∣∣∣∫
E

fdµ

∣∣∣∣ < ε

2
,

for all E ∈M with µ(E) < δ.
Hence for n > n0 we have∣∣∣∣∫

E

fndµ

∣∣∣∣ 6 ∣∣∣∣∫
E

fdµ

∣∣∣∣+

∫
|fn − f | < ε,

and concludes the result.

Exercise 12. For j = 1, 2 let µj, νj be σ-finite positive measures on (Xj,Mj) such that
νj � µj. Then ν1 × ν2 � µ1 × µ2 and

d(ν1 × ν2)

d(µ1 × µ2)
(x1, x2) =

dν1

dµ1

(x1)
dν2

dµ2

(x2).

Solution. Set fj =
dνj
dµj

for j = 1, 2. If A×B is a rectangle inM1 ⊗M2 we have

ν1 × ν2(A×B) = ν1(A)ν2(B) =

∫
A

f1dµ1

∫
B

f2dµ2

=

∫
A×B

f1f2d(µ1 × µ2),
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where the last equality follows from Tonelli’s Theorem. By additivity of the integral, this
results also holds for finite disjoint union of rectangles. By uniqueness of the extension of the
product measure, we have then

ν1 × ν2(E) =

∫
E

f1f2d(µ1 × µ2).

This shows that ν1 × ν2 � µ1 × µ2 and the uniqueness of the Radon-Nikodym derivative
shows us that

d(ν1 × ν2)

d(µ1 × µ2)
= f1f2 =

dν1

dµ1

dν2

dµ2

.

Exercise 13. Let X = [0, 1], M = B[0,1], m = Lebesgue measure, and µ the counting
measure onM.

(a) m� µ but dm 6= fdµ for any f .

(b) µ has no Lebesgue decomposition with respect to m.

Solution to (a). Clearly if µ(E) = 0 we have E = ∅ and hence m(E) = 0. Assume that
for some f ∈ L+([0, 1]) we have dm = fdµ. For any x ∈ [0, 1] we have

0 = m({x}) =

∫
{x}

fdµ = f(x),

thus f ≡ 0 in [0, 1], which implies that dm = fdµ = 0 in [0, 1], which is a contradiction.
Solution to (b). Assume that dµ = dλ + fdm for some f ∈ L+([0, 1]), with λ ⊥ m.

Then [0, 1] = A ∪B, A,B ∈M, A ∩B = ∅ with m(A) = 0 and λ(B) = 0.
But given x ∈ [0, 1] we have 1 = µ({x}) = λ({x}) +

∫
{x} fdm = λ({x}), hence λ = µ.

This implies that µ(B) = 0 and hence B = ∅. But this gives A = [0, 1] and the fact that
m(A) = 0 gives us a contradiction.

Hence µ has no Lebesgue decomposition with respect to m.

Exercise 14. If ν is an arbitrary signed measure and µ is a σ-finite positive measure on
(X,M) such that ν � µ, there exists and extended µ-integrable function f : X → [−∞,∞]

such that dν = fdµ. Hints:

(a) If suffices to assume that µ is finite and ν is positive.

(b) With these assumptions, there exists E ∈M that is σ-finite for ν such that µ(E) > µ(F )

for all sets F that are σ-finite for ν.
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(c) The Radon-Nikodym theorem applies on E. If F ∩ E = ∅ then either ν(F ) = µ(F ) = 0

or µ(F ) > 0 and ν(F ) =∞.

Solution to (a). First note that since ν � µ then ν+ � µ and ν− � µ, hence we can
apply this result for ν+, ν− and subtract the result. Hence, we can assume that ν is positive.

Now since µ is σ-finite, we can write X =
⋃∞
j=1Aj with {Aj} a disjoint sequence inM

and µ(Aj) <∞ for all j. Define νj(E) = ν(E ∩ Aj) and µj(E) = µ(E ∩ Aj) for all E ∈M
and each j ∈ N. Thus νj � µj and µj is finite for each j, and if fj is such dνj = fjdµj,
considering f =

∑∞
j=1 fj we have dν = fdµ.

Hence it suffices to assume µ finite and ν positive.
Solution to (b). Let α = sup{µ(F ) : F is σ-finite for ν}. Since ∅ is σ-finite for ν and

ν is finite, α is well defined and 0 6 α <∞. By definition of α, there exists a sequence {Fn}
of σ-finite sets for ν such that

α− 1

n
< µ(Fn) 6 α.

Take E =
⋃∞
n=1 Fn. Then E is σ-finite for ν, since it is a countable union of σ-finite sets

for ν and µ(E) > µ(Fn) > α− 1
n
for all n ∈ N, hence µ(E) = α, and concludes the proof.

Solution to (c). Applying the Radon-Nikodym Theorem on E, there exists a extended
µ-integrable function g : E → [0,∞] such that dν = gdµ on E.

Now let F ∈ Ec. Then either µ(F ) = 0, which implies that ν(F ) = 0 since ν � µ, or
µ(F ) > 0. In the latter case, ν(F ) = ∞, since F cannot be σ-finite for ν, for otherwise
µ(E ∪ F ) = µ(E) + µ(F ) = α + µ(F ) > α, which contradicts the construction of E, since
E ∪ F is σ-finite for ν.

Thus we define f : X → [0,∞] by setting f(x) = g(x) for all x ∈ E and f(x) =∞ for all
x ∈ Ec. If G ∈M we have

• if µ(G ∩ Ec) = 0 :

ν(G) = ν(G ∩ E) + ν(G ∩ Ec)︸ ︷︷ ︸
=0

= ν(G ∩ E) =

∫
G∩E

gdµ =

∫
G∩E

fdµ

=

∫
G∩E

fdµ+

∫
G∩Ec

fdµ︸ ︷︷ ︸
=0

=

∫
G

fdµ.

• if µ(G ∩ Ec) > 0:

ν(G) =∞ = ν(G ∩ E) + ν(G ∩ Ec)︸ ︷︷ ︸
=∞

=

∫
G∩E

fdµ+

∫
G∩Ec

fdµ︸ ︷︷ ︸
=∞

=

∫
G

fdµ.
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Thus dν = fdµ onM and the result is proven.

Exercise 15. A measure µ on (X,M) is called decomposable if there is a family
F ⊂M with the following properties:

(i) µ(F ) <∞ for all F ∈ F ;

(ii) the members of F are disjoint and their union is X;

(iii) if µ(E) <∞ then µ(E) =
∑

F∈F µ(E ∩ F );

(iv) if E ⊂ X and E ∩ F ∈M for all F ∈ F then E ∈M.

(a) Every σ-finite measure is decomposable.

(b) If µ is decomposable and ν is any signed measure on (X,M) such that ν � µ there
exists a measurable f : X → [−∞,∞] such that ν(E) =

∫
E
fdµ for any E that is

σ-finite for µ, and |f | <∞ on any F ∈ F that is σ-finite for ν (Use Exercise 14 if ν is
not σ-finite).

Solution to (a). Let X =
⋃∞
j=1Aj where {Aj} is a disjoint sequence in M with

µ(Aj) <∞ for all j ∈ N. Then the family F = {Aj : j ∈ N} satisfies (i)-(iv).
Solution to (b). Working with ν+ and ν−, it suffices to assume that ν is a positive

measure. Since µ is decomposable, let F be a family satisfying (i)-(iv). Defining νF (E) =

ν(E ∩ F ) and µF (E) = µ(E ∩ F ), we have νF � µF and µF is finite. Hence we can apply
Exercise 14 to νF and µF , and obtain an extended µF -integrable function gF : X → [0,∞]

such that dνF = gFdµF . Since µF (G) = 0 for all G ∈ M with G ⊂ F c, we can assume
that gF = 0 on F c. If F is σ-finite for ν, then the function gF can be obtained use the
Radon-Nikodym Theorem, and it ensures us that we can take gF <∞ in F .

Define f : X → [0,∞] by f =
∑

F∈F gF . We have f |F = gF for all F ∈ F , and hence for
a > 0 and F ∈ F :

f−1([a,∞]) ∩ F = (gF )−1([a,∞]) ∈M,

and using property (iv) we obtain f−1([a,∞]) ∈M, which proves that f is measurable. Also
f <∞ in any F ∈ F that is σ-finite for ν.

Let E ∈M is σ-finite for µ. For each F ∈ F we have

ν(E ∩ F ) = νF (E) =

∫
E

gFdµF =

∫
E∩F

fdµ,

since µF = 0 on F c.
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We claim that µ(E ∩ F ) = 0 for all F ∈ F except possibly for a countable amount
of F ’s. In fact, since E is σ-finite for µ, let E =

⋃∞
j=1Ej with µ(Ej) < ∞ and {Ej} a

disjoint sequence inM. From (iii), µ(Ej) =
∑

F∈F µ(Ej ∩ F ) <∞, and hence the collection
Fj = {F ∈ F : µ(Ej∩F ) > 0} is countable. Therefore µ(E∩F ) = 0 for all F /∈ F̃ :=

⋃∞
j=1Fj .

Thus ν(E ∩ F ) = 0 for all F /∈ F̃ and hence

ν(E) =
∑
F∈F̃

ν(E ∩ F ) =
∑
F∈F̃

∫
E∩F

fdµ

=

∫
E∩(∪F∈F̃F )

fdµ+

∫
E∩(∪F /∈F̃F )

fdµ︸ ︷︷ ︸
=0

=

∫
E

fdµ.

Exercise 16. Suppose that µ, ν are positive σ-finite measures on (X,M) with ν � µ

and let λ = µ+ ν. If f =
dν

dλ
then 0 6 f < 1 µ-a.e. and

dν

dµ
=

f

1− f
.

Solution. We have µ� λ, ν � λ and λ� µ. Hence all the Radon-Nikodym derivatives
dµ
dλ
, dν
dλ

and dλ
dµ

are defined. Moreover we have

dν

dµ
=
dν

dλ

dλ

dµ
= f

dλ

dµ
and

dµ

dλ

dλ

dµ
= 1 µ-a.e.

Since the measures are σ-finite, we can assume that they are finite (decompose X into a
countable disjoint union of µ and ν finite measure sets). Thus, if F = {x ∈ X : f(x) > 1} is
such that 0 < µ(F ) <∞ we have

λ(F ) = µ(F ) + ν(F ) = µ(F ) +

∫
F

fdλ > µ(F ) + λ(F ),

and we obtain a contradiction, hence 0 6 f < 1 µ-a.e.

Finally note that for E ∈M we have

µ(E) = λ(E)−
∫
E

fdλ =

∫
E

(1− f)dλ,

and thus
dµ

dλ
= 1− f , which shows that

dλ

dµ
= 1

1−f , and hence

dν

dµ
=

f

1− f
.
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Exercise 17. Let (X,M, µ) be a σ-finite measure space, N a sub-algebra of M,
and ν = µ|N . If f ∈ L1(µ), there exists g ∈ L1(ν) (thus g is N -measurable) such that∫
E
fdµ =

∫
E
gdν for all E ∈ N ; if g̃ is another such function then g = g̃ ν-a.e. (in probability

theory, g is called conditional expectation of f on N ).

Solution. Define λ on N by dλ = fdν. Since ν = µ|N , we also have dλ = fdµ on
N . Since f ∈ L1(µ), λ is finite. Furthermore, if E ∈ N is such ν(E) = 0 then λ(E) = 0,
that is, λ� ν. We can thus use the Radon-Nikodym Theorem to obtain a unique (ν-a.e.)
N -measurable function g : X → [0,∞] such that

dλ = gdν.

Since λ is finite, g ∈ L1(ν). Also for E ∈ N we have∫
E

fdµ = λ(E) =

∫
E

gdν.

If g̃ is such a function, then
∫
E
g̃dν =

∫
E
fdµ = λ(E) and hence dλ = g̃dν, and thus g̃ = g

ν-a.e. from the uniqueness of the Radon-Nidodym derivative.

4.5 COMPLEX MEASURES

Definition 4.5.1. A complex measure on a measurable space (X,M) is a map
ν : M→ C such that:

(a) ν(∅) = 0;

(b) if {Ej} ⊂ M is a disjoint sequence, then

ν
( ∞⋃
j=1

Ej

)
=
∞∑
j=1

ν(Ej),

where the series converges absolutely.

In particular, a complex measure does not assume infinite values. Hence a positive measure
is a complex measure only if it is finite. A simple example of complex measure is dν = fdµ,
where µ is a positive measure and f ∈ L1(µ).
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Given a complex measure ν, we will write νr and νi for the real and imaginary parts of ν.
Thus νr and νi are signed measures that do not assume both the values ±∞. Thus both νr
and νi are finite, and therefore the range of ν is a bounded subset of C.

All the notions we have developed so far for signed measures have simple generalizations
to the case of complex measures, namely:

Definition 4.5.2. For a complex measure ν we define:

(a) L1(ν) = L1(νr) ∩ L1(νi) and for f ∈ L1(ν) we define∫
fdν =

∫
fdνr + i

∫
fdνi.

(b) If µ and ν are complex measures we say that ν ⊥ µ if νr ⊥ µr, νi ⊥ µr, νr ⊥ µi and
νi ⊥ µi.

(c) If ν is a complex measure and λ is a positive measure, we say that ν � λ if νr � λ and
νi � λ.

Also, all the results of the previous sections can be generalized to complex measure, one
only has to apply each one of them to the real and imaginary parts separately. In particular
we have:

Theorem 4.5.3 (The Lebesgue-Radon-Nikodym Theorem for Complex Measures). If ν
is a complex measure and µ is a σ-finite positive measure on (X,M), there exist a complex
measure λ and an f ∈ L1(µ) such that λ ⊥ µ and dν = dλ + fdµ. If also λ̃ ⊥ µ and
dν = dλ̃+ f̃dµ, then λ = λ̃ and f = f̃ µ-a.e.

As before, if ν � µ, we denote f of the previous theorem as dν
dµ
.

The total variation of a complex measure ν is the positive measure |ν| determined by
the property that if dν = fdµ, where µ is a positive measure, then d|ν| = |f |dµ.

First of all, we need to see that this is well defined. First, given a complex measure ν,
defining µ = |νr| + |νi|, we have ν � µ, and Theorem 4.5.3 gives us f ∈ L1(µ) such that
dν = fdµ. Thus such positive measure µ and f ∈ L1(µ) always exist.

Now assume that dν = f1dµ1 = f2dµ2. Let ρ = µ1 + µ2. Thus µ1 � ρ and µ2 � ρ, and
by Proposition 4.3.8 we have

f1
dµ1

dρ
dρ = dν = f2

dµ2

dρ
dρ,
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so that f1
dµ1
dρ

= f2
dµ2
dρ

ρ-a.e. Since dµ1
dρ

and dµ1
dρ

are nonnegative, we have

|f1|
dµ1

dρ
=

∣∣∣∣f1
dµ1

dρ

∣∣∣∣ =

∣∣∣∣f2
dµ2

dρ

∣∣∣∣ = |f2|
dµ2

dρ
,

and thus
|f1|dµ1 = |f1|

dµ1

dρ
dρ = |f2|

dµ2

dρ
dρ = |f2|dµ2.

Hence the definition of |ν| is independent of the choice of µ and f . Thus definition
also agrees with the previous definition of ν when ν is a signed measure, since in this case
dν = (χP − χN)d|ν| where X = P ∪N is a Hahn decomposition for ν and |χP − χN | = 1.

Proposition 4.5.4. Let ν be a complex measure on (X,M). We have

(a) |ν(E)| 6 |ν|(E) for all E ∈M.

(b) ν � |ν| and ∣∣∣∣ dνd|ν|
∣∣∣∣ = 1 |ν| − a.e.

(c) L1(ν) = L1(|ν|) and if f ∈ L1(ν) then∣∣∣∣∫ fdν

∣∣∣∣ 6 ∫ |f |d|ν|.
Proof. Let dν = fdµ as in the definition of |ν|. Then for E ∈M we have

|ν(E)| =
∣∣∣∣∫
E

fdµ

∣∣∣∣ 6 ∫
E

|f |dµ = |ν|(E),

which proves (a). From (a) it follows directly that ν � |ν|. Since

fdµ = dν =
dν

d|ν|
d|ν| = dν

d|ν|
fdµ,

and hence f dν
d|ν| = f |ν|-a.e. But either |ν| = 0 (which implies that ν = 0) or |f | > 0 |ν|-a.e.,

hence dν
d|ν| = 1 |ν|-a.e., which proves (b).

The proof of (c) is left as an exercise (see Exercise 18). �

Proposition 4.5.5. If ν1, ν2 are complex measures on (X,M), then |ν1 +ν2| 6 |ν1|+ |ν2|.

Proof. Using item (b) of the previous proposition, we have ν1 � |ν1| and ν2 � |ν2|. Then
for µ = |ν1|+ |ν2| we have ν1 � µ and ν2 � µ, and we can write dν1 = f1dµ and dν2 = f2dµ.
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Then d(ν1 + ν2) = (f1 + f2)dµ and

d|ν1 + ν2| = |f1 + f2|dµ 6 ( |f1|+ |f2| )dµ = d|ν1|+ d|ν2|,

and concludes the result. �

4.6 SOLVED EXERCISES FROM [1, PAGE 94]

Exercise 18. Prove Proposition 4.5.4, item (c).

Solução: First, since ν � |ν|, we have by definition νr � |ν| and νi � |ν|, and we can
consider dνr = frd|ν| and dνi = fid|ν|. Hence dν = fd|ν| where f = fr + ifi, and |f | = 1

|ν|-a.e. since d|ν| = |f |d|ν|.
Using Proposition 4.3.8, we have for g ∈ L1(ν) = L1(νr) ∩ L1(νi) that gfr ∈ L1(|ν|),

gfi ∈ L1(|ν|), and∫
gdν =

∫
gdνr + i

∫
gdνi =

∫
gfrd|ν|+ i

∫
gfid|ν| =

∫
gfd|ν|. (?)

Hence |g| = |gf | = |gfr + igfi| 6 |gfr|+ |gfi| ∈ L1(|ν|), thus g ∈ L1(|ν|).
For the other inclusion, if g ∈ L1(|ν|) then since |fr|, |fi| 6 1 |ν|-a.e. we have g|fr|, g|fi| ∈

L1(|ν|) and since d|νr| = |fr|d|ν|, d|νi| = |fi|d|ν|, we have g ∈ L1(|νr|) and g ∈ L1(|νi|). From
Exercise 3(a), this implies that g ∈ L1(νr) ∩ L1(νi) = L1(ν).

From (?) we have ∣∣∣∣∫ gdν

∣∣∣∣ =

∣∣∣∣∫ gfd|ν|
∣∣∣∣ 6 ∫ |gf |d|ν| = ∫ |g|d|ν|,

since |f | = 1 |ν|-a.e.

Exercise 19. If µ, ν are complex measures and λ is a positive measure, then ν ⊥ µ iff
|ν| ⊥ |µ| and ν � λ iff |ν| � λ.

Solution. From the definition of ν ⊥ µ we have:

(1) νr ⊥ µr and X = E1 ∪ F1, E1 ∩ F1 = ∅, E1 µr-null and F1 νr-null.

(2) νr ⊥ µi and X = E2 ∪ F2, E2 ∩ F2 = ∅, E2 µi-null and F2 νr-null.

(3) νi ⊥ µr and X = E3 ∪ F3, E3 ∩ F3 = ∅, E3 µr-null and F3 νi-null.
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(4) νi ⊥ µi and X = E4 ∪ F4, E4 ∩ F4 = ∅, E4 µi-null and F4 νi-null.

We write dνr = frd|ν|, dνi = fid|ν|, dµr = grd|µ| and dµi = gid|µ|. From (1), (2), (3) and
(4) we have fr = 0 |ν|-a.e. on F1 ∪ F2, fi = 0 |ν|-a.e. on F3 ∪ F4, gr = 0 |µ|-a.e. on E1 ∪ E3

and gi = 0 |µ|-a.e. on E2 ∪ E4.

Defining f = fr + ifi and g = gr + igi we have dν = fd|ν| and dµ = gd|ν|, hence
f = 0 |ν|-a.e on F̃ = (F1 ∪ F2) ∩ (F3 ∪ F4), |f | = 1 |ν|-a.e. on X \ F̃ , g = 0 |µ|-a.e. on
E := (E1 ∪ E3) ∩ (E2 ∪ E4) and |g| = 1 |µ|-a.e. on F := X \ E ⊂ F̃ . Hence |ν|(F ) = 0,
|µ|(E) = 0, X = E ∪ F and E ∩ F = ∅, hence |ν| ⊥ |µ|.

For the converse, let X = E ∪ F with E ∩ F = ∅, |ν|(F ) = 0 and |µ|(E) = 0. Let also
dν = fd|ν| and dµ = gd|µ|. We have f = 0 |ν|-a.e on F and |f | = 1 |ν|-a.e. on E, and g = 0

|µ|-a.e. on E and |g| = 1 |µ|-a.e. on F . If fr = Ref , fi = Imf , gr = Reg and gi = Img, then
dνr = frd|ν|, dνi = fid|ν|, dµr = grd|µ| and dµi = gid|µ|. Also E is µr, µi-null and F is νr, νi
null, and νs ⊥ µq for s, q = r, i, thus ν ⊥ µ.

Now if ν � λ we have νr � λ and νi � λ. Then if ρ = |νr| + |νi|, dνr = frdρ and
dνi = fidρ, for E ∈ M is such that λ(E) = 0 we obtain E νr, νi null and thus fr = fi = 0

ρ-a.e. in E. Thus
|ν|(E) =

∫
E

|fr + ifi|dρ = 0,

and thus |ν| � λ. The converse follows from |ν(E)| 6 |ν|(E), since if λ(E) = 0 we have
|ν|(E) = 0, which implies that |ν(E)| = 0, and hence νr(E) = νi(E) = 0, that is, νr � λ and
νi � λ, hence ν � λ.

Exercise 20. If ν is a complex measure on (X,M) and ν(X) = |ν|(X) then ν = |ν|.

Solution. For E ∈M we have

ν(E) + ν(Ec) = ν(X) = |ν|(X) = |ν|(E) + |ν|(Ec),

and thus
ν(Ec)− |ν|(Ec) = |ν|(E)− ν(E).

Since νr(Ec) 6 |νr(Ec)| 6 |ν(Ec)| 6 |ν|(Ec)| we have

Re(ν(Ec)− |ν|(Ec)) = νr(E
c)− |ν|(Ec) 6 0 and Re(|ν|(E)− ν(E)) = |ν|(E)− νr(E) > 0.

Hence Re(|ν|(E)− ν(E)) = |ν|(E)− νr(E) = 0, which implies that |ν|(E) = νr(E), for
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each E ∈M, and in particular νr(E) > 0 for all E ∈M. Now we have

νr(E)2 = |ν|(E)2 > |ν(E)|2 = νr(E)2 + νi(E)2,

and hence νi(E) = 0 for all E ∈M. Therefore

|ν|(E) = νr(E) = νr(E) + iνi(E) = ν(E),

for all E ∈M, that is, |ν| = ν.

Exercise 21. Let ν be a complex measure on (X,M). If E ∈M, define

µ1(E) = sup

{
n∑
j=1

|ν(Ej)| : n ∈ N, E1, · · · , En disjoint, E =
n⋃
j=1

Ej

}
,

µ2(E) = sup

{
∞∑
j=1

|ν(Ej)| : E1, E2, · · · disjoint, E =
∞⋃
j=1

Ej

}
,

µ3(E) = sup

{∣∣∣∣∫
E

fdν

∣∣∣∣ : |f | 6 1

}
.

Then µ1 = µ2 = µ3 = |ν| (First show that µ1 6 µ2 6 µ3. To see that µ3 = |ν|, let
f = dν/d|ν| and apply Proposition 4.5.4. To see that µ3 6 µ1, approximate f by simple
functions).

Solution: Note that if {Ej}nj=1 is a disjoint sequence with E =
⋃n
j=1 Ej , defining Ej = ∅

for j > n, {Ej} is a disjoint sequence, E =
⋃∞
j=1 Ej and

n∑
j=1

|ν(Ej)| =
∞∑
j=1

|ν(Ej)| 6 µ2(E),

taking the supremum on the left hand side of this inequality we have µ1(E) 6 µ2(E).

Now if {Ej} is a disjoint sequence with E =
⋃∞
j=1Ej, define g =

∑∞
j=1 sgn ν(Ej)χEj .

Then g is measurable and |g| 6 1, moreover

∞∑
j=1

|ν(Ej)| =
∞∑
j=1

sgn ν(Ej)ν(Ej) =
∞∑
j=1

∫
sgn ν(Ej)χEjdν =

∫
E

gdν =

∣∣∣∣∫
E

gdν

∣∣∣∣ 6 µ3(E),

and taking the supremum on the left hand side of this inequality we have µ2(E) 6 µ3(E).
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Now clearly for |f | 6 1 we have∣∣∣∣∫
E

fdν

∣∣∣∣ 6 ∫
E

|f |d|ν| 6 |ν|(E),

and taking the supremum on the left hand side of this inequality we have µ3(E) 6 |ν|(E).
Taking f = dν/d|ν| we know that |f | = 1 |ν|-a.e., and we can redefine f in a |ν|-null set, if
necessary, so that |f | = 1 everywhere. Thus using Proposition 4.5.4 we have

|ν|(E) =

∫
E

d|ν| =
∫
E

|f |2d|ν| =
∫
E

ffd|ν| =
∫
E

fdν
(?)
=

∣∣∣∣∫
E

fdν

∣∣∣∣ 6 µ3(E),

where in (?) we used the fact that the left hand side is equal to |ν|(E) (first equality of the
equation) and hence is it a positive real number.

Now to show that µ3 6 µ1, fix f with |f | 6 1 and E ∈ M. We know that there exists
a sequence of simple measurable complex functions {sn} such that sn → f uniformly on X
(since f is bounded), and 0 6 |s1| 6 |s2| 6 · · · 6 |f | (see Proposition 3.1.22). Hence, given ε
there exists n0 such that

sup
x∈X
|sn0(x)− f(x)| < ε

|ν|(X)
,

and we recall that |ν|(X) <∞, since ν is a complex measure. We have sn0 =
∑n

j=1 ajχAj ,
and sn0χE =

∑n
j=1 ajχEj , where Ej = Aj ∩ E, with {Aj}nj=1 disjoint and X =

⋃n
j=1Aj,

therefore {Ej}nj=1 is disjoint and E =
⋃n
j=1 Ej. Also, since |sn0 | 6 |f | 6 1, we have |aj| 6 1

for all j = 1, · · · , n. Hence∣∣∣∣∫
E

fdν

∣∣∣∣ 6 ∣∣∣∣∫
E

(f − sn0)dν

∣∣∣∣+

∣∣∣∣∫
E

sn0dν

∣∣∣∣
6 ε+

∣∣∣∣∫ sn0χEdν

∣∣∣∣ = ε+

∣∣∣∣∣
n∑
j=1

ajν(Ej)

∣∣∣∣∣
6 ε+

n∑
j=1

|ν(Ej)| 6 ε+ µ1(E).

Taking the supremum for |f | 6 1 on the left hand side we have µ3(E) 6 ε+ µ1(E), and
since this holds for each ε > 0, we have µ3(E) 6 µ1(E), and we complete the proof.
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CHAPTER5

LP SPACES

The theory of Lp spaces comes to generalize the idea of L1 functions, are they have
extreme importance in the study of differential equations.

5.1 BASIC THEORY OF Lp SPACES

We will fix now a measure space (X,M, µ), where µ is a positive measure. Unless clearly
stated otherwise, we will be speaking of this fixed space.

Definition 5.1.1. Let f : X → C be a measurable function on X and 0 < p <∞. We
define

‖f‖p =

[∫
|f |pdµ

]1/p

,

(where ‖f‖p could be ∞), and also

Lp(X,M, µ) = {f : X → C : f is measurable and ‖f‖p <∞}.

We will abbreviate Lp(X,M, µ) by Lp(µ) (when X and M are understood) or Lp(X)

(whenM and µ are understood), or simply by Lp (when (X,M, µ) is understood). As well
as for L1, we will see Lp as a space of classes of functions that are equal µ-almost everywhere,
and we will use the notation f ∈ Lp to mean that f is equal µ-a.e. to a function in Lp.

If A is a nonempty set, we define `p(A) to be Lp(A,P(A), µ), where µ is the counting
measure. We will denote `p(N) simply by `p.

It is clear that Lp is a complex vector space (or real, if we consider only real-valued
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functions), since for f, g ∈ Lp we have

|f + g|p 6 (2 max{|f |, |g|})p 6 2p(|f |p + |g|p),

so that f + g ∈ Lp.
We clearly have ‖f‖p = 0 iff f = 0 µ-a.e. and ‖cf‖p = |c|‖f‖p. Hence, to verify that ‖ · ‖p

is in fact a norm in Lp, it remains to show the triangle inequality.

Before proving the triangle inequality, we will see that it fails for 0 < p < 1.

Example 5.1.2. Suppose a, b > 0 and 0 < p < 1. For t > 0 we have tp−1 > (a + t)p−1

and integrating both sides with respect to t, from 0 to b we have

ap + bp > (a+ b)p. (5.1.1)

Thus if E,F are disjoint sets of positive finite measure on X, setting a = µ(E)1/p,
b = µ(F )1/p, f = χE and g = χF we have |f + g|p = f + g and

‖f + g‖p =

[∫
|f + g|p

]1/p

=

[∫
(f + g)

]1/p

= (µ(E) + µ(F ))1/p

= (ap + bp)1/p > a+ b = ‖f‖p + ‖g‖p

Now we want to prove that the triangle inequality is in fact true for p > 1. To do that,
we first need to prove the most important inequality for Lp spaces, the Hölder inequality.
We will prove this inequality after proving the following simple lemma.

Lemma 5.1.3. If a, b > 0 and 0 < λ < 1 then

aλb1−λ 6 λa+ (1− λ)b,

with equality iff a = b.

Proof. The result is trivial for b = 0. For b > 0, diving both sides by b we have(a
b

)λ
6 λ

a

b
+ (1− λ),

and setting t = a/b, all we have to show is that tλ 6 λt+ (1− λ) for all t > 0 with equality
iff t = 1.

To that, define h(0,∞)→ R by h(t) = tλ−λt. We have h′(t) = λtλ−1−λ, hence h′(t) = 0

iff t = 1, and h′(t) > 0 for 0 < t < 1 and h′(t) < 0 for t > 1. Therefore h is strictly increasing
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for 0 < t < 1 and strictly decreasing for t > 1, attaining its maximum value at t = 1, namely
1− λ, and the result is proven. �

Theorem 5.1.4 (Hölder Inequality). Suppose 1 < p <∞ and 1
p

+ 1
q

= 1 (that is, q = p
p−1

).
If f and g are measurable functions on X, then

‖fg‖1 6 ‖f‖p‖g‖q. (5.1.2)

In particular, if f ∈ Lp and g ∈ Lq, then fg ∈ L1, and in this case equality holds in
(5.1.2) iff α|f |p = β|g|q µ-a.e. for some constants α, β > 0 not both null.

Proof. If ‖f‖p = 0 or ‖g‖q = 0 then f = 0 a.e. or g = 0 a.e., and hence fg = 0 a.e., and the
inequality is trivial. If ‖f‖p =∞ or ‖g‖q =∞, then the result is also trivial.

Now we note that if the result is true for f and g, and a, b ∈ C, then the result is also
true for af and bg, since both sides of the inequality is scaled by |ab|.

Thus, it suffices to prove the result for ‖f‖p = ‖g‖q = 1 and the equality holds iff
|f |p = |g|q a.e. In this case, we will apply Lemma 5.1.3 with a = |f(x)|p, b = |g(x)|q and
λ = p−1 to obtain

|f(x)g(x)| 6 1

p
|f(x)|p +

1

q
|g(x)|q, (5.1.3)

and integrating both sides we obtain

‖fg‖1 6
1

p
‖f‖pp +

1

q
‖g‖qq =

1

p
+

1

q
= 1 = ‖f‖p‖g‖q.

Equality holds iff it holds a.e. in (5.1.3), which is true precisely when |f |p = |g|p a.e. �

The condition 1
p

+ 1
q

= 1 appears frequently in Lp theory. If 1 < p < ∞, the number
q such that 1

p
+ 1

q
= 1 (that is, q = p

p−1
) is called the conjugate exponent to p. Clearly

1 < q <∞.

Theorem 5.1.5 (Minkowski’s Inequality). If 1 6 p <∞ and f, g ∈ Lp, then

‖f + g‖p 6 ‖f‖p + ‖g‖p.

Proof. The result is obvious if p = 1 or if f + g = 0 a.e. Otherwise, since

|f + g|p = |f + g||f + g|p−1 6 (|f |+ |g|)|f + g|p−1, (5.1.4)

using the Hölder inequality, and noting that (p− 1)q = p when q is the conjugate exponent
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to p, we have ∫
|f + g|p 6 ‖f‖p‖|f + g|p−1‖q + ‖g‖p‖|f + g|p−1‖q

= (‖f‖p + ‖g‖p)
(∫
|f + g|p

)1/q

,

(5.1.5)

and hence

‖f + g‖p =

(∫
|f + g|p

)1−1/q

6 ‖f‖p + ‖g‖p.

�

With this result, we see that (Lp, ‖ · ‖p) is a normed vector space. But more is true:

Theorem 5.1.6. For 1 6 p < ∞, Lp is a Banach space, that is, it is a normed vector
space which is complete with the metric defined by d(f, g) = ‖f − g‖p.

Proof. We will show that every absolutely convergent series is convergent in Lp, that is,
consider {fk} ⊂ Lp such that

∑∞
k=1 ‖fk‖p = B <∞. Let

G(x) =
∞∑
k=1

|fk(x)| and Gn(x) =
n∑
k=1

|fk(x)| for all n ∈ N and x ∈ X.

We have ‖Gn‖p 6
∑n

k=1 ‖fk‖p 6 B for all n ∈ N. Moreover Gn(x) increases to G(x) for
each x ∈ X, and hence Gp

n(x) increases to Gp(x) for each x ∈ X. Thus we can use the MCT
to conclude that ∫

Gp = lim
n→∞

∫
Gp
n = lim

n→∞
‖Gn‖pp 6 Bp <∞,

which shows us that G ∈ Lp, and in particular, G(x) <∞ a.e., and we obtain that the series∑∞
k=1 fk(x) converges a.e. Defining

F (x) = lim sup
n→∞

n∑
k=1

fk(x),

we have F measurable and F (x) =
∑∞

k=1 fk(x) ∈ C a.e. Moreover, we have |F | 6 G and
hence F ∈ Lp. Also |F −

∑n
k=1 fk| 6 (2G)p ∈ L1, so by the DCT we obtain∥∥∥∥∥F −

n∑
k=1

fk

∥∥∥∥∥
p

p

=

∫ ∣∣∣∣∣F −
n∑
k=1

fk

∣∣∣∣∣
p

→ 0,

thus the series
∑∞

k=1 fk converges in the Lp norm, and concludes the result. �

Proposition 5.1.7. For 1 6 p <∞, the set of simple functons s =
∑n

j=1 ajχEj , where
µ(Ej) <∞ for all j, is dense in Lp.
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Proof. If s =
∑n

j=1 ajχEj with µ(Ej) <∞ for all j, with the Ej disjoint and aj 6= 0, we have
|s|p =

∑n
j=1 |aj|pχEj and hence

∫
sp =

n∑
j=1

|aj|pµ(Ej) <∞,

which shows that s ∈ Lp. Now if f ∈ Lp, f is measurable and we can choose a sequence
of simples functions {sn} such that |sn| 6 |f | and sn → f pointwise, using Proposition
3.1.22. Then sn ∈ Lp, since |sn|p 6 |f |p and |sn − f |p 6 2p|f |p ∈ L1, and the DCT gives us
‖sn − f‖p → 0 as n → ∞. Moreover if fn =

∑
ajχEj with {Ej} disjoint and aj nonzero,

we must have µ(Ej) < ∞ for all j, since
∑
|aj|pµ(Ej) =

∫
|fn|p < ∞, and the proof is

complete. �

To complete the definitions of Lp spaces, we introduce a space corresponding to the
limiting value p = ∞. If f is a measurable function on X, for each a > 0 we define
Λa = {x ∈ X : |f(x)| > a}, J = {a > 0: µ(Λa) = 0} and also

‖f‖∞ = inf J.

with the convention that inf ∅ =∞.
We observe that the infimum is actually attained: in fact, let α = ‖f‖∞. If α = ∞,

there is nothing to prove. Now assume that α < ∞. There exists a sequence an ∈ Λ with
α 6 an < α + n−1. We have then

Λα =
∞⋃
n=1

Λan ,

and from the monotonicity of µ we obtain

µ(Λα) 6
∞∑
n=1

µ(Λan) = 0,

hence α ∈ J and the infimum is attained.
The number ‖f‖∞ is called the essential supremum of |f | and it sometimes written

‖f‖∞ = esssupx∈X |f(x)|.

Proposition 5.1.8. For a measurable function f : X → C there exists a set E ∈M such
that µ(Ec) = 0 and |f(x)| 6 ‖f‖∞ for all x ∈ E.

Proof. Define E = {x ∈ X : |f(x)| 6 ‖f‖∞}, which is in M, since f is measurable. Now
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since the infimum ‖f‖∞ is attained in its definition, we have

µ(Ec) = µ({x ∈ X : |f(x)| > ‖f‖∞}) = 0,

and concludes the proof. �

We now define

L∞ = L∞(X,M, µ) = {f : X → C : f is measurable and ‖f‖∞ <∞},

with the usual convention that two functions that are equal a.e. (and hence have the same
esssup) define the same element in L∞.

Proposition 5.1.9. f ∈ L∞ iff there is a bounded measurable function g such that f = g

a.e.

Proof. Let E ∈M be as in Proposition 5.1.8 and define g = fχE. Thus g is measurable and
|g(x)| 6 ‖f‖∞ <∞ for all x ∈ X. �

Remark 5.1.10. Note that once (X,M) is fixed, L∞(X,M, µ) depends on µ only as µ
determines which sets have zero measure. If µ� ν and ν � µ, then clearly L∞(µ) = L∞(ν).

When µ is not semifinite, it is appropriate to consider a slightly different definition of
L∞, and this will be explored in Exercises 23-25.

The results we have proved for Lp with 1 6 p <∞ can be extended to the case of p =∞,
as follows:

Theorem 5.1.11. We have

(a) If f, g are measurable functions on X, then ‖fg‖1 6 ‖f‖1‖g‖∞. If f ∈ L1 and g ∈ L∞,
then ‖fg‖1 = ‖f‖1‖g‖∞ iff |g(x)| = ‖g‖∞ a.e. on the set where f(x) 6= 0.

(b) ‖ · ‖∞ is a norm on L∞.

(c) ‖fn − f‖∞ → 0 iff there exists E ∈M such that µ(Ec) = 0 and fn → f uniformly on E.

(d) L∞ is a Banach space.

(e) The simple functions are dense in L∞.
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Proof. (a). The first inequality is trivial. Now if f ∈ L1 and g ∈ L∞, if |g(x)| = ‖g‖∞ a.e.
on the set where f(x) 6= 0 then ‖fg‖1 = ‖f‖1‖g‖∞. Now assume that ‖fg‖1 = ‖f‖1‖g‖∞.
We have |f(x)g(x)| 6 |f(x)|‖g‖∞ a.e. and then the hypothesis implies that∫

(|f |‖g‖∞ − |fg|) = 0,

hence |f |‖g‖∞ − |fg| = 0 a.e., which in turn implies that ‖g‖∞ = |g| a.e. on the set where
f(x) 6= 0.

(b). If f, g ∈ L∞, then |f + g| 6 ‖f‖∞ + ‖g‖∞ a.e., and hence f + g ∈ L∞ with
‖f + g‖∞ 6 ‖f‖∞ + ‖g‖∞. Clearly if ‖f‖∞ = 0 then f = 0 a.e. and ‖cf‖∞ = |c|‖f‖∞, and
thus ‖ · ‖ is a norm in L∞.

(c). If fn → f in L∞, let E =
⋂∞
n=1{x ∈ X : |fn(x)− f(x)| 6 ‖fn − f‖∞}. Thus

Ec =
∞⋃
n=1

{x ∈ X : |fn(x)− f(x)| > ‖fn − f‖∞},

and since µ({x ∈ X : |fn(x) − f(x)| > ‖fn − f‖∞}) = 0 for all n, we have µ(Ec) = 0.
Moreover,

sup
x∈E
|fn(x)− f(x)| 6 ‖fn − f‖∞ → 0,

that is, fn → f uniformly in E. The converse is trivial (note that the conclusion of the
converse is that f ∈ L∞ and fn → f in L∞) .

(d). If {fn} is a Cauchy sequence in L∞, given ε > 0 there exists n0 such that

‖fn − fm‖∞ < ε for all n,m > n0.

Set E =
⋂∞
n,m=1{x ∈ X : |fn(x)− fm(x)| 6 ‖fn − fm‖∞}. Thus

Ec =
∞⋃

n,m=1

{x ∈ X : |fn(x)− fm(x)| > ‖fn − fm‖∞},

and hence µ(Ec) = 0, since all the sets on the right are µ-null.

Thus for all x ∈ E we have |fn(x) − fm(x)| < ε for n,m > n0. Hence we can define
f(x) = lim

n→∞
fn(x) for each x ∈ E. Setting f = 0 on X \ E we have f measurable, and for

n > n0 and all x ∈ E
|fn(x)− f(x)| 6 ε,

thus fn → f uniformly on E. Hence from item (b) we have f ∈ L∞ and fn → f in L∞,
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which proves that L∞ is a Banach space.
(e). Clearly if s =

∑n
j=1 ajχEj is a simple function, we have supx∈X |s(x)| 6 maxj=1,··· ,n |aj| =

‖s‖∞ < ∞. Hence s ∈ L∞. Also if f is a measurable function in L∞, there exists a se-
quence {sn} of simple measurable functions and a set E ∈ M with µ(Ec) = 0 such that
|sn| 6 |f | 6 ‖f‖∞ for all n and x ∈ E and sn → f uniformly on E (see Proposition 5.1.9).

Thus given ε > 0, we can choose n0 such that |sn(x)− f(x)| < ε for all n > n0 and x ∈ E.
Hence ‖sn − f‖∞ 6 ε for all n > n0, and thus sn → f in L∞, which proves that the simple
functions are dense in L∞. �

In view of item (a) of this theorem and the formal equality 1−1 +∞−1 = 1, it is natural
to consider 1 and ∞ conjugate exponents of each other, and we do just that from now on.

Item (c) of this result shows that ‖ · ‖∞ is closely related (but not identical with) the
uniform norm ‖ · ‖u given by ‖f‖u = supx∈X |f(x)|. We have, however, the next result:

Proposition 5.1.12. Let µ be any Borel measure in a topological space X that assigns
positive values to every nonempty open set. Then if f : X → C is continuous we have
‖f‖∞ = ‖f‖u.

Proof. Since the set {x ∈ X : |f(x)| > ‖f‖∞} is open in X, it either is empty or it has
positive measure. But from the definition of ‖f‖∞, it must have zero measure, and hence
|f(x)| 6 ‖f‖∞ for all x ∈ R. Thus ‖f‖u 6 ‖f‖∞.

On the other hand, if ‖f‖u < ‖f‖∞ there exists M > 0 such that |f(x)| 6 M < ‖f‖∞
for all x ∈ R. But then {x ∈ X : |f(x)| > M} = ∅, and contradicts the definition of ‖f‖∞.
Thus ‖f‖u = ‖f‖∞. �

Using this result, when restricting ourselves to continuous functions and such Borel
measures, we may use the notations ‖f‖u and ‖f‖∞ without distinction, and we may regar
the space of bounded continuous functions as a (closed!) subspace of L∞.

We have, in general, Lq ( Lp for all p 6= q. To see what is the issue, it is useful to have
this following example in mind.

Example 5.1.13. Consider m the Lebesgue measure on X = (0,∞) and set fa(x) = x−a.

1. faχ(0,1) ∈ Lp iff p < a−1.

2. faχ(1,∞) ∈ Lp iff p > a−1.

Thus that are two apparent reasons for why a function f fails to be in Lp. Either |f |p

blows up too fast near a given point, or |f |p fails to decay sufficiently rapidly at infinity.
In the first situation, the behavior of |f |p becomes worse as p increases, while the second
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becomes better. In other words, if p < q, function in Lp can be locally more singular than
functions in Lq, whereas functions in Lq can be globally more spread out than functions in
Lp. These somewhat imprecise ideas are a rather accurate guide to the general situation,
which we present in the next results.

Proposition 5.1.14. If 0 < p < q < r 6∞, then Lq ⊂ Lp + Lr, that is, each f ∈ Lq is
the sum of a function in Lp and a function in Lr.

Proof. If f ∈ Lq, let E = {x ∈ X : |f(x)| > 1} and set g = fχE and h = fχEc . Then
|g|p = |f |pχE 6 |f |qχE 6 |f |q, hence g ∈ Lp, and |h|r = |f |rχEc 6 |f |qχEc 6 |f |q, hence
h ∈ Lr (for q < r <∞). For r =∞, we have ‖h‖∞ 6 1, and the proof is complete. �

Proposition 5.1.15. If 0 < p < q < r 6∞, then Lp ∩Lr ⊂ Lq and ‖f‖q 6 ‖f‖λp‖f‖1−λ
r ,

where λ ∈ (0, 1) is defined by
1

q
=
λ

p
+

1− λ
r

,

that is, λ =
p

q
· r − q
r − p

.

Proof. If r =∞, we have λ = p/q and |f |q = |f |p|f |q−p 6 |f |p‖f‖q−p∞ , so

‖f‖q 6 ‖f‖p/qp ‖f‖(q−p)/q
∞ = ‖f‖λp‖f‖1−λ

∞ .

Now we consider the case r <∞. We have |f |q = |f |λq|f |(1−λ)q and we will use Hölder’s
inequality with the pair of conjugate exponents p/λq and r/(1− λ)q to obtain∫

|f |q =

∫
|f |λq|f |(1−λ)q 6 ‖|f |λq‖p/λq‖f (1−λ)q‖r/(1−λ)q

=

[∫
|f |p
]λq/p [∫

|f |r
](1−λ)q/r

= ‖f‖λqp ‖f‖(1−λ)q
r ,

and taking the q-th root on both sides we conclude the proof. �

Proposition 5.1.16. If A is any set and 0 < p < q 6 ∞, then `p(A) ⊂ `q(A) and
‖f‖q 6 ‖f‖p.

Proof. If q =∞, it is clear that

‖f‖p∞ =

(
sup
α∈A
|f(α)|

)p
= sup

α∈A
|f(α)|p 6

∑
α∈A

|f(α)|p = ‖f‖pp,

so that ‖f‖∞ 6 ‖f‖p.
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For q <∞, we use Proposition 5.1.15, with r =∞ and λ = p/q to obtain

‖f‖q 6 ‖f‖λp‖f‖1−λ
∞ 6 ‖f‖λp‖f‖1−λ

p = ‖f‖p.

�

Proposition 5.1.17. If µ(X) <∞ and 0 < p < q 6∞, then Lq(µ) ⊂ Lp(µ) and

‖f‖p 6 ‖f‖qµ(X)
1
p
− 1
q .

Proof. If q =∞, we have ∫
|f |p 6 ‖|f |p‖∞µ(X) = ‖f‖p∞µ(X),

and the result follows taking the p-th root. For q <∞ we will use Hölder’s inequality with
the pair of conjugate exponents q/p and q/(q − p) to obtain

∫
|f |p =

∫
|f |p · 1 6 ‖|f |p‖q/p‖1‖q/(q−p) =

[∫
|f |q
]p/q

µ(X)(q−p)/q = ‖f‖pqµ(X)(q−p)/q,

and taking p-th roots, the result is proven. �

Among the Lp spaces, three have great importance: L1, which is the landmark of
integration theory; L∞, because of its close relation with uniform convergence; and L2 which
is a Hilbert space with inner product given by

(f, g)2 =

∫
fgdµ.

Unfortunately, L1 and L∞ are pathological at some points, one of these is the duality
theorem we will present later, see Theorem 5.3.3. So sometimes it is useful to work in the
intermediate spaces Lp for 1 < p <∞.

5.2 SOLVED EXERCISES FROM [1, PAGE 186]

Exercise 1. When does equality hold in Minkowski’s inequality? (The answer is different
for p = 1 and for 1 < p <∞. What about p =∞?)
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Solution. If p = 1, the equality occurs iff |f + g| = |f | + |g| a.e., which happens iff
fg > 0 a.e. For the last claim, note that

|f + g| = |f |+ |g|

⇔ |f + g|2 = (|f |+ |g|)2

⇔ |f + g|2 = |f |2 + 2|fg|+ |g|2

⇔ (f + g)(f + g) = |f |2 + 2|fg|+ |g|2

⇔ |f |2 + 2Re(fg) + |g|2 = |f |2 + 2|fg|+ |g|2

⇔ Re(fg) = |fg| = |fg|,

and since Re(z) = |z| iff z > 0, the claim is proven.

For 1 < p <∞, the equality holds iff it holds in (5.1.4) and (5.1.5). In (5.1.4), the equality
holds iff |f + g| = |f | + |g|, that is, iff fg > 0 a.e. In (5.1.5), equality holds if it holds in
Hölder’s inequality for f and |f + g|p−1 (with exponents p and q, respectively), and for g and
|f + g|p−1 (with exponents p and q, respectively). That is there exists nonnegative constants
c1, c2, c3, c4, (with c1, c2 not both null, and c3, c4 not both null) such that a.e. we have

c1|f |p = c2|f + g|(p−1)q = c2|f + g|p and c3|g|p = c4|f + g|(p−1)q = c4|f + g|p.

If c2 = c4 = 0, then f = g = 0 a.e. and the equality holds. If c4 > 0 we have

c1|f |p = c2|f + g|p =
c2

c4

c4|f + g|p =
c2

c4

c3|g|p,

and taking p-th roots, we obtain c1/p
1 |f | =

(
c2
c4
c3

)1/p

|g| a.e. with not both constants zero
(analogously we treat the case c2 > 0). Hence equality holds in (5.1.5) iff there exists
nonnegative constants α, β, not both zero, such that α|f | = β|g| a.e.

Thus equality holds in Minkowski’s inequality for 1 < p <∞ iff fg > 0 and there exists
nonnegative constants α, β, not both zero, such that α|f | = β|g| a.e.

For p =∞, equality holds if fg > 0 a.e., since in this case |f + g| = |f |+ |g| a.e. On the
other hand, if equality holds, then a.e. we have

|f + g| 6 |f |+ |g| 6 ‖f‖∞ + ‖g‖∞ = ‖f + g‖∞.

If |f + g| < |f | + |g| in a positive measure set, then ‖f + g‖∞ < ‖f‖∞ + ‖g‖∞, hence
|f + g| = |f |+ |g| a.e. and this holds iff fg > 0 a.e.
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Exercise 2. Prove Theorem 5.1.11.

Solution. This is done in the text.

Exercise 3. If 1 6 p < r 6∞, Lp ∩ Lr is a Banach space with norm ‖f‖ = ‖f‖p + ‖f‖r,
and if p < q < r, the inclusion map Lp ∩ Lr → Lq is continuous.

Solution. Clearly Lp ∩ Lr is a vector subspace (both of Lp and Lr), and ‖ · ‖ is a norm
in Lp ∩Lr. Now if {fn} is a Cauchy sequence in Lp ∩Lr, from the definition of ‖ · ‖ it follows
directly that {fn} is also a Cauchy sequence in Lp and Lr. Hence there exists functions
g ∈ Lp and h ∈ Lr such that fn → g in Lp and fn → h in Lr.

Assume r <∞. Using the result of Exercise 9 below, since fn → g in Lp (and 1 6 p <∞),
fn → g in measure and hence there exists a subsequence {fnk} of {fn} such that fnk → g a.e.
Then since fnk → h in Lr, using again Exercise 9, there exists a subsequence {fnkj } of {fnk}
such that fnkj → h a.e. But this implies that g = h a.e. and hence g ∈ Lp ∩ Lr and fn → g

in Lp ∩ Lr.
If r =∞, since fn → h in L∞, there exists a set E ∈M with µ(Ec) = 0 such that fn → h

uniformly in E. But then fn → g in Lp(E) and using Exercise 9, up to a subsequence, fn → g

a.e. in E. Hence g = h a.e. in E, and since µ(Ec) = 0, g = h a.e. Hence g ∈ Lp ∩ L∞ and
fn → g in Lp ∩ L∞.

Therefore Lp ∩ Lr with the norm ‖ · ‖ is a Banach space.

If remains to prove the second claim. From Proposition 5.1.15 we have Lp ∩ Lr ⊂ Lq and

‖f‖q 6 ‖f‖λp‖f‖1−λ
r ,

where λ ∈ (0, 1) is such 1
q

= λ
p

+ 1−λ
r
. Using Lemma 5.1.3 we obtain

‖f‖q 6 λ‖f‖p + (1− λ)‖f‖r 6 ‖f‖p + ‖f‖r = ‖f‖,

and the inclusion Lp ∩ Lr → Lq is continuous.

Exercise 4. If 1 6 p < r 6 ∞, Lp + Lr is a Banach space with norm ‖f‖ = inf{‖g‖p +

‖h‖r : f = g + h}, and if p < q < r, the inclusion map Lq → Lp + Lr is continuous.

Solution. Since Lp + Lr is the sum of the vector subspaces of the vector space of all
measurable functions f : X → C, it is a vector space. Now we prove that ‖ · ‖ is a norm in
Lp + Lr. First note that if ‖f‖ = 0 then there exist sequence {gn} ⊂ Lp and {hn} ⊂ Lr such
that ‖gn‖p + ‖hn‖r → 0 and f = gn + hn for all n ∈ N. Thus gn → 0 in Lp and hn → 0 in Lr.
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Repeating an analogous argument from Exercise 3, we can extract subsequence {gnk} of
{gn} and {hnk} of {hn} such that gnk → 0 and hnk → 0 a.e. Hence

f = gnk + hnk → 0 a.e.

and thus f = 0 a.e.

Let c ∈ C. if c = 0 then ‖cf‖ = ‖0‖ = 0 = 0‖f‖. If c 6= 0, then f = g + h for g ∈ Lp and
h ∈ Lr iff cf = cg + ch, and hence ‖cf‖ = |c|‖f‖.

For the triangle inequality, let f1, f2 ∈ Lp + Lr. If f1 = g1 + h1 and f2 = g2 + h2 then

f1 + f2 = (g1 + g2) + (h1 + h2),

and hence

‖f1 + f2‖ 6 ‖g1 + g2‖p + ‖h1 + h2‖r 6 ‖g1‖p + ‖h1‖r + ‖g2‖p + ‖h2‖r,

and take the infimum over all possible representations of f1 and f2 we obtain

‖f1 + f2‖ 6 ‖f1‖+ ‖f2‖.

Thus ‖ · ‖ is a norm in Lp + Lr. To prove that Lp + Lr is a Banach space, let {fn} be a
sequence in Lp + Lr such that

∑∞
n=1 ‖fn‖ <∞. From the definition of ‖ · ‖, for each n ∈ N,

there exists gn ∈ Lp and hn ∈ Lr such that fn = gn + hn and ‖gn‖p + ‖hn‖r < ‖fn‖+ 2−n.

Thus
∑∞

n=1(‖gn‖p + ‖hn‖r) 6
∑∞

n=1(‖fn‖ + 2−n) < ∞, hence
∑∞

n=1 ‖gn‖q < ∞ and∑∞
n=1 ‖hn‖r < ∞, and there exists g ∈ Lp and h ∈ Lr such that

∑∞
n=1 gn = g in Lp and∑∞

n=1 hn in Lr. Let f = g + h. We have

∥∥∥f − n∑
k=1

fk

∥∥∥ 6 ∥∥∥g − n∑
k=1

gk

∥∥∥
q

+
∥∥∥h− n∑

k=1

hk

∥∥∥
r
→ 0 as n→∞,

hence
∑∞

n=1 fn = f in Lp + Lr, which proves that Lp + Lr is a Banach space.

Now if p < q < r, Proposition 5.1.14 shows that Lq ⊂ Lp +Lr. Let f ∈ Lq with ‖f‖q = 1.
Set E = {x ∈ X : |f(x)| > 1} and define g = χE and h = χEc . Then if r <∞ we have

|g|p = |f |pχE 6 |f |qχE 6 |f |q and |h|r = |f |rχEc 6 |f |qχEc 6 |f |q,

and thus ‖g‖pp 6 ‖f‖qq = 1 and ‖h‖rr 6 ‖f‖qq = 1. This shows that g ∈ Lp, h ∈ Lr and
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f = g + h, therefore
‖f‖ 6 ‖g‖p + ‖h‖r 6 1 + 1 = 2.

If r =∞, then ‖h‖∞ 6 1 (since |f |χEc 6 1 for all x ∈ X), and the same conclusion holds,
that is, ‖f‖ 6 2.

If f ∈ Lq is any function with ‖f‖q > 0, then f̃ = f/‖f‖q ∈ Lq and ‖f̃‖q = 1, then

‖f‖ = ‖f‖q
∥∥∥ f

‖f‖q

∥∥∥ = ‖f‖q‖f̃‖ 6 2‖f‖q,

and since this inequality is true for f = 0, we have ‖f‖ 6 2‖f‖q for all f ∈ Lq, and proves
that the inclusion Lq → Lp + Lr is continuous.

Exercise 5. Suppose 0 < p < q < ∞. Then Lp 6⊂ Lq iff X contains sets of arbitrarily
small positive measure, and Lq 6⊂ Lp iff X contains sets of arbitrarily large finite measure (for
the ‘if’ implication: in the first case there is a disjoint sequence {En} with 0 < µ(En) < 2−n,
and in the second case there is a disjoint sequence {En} with 1 6 µ(En) < ∞. Consider
f =

∑
anχEn for suitable constants an). What about the case q =∞?

Solution. Suppose X contains sets of arbitrarily small positive measure. Then we can
choose F1 ∈ M with 0 < µ(F1) < 4−1. Choose F2 ∈ M such that 0 < µ(F2) < 4−1µ(F1).
Inductively, we construct a sequence {Fn} ⊂ M with 0 < µ(Fn) < 4−1µ(Fn−1) for n > 1

(and 0 < µ(F1) < 2−1). In particular 0 < µ(Fn) < 4−n.

Now we consider En = Fn \
⋃∞
k=n+1 Fk. Thus Fn ⊂ En ∪

(⋃
k=n+1 Fk

)
and hence

µ(Fn) 6 µ(En) +
∞∑

k=n+1

µ(Fk) 6 µ(En) + µ(Fn)
∞∑
k=1

4−k = µ(En) +
1

3
µ(Fn),

and thus 0 < 2
3
µ(Fn) < µ(En). Since En ⊂ Fn we have 0 < µ(En) 6 µ(Fn) < 4−n < 2−n.

Furthermore, the sequence {En} is disjoint, since for n < m we have

En ∩ Em = Fn ∩
( ∞⋂
k=n+1

F c
k

)
∩ Fm

( ∞⋂
k=m+1

F c
k

)
⊂ F c

m ∩ Fm = ∅,

since F c
m appears in

⋂∞
k=n+1 F

c
k because n < m. Hence there exists a disjoint sequence

{En} ⊂ M such that 0 < µ(En) < 2−n.

Now consider f =
∑

(nµ(En))−1/qχEn , which is well defined, since {En} is disjoint. We
have ∫

|f |q =
∑ 1

n
=∞,
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hence f /∈ Lq. However∫
|f |p =

∑
n−p/qµ(En)1−p/q 6

∑
2−n(1−p/q) <∞,

since 1− p/q > 0, and thus f ∈ Lp. Therefore Lp 6⊂ Lq.

For the converse, assume that Lp 6⊂ Lq, that is, there exists f ∈ Lp such that f /∈ Lq.
Define En = {x ∈ X : |f(x)| > n}. Using Proposition 5.1.15, if f ∈ L∞, we would have
f ∈ Lq, which is a contradiction. Hence ‖f‖∞ =∞ and thus µ(En) > 0 for all n ∈ N. Also
we have ∫

|f |p >
∫
En

|f |p > npµ(En),

and hence 0 < µ(En) < ‖f‖ppn−p → 0 as n→∞, since ‖f‖p <∞.

Now for the other case, suppose first that X contains sets of arbitrarily large finite
measure. Let F1 ∈ M with 1 < µ(F1) <∞. For each n ∈ N we construct Fn+1 ∈ M such
that 1 +

∑n
k=1 µ(Fn) < µ(Fn+1) <∞. Consider E1 = F1 and En = Fn \

⋃n−1
k=1 Fk. Then {En}

is a disjoint sequence inM and

µ(En) > µ(Fn)−
n−1∑
k=1

Fk > 1.

Let f =
∑

(nµ(En))−1/pχEn . Then∫
|f |p =

∑ 1

n
=∞,

thus f /∈ Lp and ∫
|f |q =

∑
n−q/pµ(En)1−q/p 6

∑
n−q/p <∞,

since µ(En) > 1 and q/p > 1. Hence f ∈ Lq.

Conversely assume that Lq 6⊂ Lp and let f ∈ Lq such that f /∈ Lp. Let En = {x ∈
X : |f(x)| > 1/n}. Since ∫

|f |q >
∫
En

|f |q > n−qµ(En),

it follows that µ(En) 6 nq‖f‖qq < ∞ for all n ∈ N. Furthermore, {En} is an increasing
sequence, and hence, with E =

⋃∞
n=1En we have µ(E) = lim

n→∞
µ(En). But E = {x ∈

X : f(x) 6= 0}. Thus if µ(E) < ∞, applying Proposition 5.1.17 to (E,ME, µ|E) we would
have

‖f‖p = ‖f |E‖p 6 ‖f |E‖qµ(E)1/p−1/q = ‖f‖qµ(E)1/p−1/q <∞,
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and this implies that f ∈ Lp, which is a contradiction. Hence µ(E) = ∞, and thus
lim
n→∞

µ(En) =∞.

Now for the case q = ∞. The first assertion remains true. In fact, assume that X
contains sets of arbitrarily small positive measure, and as above consider a disjoint sequence
{En} ⊂ M with 0 < µ(En) < 2−n. Define f =

∑
nχEn . Then f /∈ L∞ but∫

|f |p =
∑

npµ(En) 6
∑

np2−n <∞,

and hence f ∈ Lp. Conversely, let f ∈ Lp such that f /∈ L∞, and define En = {x ∈
X : |f(x)| > n}. Then since f /∈ L∞ we have µ(En) > 0. Also∫

|f |p >
∫
En

|f |p > npµ(En),

and hence µ(En) 6 n−p‖f‖pp → 0 as n→∞.

For the second, if X contains sets of arbitrarily large finite measure, as before, we can
consider a disjoint sequence {En} ⊂ M with 1 < µ(En) < ∞ for all n ∈ N. Let f = χEn .
Then f ∈ L∞, but ∫

|f |p =
∑

µ(En) >
∑

1 =∞,

and thus f /∈ Lp.
The converse in this case is not true. Consider X a nonempty set,M = {∅, X}, µ(∅) = 0

and µ(X) = ∞. Hence f ≡ 1 is in L∞ but not in Lp (since
∫
|f |p = µ(X) = ∞), and

therefore L∞ 6⊂ Lp but X does not contain sets of arbitrarily large but finite measures.

Exercise 6. Suppose 0 < p0 < p1 6 ∞. Find examples of functions f on (0,∞) (with
Lebesgue measure), such that f ∈ Lp iff

(a) p0 < p < p1,

(b) p0 6 p 6 p1,

(c) p = p0.

(Consider functions of the form f(x) = x−a| log x|b).

Solution to (a). If p1 <∞ define

f(x) = x−1/p1χ(0,1)(x) + x−1/p0χ[1,∞)(x).
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Then ∫
|f |p =

∫ 1

0

x−p/p1dx+

∫ ∞
1

x−p/p0dx,

and f ∈ Lp iff both integrals are finite. The first is finite when p < p1 and the second when
p > p0. Thus f ∈ Lp iff p0 < p < p1.

If p1 =∞, consider f(x) = x−1/p0| log(x− 1)|χ[1,2) + x−1/p0χ[2,∞). Then∫
|f |p =

∫ 2

1

x−p/p0| log(x− 1)|pdx+

∫ ∞
2

x−p/p0dx,

which is finite iff both integrals are finite. The second is finite iff p > p0. The first if finite for
all p > 0, and to see that note first that for all α > 0 we have

lim
x→1+

(x− 1)α| log(x− 1)| = lim
u→0+

uα log(1/u)
L’Hôpital Rule

= lim
u→0+

uα

α
= 0.

Now choose α > 0 such that αp < 1. From the limit above, there exists 0 < δ < 1 such
that | log(x− 1)| < (x− 1)−α for x ∈ (1, 1 + δ). Then we obtain∫ 2

1

x−p/p0 | log(x− 1)|pdx 6
∫ 2

1

| log(x− 1)|pdx

=

∫ 1+δ

1

| log(x− 1)|pdx+

∫ 2

1+δ

| log(x− 1)|pdx

6
∫ 1+δ

1

(x− 1)−pαdx+ | log(δ)|p(1− δ) <∞,

since αp < 1. Thus f ∈ Lp for all p > p0, but since limx→1+ f(x) =∞, f /∈ L∞. Thus f ∈ Lp

iff p0 < p <∞.

Solution to (b). Assume p1 <∞. Take

f(x) = (x log2(1/x))−1/p1χ(0,1/2)(x) + (x log2(1/x))−1/p0χ[2,∞)(x),

and we have ∫
|f |p =

∫ 1/2

0

(x log2(1/x))−1/p1dx+

∫ ∞
2

(x log2(1/x))−1/p0dx,

and thus f ∈ Lp iff both integrals are finite.

We analyze the first integral, and the second is analogous. For p = p1, we have∫ 1/2

0

(x log2(1/x))−p/p1dx =

∫ 1/2

0

1

x log2(x)
dx,
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but using the substitution u = log(x) we have∫
1

x log2(x)
dx =

∫
1

u2
du = −1

u
+ c = − 1

log(x)
+ c,

and from the Fundamental Theorem of Calculus we obtain∫ 1/2

0

1

x log2(x)
dx =

1

log(2)
<∞.

Before continuing, we note that for α, β > 0 we have lim
x→0+

xα(log2(x))−β = 0 and hence

there exists a constant c > 0 such that (log2(x))−β 6 cx−α for all x ∈ (0, 1/2).
Now for p < p1 we choose λ > 0 such that p/p1 + λ < 1, and applying this last remark

with β = p/p1 and α = λ we obtain

∫ 1/2

0

(x log2(1/x))−p/p1dx 6
∫ 1/2

0

x−p/p1x−αdx =

∫ 1/2

0

x−(p/p1+λ)dx <∞,

since p/p1 + λ < 1.
For the remaining case (p > p1) we need to note that for α, β > 0 we have lim

x→0+
xα(log2(x))β =

0, and hence there exists a constant c > 0 such that xα(log2(x))β 6 c for all x ∈ (0, 1/2) and
thus

(log2(x))−β >
xα

c
for all x ∈ (0, 1/2).

Thus for p > p1, choose λ > 0 such that p/p1 − λ > 1. Applying this previous estimate
with α = λ and β = −p/p1, we obtain

∫ 1/2

0

(x log2(1/x))−p/p1dx > c−1

∫ 1/2

0

x−p/p1xλdx = c−1

∫ 1/2

0

x−(p/p1−λ)dx =∞,

since p/p1 − λ > 1. Thus the first integral is finite iff p 6 p1. Analogously for the second
integral we obtain finiteness iff p > p0, and thus f ∈ Lp iff p0 6 p 6 p1.

If p1 = ∞ take f(x) = (x log2(x))−1/p0χ[2,∞). Since ‖f‖∞ 6 (2 log2(2))−1/p0 < ∞, we
have f ∈ L∞, and hence f ∈ Lp iff p0 6 p 6∞.

Solution to (c). Take p1 = p0 in the case p1 <∞ in item (b). From the computations
we already have done, f ∈ Lp iff p0 6 p 6 p1 = p0, that is, iff p = p0.

Exercise 7. If f ∈ Lp ∩ L∞ for some p < ∞, so that f ∈ Lq for all p > q, then
‖f‖∞ = lim

q→∞
‖f‖q.

Solution. If ‖f‖∞ = 0 then f = 0 a.e. and the equality is trivial. Assume that ‖f‖∞ > 0
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and choose 0 < ε < ‖f‖∞. Set A = {x ∈ X : |f(x)| > ‖f‖∞− ε}. Clearly µ(A) > 0. We have

‖f‖pp =

∫
|f |p >

∫
A

|f |p > µ(A)(‖f‖∞ − ε)p,

and thus µ(A) 6 (‖f‖∞ − ε)−p‖f‖pp <∞. Using the same computations with q instead of p
we obtain

‖f‖qq > µ(A)(‖f‖∞ − ε)q,

and hence lim inf
q→∞

‖f‖q > ‖f‖∞ − ε. Since ε > 0 is arbitrary, we obtain lim inf
q→∞

‖f‖q > ‖f‖∞.

For the other inequality, using Proposition 5.1.15 for q > p we obtain ‖f‖q 6 ‖f‖p/qp ‖f‖1−p/q
∞ ,

and making q →∞ have
lim sup
q→∞

‖f‖q 6 ‖f‖∞,

and the proof is complete.

Exercise 8. This exercises makes use of Jensen’s inequality, which is a topic not seen in
this course.

Exercise 9. Suppose 1 6 p < ∞. If ‖fn − f‖p → 0, then fn → f in measure, and
hence some subsequence converges to f a.e. On the other hand, if fn → f in measure and
|fn| 6 g ∈ Lp for all n ∈ N, then ‖fn − f‖p → 0.

Solution. Let En,ε = {x ∈ X : |fn(x)− f(x)| > ε}. Then∫
|fn − f |p >

∫
En,ε

|fn − f |p > εpµ(En,ε),

and hence µ(En,ε) 6 ε−p‖fn − f‖pp → 0 as n → ∞, and thus fn → f in measure. Using
Theorem 3.7.5, there exists a subsequence {fnk} of {fn} such that fnk → f a.e.

Now assume that fn → f in measure and |fn| 6 g ∈ Lp. Since

{x ∈ X : ||fn(x)− f(x)|p − 0| > ε} = {x ∈ X : |fn(x)− f(x)|p > ε}

= {x ∈ X : |fn(x)− f(x)| > ε1/p},

we obtain |fn − f |p → 0 in measure. Using the subsequence {fnk} that converges a.e. to f ,
we obtain |f | 6 g a.e., and hence |fn − f |p 6 (|fn|+ |f |)p 6 2pgp ∈ L1 and using Exercise 34
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we have |fn − f |p → 0 in L1, that is

‖fn − f‖pp =

∫
|fn − f |p → 0,

hence ‖fn − f‖p → 0.

Exercise 10. Suppose 1 6 p <∞. If fn, f ∈ Lp and fn → f a.e., then ‖fn − f‖p → 0 iff
‖fn‖p → ‖f‖p. (Use Exercise 20 in Section 3.6).

Solution. Using the triangle inequality for the norm ‖ · ‖p (for p > 1) we have

‖fn‖p 6 ‖fn − f‖p + ‖f‖p and ‖f‖p 6 ‖fn − f‖p + ‖fn‖p,

and hence |‖fn‖p − ‖f‖p| 6 ‖fn − f‖p, and thus if ‖fn − f‖p → 0 then ‖fn‖p → ‖f‖p.
For the converse, note that since fn → f a.e. we have |fn − f |p → 0 a.e. Now |fn − f |p 6

2p(|fn|p + |f |p) := gn. We have gn → 2p+1|f |p := g a.e. and∫
gn = 2p

(∫
|fn|p +

∫
|f |p
)

= 2p(‖fn‖pp + ‖f‖pp)→ 2p+1‖f‖pp =

∫
g,

since ‖fn‖p → ‖f‖p. Thus using Exercise 20 of Section 3.6 we obtain
∫
|fn − f |p → 0, that

is, ‖fn − f‖pp → 0, and thus ‖fn − f‖p → 0.

Exercise 11. If f is a measurable function on X, define the essential range Rf of f to
be the set of all z ∈ C such that {x ∈ X : |f(x)− z| < ε} has a positive measure for all ε > 0.

(a) Rf is closed.

(b) If f ∈ L∞, then Rf is compact and ‖f‖∞ = max{|z| : z ∈ Rf}.

Solution to (a). Let {zn} ⊂ Rf be such that zn → z for some z ∈ C. If Given ε > 0

choose n0 such that |zn − z| < ε/2 for n > n0. Then for x ∈ {x ∈ X : |f(x)− zn| < ε/2} we
have

|f(x)− z| 6 |f(x)− zn|+ |zn − z| <
ε

2
+
ε

2
= ε,

and thus {x ∈ X : |f(x) − zn| < ε/2} ⊂ {x ∈ X : |f(x) − z| < ε} for n > n0. Since
{x ∈ X : |f(x)− zn| < ε/2} has positive measure then {x ∈ X : |f(x)− z| < ε} has positive
measure, and therefore z ∈ Rf and Rf is closed.

Solution to (b). Assume f ∈ L∞. Let z ∈ C such that |z| > ‖f‖∞ and choose ε > 0
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such that |z| > ‖f‖∞ + ε. If x ∈ {x ∈ X : |f(x)− z| < ε} we have

‖f‖∞ + ε− |f(x)| < |z| − |f(x)| 6 |f(x)− z| < ε,

and hence ‖f‖∞ < |f(x)|. This means that {x ∈ X : |f(x) − z| < ε} ⊂ {x ∈ X : |f(x)| >
‖f‖∞}, and thus, by definition of ‖f‖∞, we obtain

µ({x ∈ X : |f(x)− z| < ε}) 6 µ({x ∈ X : |f(x)| > ‖f‖∞}) = 0,

which implies that z /∈ Rf . Hence Rf ⊂ {z ∈ C : |z| 6 ‖f‖∞}. Thus Rf is bounded, and
since it is closed (by item (a)), it is compact in C.

From what we just have proved, we obtain max{|z| : z ∈ Rf} 6 ‖f‖∞. If α :=

max{|z| : z ∈ Rf} < ‖f‖∞, we know that the sphere S = {z ∈ C : |z| = ‖f‖∞} does not
intersect Rf . Hence for each z ∈ S, there exists εz > 0 such that {x ∈ X : |f(x)−z| < εz} has
zero measure. The collection of open balls {Bεz(z)}z∈S (here Br(w) = {z ∈ C : |z − w| < r})
constitutes a open cover of S, and since S is compact, there exists z1, · · · , zn such that
S ⊂

⋃n
i=1 Bεzi

(zi). Take 0 < η < min
i=1,··· ,n

εzi and also 0 < η < ‖f‖∞ − α. If ‖f‖∞ − η <
|f(x)| 6 ‖f‖∞, that is, f(x) is closer than η to S, it must be in one of the balls Bεzi

(zi), and
therefore we have

{x ∈ X : ‖f‖∞ − η < |f(x)| 6 ‖f‖∞} ⊂
n⋃
i=1

{x ∈ X : |f(x)− zi| < εzi},

and thus {x ∈ X : ‖f‖∞ − η < |f(x)| 6 ‖f‖∞} has zero measure. Also

{x ∈ X : |f(x)| > ‖f‖∞−η} = {x ∈ X : ‖f‖∞−η < |f(x)| 6 ‖f‖∞}∪{x ∈ X : |f(x)| > ‖f‖∞}

has zero measure and contradicts the definition of ‖f‖∞.

Exercise 12. If p 6= 2, the Lp norm does not arise from an inner product on Lp, except
in trivial cases when dim(Lp) 6 1 (show that the parallelogram law fails).

Solution. If Y is a normed vector space and dim(Y ) 6 1 and Y = span{y0} (y0 = 0 when
dim(Y ) = 0), then (αy0, βy0) = αβ‖y0‖2 is an inner product on Y and ‖αy0‖2 = |α|2‖y0‖2 =

(αy0, αy0).

Now assume that dim(Lp) > 1 and p 6= 2. In order to show that the parallelogram law
fails, we will need to show the existence of sets E1, E2 ∈M such that 0 < µ(E1), µ(E2) <∞
and E1 ∩ E2 = ∅. To obtain such sets we will prove following two claims:
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Claim 1. There exists a set E1 ∈M with 0 < µ(E1) <∞.

In fact, if that is not the case then for f ∈ Lp, since {x ∈ X : f(x) 6= 0} is σ-finite, we
must have µ({x ∈ X : f(x) 6= 0}) = 0, which implies that f = 0 in Lp, and thus dim(Lp) = 0,
which is a contradiction.

Claim 2. There exists a set E ∈M with 0 < µ(E) <∞ and µ(E∆E1) > 0.

In fact, if that is not the case then let f ∈ Lp. Fix x0 ∈ E1, and let A := {x ∈
X : f(x) − f(x0)χE1(x) 6= 0}. Thus this set is σ-finite since f − f(x0)χE1 in is Lp. Hence
A =

⋃∞
n=1An, with {An} ⊂ M is disjoint and µ(An) < ∞. Thus either µ(An) = 0 or

µ(An∆E1) = 0. We have

A \ E1 =
∞⋃
n=1

(An \ E) and E1 \ A =
∞⋂
n=1

E1 \ An,

We have µ(A \ E1) = 0. If µ(An) = 0 for all n ∈ N, then µ(A) = 0 and f = f(x0)χE1 a.e.
Otherwise µ(An∆E1) = 0 for some n ∈ N, and in this case we also have µ(E1 \ A) = 0, and
then µ(A∆E1) = 0. Therefore A ⊂ (A \ E1) ∪ (A ∩ E1), but µ(A ∩ E1) 6 µ(E1) < ∞ and
since (A ∩ E1)∆E1 = E1 \ A, we have

µ(A) = µ(A \ E1) + µ(A ∩ E1) 6 µ(A \ E1) + µ(E1 \ A) = µ(A∆E1) = 0,

and hence f = f(x0)χE1 a.e. Thus f = f(x0)χE1 in Lp. Thus we have shown that each f
in Lp is a constant multiple of χE1 , which means that dim(Lp) = 1. This contradicts our
hypothesis and proves Claim 2.

Setting E1 as in Claim 1, E as in Claim 2 and E2 = E∆E1 we have 0 < µ(E2) <∞ and
E1 ∩ E2 = ∅, as needed.

Assume 1 6 p < ∞ and define f1 = µ(E1)
−1/pχE1 and f2 = µ(E2)

−1/pχE2 . Then
f1, f2 ∈ Lp and ‖f1‖p = ‖f2‖p = 1. If the parallelogram law holds, we have

‖f1 + f2‖2
p + ‖f1 − f2‖2

p = 2(‖f1‖2
p + ‖f2‖2

p) = 4.

But we have

‖f1 + f2‖2
p + ‖f1 − f2‖2

p =
(∫
|f1 + f2|p

)2/p

+
(∫
|f1 − f2|p

)2/p

= 2
(∫

µ(E1)−1χE1 + µ(E2)−1χE2

)2/p

= 21+2/p,

and thus the parallelogram law holds iff 1 + 2/p = 2, that is, iff p = 2.
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For p =∞, set f1 = χE1 and f2 = χE2 .

‖f1 + f2‖2
∞ + ‖f1 − f2‖2

∞ = 2 6= 4 = 2(‖f1‖2
∞ + ‖f2‖2

∞),

and the parallelogram law fails.

Exercise 13. Lp(Rn,m) is separable for 1 6 p <∞. However, L∞(Rn,m) is not separable.
(There is an uncountable set F ⊂ L∞ such that ‖f − g‖∞ = 1 for all f, g ∈ F with f 6= g).

Solution. Let G be the set of all simple functions of the form s =
∑m

j=1 cjχRj , where Rj

is a rectangle Rj =
∏

i=1,··· ,n(ai,j, bi,j), ai,j < bi,j and cj, ai,j, bi,j are rational numbers for all
j = 1, · · · ,m and i = 1, · · · , n. Then G ⊂ Lp(Rn,m) is countable, and we will show that is
dense in Lp(Rn,m).

By Proposition 5.1.7, it only remains to show that given ε > 0 (and we assume 0 < ε < 1)

and a simple function φ =
∑k

j=1 djχEj with m(Ej) <∞ for each j = 1, · · · , k there exists a
function s ∈ G such that ‖s− φ‖p < ε. But we know from Theorem 3.11.1 item (c) that for
each Ej ∈M with m(Ej) <∞ and ε > 0 there exists a finite collection of disjoint rectangles
{Ri,j}`i=1 whose sides are open intervals such that m(Ej∆

⋃`
i=1Ri,j) < ε. By shrinking or

enlarging a little each side of each Ri,j we can assume that then endpoint are rational numbers.
Also, for each j = 1, · · · , k we can choose wj rational such that |dj − wj| < ε. Thus for
s =

∑k,`
j,i=1wjχRi,j we have s ∈ G and

‖s− φ‖p 6
k,`∑
j,i=1

‖(wj − dj)χRi,j‖p +
k∑
j=1

‖dj(χEj − χ⋃`
i=1Ri,j

)‖p

6 max
j=1,··· ,k

|dj − wj|
k,`∑
j,i=1

m(Ri,j)
1/p + max

j=1,··· ,k
m
(
E∆

⋃̀
i=1

Ri,j

)1/p
k∑
j=1

|dj|

(5.2.1)

Now since maxj=1,··· ,k |dj − wj| < ε, maxj=1,··· ,km
(
E∆

⋃`
i=1Ri,j

)1/p

< ε1/p < ε and

m
( ⋃̀
i=1

Ri,j

)
6 m

(
Ej ∪

⋃̀
i=1

Ri,j

) (?)

6 m(Ej) +m
(
Ej∆

⋃̀
i=1

Ri,j

)
< m(Ej) + ε < m(Ej) + 1,

where in (?) we have used A ∪B = (A ∩B) ∪ (A∆B) ⊂ A ∪ A∆B. Therefore we have from
(5.2.1) that

‖s− φ‖p 6 Cε,

where C = max{k +
∑k

j=1m(Ej),
∑k

j=1 |dj|}. Thus G is dense in Lp(Rn,m) and Lp(Rn,m)
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is separable.

Now for L∞(Rn,m). Let {fn} be a countable sequence in L∞(Rn,m). Define a sequence
An by

A1 = {x ∈ Rn : ‖x‖ 6 1} and An = {x ∈ Rn : n < ‖x‖ 6 n+ 1} for n ∈ N.

Define also a sequence an by

an =

{
−1 if fn > 0 a.e. on An
1 otherwise.

and finally define g =
∑∞

n=1 anχAn . Since |g| =
∑∞

n=1 |an|χAn =
∑∞

n=1 χAn we have g ∈
L∞(Rn,m) and ‖g‖∞ = 1. Now for each n ∈ N, we have |g − fn| > 1 a.e. on An and hence
‖g − fn‖∞ > 1, so no countable subset of L∞(Rn,m) can be dense. Thus L∞(Rn,m) is not
separable.

Another possible proof (using the hint) is to consider the set F consisting of functions f
such that f = 0 or 1 in each An. Thus F ⊂ L∞(Rn,m) is equivalent (bijective) to the set
of all sequences {an} such that an = 0 or 1, hence F is uncountable. Moreover, if f, g ∈ F
and f 6= g, then ‖f − g‖∞ = 1. Hence no countable subset of L∞(Rn,m) can be dense in
L∞(Rn,m).

Exercise 14. If g ∈ L∞, the operator defined by Tf = fg is bounded in Lp for 1 6 p 6∞.
Its operator norm is at most ‖g‖∞, with equality if µ is semifinite.

Solution. For 1 6 p <∞ we have∫
|Tf |p =

∫
|fg|p 6 ‖g‖p∞

∫
|f |p = ‖g‖p∞‖f‖pp,

hence ‖Tf‖p 6 ‖g‖∞‖f‖p. For p =∞ we have

|Tf(x)| = |f(x)g(x)| 6 ‖g‖∞|f(x)| 6 ‖g‖∞‖f‖∞ a.e.

and thus ‖Tf‖∞ 6 ‖g‖∞‖f‖∞. Thus Tf is bounded on Lp and its operator norm is at most
‖g‖∞.

If g = 0 a.e., then the equality is trivial. Now assume g 6= 0 a.e., µ semifinite and
1 6 p < ∞. Choose ε > 0, set A = {x ∈ X : |g(x)| > ‖g‖∞ − ε} and choose B ⊂ A with
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0 < µ(B) <∞. Define f = µ(B)−1/pχB. We have

‖f‖p =
(
µ(B)−1

∫
B

1
)1/p

= 1,

and
‖Tf‖p =

(
µ(B)−1

∫
B

|g|p
)1/p

> ‖g‖∞ − ε,

since p > 1. Thus ‖T‖ > ‖g‖∞ − ε. Since ε > 0 is arbitrary, we obtain ‖T‖ > ‖g‖∞, and
thus ‖T‖ = ‖g‖∞.

For p =∞, set f = χB. Hence ‖f‖∞ = 1 and

|Tf(x)| = |f(x)g(x)| = |χB(x)g(x)| > ‖g‖∞ − ε,

and thus ‖T‖ > ‖Tf‖∞ > ‖g‖∞ − ε, and as before we conclude that ‖T‖ = ‖g‖∞.

Exercise 15. The Vitali Convergence Theorem. Suppose 1 6 p <∞ and {fn} ⊂ Lp.
In order for {fn} to be Cauchy in the Lp norm is it necessary and sufficient for the following
three conditions to hold:

(i) {fn} is Cauchy in measure;

(ii) the sequence {|fn|p} is uniformly integrable (see Exercise 11 in Section 4.4);

(iii) for every ε > 0 there exists E ⊂ X such that µ(E) <∞ and
∫
Ec
|fn|p < ε for all n ∈ N.

(To prove the sufficiency: given ε > 0, let E be as in (iii), and let Amn = {x ∈ E : |fm(x)−
fn(x)| > ε}. Then the integrals of |fn − fm|p over E \ Amn, Am,n and Ec are small when m
and n are large - for three different reasons).

Solution. For the necessity: assume that {fn} is a Cauchy sequence in Lp. Then fn → f

in Lp for some f ∈ Lp. Using Exercise 9 we have fn → f in measure and hence {fn} is Cauchy
in measure. Since {|fn|p} is in L1 and converges to |f |p in L1, using Exercise 11 of Section
4.4, the sequence {|fn|p} is uniformly integrable. To prove that {fn} satisfies (iii), given
ε > 0 choose n0 ∈ N such that ‖fn− f‖p < ε1/p for n > n0. Define g = max{f, f1, · · · , fn0−1}.
Thus g ∈ Lp and for η > 0 we set

Eη = {x ∈ X : |g(x)| > η}.

Then ∫
|g|p >

∫
Eη

|g|p > ηpµ(Eη),
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and hence µ(Eη) 6 η−p‖g‖pp < ∞ for each η > 0. Moreover, since |g|pχEcη → 0 a.e. as
η → 0+, using the DCT we obtain

∫
Ecη
|g|p → 0 as η → 0+, and we choose η > 0 small so that∫

Ecη
|g|p < ε and set E = Eη. Hence∫

Ec
|fn|p 6

∫
Ec
|g|p < ε for n = 1, · · · , n0 − 1.

Now for n > n0 we have∫
Ec
|fn|p 6 2p

∫
Ec
|f |p + 2p

∫
Ec
|fn − f |p 6 2p

∫
Ec
|g|p + 2p

∫
|fn − f |p < 2p+1ε,

and hence µ(E) <∞ and
∫
Ec
|fn|p < 2p+1ε for all n ∈ N.

Now for the converse assume that {fn} satisfies conditions (i), (ii) and (iii). Given ε > 0,
using (iii) let E ∈M be such that 0 < µ(E) <∞ and

∫
Ec
|fn|p < ε for all n ∈ N.

Define Amn = {x ∈ E : |fm(x)− fn(x)| > ε}. Then we have∫
Ec
|fm − fn|p 6 2p

∫
Ec
|fm|p + 2p

∫
Ec
|fn|p < 2p+1ε. (5.2.2)

Using (ii), there exists δ > 0 such that
∫
A
|fn|p < ε for all A ∈M with µ(A) < δ and for

all n ∈ N.

Since {fn} is Cauchy in measure there exists n0 ∈ N such that µ(Amn) < δ for m,n > n0,
and hence ∫

Amn

|fm − fn|p 6 2p
∫
Amn

|fm|p + 2p
∫
Amn

|fn|p < 2p+1ε, (5.2.3)

for all n,m > n0.

We have |fm− fn|pχE\Amn 6 εpχE ∈ L1 (since µ(E) <∞) and also |fm− fn|pχE\Amn → 0

in measure as m,n→∞. Thus using Exercise 34 of Section 3.8 we obtain∫
E\Amn

|fm − fn|p → 0,

and hence there exists n1 > n0 such that∫
E\Amn

|fm − fn|p 6 ε, (5.2.4)

for m,n > n1. Thus for m,n > n1, combining (5.2.2), (5.2.3) and (5.2.4) we obtain∫
|fm − fn|p =

∫
Ec
|fm − fn|p +

∫
Amn

|fm − fn|p +

∫
E\Amn

|fm − fn|p < (2p+2 + 1)ε,
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which proves that {fn} is a Cauchy sequence in Lp.

Exercise 16. If 0 < p < 1, the formula ρ(f, g) =
∫
|f − g|p defines a metric on Lp that

makes Lp into a complete topological vector space (the proof of Theorem 5.1.6 still works
for p < 1 if ‖f‖p is replaced by

∫
|f |p, as it uses only the triangle inequality and not the

homogeneity of the norm).

Solution. To prove that d is a metric, it only remains to prove the triangle inequality.
From (5.1.1) we have

|f − h|p 6 (|f − g|+ |g − h|)p 6 |f − g|p + |g − h|p,

and hence ρ(f, h) 6 ρ(f, g) + ρ(g, h) for all f, g, h ∈ Lp. Hence ρ is a metric. The proof of
Theorem 5.1.6 remains unchanged for 0 < p < 1 replacing ‖f‖p for

∫
|f |p, and thus Lp is a

complete topological vector space.

5.3 THE DUAL OF Lp

Suppose that p and q are conjugate exponents, then Hölder’s inequality shows that each
g ∈ Lq defines a bounded linear functional φg on Lp by

φg(f) =

∫
fg,

and the operator norm of φg is at most ‖g‖q.
If p = 2 and we are thinking of L2 as a HIlbert space, it is more appropriate to define

φg(f) =
∫
fg. The same convention can be used for p 6= 2 without changing the results that

will be presented below in an essential way.

In fact, the map g 7→ φg is almost always an isometry from Lq to (Lp)∗, the dual space of
Lp.

Proposition 5.3.1. Suppose that p and q are conjugate exponents and 1 6 q < ∞. If
g ∈ Lq, then

‖g‖q = ‖φg‖ = sup

{∣∣∣∣∫ fg

∣∣∣∣ : ‖f‖p = 1

}
.

If µ is semifinte, this result holds also for q =∞.
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Proof. From Hölder’s inequality we have ‖φg‖ 6 ‖g‖q and the equality is trivial if g = 0 a.e.
If g 6= 0 a.e. and 1 < q <∞, define

f =
|g|q−1

‖g‖q−1
q

sgn g.

Then
‖f‖pp =

1

‖g‖p(q−1)
q

∫
|g|(q−1)p =

‖g‖qq
‖g‖qq

= 1,

recalling that (q − 1)p = q, since p and q are conjugate exponents. Thus we have

‖φg‖ > φg(f) =

∫
fg =

∫
|g|q−1

‖g‖q−1
q

sgn g g =
1

‖g‖q−1
q

∫
|g|q =

‖g‖qq
‖g‖q−1

q

= ‖g‖q,

hence ‖φg‖ = ‖g‖q.
If q = 1, define f = sgn g. We have ‖f‖∞ = 1 and

∫
fg = ‖g‖1.

Now assume that µ is semifinite and let q =∞. For ε > 0 consider A = {x ∈ X : |g(x)| >
‖g‖∞ − ε}. Then µ(A) > 0 and since µ is semifinite, there exists B ⊂ A with 0 < µ(B) <∞.
Let

f =
1

µ(B)
χBsgn g.

Then ‖f‖1 = 1 and

‖φg‖ >
∫
fg =

1

µ(B)

∫
B

|g| > ‖g‖∞ − ε,

and since ε > 0 is arbitrary, we obtain ‖φg‖ = ‖g‖∞. �

Conversely, if f 7→
∫
fg is a bounded linear function of Lp, then g ∈ Lq in almost all

cases. In fact, we have the following stronger result.

Theorem 5.3.2. Let p and q be conjugate exponents. Suppose that g is a measurable
function on X such that fg ∈ L1 for all f in the space Σ of simple functions that vanish
outside a set of finite measure, and the quantity

Mq(g) = sup

{∣∣∣∣∫ fg

∣∣∣∣ : f ∈ Σ and ‖f‖p = 1

}
is finite. Also, suppose either that Sg = {x ∈ X : g(x) 6= 0} is σ-finite or that µ is semifinite.
Then g ∈ Lq and Mq(g) = ‖g‖q.

Proof. First we note that if f is any function in Σ we have∣∣∣∣∫ fg

∣∣∣∣ 6Mq(g)‖f‖p.
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In fact, if f = 0 a.e., then this inequality is trivial. If f 6= 0 a.e., then f̃ = f
‖f‖p is also in Σ

and ‖f̃‖p = 1, hence
1

‖f‖p

∣∣∣∣∫ fg

∣∣∣∣ =

∣∣∣∣∫ f̃ g

∣∣∣∣ 6Mq(g),

which concludes this first claim.

No we remark that if h is a bounded measurable function that vanishes outside a set
E of finite measure and ‖h‖p = 1, then

∣∣∫ hg∣∣ 6 Mq(g). In fact, using Proposition 3.1.22
there exists a sequence {fn} of simple functions such that fn → h uniformly on X (since h is
bounded) and |fn| 6 |h| for all n ∈ N, in particular fn vanishes outside E and fn ∈ Lp for all
n ∈ N. We have fpn → hp uniformly in X and |fn|p 6 |h|p ∈ L1 for all n ∈ N and using once
the DCT we have ‖fn‖p → ‖h‖p = 1.

Also fng → hg and |fng| 6 |h||g| 6 ‖h‖∞gχE, since h vanishes outside E. Since gχE ∈ L1

by hypothesis, we can use again the DCT to obtain∣∣∣∣∫ hg

∣∣∣∣ =

∣∣∣∣ lim
n→∞

∫
fng

∣∣∣∣ = lim
n→∞

∣∣∣∣∫ fng

∣∣∣∣ 6 lim
n→∞

Mq(g)‖fn‖p = Mq(g).

Now we can begin the proof of the result. Consider first q <∞. We may assume that
Sg is σ-finite, as this condition automatically holds when µ is semifinite (see Exercise 17).
Let {En} be an increasing sequence of sets of finite measure such that Sg =

⋃∞
n=1En. Let

{sn} be a sequence of simple functions such that sn → g pointwise and |sn| 6 |g|, and let
gn = snχEn . Then gn → g pointwise, |gn| 6 |g| and gn vanishes outside En. Let

fn =
|gn|q−1sgn g

‖gn‖q−1
q

.

Then, as in the proof of Proposition 5.3.1 we have ‖fn‖p = 1, and by Fatou’s Lemma we
obtain

‖g‖q 6 lim inf ‖gn‖q = lim inf

∫
|fngn| 6 lim inf

∫
|fng| = lim inf

∫
fng 6Mq(g),

and for the last estimate we used our second claim. Using Hölder’s inequality we obtain
Mq(g) 6 ‖g‖q, and the proof is complete for the case q <∞.

Now suppose q = ∞. Given ε > 0, let A = {x ∈ X : |g(x)| > M∞(g) + ε}. If µ(A) > 0,
we can choose B ⊂ A with 0 < µ(B) <∞ (either because µ is semifinite or because A ⊂ Sg).
Setting f = µ(B)−1χBsgn g, we have ‖f‖1 = 1 and

∫
fg = µ(B)−1

∫
B
|g| >M∞(g)+ ε, which

contradicts our second claim from the beginning of the proof. Hence µ(A) = 0 and hence
‖g‖∞ 6M∞(g) + ε for each ε > 0, and the proof is complete. �
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The last and deepest part of the description of (Lp)∗ is the fact that the map g 7→ φg is,
in almost all cases, a surjection.

Theorem 5.3.3. Let p and q be conjugate exponents. If 1 < p <∞, for each φ ∈ (Lp)∗

there exists g ∈ Lq such that φ(f) =
∫
fg for all f ∈ Lp, and hence Lq is isometrically

isomorphic to (Lp)∗. The same conclusion holds for p = 1 provided µ is σ-finite.

Proof. First suppose that µ is finite. Thus all simple functions are in Lp. If φ ∈ (Lp)∗ and E
is a measurable set, let ν(E) = φ(χE). For any disjoint sequence {Ej}, if E =

⋃∞
j=1 Ej we

have χE =
∑∞

j=1 χEj where the series converges in the Lp norm, since∥∥∥∥∥χE −
∞∑
j=1

χEj

∥∥∥∥∥
p

= ‖
∞∑

j=n+1

χEj‖p = µ
( ∞⋃
j=n+1

Ej

)1/p

→ 0 as n→∞,

and here the assumption p <∞ is crucial. Hence, since φ is linear and continuous,

ν(E) = φ(χE) = φ
( ∞∑
j=1

χEj

)
=
∞∑
j=1

φ(χEj) =
∞∑
j=1

ν(Ej),

so that ν is a complex measure. Also, if µ(E) = 0 then χE = 0 as an element of Lp, so
ν(E) = 0, that is, ν � µ. By the Radon-Nikodym theorem there exists g ∈ L1(µ) such
that φ(χE) = ν(E) =

∫
E
gdµ for all E, and hence φ(f) =

∫
fgdµ for all simple functions f .

Moreover ∣∣∣∣∫ fg

∣∣∣∣ = |φ(f)| 6 ‖φ‖‖f‖p,

and Theorem 5.3.2 implies that g ∈ Lq. Hence, since the set of simple functions are dense in
Lp, using the DCT we obtain φ(f) =

∫
fg for all f ∈ Lp.

Now we suppose that µ is σ-finite. Let {En} be an increasing sequence of sets such
that 0 < µ(En) < ∞ and X =

⋃∞
n=1En, and we will identify Lp(En) and Lq(En) as

subsets of Lp(X) and Lq(X), respectively, consisting of functions that vanish outside En.
The preceding argument shows that for each n ∈ N, there exists gn ∈ Lq(En) such that
φ(f) =

∫
fgn for all f ∈ Lp(En), and ‖gn‖q = ‖φ|Lp(En)‖ 6 ‖φ‖. The function gn is

unique modulo alterations on null sets, so gn = gm a.e. on En for n < m, and we can
define g a.e. on X by setting g = gn on En, for each n ∈ N. By the MCT we have
‖g‖p = lim ‖gn‖q 6 ‖φ‖, so g ∈ Lq. Moreover, if f ∈ Lp, then by the DCT, fχEn → f in Lp

and hence φ(f) = limφ(fχEn) = lim
∫
En
fg =

∫
fg.

Finally, suppose that µ is arbitrary and p > 1, so that q <∞. As above, for each σ-finite
set E ⊂ X, there exists an a.e.-unique gE ∈ Lq(E) such that φ(f) =

∫
fgE for all f ∈ Lp(E)
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and ‖gE‖q 6 ‖φ‖. If F is σ-finite and F ⊃ E, then gF = gE a.e. on E, so ‖gF‖q > ‖gE‖q.
Defining

M = sup{‖gE‖q : E is a σ-finite set},

we have M 6 ‖φ‖ <∞. Choose a sequence {En} of σ-finite sets such that ‖gEn‖q →M and
set F =

⋃∞
n=1En. Then F is σ-finite and

‖gEn‖q 6 ‖gF‖q 6M for all n ∈ N,

thus making n→∞ we obtain ‖gF‖q = M . Now if A is a σ-finite set with A ⊃ F , we have
|gA|q = |gF |q + |gA\F |q a.e. on X (since gA = gF a.e. on F and gA = gA\F a.e. on A \ F ) and
hence ∫

|gF |q +

∫
|gA\F |q =

∫
|gA|q 6M q =

∫
|gF |q,

and hence gA\F = 0 a.e., which in turn implies that gA = gF a.e. on X (here the fact that
q <∞ is used).

If f ∈ Lp, then A = F ∪ {x ∈ X : f(x) 6= 0} is σ-finite, so

φ(f) =

∫
fgA =

∫
fgF ,

thus we take g = gF and the proof is complete. �

Corollary 5.3.4. For 1 < p <∞, Lp is reflexive.

Now we conclude this section with some remarks regarding the cases p = 1 and p =∞.

Remark 5.3.5. For any measure µ, the correspondence g 7→ φg maps L∞ into (L1)∗, but
in general is neither injective nor surjective. Injectivity fails when µ is not semifinite.

Indeed, if E ⊂ X is a set of infinite measure with no subset of positive finite measure and
f ∈ L1, then {x ∈ X : f(x) 6= 0} is σ-finite and hence it intersects E in a null set. It follows
that φχE = 0 although χE 6= 0 in L∞.

This problem, however, can be fixed, by redefining L∞ - see Exercises 23 and 24.
The failure of surjectivity is more subtle and we will give an example (see also Exercise

25). Let X be an uncountable set, µ the counting measure on (X,P(X)),M the σ-algebra of
countable or co-countable sets, and µ0 = the restriction of µ toM. Every f ∈ L1(µ) must
vanish outside a countable set, and hence L1(µ) = L1(µ0).

On the other hand, L∞(µ) consists of all bounded functions on X, whereas L∞(µ0) consists
of those bounded functions that are constant except on a countable set. With this in mind, it
is easy to see that the dual of L1(µ0) is L∞(µ), and not the smaller space L∞(µ0).
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Remark 5.3.6. As for the case p =∞, the map g 7→ φg is always an isometric injection
of L1 into (L∞)∗ by Proposition 5.3.1, but is it almost never a surjection.

Indeed, let X = [0, 1] with µ = m the Lebesgue measure. The map f 7→ f(0) is a bounded
linear functional on C(X), which we regard as a subspace of L∞. Using the Hahn-Banach
Theorem, there exists φ ∈ (L∞)∗ such that φ(f) = f(0) for all f ∈ C(X). To see that φ
cannot be given by an integration against an L1 function, consider the functions fn ∈ C(X)

defined by fn(x) = max{1− nx, 0}. Then φ(fn) = fn(0) = 1 for all n ∈ N, but fn(x)→ 0 for
all x > 0 and |fn(x)| 6 1 ∈ L1([0, 1]) for all n ∈ N, so by the DCT we have

∫
fng → 0 for all

g ∈ L1.

5.4 SOLVED EXERCISES FROM [1, PAGE 191]

Exercise 17. With notation as in Theorem 5.3.2, if µ is semifinite, q <∞ andMq(g) <∞,
then {x ∈ X : |g(x)| > ε} has finite measure for all ε > 0 and hence Sg is σ-finite.

Solution. Assume that for a given ε > 0 we have µ({x ∈ X : |g(x)| > ε}) = ∞. Then
using Exercise 14 of Section 2.2, given c > 0 there exists F ⊂ {x ∈ X : |g(x)| > ε} with
c < µ(F ) <∞. Assume 1 < p <∞, and define

f = µ(F )−1/pχF sgn g.

We have ‖f‖p = 1 and f is a bounded measurable function that vanishes outside F . Thus
we obtain

Mq(g) >

∣∣∣∣∫ fg

∣∣∣∣ = µ(F )−1/p

∫
F

|g| > εµ(F )1−1/p > εc1/q,

and thus making c→∞ we obtain Mq(g) =∞, and contradicts the hypothesis.

For p = ∞, define f = χF sgn g. We have ‖f‖∞ = 1 and f is a bounded measurable
function that vanishes outside F . As before

M∞(g) > εc,

and making c→∞ we obtain a contradiction. Hence {x ∈ X : |g(x)| > ε} has finite measure
for all ε > 0. Since

Sg = {x ∈ X : g(x) 6= 0} =
∞⋃
n=1

{x ∈ X : |g(x)| > 1/n},
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we obtain Sg σ-finite.

Exercise 18, 19, 20, 21 and 22. These exercises make use of Functional Analysis
topics, which are not seen in this course.

Exercise 23. Let (X,M, µ) be a measure space. A set E ∈M is called locally null if
µ(E ∩ F ) = 0 for every F ∈M such that µ(F ) <∞. If f : X → C is a measurable function,
define

‖f‖∗ = inf{a > 0: {x ∈ X : |f(x)| > a} is locally null},

and let L∞ = L∞(X,M, µ) be the space of all measurable f such that ‖f‖∗ < ∞. We
consider f, g ∈ L∞ to be identical if {x ∈ X : f(x) 6= g(x)} is locally null.

(a) If E is locally null, then µ(E) is either 0 or ∞. If µ is semifinite, then every locally null
set is null.

(b) ‖ · ‖∗ is a norm on L∞ that makes L∞ into a Banach space. If µ is semifinite then
L∞ = L∞.

Solution to (a). If E is locally null and 0 < µ(E) <∞, taking F = E in the definition
of locally null set we have µ(E) = µ(E ∩ E) = 0, which is a contradiction. Hence µ(E) is
either 0 or ∞.

Now assume that µ is semifinite and E is a locally null set which is not null. Then
µ(E) = ∞ and since µ is semifinite, there exists F ∈ M with F ⊂ E and 0 < µ(F ) < ∞.
But since E is locally null we have µ(F ) = µ(E ∩F ) = 0, which is a contradiction. Therefore
E must be null.

Solution to (b). Before we proceed, we prove that the infimum is attained. If ‖f‖∗ =∞,
there is nothing to do. Now if α := ‖f‖∗ <∞, than we can construct a decreasing sequence
{an} such that an → α (an > α for all n ∈ N) and {x ∈ X : |f(x)| > an} is a locally null set.
Hence

{x ∈ X : |f(x)| > α} =
∞⋃
n=1

{x ∈ X : |f(x)| > an}.

Thus if F ∈M has µ(F ) <∞ we have

µ(F ∩ {x ∈ X : |f(x)| > α}) 6
∞∑
n=1

µ(F ∩ {x ∈ X : |f(x)| > an}) = 0,

and hence {x ∈ X : |f(x)| > α} is also a locally null set, and the infimum is attained.
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Secondly, we prove that the relation f = g in L∞ if {x ∈ X : f(x) 6= g(x)} is in fact an
equivalence relation. The reflexivity and symmetry are clear. If f = g and g = h in L∞ then

{x ∈ X : f(x) 6= h(x)} ⊂ {x ∈ X : f(x) 6= g(x)} ∪ {x ∈ X : g(x) 6= h(x)},

and hence {x ∈ X : f(x) 6= h(x)} is locally null. Thus f = h in L∞, and this relation defines
an equivalence relation in L∞.

Now we prove that ‖ · ‖∗ is a norm on L∞.

(i) ‖f‖∗ = 0 iff f = 0 in L∞.

In fact if f = 0 in L∞ then {x ∈ X : f(x) 6= 0} = {x ∈ X : |f(x)| > 0} is null, and
therefore is locally null. Hence ‖f‖∗ = 0. Conversely, if ‖f‖∗ = 0 then {x ∈ X : |f(x)| >
0} = {x ∈ X : f(x) 6= 0} is locally null, and thus f = 0 in L∞.

(ii) ‖cf‖∗ = |c|‖f‖∗ for each c ∈ C and f ∈ L∞.

If c = 0 then cf = 0 and {x ∈ X : |cf(x)| > 0} = ∅, hence ‖cf‖∗ = 0 = |c|‖f‖∗. Assume
c 6= 0, then {x ∈ X : |cf(x)| > a} = {x ∈ X : |f(x)| > a/|c|}. Thus

‖cf‖∗ = inf{a > 0: {x ∈ X : |cf(x)| > a} is locally null}

= inf{a > 0: {x ∈ X : |f(x)| > a/|c|} is locally null}

= inf{a|c| > 0: {x ∈ X : |f(x)| > a} is locally null}

= |c| inf{a > 0: {x ∈ X : |f(x)| > a} is locally null}

= |c|‖f‖∗.

(iii) If f, g ∈ L∞, then ‖f + g‖∗ 6 ‖f‖∗ + ‖g‖∗.

Note that

{x ∈ X : |f(x) + g(x)| > ‖f‖∗ + ‖g‖∗}

⊂ {x ∈ X : |f(x)| > ‖f‖∗} ∪ {x ∈ X : |g(x)| > ‖g‖∗},

and hence {x ∈ X : |f(x) + g(x)| > ‖f‖∗ + ‖g‖∗} is locally null, thus ‖f + g‖∗ 6 ‖f‖∗ + ‖g‖∗.

Finally we prove that (L∞, ‖ · ‖∗) is a Banach space. To that end let {fn} be a Cauchy
sequence in L∞. Define E =

⋂∞
n,m=1{x ∈ X : |fn(x)− fm(x)| 6 ‖fn − fm‖∗}. Then

Ec =
∞⋃

n,m=1

{x ∈ X : |fn(x)− fm(x)| > ‖fn − fm‖∗},

and Ec is locally null, since all sets on the right hand side are locally null. Now given ε > 0
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there exists n0 ∈ N such that ‖fn − fm‖∗ < ε for n,m > n0. Thus for x ∈ E we have

|fn(x)− fm(x)| 6 ‖fn − fm‖∗ < ε for all n,m > n0,

thus {fn(x)} is a Cauchy sequence in C. We can define

f(x) =

 lim
n→∞

fn(x) for x ∈ E,

0 for x ∈ Ec.

Thus f is a measurable function and making m→∞, for x ∈ E we have

|fn(x)− f(x)| 6 ε,

and therefore fn → f uniformly on E. Hence {x ∈ X : |fn(x)− f(x)| > ε} ⊂ Ec for n > n0,
therefore ‖fn − f‖∗ 6 ε for n > n0 and hence fn → f in L∞. Thus L∞ is a Banach space.

Using item (a), it is easy to see that, when µ is semifinite, the concepts of locally null
sets and null sets are the same. Also, the concept of equality a.e. is equality in L∞. Hence
L∞ = L∞.

Exercise 24. If g ∈ L∞ (see Exercise 23), then ‖g‖∗ = sup{
∣∣∫ fg∣∣ : ‖f‖1 = 1}, so the

map g 7→ φg is an isometry from L∞ into (L1)∗. Conversely, if M∞(g) <∞ as in Theorem
5.3.2, then g ∈ L∞ and M∞(g) = ‖g‖∗.

Solution. Let g ∈ L∞ and f ∈ L1. We will prove that Hölder’s inequality holds in this
case. Let F = {x ∈ X : f(x) 6= 0}, which is σ-finite since f ∈ L1, and write F =

⋃∞
n=1 Fn

with {Fn} ⊂ M a disjoint sequence and µ(Fn) <∞ for all n ∈ N.

Hence µ(Fn ∩ {x ∈ X : |g(x)| > ‖g‖∗}) = 0, since {x ∈ X : |g(x)| > ‖g‖∗} is locally null.
Thus |g(x)| 6 ‖g‖∗ a.e. on Fn for each n ∈ N, hence |g(x)| 6 ‖g‖∗ a.e. on F and thus∫

|fg| =
∫
F

|fg| 6
∫
F

|f |‖g‖∗ =

∫
|f |‖g‖∗ = ‖f‖1‖g‖∗.

From this it follows easily that α := sup{
∣∣∫ fg∣∣ : ‖f‖1 = 1} 6 ‖g‖∗.

Now given ε > 0, let A = {x ∈ X : |g(x)| > α + ε}. Assume that A is not locally
null, then there exists F ∈ M with µ(F ) < ∞ with µ(A ∩ F ) > 0 (and clearly we have
µ(A ∩ F ) 6 µ(F ) <∞ and we can assume that F ⊂ A, for otherwise we take A ∩ F instead
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of F ). Setting f = µ(F )−1χF sgn g we obtain ‖f‖1 = 1 and

α >
∫
fg = µ(F )−1

∫
F

|g| > α + ε,

which is a contradiction. Hence A is locally null, which implies that ‖g‖∗ 6 α + ε. Since
ε > 0 is arbitrary we obtain ‖g‖∗ 6 α. Therefore ‖g‖∗ = α = sup{

∣∣∫ fg∣∣ : ‖f‖1 = 1}.
This last part work as well with M∞(g) replacing α, and we obtain ‖g‖∗ 6 M∞(g), so

g ∈ L∞. Hölder’s inequality shows that M∞(g) 6 ‖g‖∗ and the equality holds.

Exercise 25. Suppose µ is decomposable (see Exercise 15 in Section 4.4). Then every
φ ∈ (L1)∗ is of the form φ(f) =

∫
fg for some g ∈ L∞, and hence (L1)∗ ∼= L∞ (see Exercises

23 and 24), where ∼= means they are isometrically isomorphic. (If F is a decomposition of µ
and f ∈ L1, there exists {Ej} ⊂ F such that f =

∑∞
j=1 fχEj where the series converges in

L1.)

Solution. Let F ⊂M a decomposition of µ (see the properties of F in Exercise 15 of
Section 4.4). In each F ∈ F , we identify L∞(F ) with the subset of L∞ composed by function
that are zero (in L∞) outside F . Since µ(F ) < ∞, using item (b) of Exercise 23 we have
L∞(F ) = L∞(F ). Also if h ∈ L∞(F ) then ‖h‖L∞(F ) = ‖h‖∗,L∞(F ) and

{x ∈ X : |h(x)| >‖h‖L∞(F )} = {x ∈ F : |h(x)| > ‖h‖L∞(F )} ∪ {x ∈ F c : |h(x)| > ‖h‖L∞(F )}

⊂ {x ∈ F : |h(x)| > ‖h‖L∞(F )} ∪ {x ∈ F c : h(x) 6= 0}

= {x ∈ F : |h(x)| > ‖h‖∗,L∞(F )} ∪ {x ∈ F c : h(x) 6= 0},

thus {x ∈ X : |h(x)| > ‖h‖L∞(F )} is locally null, then ‖h‖∗ 6 ‖h‖L∞(F ).
Also, we identify L1(F ) with the subset of L1 composed of functions that are zero a.e.

outside F .
From Theorem 5.3.3, for each F ∈ F we obtain a function gF ∈ L∞(F ) such that

‖gF‖∗ 6 ‖gF‖∞ 6 ‖φ‖ and φ(f) =
∫
fgF for each f ∈ L1(F ).

Define g = gF in each F ∈ F . For a Borelian B ⊂ C, we have

g−1(B) ∩ F = (gF )−1(B) ∈M

since gF is measurable for each F , and property (iv) of the definition of decomposability, we
obtain g measurable. Also

{x ∈ X : |g(x)| > a} =
⋃
F∈F

{x ∈ F : |gF (x)| > a}.
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Taking a = supF∈F ‖gF‖∗, we have a 6 ‖φ‖ and the above inclusion gives us ‖g‖∗ 6 a 6 ‖φ‖.

Now given f ∈ L1, for each n ∈ N, the set An = {x ∈ X : |f(x)| > 1/n} has finite measure
and using item (iii) of definition of decomposability we obtain µ(An) =

∑
F∈F µ(An ∩ F ),

and since this sum is finite, we obtain µ(An ∩ F ) = 0 for all except a countable number of
F ∈ F . The collection of all these sets (for all n ∈ N) is also countable subset of F , and we
will enumerate them as {Ej}.

We now will prove that f = 0 a.e. in B =
(⋃∞

j=1 Ej

)c
=
⋃
F /∈{Ej} F . For F /∈ {Ej} and

A = {x ∈ X : f(x) 6= 0} we have

A ∩ F =
∞⋃
n=1

An ∩ F,

and hence µ(A∩F ) = 0. Now assume that f is not zero a.e. in B, that is, there exists C ⊂ B

with µ(C) > 0 such that µ(A∩C) > 0. Since A∩C =
⋃∞
n=1(An ∩C) we have µ(An ∩C) > 0

for some n ∈ N. Since µ(An ∩ C) <∞ we obtain

µ(An ∩ C) =
∑
F∈F

µ(An ∩ C ∩ F ),

and hence µ(An ∩C ∩ F ) > 0 for some F ∈ F . Since C ⊂ B, this set F cannot be any {Ej},
but then

0 < µ(An ∩ C ∩ F ) 6 µ(A ∩ F ) = 0,

which is a contradiction, hence f = 0 a.e. in B. Hence f =
∑∞

j=1 fχEj a.e. and since∣∣∣f −∑n
j=1 fχEj

∣∣∣ 6 2|f | ∈ L1, from the DCT we obtain

∫ ∣∣∣∣∣f −
n∑
j=1

fχEj

∣∣∣∣∣→ 0 as n→∞,

that is f =
∑∞

j=1 fχEj in L
1, thus

φ(f) =
∞∑
j=1

φ(fχEj) =
∞∑
j=1

∫
Ej

fgEj =
∞∑
j=1

∫
fgχEj

= lim
n→∞

n∑
j=1

∫
fgχEj = lim

n→∞

∫
fgχ⋃n

j=1 Ej
,

and since fgχ⋃n
j=1 Ej

→ fg a.e. and |fgχ⋃n
j=1 Ej

| 6 |fg| ∈ L1 (using Hölder for f ∈ L1 an
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g ∈ L∞), from the DCT applied in the last equality we obtain

φ(f) = lim
n→∞

∫
fgχ⋃n

j=1 Ej
=

∫
fg.
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(M,N )-measurable, 73
C1 diffeomorphism, 163
Fσ-sets, 9
Fσδ-sets, 9
Gδ-sets, 9
Gδσ-sets, 9
M-measurable, 73
µ-almost everywhere, 24
µ-null set, 23
µ∗-measurable, 36
µ-almost everywhere, 24
µ∗-measurable, 36
σ-additivity, 19
σ-algebra, 5
σ-algebra generated, 74
σ-algebra of countable or co-countable sets, 6
σ-finite, 20, 182
σ-finite for µ, 20, 31
σ-ring, 14
σ-additivity, 19
σ-finite set, 20
fn → f in L1, 102
x-section, 140
y-section, 140

a.e., 24
absolutely continuous, 185

algebra, 5

Borel σ-algebra, 9

generated σ-algebra, 6

σ-algebra, 5

almost every x, 24

almost everywhere, 24

a.e., 24

almost uniform convergence, 128

beta function, 111

Borel

σ-algebras, 9

sets, 9

Borel σ-algebra, 9

Borel measure, 51

Borel sets, 9

borelians, 9

Cantor function, 63

Cantor set, 61

Cantor-Lebesgue function, 63

Cantor-Lebesgue function., 63

Cauchy in measure, 125

characteristic function, 77

complete, 24

completion, 25

completion of σ-algebra, 25
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complex measure, 196
conditional expectation, 196
conjugate exponent, 205
conjugate exponents, 210
convergence in L1, 102
converges in measure, 126
coordinate map, 7
countable additivity, 19
countable or co-countable

σ-algebra, 6
counting measure, 22
cube, 156

decomposable, 194
determinant, 159
Dirac measure, 22
distribution function, 51

elementary family, 12
elementary type transformations, 159
essential range, 222
essential supremum, 207
extended µ-integrable, 178
extended real numbers, 10

finite, 20, 182
finite additivity, 19
finitely additive measure, 19
for almost every x, 24
fractional integral, 174

gamma function, 110, 111
generalized Cantor set, 63
generated, 6, 141

h-intervals, 51
Hölder inequality, 204
Hahn decomposition of ν, 180

indicator function, 77
inner, 157
inner approximation, 156
inner measure, 43
integrable, 98, 99
integrable function, 98, 99
integrable on E, 99
integrable on a measurable set, 99
integral, 89, 91, 182

Jordan content, 157
Jordan decomposition of ν, 181

Lebesgue (Borel) measurable, 73
Lebesgue decomposition, 188
Lebesgue integral, 106
Lebesgue integrals, 110
Lebesgue measurable sets, 60, 152
Lebesgue measure, 59, 152
Lebesgue-Stieltjes measure, 56
locally measurable, 32
locally measurable set, 32
locally null, 235
lower integrals, 106
lower sums, 106

measurable, 73
measurable function on a subset, 74
measurable on E, 74
measurable sets, 19
measurable space, 19
measure, 19

σ-finite measure, 20
Borel measure, 51
complete measure, 24
completion measure, 25
counting measure, 22
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Dirac measure, 22
finite measure, 20
finitely additive measure, 19
inner measure, 43
measure space, 20
outer measure, 35
point mass measure, 22
saturated measure, 32
semifinite measure, 20

measure space, 20
mesh, 107
mesh of a partition, 107
monotone class, 141

generated, 141
mutually singular, 180

negative, 178
negative part, 76
negative parts, 76
negative variations, 181
null, 178
null set, 23

µ-null set, 23

open middle αth, 63
outer approximation, 156
outer content, 157
outer measure, 35

partition, 106
point mass, 22
polar decomposition, 77
positive, 76, 178, 181
positive measures, 177
positive part, 76
premeasure, 38
product σ-algebra, 7

product measure, 139
product space, 7

Radon-Nikodym derivative, 188
Radon-Nikodym theorem, 188
rectangles, 138
Riemann integrable, 106
Riemann integrable function, 106
Riemann integral, 106
ring, 14

σ-ring, 14

σ-algebra generated by a family of functions,
74

saturated, 32
saturation, 32
section, 140
semifinite, 20
semifinite part, 30
sides, 152
sign function, 76
signed measure, 177
simple function, 77
singular with respect to µ, 180
standard representation, 78

total variation, 197
total variation of ν, 181

uniformly integrable, 191
upper, 106
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