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Cluster algebras, first introduced in [2], are con-
structively defined commutative rings equipped
with a distinguished set of generators (cluster
variables) grouped into overlapping subsets (clus-
ters) of the same finite cardinality (the rank of an
algebra in question). Among these algebras one
finds coordinate rings of many algebraic varieties
that play a prominent role in representation theo-
ry, invariant theory, the study of total positivity,
etc. For instance, homogeneous coordinate rings
of Grassmannians, Schubert varieties, and other
related varieties carry a cluster algebra structure
(after a minor adjustment). Potential applications
of this structure include explicit constructions of
the (dual) canonical basis and toric degenerations
for these varieties.

Since its inception, the theory of cluster algebras
has found a number of exciting connections and
applications: quiver representations, preprojec-
tive algebras, Calabi-Yau algebras and categories,
Teichmüller theory, discrete integrable systems,
Poisson geometry... The current state of these
developments, including links to papers, work-
ing seminars, conferences, etc., is represented at
the online Cluster Algebras Portal created and
maintained by S. Fomin [1].

Although some of the above connections are
rather technical, cluster algebras themselves are
defined in an elementary manner not requiring any
tools beyond high-school algebra. On the other
hand, they have an unusual feature that both
generators and algebraic relations among them are
not given from the outset but are produced by an
iterative process of seed mutations.
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Before discussing the general definition, let us
look at cluster algebras of rank two. One associates
such an algebra A(b, c) with any pair (b, c) of
positive integers. The cluster variables inA(b, c)
are the elements xm, form ∈ Z, defined recursively
by the exchange relations

xm−1xm+1 =
{
xbm + 1 if m is odd;

xcm + 1 if m is even.

Iterating these relations, we can express each xm
as a rational function of x1 and x2. Thus,A(b, c)
is the subring generated by all the xm inside the
field of rational functions Q(x1, x2). The clusters
are the pairs {xm, xm+1} for m ∈ Z. Starting with
the initial cluster {x1, x2}, we can reach any other
cluster by a series of exchanges

· · · ↔ {x0, x1} ↔ {x1, x2} ↔ {x2, x3} ↔ . . . .
For an arbitrary rank n, the construction is

similar. Each cluster x = {x1, . . . , xn} is a collection
of algebraically independent elements of some
ambient field, and each cluster variable xk can
be exchanged from x by forming a new cluster
x′ = x−{xk}∪{x′k}. Here xk and x′k are related by an
exchange relation of the following form: the product
xkx′k is equal to the sum of two disjoint monomi-
als in the variables from x ∩ x′ = x − {xk}. (For
simplicity, we restrict ourselves to the coefficient-
free case, where both monomials appear with
the coefficient 1.) The exponents in these two
monomials are encoded by an n× n integer matrix
B = (bij) called the exchange matrix; it is usu-
ally assumed to be skew-symmetrizable, that is,
dibij = −djbji for some positive integers d1, . . . , dn.
The corresponding exchange relations take the
form

xkx′k =
∏
i
x[bik]+i +

∏
i
x[−bik]+i ,

where we use the notation [b]+ =max(b,0).
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A pair (x, B) as above is called a seed. To begin
the iterative process, we extend, for each index k,
the transformation x , x′ of clusters to the trans-
formation (x, B), (x′, B′) of seeds called the seed
mutation in direction k. Its key ingredient is the
matrix mutation µk : B , B′ = (b′ij) given by the
rule

b′ij =


−bij if i = k or j = k;
bij + [bik]+[bkj]+
−[−bik]+[−bkj]+ otherwise.

The corresponding cluster algebra is then defined
as the subring of Q(x1, . . . , xn) generated by all
cluster variables, that is, by the union of all clusters
obtained from the initial cluster x by iterating seed
mutations in all directions.

The definition of matrix mutations may look
strange at first. (Remarkably, the same rule came
up in recent work on Seiberg dualities in string
theory.) One of its main consequences—and one of
the main reasons for introducing it—is the Laurent
phenomenon: every cluster variable, which a priori
is just a rational function in the elements of a
given cluster, is in fact a Laurent polynomial with
integer coefficients. For instance, in each rank 2
algebra A(b, c), every cluster variable xm is a
Laurent polynomial in x1 and x2. As a corollary, if
we specialize all elements of some cluster to 1 then
all cluster variables become integers. This is rather
unexpected since, in the process of seed mutations,
every cluster variable eventually appears as the
denominator of the expression used for producing
a new one. The cluster algebra machinery pro-
vides a unified explanation of several previously
known phenomena of this kind. One example is
the Somos-5 sequence discovered some years ago
by M. Somos: its first five terms are equal to 1,
and the rest are given by the recurrence relation
xmxm−5 = xm−1xm−4 + xm−2xm−3. The fact that all
terms of this sequence are integers can be deduced
from the Laurent phenomenon for cluster algebras.

The Laurent polynomial expressions for cluster
variables are not yet well understood. S. Fomin
and the author conjectured that all coefficients
in these Laurent polynomials are positive; this is
still open in general. The strongest known result
in this direction (by P. Caldero and M. Reineke),
which establishes the conjecture in many special
cases, uses some heavy machinery: it is based
on a beautiful geometric interpretation (due to
P. Caldero and F. Chapoton) of the coefficients
in question as Euler-Poincaré characteristics of
certain quiver Grassmannians.

A cluster algebra is of finite type if it has finitely
many seeds. As shown in [3], these algebras are
classified by the same Cartan-Killing types (or
Dynkin diagrams) as semisimple Lie algebras, finite
root systems, and many other important structures.
In particular, the rank-two cluster algebraA(b, c)
is of finite type if and only if bc ≤ 3; the reader is

invited to check that if bc = 1 (respectively 2; 3)
then the sequence of cluster variables is periodic
with period 5 (respectively 6; 8). These three cases
are naturally associated with the root systems A2,
B2, and G2.

The study of cluster algebras of finite type
brings to light new combinatorial and geometric
structures associated to root systems. For example,
by a result of F. Chapoton, S. Fomin, and the author,
the cluster complex (the simplicial complex whose
vertices are cluster variables and whose maximal
simplices are clusters) can be identified with the
dual face complex of a simple convex polytope,
the generalized associahedron. These polytopes
include as special cases the Stasheff associahedron
(in type An), and the Bott-Taubes cyclohedron (in
type Bn).

We conclude this brief tour of cluster alge-
bras with the following informal question: how
can one detect a cluster algebra structure in a
commutative ring of interest? A possible strategy
is to look for three-term relations satisfied by
some naturally arising elements of the ring and
try to interpret them as exchange relations. The
mutation mechanism will take care of the rest.
One recent example (due to S-W. Yang and the
author): consider the variety Xn of tridiagonal
(n + 1) × (n + 1) unimodular complex matrices
U = (uij) with ui,i+1 = ui+1,i = 1 for all i. The top-
left-corner principal minors D1, . . . ,Dn of U satisfy
the recurrence relations Dk+1 = uk+1,k+1Dk −Dk−1,
which feature prominently in the classical theory
of orthogonal polynomials. Rewritten in the form
Dkuk+1,k+1 = Dk+1 +Dk−1, these relations acquire
distinct “cluster flavor”. Indeed, the coordinate ring
of Xn can be made into a cluster algebra (of finite
type An) with the initial cluster x = {D1, . . . ,Dn},
so that the above relations are exactly the exchange
relations from x. Other examples of three-term
relations leading to cluster algebras include short
Plücker relations between Plücker coordinates on
Grassmannians, and Ptolemy relations between
Penner coordinates on the decorated Teichmüller
space of a bordered Riemann surface.
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