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Caṕıtulo 1

Spinc Structures

Let V be a finite dimensional K-vector space; in our context K = R, K = C or
K = H.

Definition 1.1. A symmetric bilinear form on V is a function B : V → K such that,

1. B(k1u1 + k2u2, v) = k1B(u1, v) + k2B(u2, v), for all u1, u2 ∈ V and k1, k2 ∈ K.

2. B(u, v) = B(v, u), for all u, v ∈ V .

The quadratic form associated to a symmetric bilinear form B : V × V → K is defined
as qB(u) = B(u, u), qB : K→ R.

B(u, v) =
1
2

[qB(u+ v)− qB(u)− qB(v)] . (1.1)

Thus, let’s focus exclusively on symmetric bilinear forms. In this case, if we fix a
basis β = {e1, . . . , en} (dimK(V ) = n), then the symmetric matrix M representing B is
Mij = (B(ei, ej)) and it is diagonalizable over K. Let

V + = ⊕λVλ>0, V − = ⊕λVλ<0,

where Vλ = {u ∈ V |M(u) = λu} is the eigenspace associated to the eigenvector λ.
By Sylvester’s Theorem, a quadratic form on Rn is determined, up to similarity,

by the pair of natural numbers (rkq, σq), where rkq = dim(V +) + dim(V −) is its rank
and σq = dim(V +)− dim(V −) is its signature. The quadratic form is non-degenerated
whenever V0 = {0}, otherwise it is degenerated. From now on, we will consider that all
the quadratic forms are non-degenerated. Thus, Sylvester Theorem claims that if q has
rkq = r, σq = s and r + s = n, then it is equivalent to the quadratic form

qr,s(x1, . . . , xr, y1, . . . , ys) =
r∑
i=1

x2
i −

s∑
j=1

y2
j (1.2)
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1.1. CLIFFORD ALGEBRAS Celso M Doria

The classification above justifies the following notation: on Rn, where n = r+s, consider
< ., . >r,s: V × V → R the non-degenerated bilinear form associated to the quadratic
form qr,s in 1.2.

1.1 Clifford Algebras

Definition 1.2. Let V be a K-vector space and q : V → K be a nondegenerated
quadratic form. The Clifford Algebra Cl(V, q) associated to the pair (V, q) is the algebra
generated by the relation

u.v + v.u = −2B(u, v).1, 1 ∈ K. (1.1)

where B is the bilinear form defined by the identity 1.1.

Example 1.1. .

1. Let K = R, V = Rn and B(u, v) =< u, v > be euclidean inner product on Rn. Con-
sider β = {e1, . . . , en} be an orthonormal basis with respect to the inner product.
The identity 1.1 induces the following relations in Cln = Cl(Rn, <,>):

ei.ej + ej .ei = −2δij . (1.2)

From the relation 1.2, the basis β = {e1, . . . , en} generates in Cln the elements
eI = ei1 . . . eik of length | I |= k, where 1 ≤ k ≤ n and I = (i1, . . . , ik). For

k ∈ {1, . . . , n}, there are
(
n

k

)
linearly independents elements eI such that | I |= k.

Thus,

Vk = {
a∑
i=1

fIeI | fI ∈ R and , | I |= k}

is a vector subspace of Cln with dimension
(
n

k

)
. We note that the vector space

structure on Cln = R⊕V1⊕V2 · · ·⊕Vn is isomorphic to the vector space structure
on the exterior algebra Λ∗Rn, hence its dimension is 2n.

2. Let K = R, V = Rn and B(u, v) =< ., . >r,s. If β = {e1, . . . , en} is orthonormal
with respect to < ., . >r,s, then Clr,s is generated as an algebra by the relations

ei.ej + ej .ei = −2δij , if i ≤ r, (1.3)
ei.ej + ej .ei = 2δij , if i ≥ r + 1. (1.4)

autor: Celso M Doria 4
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The automorphism α : V → V , α(u) = −u, induces the automorphism

α : Cl(V, q)→ Cl(V, q), α(
∑
I

φIeI) =
∑
I

φIα(eI),

where if eI = ei1 . . . eik , then α(eI) = α(ei1) . . . α(eik). Furthermore, the relation α2 = I
induces the decomposition

Cl(V,B) = Cl0 ⊕ Cl1,

where Cl0 = {φ ∈ Cl(V, q);α(φ) = φ} and Cl1 = {φ ∈ Cl(V, q);α(φ) = −φ}. The
subspace Cl0 is an subalgebra generated by < 1, eI : | I | even > and Cl1 is a vector
space generated by < eI : | I | odd >.

Proposition 1.1. For all r, s, there is an algebra isomorphism Clr,s ' Cl0r+1,s. In
particular, Cln ' Cl0n+1 for all n.

Demonstração. Choose a qr,s-orthonormal basis β = {e1, . . . , er+s+1} of Rr+s+1 so that
qr,s(ei) = 1 for 1 ≤ i ≤ r + 1 and qr,s(ei) = −1 for r + 1 < i ≤ r + s + 1 and
consider the map f : Rr+s → Cl0r+1,s defined by setting f(ei) = eier+1 on the basis
βr,s = {e1, . . . , er, er+2, . . . , er+s+1} and extend it linearly to Rr+s. For u =

∑
i 6=r+1 uiei,

we have that

f(u)2 =
∑
i,j

uiujeier+1ejer+1 =
∑
i 6=r+1

uiujeiej = u.u = −q(u).1

It follows from the universal property that f extends to an algebra momomorphism,
which restriction to the subalgebra Cl0r+1,s is surjective.

Definition 1.3. Fixed a orthonormal basis β = {e1, . . . , en} of (Rn, < ., . >r,s), the
volume form of Clr,s is the element w = e1 . . . en.

Proposition 1.2. Let w = e1 . . . en be the volume form of Clr,s, then;

1. w is well defined (it independs on the choosen basis).

2. w2 = (−1)
n(n+1)

2
+s.

3. For all u ∈ V , uw = (−1)n−1wu. In particular, if n is odd, then w is central in
Clr,s. If n is even, then φw = wα(φ), for all φ ∈ Clr,s.

Demonstração. .

1. Let β′ = {v1, . . . , vn} be another basis and let T : Rn → Rn be the orientation
preserving orthogonal automorphism of Rn taking the representation of a vector
in β to the representation in β′,

autor: Celso M Doria 5
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vi = T (ei) =
n∑
l=1

tliel, (T )kl = tlk.

Then

wβ
′

= v1 . . . vn = T (e1) . . . T (en) = det(T ).e1 . . . en = w.

2. Let w = e1 . . . en and u =
∑

i viei, so

u.w =
∑

vieie1 . . . ei . . . en =
∑
i

vi(−1)i−1e1 . . . eiei . . . en =

= (−1)[(i−1)+(n−i)]vie1 . . . ei . . . en.ei = (−1)n−1w.u.

Proposition 1.3. Let either n = 4k or n = 4k + 3. In this cases, w2 = 1 in Cln
generates the decomposition Cln = Cl+ ⊕ Cl−, where Cl± is the eigenspace associated
to the eigenvalue ±1 of w.

Demonstração. Let π± = 1
2(1 ± w), so π+ + π− = 1 and (π+)2 = π+, (π−)2 = π− and

π+π− = π−π+ = 0. Now, define Cl± = π±(Cln).

Corollary 1.1. Consider n = 4k and let V be a Cln-module. Then there is a decompo-
sition

V = V + ⊕ V −

into the +1 and −1 eigenspaces for the multiplication by w (V ± = π±(V )). Also, for
any v ∈ V with q(v) 6= 0, the module multiplication by v gives the isomorphisms

v : V + → V −, v : V − → V +.

Demonstração. The last claim concerning the vector v ∈ V is obtained from the fact
that n being even then vw = −wv, and so

v.π± =
1
2
v.(1± w) =

1
2

(1∓ w).v = π∓.v.

autor: Celso M Doria 6
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Definition 1.4. Let V be a real vector space endowed with a non-degenerated quadratic
form q : V → R. The complexification of Cl(V, q) is

Cl(V, q) = Cl(V, q)⊗ C.

notation: Clr,s = Cln = Cln ⊗ C.

1.1.1 Classification

Next it is described the main steps to classify the Cliford Algebra an to show that
they are all algebras of matrixes.

Proposition 1.4.

Cl1,0 = C, Cl0,1 = R⊕ R, (1.5)
Cl2,0 = H, Cl0,2 = M(2,R), (1.6)
Cl1,1 = M(2,R). (1.7)

Proposition 1.5. For all n, r e s, there are isomorphisms

Cl0,n+2 ' Cln,0 ⊗ Cl0,2 (1.8)
Cln+2,0 ' Cl0,n ⊗ Cl2,0 (1.9)
Clr+1,s+1 ' Clr,s ⊗ Cl1,1. (1.10)

Theorem 1.1. For all n, there are periodicity isomorphisms

Cln+8,0 ' Cln,0 ⊗ Cl8,0 (1.11)
Cl0,n+8 ' Cl0,n ⊗ Cl0,8 (1.12)
Cln+2 ' Cln ⊗C Cl2, (1.13)

where Cl8,0 = Cl0,8 = M(16,R) e Cl2 = M(2,C). Therefore,

Cl2k−1 = M(2k−1,C)⊕M(2k−1,C), (1.14)

Cl2k = M(2k,C), (1.15)

Cl2k+1 = M(2k,C)⊕M(2k,C). (1.16)

Example 1.2. Let V = Rn and β = {e1, . . . , en} be a orthonormal basis. Using β, we
can describe the inclusion ι : Rn ↪→ Cln and the generators set of Cln.

1. Cl1 ' C
In this case V = R, let β = {e1 = 1} be the basis. Since e2

1 = −1, we take
ι : V → C by setting ι(e1) = i.

autor: Celso M Doria 7
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2. Cl2 ' H In this case V = R2, let β = {e1 = (1, 0), e2 = (0, 1)} be canonical
orthonormal basis. The quaternions H can be identified with C2 using the fact
that i = jk, as shown next;

q0 + q1i+ q2j + q3k = q0 + q1jk + q2j + q3k = (q0 + q3k) + j(q2 + kq3).

As a algebra, consider H generated by {j, k} and let ι(e1) = j and ι(e2) = k. If we
consider the representation σ : H→M(2,C), given by

σ(a+ bj) =
(
a b
−b̄ ā

)
,

we assign

ση(e1) =
(

0 1
−1 0

)
, ση(e2) =

(
0 i
i 0

)
, (1.17)

3. Cl3 ' H⊕H
V = R3 and β = {e1, e2, e3} the canonical basis

4. Cl4

1.1.2 Representations of Clifford Algebras

Let W be a Cln-module and ρ : CLn → Hom(W,W ) be a linear representation.
The volume form plays important role in the classification of irredutible Cln-modules
because ρ(w)2 = I and w is central whenever n is odd.

Proposition 1.6. If n = 4m + 3, then the eigenspaces Cl±n of the volume form w are
inequivalent and irredutible representations of Cln.

Demonstração. In this case w2 = 1 and w is central. Of course, Cl±n are Cln-modules.
The decomposition Cln = Cl+n ⊕Cl−n together with the fact that each component Cl±n is
Cln-invariant means that they are irredutible representations of Cln, say ρ±. To see that
they are inequivalent, we observe that ρ±(w) = ±I and that there is no isomorphism
F : Cl+n → Cl−n such that ρ+(w) = F−1 ◦ ρ−(w) ◦ F .

Proposition 1.7. Let n = 4m and ρ : Cln → Hom(W,W ) be a irredutible representa-
tion. Then, there is the decomposition W = W+ ⊕W−, where each space W± is Cl0n
invariant, and each one corresponds to a irredutible representation of Cln−1 ' Cl0n.

Demonstração. It is enough to observe that φ.w = w.φ, for all φ ∈ Cl4m and w ∈ Cl0n.
However, u.w = −w.u for all u ∈ V , and so, u.π± = π∓u.

Corollary 1.2. Consider the complex Clifford Algebras Cln and wC = i[
n+1

2
]w the com-

plex volume form;

autor: Celso M Doria 8
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1. if n = 2k + 1, then there are two irredutible and inequivalent representations of
Cl2k+1.

2. if n = 2k, then there is only one irredutible representation W ' C4 admitting a
decomposition W = W+ ⊕W−, where W± are the irredutible representations of
Cl2k−1 ' Cl02k.

Demonstração. First we observe that wC = 1, since

w2
C = i2.[

n+1
2

].e1 . . . en.e1 . . . en = (−1)
n(n−1)

2 .(−1)
n(n−1)

2 = 1.

Thus, wC has eigenvalues ±1 and the corresponding eigenspaces Cl±n induce the decom-
position Cln = Cl+n ⊕ Cl−n .

1. If n is odd, wC is central, then Cl±n are invariant as Cln-modules and inequivalent
as representations.

2. if n is even, then any v ∈ V induces an isomorphism v : Cl±n → Cl∓n . Besides, each
Cl±n is Cl0n ' Cln−1 invariant.

remark: In the Corollary above, the dimension of the irredutible representation spaces
W can be computed as follows: (hint: dim(M(n,R)) = n2)

1. n = 2k − 1;
Since dim(Cl2k−1) = 22k−1, it follows that dim(Cl±2k−1) = 22k−2 = (2k−1)2. Hence,
dim(W ) = 2k−1.

2. n = 2k;
Since in this case Cl2k is irredutible as a Cl2k-module and dim(Cl2k) = (2k)2, it
follows that dim(W ) = 2k.

Let’s compute the volume form wC in Cl2k−1 = M(2k−1,C)⊕M(2k−1,C) and Cl2k '
M(2k,C) are performed;

Proposition 1.8. Let wC ∈ Cln be the volume form; so,

wC  

(
I 0
0 −I

)
or wC  

(
−I 0
0 I

)
(1.18)

Demonstração. From the decompositions Cln = C+ ⊕ C−, we have wC =
(
A 0
0 B

)
,

hence A2 = B2 = I, and A = ±I and B = ±I. Since 1 → I and −1 → −I, the only
possibilities are 1.18. In the first case, we compute

π+ =
1 + wC

2
=
(
I 0
0 0

)
, and π− =

1− wC
2

=
(

0 0
0 I

)

autor: Celso M Doria 9
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1.1.3 (Cl04)+

As vector spaces, we have the isomorphism Cl4 ' Λ∗(R4) ⊗ C. One of the Seiberg-
Witten equations requires a relationship among the vector spaces (Cl04)+ and Λ2

+(R4);

Proposition 1.9. Let (Cl04)+ = Cl04 ∩ Cl
+
4 , so

(Cl04)+ ' {
〈

1 + wC
2

〉
⊕ Λ2

+(R4)} ⊗ C (1.19)

Demonstração. Its is straight forward that

Cl0 ' (Λ0 ⊕ Λ2 ⊕ Λ4)⊗ C.

The subspaces Λ2C and (Λ0 ⊕Λ4)⊗C are invariant by wC. Let β = {e1, e2, e3, e4} be a
orthonormal basis of R4, so wC = −e1e2e3e4 and

w(e1e2) = e3e4, w(e1e3) = −e2e4, w(e1e4) = e2e3.

The multiplication by wC on Cln is similar to the action of the Hodge ∗-operator on
Λ∗(Rn), in the sense that the diagram below commutes;

Cln
wC−−−−→ Cln

'
y '

y
Λ∗(Rn) ∗−−−−→ Λ∗(Rn)

So, the elements

e1e2 + e3e4

2
,
e1e3 − e2e4

2
,
e1e4 + e2e3

2
form a basis of Λ2

+. So, a generator set of (Cl04)+ is given by

〈
1 + wC

2

〉
⊕
〈
dx1 ∧ dx2 + dx3 ∧ dx4

2
,
dx1 ∧ dx3 − dx2 ∧ dx4

2
,
dx1 ∧ dx4 + dx2 ∧ dx3

2

〉

1.2 Spin Group

The multiplicative group of units in Cl(V, q) is the set

Cl×(V, q) = {φ ∈ Cl(V, q) | φ invertible}

This group contains all elements v ∈ V with q(v) 6= 0, since v−1 = − v
q(v) . It is a Lie

group of dimension 2dim(V ). The adjoint representation Ad : Cl×(V, q)→ Aut(Cl(V, q))
is given by Adφ(x) = φxφ−1. For v ∈ V ,

autor: Celso M Doria 10
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−Adv(w) = w − 2
q(v, w)
q(v)

v. (1.1)

The right hand side of expression 1.1 is a q-reflection over the q-orthogonal plane to v,
hence it preserves q. In order to obtain a q-reflection, or to get rid of the minus sign
on the left hand side, we introduce the twisted adjoint representation Ad : Cl×(V, q)→
Aut(Cl(V, q)),

Adφ(y) = α(φ)yφ−1, (1.2)

Note the following: (1) Adφ = Adφ iff φ is even and (2) Adφ = −Adφ iff φ is odd. It
follows that for all v ∈ V

Adv(w) = w − 2
q(v, w)
q(v)

v. (1.3)

Thus, Adv is a q-reflection. Define P (V, q) to be the subgroup of Cl×(V, q) generated by
v ∈ V with q(v) 6= 0. In this way, we have got a representation P (V, q)→ O(V, q).

Definition 1.5. The Pin group Pin(V, q) of (V, q) is the subgroup of P (V, q) generated
by the elements v ∈ V with q(v) = ±1. The associated Spin group of (V, q) is defined by

Spin(V, q) = Pin(V, q) ∩ Cl0(V, q).

Now, letting P (V, q) = {φ ∈ Cl×(V, q) | Adφ(V ) = V } (P (V, q) ⊂ P (V, q)), the twisted
adjoint representation induces the representation P (V, q)→ O(V, q).

Proposition 1.10. Suppose that V is finite dimensional and that q is non-degenerated.
Then the kernel of the homomorphism Pin(V, q)→ O(V, q) is ±1.

remark: The groups Pin and Spin are generated by the generalized unit sphere
S = {v ∈ V | q(v) = ±1}; that is,

Pin(V, q) = {v1 . . . vr | q(vi) = ±1}
Spin(V, q) = {v1 . . . vr ∈ Pin(V, q) | r even}

By setting Or,s = O(V, qr,s) and SOr,s = SO(V, qr,s), we have the following important
results;

Theorem 1.2. Let V be a finite dimensional R-vector space and suppose q is a non-
degenerate quadratic form on V . Then there are short exact sequences

0 −→ Z2 −→ Spinr,s
Ad−→ SOr,s −→ 1,

0 −→ Z2 −→ Pinr,s
Ad−→ Or,s −→ 1.

autor: Celso M Doria 11
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Furthermore, if (r, s) 6= (1, 1), these two-sheeted coverings are non-trivial over each
componente of Or,s. In particular, the exact sequence

0 −→ Z2 −→ Spinn
Ad−→ SOn −→ 1 (1.4)

represents the universal covering homomorphism of SOn, for all n ≥ 3.

Demonstração. The exact sequence are a direct consequence of proposition 1.10. The
non-triviality of the coverings is achieved by exibiting in Spinr,s a connected path from
1 to −1: choose orthogonal vectors e1, e2 ∈ Rn with q(e1) = q(e2) = ±1 (this is possible
since (r, s) 6= (1, 1)). Then the curve γ : [0, 1]→ Spinr,s,

γ(t) = [cos(t)e1 + sen(t)e2].[−cos(t)e1 + sen(t)e2] = ±cos(2t) + sen(2t)e1e2

satisfies γ(0) = ±1 and γ(π/2) = ∓1.

remark: .

1. Spin3 = S3 and Spin4 = S3 × S3.

2. The fundamental groups of SOn and SO0
r,s are

(a) π1(SOn) = Z2, n ≥ 3,

(b) π1(SO0
r,s) = π(SOr)× π1(SOs) for all r, s.

3. Fixed an orthogonal basis β = {e1, . . . , en} in Rn, the curves γij : [0, 1] → Spinn,
γij(t) = cos(2t)+sen(2t)eiej satisfy γ(0) = 1 and γ′(0) = eiej . So, the Lie Algebra
of Spinn is generated by the pairs eiej and its dimension is n(n−1)

2 .

Definition 1.6. A Spinn representation 4 : Spinn → GL(W ) is a representation

induced by a Clifford Representation Spinn ⊂ Cln
4→ GL(W ). If the representation

space W is irredutible, we say that 4 is a fundamenatl representation

remark: Since Spinn ⊂ Cl0n, a Spinn representation are induced by a Cln−1-representation.
Therefore, for each n there is only one fundamental spin representation.

1.3 Spin Structure

In the last section it was shown how to construct the Clifford Algebra Cl(V, q) as-
sociated to a K-vector space V endowed with a quadratic form q : V → K. In this
section, the aim is to extent the construction to riemannian vector bundles E π→ X over
a smooth manifold X. Let Ex = π−1(x) be the fiber over x ∈ X and consider that E is a
orientable vector bundle of rank n endowed with a quadratic form q, where qx : Ex → K.
This constructions starts by considering the Clifford Algebras Cln(Ex, q) and then the

autor: Celso M Doria 12
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bundle Cln(E, q) = ∪x∈XCln(Ex, qx). In order to get grips on the transition functions
of the bundle Cln(E, q) it is better to construct it as an associated bundle. For this
purpose, let SO(E) = {T ∈ SO(Ex) | ∀x ∈ X} and PSO(E) be the orthogonal frame
bundle associated to E (its fibers are diffeomorphic to SOn). We recall that the tran-
sition function of PSO(E) are the same as E. In fact, by considering the representation
ρ : SOn → GL(V ) induced by the inclusion, we have that

E = PSO(E) ×ρ V.

Now, letÂ´s consider the representation ρ̃ : SOn → Aut(Cln)

ρ̃(g)(ei1 , . . . , ein) = (ρ(g)(ei1)) . . . (ρ(g)(ein)).

In this way, Cl(E) = PSO(E) ×ρ̃ Cln.
Now, we would like to construct a principal bundle PSpinn over X associated to the

exact sequence

0 −→ Z2 −→ Spinn
Ad−→ SOn −→ 1. (1.1)

However, this is not always possible due to an obstruction named 2nd Stiefel-Whitney
class w2(E) ∈ H2(X,Z2).

Definition 1.7. Let X be a smooth manifold and dim(X) ≥ 3. A spin structure over a
vector bundle π : E → X is a principal bundle PSpinn(E) and a map ζ : PSpinn → PSO(E),
such that ζ(p.g) = ζ(p).Ad(g), for all p ∈ PSpinn(E) and g ∈ Spinn, and such that the
diagram below is commutative (π ◦ ζ = π′)

-
π

���
���

���

ζ

?

π′

PSpin

XPSO(E) (1.2)

The exact sequence in 1.1 induces an exact sequence at the Cech Cohomology level;

H1(X,Z2) −→ H1(X,Spinn) Ad−→ H1(X,SOn)
w2(E)−→ H2(X,Z2), (1.3)

where each class in H1(X,G) represents the set of transition functions of a G-principal
bundle. Therefore, a class in H1(X,Spinn) represents a Spinn-bundle lifted from a
SOn-bundle PSO(E) (as in diagram 1.2) if, and only if, w2(E) = 0.

Definition 1.8. A vector bundle π : E → X is spin if w2(E) = 0.
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1.3.1 Classification of Spin Bundles

From its initial concept, the map ζ : PSpinn → PSOE is a double cover when restricted
to the fibers. Let’s investigate the possible maps doing this. A basic fact about 2-covers
of a manifold M is that they are classified by H1(X,Z2), since a 2-cover is determined
by the kernel of a homomorphism π1(M) → Z2, which descends to a homomorphism
H1(M,Z2) → Z2 determining a class in H1(M,Z2). Therefore, the space of spin struc-
ture over PSO(E) is 1↔ 1 with the classes φ ∈ H1(PSO(E),Z2) that are non-trivial when
restricted to the fibers of PSO(E).

example: Let X and f : T 4 → T 4 is a double. The pull-back bundle f∗PSO(E) doesn’t
corresponds to a Spin4 structure on a vector bundle π : E → T 4.

The bundle sequence SOn
i−→ PSO(E)

π−→ X induces the exact sequence

0 −→ H1(X,Z2) π∗−→ H1(PSO(E),Z2) i∗−→ H1(SOn,Z2) wE−→ H2(X,Z2), (1.4)

where w2(E) = wE(g1) and g1 is the generator of H1(SOn,Z2) ' Z2.

Theorem 1.3. Let E be a orientable vector bundle over X. There exists a spin structure
over E if, and only if, w2(E) = 0. Moreover, H1(X,Z2) can be identified as the space
Spin(E) of spin structures on E.

Demonstração. If there is a spin structure, then we have seen that w2(E) = 0. Let’s
prove the converse. Suppose w2(E) = 0, by the exact sequence ?? an element φ ∈
H1(PSO(E),Z2), non-trivial along the fibers, can be written as φ = π∗(α) + β, where
α ∈ H1(X,Z2) and i∗(β) = g1. Since π∗ is a monomorphism, it follows that whenever
α 6= α′ in H1(X,Z2) we have

φ′ = π∗(α′) + β 6= π∗(α) + β = φ.

Therefore, after fixing β /∈ Ker(i∗), for each α ∈ H1(X,Z2) corresponds only one spin
structure.

Example 1.3. LetÂ´s compute the spin structures on some explicit examples;

1. Consider π : E → S1 as a rank = 2 riemannian vector bundle with structural group
SO(2). In this case, the frame bundle must be trivial, hence PSO(E) = S1×S1 = T 2

and w2(E) = 0. According with the theorem 1.3, there are only four spin structures
on E, since H1(T 2,Z2) = Z2 ⊕ Z2. The sequence 1 → SO2 → T 2 → S1 induces
the exact sequence

0 −−−−→ H1(S1,Z2) π∗−−−−→ H1(T 2,Z2) i∗−−−−→ H1(SO2,Z2) wE−−−−→ 0y '
y '

y =

y
0 −−−−→ Z2 −−−−→ Z2 ⊕ Z2 −−−−→ Z2

wE−−−−→ 0

(1.5)
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CAPÍTULO 1. SPINC STRUCTURES Celso M Doria

Each spin structure is equivalent to an element of form (α, 1) ∈ H1(T 2,Z2), α ∈
H1(S1,Z2). So, they are (0, 1) and (1, 1); each one corresponding to the following
2-covers of T 2:

(a) p1 : T 2 → T 2, p1(eiθ, eiζ) = (eiθ, ei2ζ); T 2 = S1 × (S1�Z2).

(b) p2 : T 2 → T 2, p2(eiθ, eiζ) = (ei2θ, ei2ζ); T 2 = S1 ×Z2 S
1.

In this example we can see that although the principal bundles are diffeo-
morphic to T 2, they carry different spin structures.

2. Let SOn, n ≥ 3, and π : TSOn → SOn be its tangent bundle. It is well known
that the tangent bundle of a Lie Group is trivial, so TSOn = SOn × SOn and
w2(TSOn) = 0. Therefore, it admits a spin structure and there are only two of
them because H1(SOn,Z2) = Z2, for n ≥ 3. The spin structures correspond to
the following 2-covers;

SOn × Spinn
p1→ SOn × SOn, Spinn × Spinn

p2→ Spinn ×Z2 Spinn.

3. Whenever X is an almost complex manifold, then

w2(X) = c1(X) mod 2 (1.6)

By considering X = Fg a closed surface of genus g, then c1(Fg) = χ(Fg) = 2(1−g),
and w2(Fg) = 0. Thus, TFg admits a spin structure and, since H1(Fg,Z2) ' Z2g

2 ,
there are 22g spin structures on TFg.

Definition 1.9. An orientable riemannian manifold X is spin if w2(TX) = 0. In this
case, X carries a spin structure by fixing a spin structure sX ∈ H2(X,Z2) on TX
(notation: w2(X) = w2(TX))

remarks:

1. the spin structure on TX independs on the riemannian metric defined on X, since
the inclusion PSO(E) → PGL(E) is a homotopy equivalence.

2. A diffeomorphism f : X → X may change the spin structure defined on X. The
induced isomorphism f∗ : H1(X,Z2)→ H1(X,Z2) may not be the trivial one.

1.3.2 Geometric Meaning of a Spin Structure

Let w = w1 + w2 + · · · + wn ∈ H∗(X,Z2) be the Total Stiefel-Whitney class, n =
dim(X). Using the Steenrod squaring operations Sqk : Hj(X) → Hj+k, there exists
only one element vk ∈ Hk(X,Z) such that

(vk ∪ u) = Sqk(u) ∈ Hn(X,Z), ∀u ∈ Hn−k(X,Z2).
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Let Sq =
∑k

i=0 Sq
k be the total Steenrod squaring and v = 1 + v1 + v2 + . . . be the total

Wu class. Clearly, v satisfies the identity

v ∪ u = Sq(u), ∀u ∈ H∗(X,Z2).

Proposition 1.11. (Wu’s formula [3]) Let w ∈ H∗(X,Z2) be the total Stiefel-Whitney
class of X:

w = Sq(v).

(since Sqi(u) = 0 if i > deg(u), then vk = 0 for k > [n2 ]).

Example 1.4. Let X be an orientable manifold with dimension ≤ 4. By Wu’s formula,

4∑
i=0

wi =
2∑
i=0

Sqi(v) = 1.(1 + v1 + v2) + v1.(1 + v1 + v2) + v2(1 + v1 + v2) =

= 1 + v1 + v2
1 + v2 + v1v2 + v2

2 ⇒


w1 = v1 = 0,
w2 = v2

1 + v2 = v2,

w3 = v1v2 = 0,
w4 = v2

2.

The tangent bundle of closed 3-manifolds is always trivial, so w2(X) = 0 and w = 1. If
X is an orientable 4-manifold, then w = 1 + w2, where w2 = v2 and

w2 ∪ u = u ∪ u, ∀u ∈ H2(X,Z2).

Proposition 1.12. If X is a spin 4-manifold, then Q(u, u) = 0 mod 2 for all u ∈
H2(X,Z).

Theorem 1.4. Let X be a n-dimensional manifold.

1. If n ≥ 5, then X is spin if, and only if, all embeded orientable surface in X has
trivial normal bundle.

2. If n = 4, then X is spin if, and only if, the euler class of the normal bundle of an
embeded orientable surface in X is even.

Demonstração. The group H2(X,Z) is generated by compact orientable surfaces and so
is the group H2(X,Z2) = H2(X,Z)⊗ Z2. By Whitney’s Embedding Theorem, if n ≥ 5
these surfaces can be embedded in X, and if n = 4 they may have transversal self-
intersections which can be removed by the price of increasing the genus of the surface.
In both cases, the generating classes are smooth. Let ι : Σ → X be such embedding
with normal bundle ν(Σ). Then, since w2(Σ) = 2(1− g) mod 2 ≡ 0 mod 2,
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ι∗w2(X) = ι∗w2(TX) = w2(ι∗TX) = w2(TΣ⊕ ν(Σ)) = (1.7)
w2(TΣ) + w2(ν(Σ)) = w2(ν(Σ)). (1.8)

Hence,

ι∗w2(X)[Σ] = w2(X)[ι∗(Σ)] = w2(ν(Σ))[Σ] = (1.9)
= χ(ν(Σ)) mod 2 = Q(Σ,Σ) mod 2. (1.10)

Therefore, w2(X) = 0 if, and only if, w2(ν(Σ))[Σ] = 0 for all embedded surface in X.
Furthermore, if dim(ν(Σ)) ≥ 3 (or n ≥ 5), then ν(Σ) is trivial and so w2(ν(Σ)) = 0.
Whenever dim(ν(Σ)) = 2 (or n = 4), w2(X) = 0 iff for any surface its self-intersection
number is even.

Corollary 1.3. Let X be simply connected.

1. If dim(X) ≥ 5, then X is spin iff every embedded 2-sphere in X has trivial normal
bundle.

2. If dim(X) = 4, then X is spin iff Q(u, u) ≡ 0 mod 2, for all u ∈ H2(X,Z).

Demonstração. It is enough to remark that X being simply connected imply, by Hu-
rewicz’s theorem, that H2(X,Z) ' π2(X) is generated by spheres. If dim(X) = 4, the
generating spheres may not be smoothly embedded.

Today, the main question in 4-dimensional smooth topology is about the classification
of smooth, closed, simply connected 4-manifolds. However, the question concerning the
realization of quadratic forms as intersection forms of smooth manifolds is still unsolved.
There are two very deep theorems about the last question;

Theorem 1.5. (Rohlin) Let X be a smooth, closed 4-dimensional manifold with signa-
ture σX . If X is spin, then

σX ≡ 0 mod 16.

remark: For all 4-manifold X, σX ≡ 0 mod 8.

Theorem 1.6. (Donaldson) Let X be a smooth, closed 4-dimensional manifold. If QX
is positive (negative) definite, then

QX ' 1⊕ 1⊕ · · · ⊕ 1, (−1⊕−1⊕ · · · ⊕ −1).

Corollary 1.4. X spin and positive definite, then rk(QX) ≡ 0 mod 16.
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1.3.3 Interpretation of w2 as an Obstruction

A a smooth manifold X admits a CW -complex structure K = ∪ni=0Ki, where K(i)

is the i-skeleton and the underlying polyhedron is | K |= X. Besides, the CW -structure
can be induced by a handle decomposition, as decribed in the next section.

For a vector bundle p : E → X, the 2nd Stiefel-Whitney class measures the extenda-
bility of a trivialization τ over the 1-skeleton K(1) to the 2-skeleton K(2). Let Ci(X) be
the ith-chain Z-module, Zi(X) = Ker(∂) be ith-cycles submodule and Bi(X) = Im(∂)
be the ith-boundaries submodule. Also, there is the dual submodules Ci(X), Zi(X) and
Bi(X).

Let’s start by discussing the orientability of a bundle p : E → X. Consider c ∈
C1(X), c : [0, 1]→ X, with a frame β0 fixed at c(0) and another one β1 fixed at c(1). It
is natural to ask if it is possible to continuously extend the frames β0, β1 over c. Clearly,
if β0 and β1 belong to the same connected component of On then the extension can
be continously performed, otherwise it can not be performed since they lie in distinct
connected component. This is better interpreted as a map w1(E, τ) : S0 → π0(On)
associating to a trivialization τ on ∂c = S0 a class in π0(On) ' Z2, where the value is 0
if the frames are in the same component and 1 otherwise. This procedure when applied
to 1-cycles in Z1(X,Z) induces a homomorphism w1(E, τ) : Z1(X,Z)→ Z2.

Proposition 1.13. Let E be a rank n real vector bundle over a smooth manifold X. So,

1. δw1(E, τ) = 0.

2. Let τ ′ and τ be distincts trivializations over the 1-skeleton K(1). Then there exists
a class η0 ∈ C0(X) such that

w1(E, τ ′)− w1(E, τ) = δη0.

Hence, w1(E, τ) ∈ H1(X,Z2) independs on τ .

Demonstração. .

1. For s ∈ C2(X), δw1(E, τ)(s) = w1(E, τ)(∂s). From the classification of compact
surfaces, it is known that | s | has the homotopy type of a bouquet

∨2g
i=1 S

1, where
g is the genus of | s |. Besides, ∂s is homotopic to the bouquet, so w1(E, τ)(∂s) =∏2g
i=1w1(E, τ) = 0 mod 2. Therefore, w1(E, τ)(∂s) = 0.

2. If τ ′ and τ are distincts trivialization, then w1(E, τ ′) and w1(E, τ) take different
values in π0(On). So, for any 1-chain c ∈ C1(X), (w1(E, τ ′)−w1(E, τ))(c) measures
the difference on a 0-chain q = ∂c ∈ C0(X), which is nothing else than just a
coboundary δη0.

Definition 1.10. The 1st Stiefel-Whitney class of a vector bundle E is w1(E) ∈ H1(X,Z2).
E is an orientable vector bundle if w1(E) = 0.
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The same sort of question can be asked by analysing the case of extending a triviali-
zation (frame) of an oriented vector bundle E over the 1-complex K(1) to a trivialization
over the 2-chain complex K(2). First of all, let’s fix an trivialization τ on K(1). For each
1-cycle γ ∈ Z1(X), τ is a map τ : γ∗E → S1 × Rn given by

τ(p−1(t)) = (t; e1(t), . . . , en(t)).

Thus, for each γ ∈ C1(X), there is a map τγ : S1 → SOn, τγ(t) = (e1(t), . . . , en(t)).
Therefore, a trivialization τ over a closed curve γ : S1 → X induces a class [τγ ] ∈
π1(SOn), where π1(SOn) ' Z2 whenever n > 2, and π1(SO2) = Z. Assuming that E
is an oriented vector bundle, it admits a trivialization τ over the 1-skeleton K(1). The
restriction of τ over the boundary ∂4 of a 2-simplex 4 extends over 4 iff [τ∂4] = 0. By
defining w2(E, τ)(4) = [τ∂4], we have a homomorphism w2(E, τ) : C2(X) → π1(SOn).
Now, let S ⊂ K(2) be a submodule of Z2(X). From the classification theorem of compact
surfaces, | S | is homotopic to (

∨2g
i=1 S

1) t D2, where g is the genus of | S |. Let Ŝ be
a submodule of S such that | S |=| Ŝ | tD2. Therefore, the bundle E is trivial over Ŝ
and it extents over S iff [τ∂Ŝ ] = 0. Thus,

w2(E, τ)(| S |) = [τ∂Ŝ ]

and E extends over S iff w2(E, τ)(| S |) = 0.

Proposition 1.14. Let E be a rank n oriented real vector bundle over a smooth manifold
X. So,

1. δw2(E, τ) = 0.

2. Let τ ′ and τ be distincts trivialization over the 1-skeleton K(1). Then there exists
a class η1 ∈ C1(X) such that

w2(E, τ ′)− w2(E, τ) = δη1.

Hence, w2(E, τ) ∈ H2(X,Z2) independs on τ .

Demonstração. .

1. For Q ∈ C3(X), δw2(E, τ)(Q) = w2(E, τ)(∂Q). First of all, let’s decompose Q as
Q =

∑n
i=1 qi43

i , where 43
i , i = 1, . . . , n, are 3-simplex. For each i ∈ {1, . . . , n}, we

have w2(E, τ)(∂43
i ) = 0 because every trivialization over ∂43

i extends over 43
i ,

since π2(SOn) = 0 for n > 2. Therefore, E is trivial over K(3). Hence, E is trivial
over ∂Q ∈ Z2(X) and w2(E, τ)(∂Q) = 0.

2. By considering τ ′ and τ distincts trivialization, w2(E, τ ′) and w2(E, τ) assume
different values in π1(SOn) when computed on s ∈ C2(X). In this way, for any
s ∈ C2(X),

(w2(E, τ ′)− w2(E, τ))(s) = [τ ′∂s]− [τ∂s]
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measures the difference on a 1-chain c = ∂s ∈ C1(X), c = ∂s, which is nothing
else than just a coboundary δη1 : C1(X)→ Z2.

Definition 1.11. The 2nd Stiefel-Whitney class of an oriented, real vector bundle E is
w2(E) ∈ H2(X,Z2). E is a spin bundle if w2(E) = 0.

Example 1.5. Every closed, oriented, compact surface Σg of genus g is spin. As des-
cribed above, by considering Σg = Σ̂g tD2, the class w2(X) ∈ H2(X,Z2) is measured
by fixing a trivilization τ of TΣg over Σ̂g and computing the class [τ∂Σ̂]. In this way,
τ defines a frame β = {e1, e2} over Σ̂. The Hopf theorem states that the index of each
vector field e1 and e2 must be equal to the Euler characteristic χ(Σg) = 2(1− g), what
means that the maps ei : ∂D2 → SOn induces the class [τi] = 0 ∈ Z2. Therefore, the
frame β extends over D2, hence over Σg.

It follows from the former discussion that, for all oriented real vector bundle E, the
space of orientations on E is parametrized by H0(X,Z2) = Z2 and the space of spin
structure is parametrized by H1(X,Z2).

1.3.4 Spin Structure on a Handlebody

A k-handle hk of dimension n is, by definition, the space hk = Dk ×Dn−k homeo' Dn.
A k-handle has the following subsets;

1. the core of hk is Dk × {0} and its cocore is {0} ×Dn−k.

2. the attaching a-sphere of hk is A = Sk−1 × {0} and the belt b-sphere is B =
{0} × Sn−k−1. (convention: S−1 = {1}.)

A handle decomposition of a smooth manifold X is a decomposition

X = H0 ∪H1 ∪ · · · ∪ Hk ∪ · · · ∪ Hn,

where Hk = ∪nki=1h
i
k is the union of nk k-handles, each one corresponding to a critical

value of a Morse function f : X → R with Morse index k. Fortunetely, it can be assumed
that the critical values of f are in crescent order according with their indexes. Thus, let

X0 = H0, X1 = X0 ∪H1, . . . , X
k = Xk−1 ∪Hk, . . . , Xn = Xn−1 ∪Hn.

Each piece Xk is a n-manifold with boundary. In order to attach a k-handle over ∂Xk−1,
we need to perscribe two pieces of data:

1. the isotopy class of an embedding φ : Sk−1 ×Rn−k with trivial normal bundle. (φ
is the attaching map);
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2. a normal framing τ of φ(Sk−1) corresponding to the identification of the normal
bundle ν(φ(Sk−1)) with Sk−1 × Rn−k.

The normal framing τ corresponds to a map τ : Sk−1 → Gln−k, and so, each normal
framing is defined, up to homotopy, as an element in πk−1(Gln−k). In dimension 4,

πk−1(Gl4−k) =


Z2, k = 1,
Z, k = 2,
1, k = 3, 4.

(1.11)

Therefore, in dimension 4 the framing of a 2-handle is specified by an integer number.
A trivialization τ over the attaching sphere A = S1×{0} extends to a trivialization over
the core of a 2-handle iff the framing τA ∈ 2Z.

Definition 1.12. A n-dimensional handlebody is a n-manifold X admiting a handle
decomposition

X = Dn ∪H1 ∪ · · · ∪ Hk ∪ · · · ∪ Hn−1,

where Hk = ∪nki=1h
i
k is the union of nk k-handles.

Example 1.6. Let X = D4 ∪ h1 ∪ h2 be a 4-manifold obtained by attaching two 2-
handles to the ball X = D4. The attaching spheres A1, A2 ⊂ S3 = ∂D4 are knots in S3.
The Seifert surfaces S1, S2 associated to each knot, respectively, when capped off by
the core of the 2-handles define surfaces Σ1, Σ2. Thus, H2(X,Z) = Z⊕ Z is generated
by [Σ1] and [Σ2]. The quadratic form QX : H2(X,Z)×H2(X,Z)→ Z is defined as the
linear extension of

QX([Σi], [Σj ]) = lk(Ai, Aj), i, j = 1, 2,

where lk(Ai, Aj) is the linking number among Ai and Aj . In the case i = j the linking
number is exactly the framing of Ai. Therefore, X is spin iff the framings of [τA1 ] and
[τA2 ] are in 2Z.

In the example above it is shown how a 2-handle h attached to D4 determines a
surface Σh in X = D4 ∪ h. By sliding a 2-handle h1 over a 2-handle h2 we obtain a new
2-handle h because its attaching sphere is not A1 anymore. The surface Σh obtained by
attaching h represents the homology class [Σh] = [Σh1 ] + [Σh2 ], so

QX([Σh], [Σh]) = {QX([Σh1 ], [Σh1 ]) +QX([Σh2 , [Σh2 ])} mod 2. (1.12)

Proposition 1.15. Let Y 3 be a closed 3-manifold. Thus, Y bounds a handlebody X4

constructed by using only one 0-handle and several 2-handles.
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Demonstração. Its is known that every closed 3-manifold is the boundary of a 4-manifold
W . A handle decomposition of W can be obtained by using only one 0-handle and no
4-handles. The 1-handles can be cancelled by attaching 2-handles along the cores of the
1-handles killing the π1(W ) generators. By turning the handlebody upside down the
3-handles became 1-handles and the same process can be appllied to end up with only
2-handles and one 0-handle.

Proposition 1.16. Let Y be a closed 3-manifold endowed with a spin structre sY . Thus,
there exists a closed surface Σg of genus g and a spin structure sM on M = S1 × Σg

such that (Y, sY ) is spin cobordant to (M, sM ).

Demonstração. Consider X = (Y × [0, 1]) ∪ni=1 hi, where hi are 2-handles attached to
Y ×{1} with framing ni. If the framings ni are even numbers, then the spin structure sY
extends to a spin structure sX on X and we define M = ∅. In case there are 2-handles
with odd framings, suppose they are h1 and h2, we can slide h2 over h1 in order to
replace h2 by the new 2-handle h′2 with frame n ∈ 2Z (compute it using equation 1.12).
Therefore, we are left with just one 2-handle h with odd framing. Whenever the number
of odd framed 2-handles is greater than two, this procedure can be carried out to end
up with only one odd framed 2-handle denoted by h.

By erasing the cocore of h, the effect of attaching h is canceled out. However, we
can consider the Seifert surface Sbs ⊂ Y × {1} of the belt sphere of h and capp it off
with the cocore of h to construct the genus g closed surface Fg = ({1} ×D2) ∪ Sbs. Let
ν(Fg) be Fg normal bundle. In this way, it has been constructed a cobordism X̂ among
Y and ∂ν(Fg). It may not be true that ν(Fg) = D2×Fg. By modifying X̂ we can obtain
a cobordism X̃ among Y and S1 × Fg. The bundle ν(Fg) is trivial iff the U1-bundle
∂(ν(Fg)) is trivial. In order to turn the U1-bundle ∂ν(Fg) into a trivial bundle it is
necessary to became null its 1st-Chern class c1. If c1(∂ν(Fg)) > 0, then by connecting
sum X̃ with CP 2 and tubing Fg with CP 1 ⊂ CP 2, the 1st Chern class of the U1-bundle
∂(ν(Fg)) is decreased by 1, and the tubing process can go on until c1(∂ν(Fg)) = 0.
If c1(∂ν(Fg)) < 0, by connecting sum with CP 2 and tubing with CP 1 ⊂ CP 2 then
c1(∂ν(Fg)) is increased by 1. Now, the spin structure sY can be extended over X, hence
defines a spin structure sM on M = S1 × Fg.

Next, let’s see that S1 × Fg is spin cobordant to a finite union of 3-toris T 3.

Lemma 1.1. Consider S1×Fg endowed with a spin structure s. Thus, there are a finite
number of spin 3-toris (T 3

i , si) endowed with a spin structure si, i ∈ {1, . . . , n} and a
spin 4-manifold (W, sW ) such that:

1. ∂W = (S1 × Fg) t (∪T 3
i ),

2. sW |S1×Fg= s and sW |T 3
i
= si

Demonstração. The kernel of the proof relies on the fact that Fg is spin cobordant to
tgi=1T

2
i . In order to verify this fact it is enough to consider a set of curves {γ1, . . . , γg−1}
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splitting Fg into surfaces of genus 1. Consider the 3-manifold Fg× [0, 1]. By attaching 2-
handles hi = D2×D1, wich attaching spheres are Ai = γi×{1}, we obtain a coboundary
among Fg and tgi=1T

2
i . Any spin structure on Fg, when restricted to γi, i = 1, . . . , g− 1,

can be extended to the core of hi. So, it extends to T 2
i . Therefore, if Fg is spin cobordant

to a union of g 2-toris, then S1 × Fg is spin cobordant to a union of g 3-toris T 3.

Lemma 1.2. Let s ∈ Spin(T 3). Thus, there is a spin manifold (X, sX) such that (T 3, s)
bounds X, sX).

Theorem 1.7. All closed spin 3-manifold (Y, sY ) bounds a compact spin 4-manifold
(X, sX) such that sX |Y = sY .

1.4 Almost Complex Structures

An almost complex structure on a smooth manifold X is an automorphism J : TX →
TX such that J2 = −1. In this case, we say that (X, J) is an almost complex manifold.
remark: If (X, J) is an amost complex manifold, then X is even dimensional.

The vector bundle (TX, J) being a complex bundle allows one to consider the Chern
classes ci(X, J) = ci(TX, J), i = 0, . . . , dimC(X). In the case X is a 4-manifold, the
almost complex surface (X, J) has two Chern classes: c1(X, J) and c2(X,J). Besi-
des, c2(X, J) = χ(X) (the euler class of TX) and c1(X, J) = c1(K∗J), where K∗J =
detC(TX, J) is the anti-canonical bundle1 of (X,J).

In this section, let X be an oriented 2n-dimensional manifold.

1.4.1 Complex Structures on R2n

In R2n, the canonical complex structure is

J0 =
(

0 In
−In 0

)
.

Let GLn(J0,C) = {A ∈ GL2n(R) | AJ0 = J0A}, so

M ∈ GLn(J0,C) ⇔ ∃A,B ∈ GLn(R) such that
(
A B
−B A

)
= A+ iB.

In this way, the space of complex structures on R2n is C = GL2n(R)/GLn(J0,C). An
amost complex structure on X is equivalent to a map X → C, x 7→ Jx where Jx :
TxX → TxX and J2

x = −I. So, the space of complex structures on TxX is Cx =
GL2n(R)/GLn(Jx,C). By considering the bundle

CX = ∪x∈XGL2n(R)/GLn(Jx,C),
1the canonical bundle is KJ = detC(T ∗X, J∗), c1(KJ) = −c1(X, J)
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with fiber C, an almost complex structure on X is a section in CX .
The following theorem sets a necessary and sufficient condition to the existence of a

almost complex stucture on a 4-manifold X;

Theorem 1.8. Let X be a closed smooth 4-manifold.

1. If X admits an almost complex structure J , then

c2
1(X, J) = 3σX + 2χ(X), (1.1)

and c1(X, J) must be an integral lift of w2(X). Furthermore, b+2 (X) + b1(X) must
be odd.

2. If there exists an class ϑ ∈ H2(X,Z) being a integral lift of w2(X) and satifisfying

ϑ2 = 3σX + 2χ(X),

then X admits an almost complex structure J with c1(X, J) = ϑ.

Moreover, assuming either that X is simply connected or has indefinite intersection
form, such class ϑ exist whenever b+(X) + b1(X) is odd.

Demonstração. 1. (⇒) For any compex vector bundle we have w2(E) = c1(E) mod 2
and also its 1st Pontrjagin class is

p1(E) = −c2(E ⊗R C) = −c2(E ⊕ E∗) = c1(E).c1(E)− 2c2(E).

By restricting to our case E = (TX, J), where p1(TX) = 3σX and c2(TX) = χ(X),
it follows that c2

1(TX, J) = 3σX + 2χ(X).

2. (⇐) Let L be the complex line bundle over X with c1(L) = ϑ, and consider
Eϑ = L ⊕ C, so c1(Eϑ) = ϑ. Now, we cut off a ball D4 ⊂ X and glue it back
using a SU2-twist in order to obtain a bundle Eϑ,χ(X) with c2 = χ(X); the class
c1 = ϑ is preserved through this sort of surgery. The bundle Eϑ,χ is complex and
its characteristic numbers are

w2(Eϑ,χ(X)) = w2(TX), e(Eϑ,χ(X)) = c2(Eϑ,χ(X)) = χ(X) = c2(TX),

p1(Eϑ,χ(X)) = c2
1(Eϑ,χ(X))− 2c2(Eϑ,χ(X)) = ϑ2 − 2χ(X) = p1(TX)

By Dold-Whitney theorem [1], the isomorphism classes of bundles over a 4-complex
are classified by their numbers w2, p1 and the euler class e. Consequently, the
bundles Eϑ,χ(X) and TX are isomorphic and the complex structure on the fibers
of E can be transported to an almost complex structure on TX.
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Corollary 1.5. If X4 admits an almost complex structure, then it must be that b+2 (X)+
b1(X) is odd.

Demonstração. Let c1(J) be the 1st Chern class of X, so c2
1(J) = 3σX + 2χ(X). By van

der Blij’s lemma, we have

c2
1(J) = σX mod 8,

and thus σX + χ(X) = 0 mod 4. Further, σX = b+2 − b
−
2 and χ(X) = 2− 2b1 + b+2 + b−2 ,

and hence 2b+2 − 2b1(X) + 2 = 0 mod 4. Therefore,

b+2 + b1 = 1 mod 2.

Corollary 1.6. For every characteristic element w ∈ H2(X,Z2), there is a partial
almost-complex structure J |3 over the 3-skeleton of X, with c1(J |3) = w.

Demonstração. It may exists a characteristic element w which integral lifts do not satisfy
the identity 1.1. In this case, in the proof of theorem 1.8, the bundles Eϑ,χ(X) and TX
are isomorphic over the 3-skeleton of X, or equivalently, over X − {point}2.

Definition 1.13. Let X be a manifold endowed with an almost complex structure J .
A surface S ⊂ X is called a J-holomorphic curve (or pseudo-holomorphic curve) if its
tangent bundle is J-invariant (J(TS) = TS).

Theorem 1.9. (Adjunction Inequality) Let (X, J) be a almost complex 4-manifold and
S is a pseudo-holomorphic curve in X, then we have

χ(S) + S.S = K∗.S (1.2)

Demonstração. Observing that c1(K∗) = c1(TX) (notation K∗ = c1(K∗)), we have

K∗.S = c1(TX)(S) = c1(TX |S) = c1(TS ⊕ νS) =
= c1(TS) + c1(νS) = χ(S) + S.S

remarks: Let’s fix a riemannian metric on X2n, so the following facts are relevant in the
presence of an almost complex structure J defined on X;

1. the adjunction inequality 1.2 is the main ingredient to estimate the lower genus of
a surface Σ ⊂ X representing the class S.

2. J induces a reduction to Un of the structural group SO2n of TX.

3. If n = 2, J is equivalent to the existence of a foliation of codimension 2 of X4.
2this partial almost complex structure does offer enough data to be lifted and extended to a unique

spinC structure across all X.
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1.5 Spinc Structures

The monomorphism φ : C → M(2,R), φ(a + ib) =
(
a −b
b a

)
induces the standard

inclusion ι : Un → SO2n and the canonical homomorphism ι × det : Un → SO2n × U1,
given by (ι × det)(A) = (ι(A), det(A)). The covering map p : Spinn → SOn, under an
almost complex structure J , is given by

p

[
n∏
k=1

(cos(θk) + sin(θk)ekJ(ek))

]
=


R2θ1 0 0 . . . 0

0 R2θ2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . R2θn

 ,

where Rθk =
(
cos(θk) −sen(θk)
sen(θk) cos(θk)

)
. The kernel of p is Ker(p) = {±1} ' Z2.

The scenario induces one to lift the homomorphism ι × det : Un → SO2n × U1 to
p̂ : Spin2n × U1 → SO2n × U1

-
ι× det��
��

�
��
�*

p̂

?

p

Spin2n × U1

SO2n × U1Un

Neverthless, the lif above does not reveal any interesting new structure. Once H1(SO2n×
U1,Z2) ' Z2⊕Z2, there are three non trivial 2-covers for SO2n×U1, and the interesting
one is Spin2n ×Z2 U1;

Definition 1.14. The Spincn group is

Spincn = Spinn ×Z2 U1.

In this way, it is natural to consider the lift as shown in the diagramm below:

-
ι× det��
�
��

�
��*

j

?

ξ

Spin2n ×Z2 U1

SO2n × U1Un

Now, there is a short exact sequence

0 −→ Z2 −→ Spincn
ξ−→ SOn × U1 −→ 1, (1.1)
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CAPÍTULO 1. SPINC STRUCTURES Celso M Doria

where Z2 ⊂ Spincn is generated by the classes [(−1, 1)] = {(−1, 1), (1,−1)} and [(1, 1)] =
{(−1,−1), (1, 1)}. Besides, Spincn ⊂ Cln = Cln ⊗ C as a multiplicative subgroup of the
group of units.

A SpinC-structure on a complex bundle E is defined as folows;

Definition 1.15. Let E be a vector bundle over X with frame bundle PSO(E). A
SpinC-structure on E consist of a pair of principal bundles PU1 and PSpinC with an
SpinC

n -equivariant bundle map ξ : PSpinC → PSO(E) × PU1 (ξ(pg) = ξ(p)ξ(g)) such that
the diagram below is commutative;

-
π

�
���

�����

ξ

?

π′

PSpinC

XPSO(E) × PU1 (1.2)

The short exact sequence 1.1 induces the exact sequence

H1(X;SpinC)
ξ−→ H1(X;SOn)⊕H1(X,U1)

w2+ρ−→ H2(X,Z2),

where ρ : H1(X,Z) → H1(X,Z2) is mod 2 reduction. However, by the isomorphism
H1(X,U1) ' H2(X,Z), the exact sequence becames

H1(X;SpinC)
ξ−→ H1(X;SOn)⊕H2(X,Z)

w2+ρ−→ H2(X,Z2). (1.3)

Therefore, a SpinC-structure ξ : PSpinC → PSO(E) × PU1 exists iff there exists a integral
class u ∈ H2(X,Z) such that w2(E) = ρ(u) mod 2.

remarks:

1. The letter “c” in the subscript of SpinC corresponds to the class c ∈ H2(X,Z)
defined as c = c1(PU1); its called the canonical class of the SpinC-structure.

2. If TX carries a SpinC-structure we say that X is a SpinC-manifold.

3. As an obstruction, an interpretation to a SpinC-structures can be done in the same
way as done to a Spin-structure. A SpinC-structure over an oriented vector bundle
E is equivalent to a complex structure over the 2-skeleton that can be extended
over the 3-skeleton. As a consequence, W3(E) = 0 w3 = W3 mod 2).

Example 1.7. .

1. Let (X,J) be a almost complex manifold, so w2(TX) = c1(TX) mod 2. Hence,
(X, J) is a SpinC-manifold. The representation j : Un → Spinc2n induces the
associated bundle

PSpin(TX) = PUn ×j Spinc2n,
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which U1-bundle is PU1 = PUn ×det U1 and whose 1st Chern class is c1(X) because
c1(ΛnTX) = c1(X).

2. In particular, if X is spin, then it is also a SpinC-manifold. In this case, there is
the bundle PSpin × P 0

U1
where P 0

U1
is the trivial principal U1-bundle over X. A

SpinC-structure on X is defined by taking bundle

PSpinC = PSpin ×Z2 P
0
U1
.

Anothers SpinC-structures can defined on X by replacing the bundle P 0
U1

by PαU1
,

the frame bundle of the complex line bundle λα, where c1(λα) = α ∈ H2(X,Z)
satisfies the identity w2(X) = α mod 2. Thus, the new SpinC-structure is

PSpinC = PSpin ×Z2 P
α
U1
, (1.4)

and the principal U1-bundle defining the SpinC-structure is P 2α
U1

, where P 2α
U1

=
PαU1

/Z2 is the square bundle 3 of PαU1
.

Let’s examine the SpinC-concept from the point of view of vector bundles. For this
purpose we need to know what a SpinC-representation is;

Definition 1.16. Let X be a SpinC-manifold of dimesion n. By a complex spinor
bundle for X we mean a vector bundle S associated to a representation of SpinC by
Clifford multiplication, i.e,

S(X) = PSpinC(X)×4 V,

where V is a complex Cln-module and 4 : SpinC → GL(V ) is given by restriction of
the Cln-representation to SpinC ⊂ Cln ⊗ C. If the representation of Cln is irredutible,
we say that S is fundamental.

remarks: As in the remark 1.2 there is only one fundamental spinor bundle S(X) for any
SpinC-manifold X, since

1. when n is even, there exists only one fundamental representation 4 : Cl2n →
GL(W ) and W admits the decomposition W = W+ ⊕W−, where W± are Cl0n-
invariant representation spaces. Once Spinn ⊂ Cl0n, the representations 4± :
Spinn ⊂ Cl0n → GL(W±) are fundamental representation for Spinn, however,
they are equivalents under 4-representation. The arguments extend to the spinor
bundle

S(X) = S+(X)⊕ S−(X).

3λ2
α = λ2α
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2. when n is odd, there are two irredutible complex representations of Cln. However,
they are equivalent when restricted to Spinn ⊂ Cl0n.

Example 1.8. Let’s return to the example of a spin manifold X. The SpinC-structure
defined in ?? is equivalent to say that the complex spinor spinor bundle Sα(X) associated
to the principal U1-bundle PαU1

is

Sα = S0(X)⊗ λα,

where λ2α is square of the complex line bundle λα associated to PαU1
, and so, c1(λα) = α

and c1(λα) = α. By the unicity of S0(X), it follows from ?? that the space H2(X,Z)
acts on the space SpinC(X). Since the space of spin structures on X is H1(X,Z2), it
follows that for a spin manifold

Spinc(X) = {α+ β ∈ H1(X,Z2)⊕H2(X,Z) | 0 = β mod 2}.

(observe that 0 = w2 = c1(λ2α) = 2α mod 2)

1.5.1 Local Description of a Fundamental Complex Spinor Bundle

As seen in the example 1.8, X being spin results that for each α ∈ H2(X,Z) satisfying
w2(X) = α mod 2, there is a complex spinor bundle Sα(X) = S0(X)⊗λα, where S0(X)
is the fundamental spin bundle over X and λα is a complex line bundle over X with
c1(λα) = α. However, X not being spin implies that the bundle S0(X) doesn’t exist.
Let’s see that, in the last case, the decomposition Sα(X) = S0(X)⊗ λα exists locally;

Proposition 1.17. The obstruction to the existence of S0(X) is equal to the obstruction
to the existence of λ2

α.

Demonstração. The existence of S0(X) is equivalent to the vanishing of the 2nd Stiefel-
Whitney class w2(X), as follows: the short exact sequence

1 −→ Z2 −→ Spinn −→ SOn −→ 1

induces the exact sequence

H1(X,Z2) −→ H1(X,Spinn) Ad−→ H1(X,SOn)
w2(E)−→ H2(X,Z2),

Assuming that w2 = c mod 2, for some class c ∈ H2(XZ), we know that there is a
SpinC-structure on X, which PU1-bundle is the frame bundle of a complex line bundle
λc. In order to analyse the existence of the square root bundle of λc, let’s consider the
short exact sequence

1 −→ Z2 −→ S1 σ−→ S1 −→ 1,

where σ(z) = z2. The sequence aboce induces the exact sequence
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H1(X,S1) σ∗−→ H1(X,S1) w′−→ H2(X,Z2). (1.5)

Let {Uν}ν∈Λ be a covering of X such that the finite intersections ∩mi=1Uνi , {νi} ⊂ Λ, is
always contractible. Considering {γµν | γµν : Uµ ∩ Uν → S1, the transition functions of
λc, the bundle λ1/2

c exists iff its transition functions {γ̃µν = (γµν)1/2} define a cocycle

w′([γ̃µν ]) = γ̃µν γ̃νηγ̃ηµ : Uµ ∩ Uν ∩ Uη → Z2 = ker(σ∗).

From the commutative diagram below

H1(X,S1) σ∗−−−−→ H1(X,S1) w′−−−−→ H2(X,Z2)

'
y '

y =

y
H2(X,Z) 2−−−−→ H2(X,Z)

ρ−−−−→ H2(X,Z2).

(1.6)

it is clear that the obstructions agree because [w′([γµν ]) = ρ(c1(λc)) = ρ(c) = w2.
Therefore, since both bundles S0(X) and λ1/2

c exist locally, the computation above shows
that their tensor product locally represent the SpinC-vector bundle having PU1 bundle
with Chern class c1(PU1) = α.

Corollary 1.7. The space of Spinc-structures on a manifold X is

Spinc(X) = {α+ c ∈ H1(X,Z2)⊗H2(X,Z) | w2(X) = c mod 2}

1.6 Cobordant Spinc-Structures

A Spin-structure on an orientable 4-manifold X with boundary Y = ∂X induces
a Spin-structure on the boundary Y . In order to see this, we fix a local frame β4 =
{e1, e2, e3, e4} on X, such that the frame β3 = {e1, e2, e3} defines an orientation on Y
and e4 is orthogonal to Y . Thus, the Clifford Algebra isomorphism Cl3 ' Cl04 is given
by ei → e1.e4, i = 1, 2, 3. We note that all 3-manifolds are spin.

The n-manifolds X1 and X2 are said to be cobordant iff there exists a (n+1)-manifold
W such that ∂W = X1 ∪X2. Cobordance defines an equivalent relation and so classes
[X] = {X ′ | X ′ is cobordant to X}. The set Ωn = {[X] | X a n-manifold} is a abelian
group under the operation defined by connected sum. Taking in account a spin sctructure
s on X, we can define the class [(X, s)] to be set of spin n-manifolds (X ′, s′) such that
X,X ′ are cobordant (X∪X ′ = ∂W ) and s, s′ are also cobordants, where s is cobordant to
s′ iff there exits a spin structure S on W such that s = S |X and s′ = S |X′ . Analogously,
there is the abelian group Ωspin

n = {[(X, s)] | X a n-manifold, s a spin structure on X}.
The table below shows the structure of the Cobordism groups;
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n Ωspin
n Ωso

n Ωspinc
n

0 Z Z Z⊕ Z
1 Z2 0 Z
2 Z2 0 Z2 ⊕ Z
3 0 0 Z
4 Z Z Z⊕ Z
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Caṕıtulo 2

SW-Equations

2.1 Quadratic form

Let V be a complex vector space, V ∗ its dual and End(V ) = {T : V → V |
T is C-linear. By fixing a frame β = {e1, . . . , en} in V and the corresponding co-frame
β∗ = {e1, . . . , en} in V ∗, there is the isomorphism (.)∗ : V → V ∗ defined as the anti-linear
extension of the map (ei)∗ = ei; i.e,

(
∑
k

vkek)∗ =
∑
k

vkek.

Proposition 2.1.
End(V ) = V ⊗ V ∗

Demonstração. Let β = {e1, . . . , en} be a frame of V and β∗ = {e1, . . . , en} the co-frame
associated to β. Let T ∈ End(V ) and v ∈ V ;

T (v) =
∑
k

vkT (ek) =
∑
k

T (ek)ek(v) =

(∑
k

T (ek)ek
)

(v).

In this way, T =
∑

k T (ek)ek motivates the definition of B : V ⊗ V ∗ → End(V ) by

B(v ⊗ w∗) =
∑
k

∑
l

vkwlek ⊗ el, w∗ =
∑
l

wle
l.

Since (ek ⊗ el)(u) = ulek, its associated matrix is Ekl = (δkl). Hence, the explicit
formula of the isomorphism B : V ⊗ V ∗ → End(V ), written in terms of the basis
{Ekl | 1 ≤ k, l ≤ dimC(V )} of V , is

B(v ⊗ w∗) =
∑
k,l

vkwlEkl. (2.1)
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Thus, the isomorphism B : V ⊗ V ∗ → End(V ) is a hermitian bilinear form, which
quadratic form is

qB(v) = v ⊗ v∗ =
∑
k,l

vkvlEkl.

For the purposes of defining later the SW-equations, let End0(V ) = {T ∈ End(V ) |
tr(T ) = 0} and σ : V → End0(V ) defined by

σ(v) = v ⊗ v∗ − | v |
2

2
I =

(
|φ1|2−|φ2|2

2 φ1φ2

φ1φ2
|φ2|2−|φ2|2

2

)
. (2.2)

The bilinear form associated to σ is σ : V × V → End0(V ),

σ(v, w) =
1
2
{v ⊗ w∗ + w ⊗ v∗ −Re{< v,w >}I} . (2.3)

It follows from the defintion that

σ(v + w) = σ(v) + σ(w) + 2σ(v, w). (2.4)

Proposition 2.2. If T ∈ su2 = {A ∈M2(C) | A∗ = −A, tr(A) = 0} and v, w ∈ V , then

1. < T (v), v >= 2 < σ(v), T >.

2. iIm{< T (v), w >} =< σ(v, w), T >.

3. σ(v).v = − |v|
2

2 v.

4. σ(T (v), w) + σ(v, T (w)) = −Re(< v,w >)T .

5. σ(v, w) = 0 iff w = iλv for some λ ∈ R.

Demonstração. .

1. < T (v), v >= 2 < σ(v), T >;

(a) < T (v), v >=
∑

i,j vivjtji.

(b) < σ(v), T >;
Since < σ(v), T >= 1

2 tr [σ(v)∗.T ], let’s compute σ(v)∗.T ;

σ(v) =
∑
i,j

vivjEij −
∑
i

| v |2

2
Eii ⇒ σ(v)∗ =

∑
i,j

vivjEji −
∑
i

| v |2

2
Eii.
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σ(v)∗.T =

∑
i,j

vivjEji −
∑
i

| v |2

2
Eii

 .

∑
k,l

tklEkl

 =

=
∑
i,j

∑
k,l

vivjtklEjiEkl −
∑
i

∑
k,l

tkl
| v |2

2
EiiEkl =

=
∑
i,j

∑
k,l

vivjtklEjlδik −
∑
i

∑
k,l

tkl
| v |2

2
Eilδik =

=
∑
i,j

∑
l

vivjtilEjl −
∑
i

∑
l

til
| v |2

2
Eil

So,

tr (σ(v)∗.T ) =
∑
i,j

∑
l

vivjtilδjl −
∑
i

∑
l

til
| v |2

2
δil =

=
∑
i,j

vivjtij −
∑
i

tii
| v |2

2
=
∑
i,j

vivjtij −
| v |2

2
.tr(T ).

Once T ∈ su2, tr(T ) = 0, therefore the expressions for < T (v), v > and
2 < σ(v), T > are equal.

2. From the identities

< T (v + w), v + w > =< T (v), v > + < T (w), w > +2iIm{< T (v), w >},
σ(v + w) = σ(v) + σ(w) + v ⊗ w∗ + w ⊗ v∗ −Re{< v,w >},

it follows that iIm{< T (v), w >} =< σ(v, w), T >.

3. the other itens are proved by straight computations using the explicit isomorphism
in 2.1.

2.2 The Quadratic Forms σ3 : C2 → Λ1R3 and σ4 : C2 → Λ2
+R4

From the classification of Clifford Algebras, we know that Cl3 = H⊕H and, because
H ⊗ C = M2(C), it follows that Cl3 = M(2,C) ⊕ M(2,C), where Cl±3 = M(2,C).
Therefore, there are two inequivalent Cl3 representations ρ± : Cl3 → M2(C), each one
characterized by the fact that ρ±(w) = ±I. The quadratic forms σ3 : C2 → Λ1R3 and
σ4 : C2 → Λ2

+R4 are defined by describing explicitly the representation ρ+, as shown in
the follwing steps;
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step 1: Cl3 ' H⊕H
In terms of its generators, C±3 ' H is described as follows: let β = {e1, e2, e3} be
a frame in R3, π+ : Cl3 → Cl+3 and w = e1e2e3;

η1 = π+(e1) =
e1 − e2e3

2
, η2 = π+(e2) =

e2 + e1e3

2
,

η3 = π+(e3) =
e3 − e1e2

2

Thus, < 1+w
2 , η1, η2, η3 > is a basis for Cl+3 . Due to the relations

η1η2 = −η3, η2η3 = −η1, η3η1 = −η2,

the identification η1 7→ i, η2 7→ j and η3 7→ −k is performed and extended linearly
to define the isomorphism Cl+3 ' H. The volume form wC in the complex case
of Cl3 satisfies the identity wC = −w, as shown in equation 2. Therefore, the set
{1−w

2 , ζ1, ζ2, ζ3} is a basis of Cl+3 , where

ζ1 =
e1 + e2e3

2
, ζ2 =

e2 − e1e3

2
, ζ3 =

e3 + e1e2

2
,

ζ1ζ2 = −ζ3, ζ2ζ3 = −ζ1, ζ3ζ1 = −ζ2.

step 2: H ↪→M(2,C)
There is the mononorphism

a+ bj →
(
a b

−b a

)
.

sitting the quaternions within M(2,C).

step 3: Cl3 = M2(C)⊕M2(C)

Cl3 ⊗ C ' (H⊕H)⊗ C = (H⊗ C)⊕ (H⊗ C),

and H⊗ C = M2(C). The generatros of Cl+3 are

1 + wC
2

7−→ 1 7−→
(

1 0
0 1

)
, (2.1)

ζ1 7−→ i 7−→
(

0 i
i 0

)
, (2.2)

ζ2 7−→ j 7−→
(

0 1
−1 0

)
, (2.3)

ζ3 7−→ −k 7−→
(
−i 0
0 i

)
, (2.4)
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step 4: ρ+ : Cl3 →M2(C):
Considering the vector space isomorphism Cl3 ' Λ∗R3 ⊗ C, the representation
ρ+ : Cl3 → M2(C) induces ρ+ : Λ∗R3 → M2(C). In order to represent the former
isomorphism, let β∗ = {e1, e2, e3} be a co-frame of (R3)∗, and

ρ+(e1) =
(

0 i
i 0

)
, ρ+(e2) =

(
0 1
−1 0

)
, ρ+(e3) =

(
−i 0
0 i

)
.

Thus, once su2 = {A ∈ M2(C) | A∗ = −A, tr(A) = 0}, there is the vector space
isomorphism

ρ+ : (R3)∗ → su2, ρ+(a1e
1 + a2e

2 + a3e
3) =

(
−ia3 a2 + ia1

−a2 + ia1 ia3

)
. (2.5)

Since End0(C2) = su2 ⊗ C as a C-linear space, there is the natural extension
ρ+ : Λ1R3 ⊗ C→ End0(C2). Its inverse is ρ−1

+ : End0(C2)→ Λ1R3 ⊗ C,

ρ−1
+ (
(
α z
w −α

)
) =

1
2i

(z + w)e1 +
1
2

(z − w)e2 − 1
i
αe3. (2.6)

Besides, ρ+ is an isometry.

step 5: definition of σ3

Definition 2.1. The 3-dimensional SW-quadratic form σ3 : C2 → Λ1R3 ⊕ C is

σ3(v) = ρ−1
+ (σ(v)) (2.7)

Proposition 2.3.

σ3(v) = −1
2

3∑
i=1

< ei.v, v > ei. (2.8)

Demonstração. In equation 2.6, consider v = (v1, v2) ∈ C2, z = v1v2, w = z and
α =| v1 |2 − | v2 |2 , so

ρ−1
+ (
(

α v1v2

v2v1 −α

)
) = i

(
−Re(v1v2)e1 + Im(v1v2)e2 + αe3

)
. (2.9)

Therefore, the identity 2.12 follows from the identities below:
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< e1.v, v > = −2iIm(v1v2), < e2.v, v >= 2iRe(v1v2),

< e3.v, v > = i(| v1 |2 − | v2 |2).

step 6: definition of σ4

It was proved in ?? that (Cl04)+ ' (< 1+w
2 > ⊕Λ+

2 R4)⊗ C. Moreover,

1. Cl04 ' Cl3 and so (Cl04)+ ' Cl+3 'M2(C)

2. End0(C2) = Λ2
+R4 ⊗ C.

In order to explicit the isomorphism above, let β = {e1, e2, e3} be a frame in
R4;

(a) the isomorphism f : Cl3 → Cl04 is given by f(ei) = eie4. Therefore
f(e1e2e3) = e1e2e3e4, f(Cl+3 ) = (Cl04)+ and

ζ̃1 = f(ζ1) =
e1e4 + e2e3

2
, ζ̃2 = f(ζ2) =

e2e4 − e1e3

2
,

ζ̃3 = f(ζ3) =
e3e4 + e1e2

2
,

The volume in Cl4 is w = −e1e2e3e4 and a basis for (Cl04)+ is given by
< 1−w

2 , ζ̃1, ζ̃2, ζ̃3 >.

(b) Let β∗ = {e1, e2, e3, e4} be a co-frame in (R4)∗. The set {ζ̃1, ζ̃2, ζ̃3} form
a basis for Λ2

+R4.

3. All the isomorphisms described so far define, through the sequence below, the
isomorphism δ : Λ2

+R4 ⊗ C→ End0(C2),

(
<

1− w
2

> ⊕Λ2
+R4

)
⊗ C ' (Cl04)+ ' Cl+3

ρ+' M2(C) '< I > ⊕End0(C2).

(2.10)

Definition 2.2. The 4-dimensional SW-quadratic form σ4 : C2 → Λ2
+R4 ⊕ C is

σ4(v) = δ−1(σ(v)) (2.11)

Proposition 2.4.

σ4(v) = −1
2

3∑
i=1

< ζ̃i.v, v > ζ̃i. (2.12)
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2.3 SW -Equations on a 3-Manifold Y

A Spinc structure on Y is a class s(α) = s + α ∈ H1(X,Z2) ⊕H2(X,Z) such that
α = 0 mod 2. For each class s(α) ∈ SpinC(X) there is a principal bundle PSpinC(X) as
in definition 1.15. Since SpinC

3 = S3×Z2 S
1 = U2, for each class s(α) it is associated the

following vector bundles;

1. the complex spinor bundle

Ss(α) = PSpinC
3
(X)×4 C2,

where 4 : SpinC
3 → U2 is induced by the isomorphism Cl03 = Cl03 ⊗ C 'M2(C).

2. The determinant line bundle

Lα = PSpinC ×det C

where det : U2 → C and c1(Lα) = α.

Definition 2.3. On Y , the configuration space for the Seiberg-Witten Theory is Cs(α) =
Aα × Γ (Ss(α)), where Aα is the space of U1-connections defined on Lα and Γ (Ss(α)) is
the space of sections of Ss(α). The Seiberg-Witten map is

Fs(α) : Cs(α) → Ω1(X, iR)× Γ (Ss(α)) (2.1)

(A, φ) 7−→ (∗FA − σ3(φ), DA(φ)) (2.2)

The abelian gauge group Gs(α) = Map(Y, U1) acts on Cs(α) through the action

Gs(α) × Cs(α) → Cs(α), g.(A, φ) = (A+ 2g−1dg, g−1φ).

The fixed points of the Gs(α)-action are (A, 0), ∀A ∈ Aα, which isotropy groups G(A,0)

are isomorphic to U1 = {g ∈ Gs(α) | g(y) = const}. Thus, the space Bs(α) = Cs(α)/Gs(α)

is a singular space. Instead, if the action is restricted to the free action of the group
G0

s(α) = {g ∈ Gs(α) | g(y0) = I}, then the orbit space B0
s(α) = Cs(α)/G0

s(α) is a manifold.
The group G0

s(α) fits into the short exact sequence

1 −→ G0
s(α) −→ Gs(α)

e0−→ U1 −→ 1, e0(g) = g(y0).

So far, due to the action, there are two categories of points to be considered in Cs(α): (1)
the reducibles (A, 0) ∈ Cs(α) such that G(A,0) ' U1 and (2) the irreducibles (A, φ) ∈ Cs(α)

such that G(A,φ) = {I}. Thus, an important space to be considered is the space of
irreducibles
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C∗s(α) = {(A, φ) ∈ Cs(α) | G(A,φ) = {I}}, B∗s(α)/Gs(α).

In fact, the projection C∗s(α) → B
∗
s(α) defines an universal Gs(α)-principal bundle be-

cause the Gs(α)-action is free on the contractible space C∗s(α) (it is homotopic to the space
Γ (Ss(α))\{0}, and the former space has the homotopy type of S∞). Also, there is the
principal U1-bundle b : B0

s(α) → B
∗
s(α).

The map Fs(α) is Gs(α)-equivariant because

∗Fg(A) − σ3(g−1φ) = ∗FA − σ3(φ) and Dg(A)(g
−1φ) = g−1DAφ.

Hence, Fs(α)(g.(A, φ)) = g.Fs(α). In this way, the Seiberg-Witten map defines a section
Fs(α) : B∗s(α) → Es(α) of the associated vector bundle

Es(α) = C∗s(α) ×Gs(α)

(
Ω1(Y, iR)× Γ (Ss(α))

)
.

By analogy with the finite dimensional case, the euler-class of Es(α) can be measured by
the intersection number of F−1

s(α)(0) with the 0-section. However, it is not at all clear
how one can define in general the euler class of an infinite dimensional vector bundle.

Definition 2.4. The Seiberg-Witten equation are

{
∗FA = σ3(φ),
DAφ = 0.

⇔ Fs(α)(A, φ) = 0 (2.3)

The structure of the space of solutions to the SW-equations is the main issue in this
notes. As observed before, these equations are Gs(α)-invariant. A technical point to be
overcome is the existence of reducible solutions. The reducible solutions are all of type
(A, 0), otherwise (φ 6= 0) they are irreducible. Note that if (A, 0) is a reducible solution,
then FA = 0 and the bundle Lα is trivial since its 1st-Chern class is c1(Lα) = 1

2πiFA.

Proposition 2.5. The space of reducible solutions is diffeomorphic to the Jacobian
Torus

T b1(Y ) =
H1(Y,R)
H1(Y,Z)

∈ Aα ×Gα Γ (S+
α ). (2.4)

Demonstração. Let (A, 0) and (B, 0) be reducible solutions. Consider b ∈ Ω1(Y, iR) such
that B = A + b. A,B being flat connections imply that db = 0 and so b ∈ H1(Y,R).
If A and B are gauge equivalent, then b = 2g−1dg and b ∈ H1(Y,Z) because b([γ]) =∫
γ g
−1dg ∈ Z, for all [γ] ∈ H1(Y,R). So, the map [(a, 0)] → [a] ∈ T b1(Y ) defines the

diffeomorphism.
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Definition 2.5. The SWs(α)-monopole space associated to the SpinC structure s(α) ∈
SpinC(Y ) is the space

Ms(α) = {(A, φ) ∈ Cs(α) | Fs(α)(A, φ) = 0}/Gs(α).

As it well be clear along the notes, is the amazingly rich topological structure of
Ms(α) which allows the many applications. The backbone of all this is the following
estimates;

Lemma 2.1. Let kg : Y → R be the scalar curvature function of (Y, g) and kg =
maxy∈Y kg(y). If (A, φ) ∈Ms(α), then

|| φ ||0≤ max{0,−kg} (2.5)

Proposition 2.6. The irreducible solutions exist only for a finite number of classes
s(α) ∈ SpinC(X).

Demonstração. Let (A, φ) be an irreducible monopole solution, so the norm of 1
2πiFA is

bounded in H2(Y,R) and, consequently, α = 1
2πiFA lies inside of the finite set H1(Y,Z)∩

H1(Y,R). Hence, there exists irreducible monopole solutions only for a finite number of
s(α) ∈ SpinC(X).

One of the very surprising and useful fact about the topological structure of Ms(α)

is its compactness;

Theorem 2.1. Ms(α) is a compact set.

Originally, the SW-equations were not of calculus of variation nature. It is remar-
kable that there exists a variational formulation for them, as it is shown next. Before
procceding to a variational setting, let’s stabilish the Sobolev structure on the spaces
Cs(α) and Gs(α). First of all, by fixing a connection A0 ∈ Aα, the space Aα becames a
vector space isomorphic to Ω1(ad(u1)) = Ω1(Y, iR) and inheritages the metric structure;

1. Aα = L1,2(Aα), Γ (Ss(α)) = L1,2(Γ (Ss(α))) and Cs(α) = Aα × Γ (Ss(α)). The metric
on Aα is induced by the inner product on Ω1(Y,R). The inner product on Γ (Ss(α))
is defined by using the hermitian form on Γ (Ss(α)) and integrating its real part;

< φ,ψ >=
∫
Y

Re(< φ,ψ >). (2.6)

2. Gs(α) = L2,2(Gs(α)).

3. the tangent space of Cs(α) at (A, φ) is

T(A,φ)Cs(α) = Ω1(Y, iR)⊕ Γ (Ss(α)). (2.7)
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4. For the purpose of deducting the SW-equations as the Euler-Lagrange equations
of a functional, the Hilbert structure to be considered on the bundle TCs(α) is

< θ + V,Λ +W >=
∫
Y
< θ,Λ > dvg +

∫
Y

Re(< V,W >)dvg.

Remark 1. The Hodge star operator ∗̂ : Ωp(Y, iR)→ Ω3−p(Y, iR) satisfies the following
properties;

1. Let ∗ : Ωp(Y,R) → Ω3−p(Y,R) be the usual Hodge star operator and ∗̂ = −∗ :
Ωp(Y, iR)→ Ω3−p(Y, iR). Consider ω̃ = iω, η̃ = iη ∈ Ω1(Y, iR) = Ω1(Y )⊗ i, so

ω̃ ∧ ∗̂η̃ = (iω) ∧ ∗̂(iη) = ω ∧ (−∗̂η) = ω ∧ ∗η =< ω, η > dvg. (2.8)

2. Besides, from the computation above, it follows that

ω̃ ∧ ∗̂η̃ =< ω̃, η̃ > dvg. (2.9)

3. ∗̂2 = ∗2 = (−1)p(3−p).

4. The adjoint operator d∗ : Ωp(Y, iR)→ Ωp−1(Y, iR) associated to the exterior deri-
vative d : Ωp−1(Y, iR)→ Ωp(Y, iR), by the riemannian metric g on Y , is

d∗ = (−1)3p∗̂d∗̂ = (−1)3p ∗ d ∗ . (2.10)

Definition 2.6. The Chern-Simons-Dirac functional Υ : Cs(α) → R is

Υ(A, φ) =
∫
Y

{
1
2

(A−A0) ∧ (FA + F0)+ < DAφ, φ >

}
dx,

where A0 ∈ Aα is a fixed connection and F0 = FA0 .

In case we consider another fixed connection A1, the difference among the functionals is
a constant term, and so the fixed connection is irrelevant for the theory.

Before going further to obtain the Euler-Lagrange equations of the functional Υ, let’s
prove an identity which is important to perform many computations;

Lemma 2.2. The L2-adjoint of the linear operator Tφ : Ω1(Y, iR)→ Γ (Ss(α)),
Tφ(θ) = 1

2θ • φ, is T ∗φ : Γ (Ss(α))→ Ω1(Y, iR), where

T ∗φ(W ) = σ(φ,W ). (2.11)
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Demonstração. The prove is divided into two steps which main issue is to prove the
identity ∫

Y
Re

(
<

1
2
θ • φ,W >

)
dv =

∫
Y
< θ, σ(φ,W ) > dv.

step 1:
∫
Y Re

(
< 1

2θ • φ, φ >
)
dv =

∫
Y < θ, σ(φ) > dv.

Applying the identity 2.28, it follows that

i

∫
Y
Im

(
<

1
2
θ • φ,W >

)
dv =

∫
Y
< σ(φ), θ > dv.

By C-linear extending to an operator Tφ : Ω1(Y, iR) → Γ (Ss(α)), Tφ(iθ) = iθ, the
identity above becames

∫
Y
< σ(φ), θ > dv = i

∫
Y
Im

(
−i < 1

2
iθ • φ, φ >

)
dv =

= −i
∫
Y
Re

(
<

1
2
iθ • φ, φ >

)
dv.

Hence,

∫
Y
< σ(φ), iθ > dv =

∫
Y
Re

(
<

1
2
iθ • φ, φ >

)
dv.

step 2: By the 1st-step,

∫
Y
< σ(φ+W ), iθ > dv =

∫
Y
Re

(
<

1
2
iθ • (φ+W ), φ+W >

)
dv.

Therefore,

∫
Y
< σ(φ,W ), iθ > dv =

∫
Y
Re

(
<

1
2
iθ • φ,W >

)
dv.

Hence, T ∗φ(W ) = σ(φ,W ).

Proposition 2.7. The L2-gradient of Υ is

OΥ(A, φ) = (− ∗ FA + σ3(φ), DAφ). (2.12)
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Demonstração. First of all, let’s observe that for A ∈ Aα and Θ = iθ ∈ Ω1(Y, iR),

1. FA+tΘ = FA + tdΘ;

2. DA+tΘφ =
∑

i ei •O
A+tΘ
i φ =

∑
i ei •{OAi φ+ tΘ(ei).φ} = DAφ+ t

2Θ•φ. (the factor
1/2 in the last expression is due to the Clifford multiplication, [5] pg 42, lemma
3.3.2)

The total derivative of Υ is dΥ = (∂AΥ)dA+ (∂φΥ)dφ, where :

1. ∂AΥ(A, φ) =
∫
X {< − ∗ FA + σ3(φ),Θ >} dvg.

∂AΥ(A, φ) = lim
t→0

1
t

{∫
Y

[
1
2
FA+tΘ + F0) ∧ (A−A0 + tΘ)+ < DA+tΘφ, φ >

]
dvg −Υ(A, φ)

}
=

=
∫
Y
{(dΘ ∧ (A−A0) + (FA + F0) ∧Θ} dvg +

1
2

∫
Y

{
<

1
2

Θ • φ, φ >
}
dvg =

=
∫
Y
{FA ∧Θ+ < σ3(φ),Θ >} dvg =

∫
Y
{− < ∗FA,Θ > + < σ3(φ),Θ >} dvg =

=
∫
Y
{< − ∗ FA + σ3(φ),Θ >} dvg.

2. ∂φΥ(A, φ) =
∫
X Re(< DAφ, V >)dvg.

∂φΥ(A, φ) = lim
t→0

1
2t

∫
Y
{(FA + F0) ∧ (A−A0)+ < DA(φ+ tV ), φ+ tV >} dvg =

=
1
2

∫
Y
{< DAφ, V > + < DAV, φ >} dvg =

∫
Y

Re(< DAφ, V >)dvg

Therefore,

OΥ(A, φ) = (− ∗ FA + σ3(φ), DAφ).

Remark 2. Once Fs(α) = grad(Υ) : Cs(α) → TCs(α) is a Gs(α)-equivariant section, it
induces the section Fs(α) : Bs(α) → TBs(α), TB∗s(α) = Es(α).

Although the SW-equations are Gs(α)-invariant, the functional Υ is not, as shown
next;

Proposition 2.8. Let α = c1(Lα), g ∈ Gs(α) and H1(U1,Z) =< µ >. Thus,

Υ(g.(A, φ)) = Υ(A, φ)− 8π2 {g∗(µ) ∪ α} ([Y ]),

where g∗ : H1(U1,Z)→ H1(Y,Z).
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Demonstração. Since [FA] = [F0] = 2πic1(Lα), the computations yield

Υ(g.(A, φ))−Υ(A, φ) =
1
2

∫
Y
g−1dg ∧ (FA + F0) = −8π2 {g∗(µ) ∪ c1(Lα)} ([Y ]),

where µ = 1
2πdθ. From g(y) = eθ(y) we get dg = ieiθdθ and so −ig−1dg = dθ. Finally,

1
2πig

−1dg = 1
2πdθ.

From the last result, it follows that the functional Υ is not gauge invariant. In case
we fix the identity component G0

s(α) ⊂ Gs(α), then Υ becames G0
s(α)-invariant because, for

all g ∈ G0
s(α), g

∗µ = 0.

Definition 2.7.

d(s(α)) = g.c.d{< c1(s(α)), τ >}, ∀τ ∈ H2(Y,Z)/torsion.

In fact, Υ descends to a map Bs(α) → R/d(s(α)).

2.3.1 Slice for Bs(α) = Cs(α)/Gs(α)

The tangent space to the Gs(α) action at (A, φ) is T(A,φ)

[
Gs(α).(A, φ)

]
. In order to

describe it, let gt : (−ε, ε) → Gs(α) be a curve such that g(0) = I and g′(0) = f (recall
that Gs(α) is a Lie group and its Lie algebra is g = Map(Y, iR) = Ω0(Y, iR)). So,

gt.(A, φ) = (A+ 2g−1
t dgt, g

−1
t φ)

d

dt
(gt.(A, φ)) |t=0 = (2df,−f.φ) ∈ Ω1(X, iR)⊕ Γ (Ss(α)).

Let G(A,φ) : Ω0(Y, iR)→ Ω1(Y, iR)⊕ Γ (Ss(α)) be the map

G(A,φ)(f) = (2df,−f.φ), Imag(G(A,φ)) = T(A,φ)Gs(α).(A, φ). (2.13)

Once

Ω1(Y, iR)⊕ Γ (Ss(α)) = Imag(G(A,φ))⊕ ker(G∗(A,φ)),

the slice is locally described by Ker(G∗(A,φ)). First of all, recall that Ω1(X, iR) =
Imag(d) ⊕ ker(d∗). Next, we consider the map tφ : Ω0(Y, iR) → Γ (Ss(α)), tφ(f) = f.φ
and its dual map t∗φ : Γ (Ss(α))→ Ω0(Y, iR);
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< tφ(f), V > =
∫
Y
< tφ(f)(y), V (y) > dvg =

∫
Y
f(y)[−< φ(y), V (y) >]dvg =

=< f,− < φ, V >> .

Thus, t∗φ(V ) = − < φ, V > is a map t∗φ : Γ (Ss(α)) → Ω0(Y,C), which projection on
Ω0(Y, iR) gives the desired map t∗φ(V ) = −iIm(< φ, V >). Finally,

G∗(A,φ)(Θ, V ) = 2d∗θ + iIm(< φ, V >) (2.14)

and so (Tg.(A,φ))⊥ = Ker(G∗(A,φ)) = Ker(d∗) ⊕ Ker(iIm(< φ, . >)). If φ = 0, then
(Tg.(A,0))⊥ = Ker(G∗(A,0)) = Ker(d∗)⊕ Γ (Ss(α)).

The derivative dg(A,φ) : T(A,φ)Cs(α) → Tg.(A,φ)Cs(α) of the map g : Cs(α) → Cs(α) at
(A, φ) induces a map dg(A,φ) : Ker(G∗(A,φ)) → Ker(G∗g.(A,φ)), where (i) if φ 6= 0, then
dg(A,φ).(θ, V ) = (θ, g−1V ), (ii) if φ = 0, then dg(A,φ).(θ, V ) = (θ, V ).

In order to obtain a local chart for Bs(α), consider the C∞-map

Φ(A,φ) :Ker(G∗(A,φ))× Gs(α) → Cs(α), (2.15)

((θ, V ), g) 7−→ g.(θ, V ) = (θ + 2g−1dg, g−1V ). (2.16)

and the following two cases:

1. φ 6= 0;

The derivative at (A, φ) is

d(Φ(A,φ))((θ,V ),I)((ω,W ), f) = (ω + 2df,−fV +W ), d∗w = 0, W ∈ V ⊥.

By construction, if (A, φ) is an irreducible point, then dΦ(A,φ) is onto. Hence, by the
Inverse Function Theorem there exists a neighbourhood U ⊂ Ker(G∗(A,φ)) × Gs(α)

of ((A, φ), I) such that Φ(A,φ) : U → Cs(α) is a diffeomorphism. Therefore, a
neighbourhood of [(A, φ)] ∈ Bs(α) is diffeomorphic to a neighbourhood of (0, 0) ∈
Ker(G∗(A,φ)).

2. φ = 0; At a redutible point (A, 0), the derivative is no longer onto because
Ker(G∗(A,0)) = Ker(d∗) ⊕ Γ (Ss(α)) is G(A,0)-invariant. In order to describe the
link of a singular point (A, 0), let’s consider ε > 0 and W a neighbourhood of the
origin in Γ (Ss(α)), such that S∞ε = {V ∈ Γ (Ss(α)) ; | V |= ε} ⊂ W. So,

{
Ker(G∗(A,0)) ∩ {Ker(d

∗)⊕ (W − {0})}
}
�G(A,0) =

= {Ker(d∗)⊕ (W − {0})�U1)} htpy∼ S∞ε �U1 = CP∞.

autor: Celso M Doria 46
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Hence, a neighbourhood of a reducible point (A, 0) ∈ Cs(α) is homotopic to a cone
over CP∞.

2.3.2 Homotopy Aspects

Thus C∗s(α) is an universal bundle and the base space B∗s(α) is the classifying space for
Gs(α)-vector bundles. In this way, for each s(α) ∈ SpinC, the vector bundles Es(α) are
classified by the homotopy classes [B∗s(α),B

∗
s(α)]. The space B∗s(α) has the homotopy type

of T b1(Y )× CP∞, where T b1(Y ) = H1(Y,R)/H1(Y,Z) and b1 = dimH1(Y,R). So,

[B∗s(α),B
∗
s(α)] = H2(B∗s(α),Z)⊕ (H1(B∗s(α),Z))b1 =

=
[
H2(CP∞,Z)⊕H2(T b1 ,Z)

]
⊕ [H1(T b1 ,Z)]b1 =

= Z⊕ Z
b1(b1−1)

2 ⊕ Zb21 .

If b1(Y ) = 0, then the euler class χ(Es(α)) ∈ H2(CP∞,Z) ' Z.
Later, when studying the deformed SW-equations, it will become clear that the

H2(CP∞,Z) contribution is the one which matters to define the Seiberg-Witten invari-
ant, since the others contribution will vanish by the ausence of reducible solutions. In
this way, we consider the heuristic euler class µs(α) = χ(Es(α)) ∈ H2(B∗s(α),Z). Also, by
using the 1st-Chern class of the principal U1-bundle b : B0

s(α) → B
∗
s(α), the SW-invariant

is defined as µs(α) = c1(b) ∈ H2(CP∞,Z) ' Z.

2.3.3 The Moduli Space of SWs(α)-Monopoles

The local description of the SWs(α)-monopole spaceMs(α) = F−1
s(α)(0)/Gs(α) depends

on its linear approximation. Since Fs(α) : Cs(α) → Γ (Ss(α)) ⊕ Ω1(Y, iR) is C∞, its
derivative1 (dFs(α))(A,φ) : Ker(G∗(A,φ))→ Ω1(Y, iR)⊕ Γ (Ss(α)) restricted to the slice is

(dFs(α))(A,φ).(Θ, V ) = ∂AFs(α)(A, φ)Θ + ∂φFs(α)(A, φ)V,

=
(
∗dΘ + σ3(φ, V ), DA(V ) +

1
2

Θ.φ
)

=
(
∗d σ3(φ, .)

1
2(.)φ DA

)
.

(
Θ
V

)
.

The term Θ • φ is defined by Θ • φ =
∑

i Θ(ei)ei • φ. Whenever (A, φ) is a solution to
the SWs(α)-equations, then the restriction to Imag(G(A,φ)) is null, i.e.,

dFs(α) ◦G(A,φ)(f) = (dFs(α))(A,φ).(2df,−f.φ) = 0. (2.17)

Remark 3. The operator (dFs(α))(A,φ) is self-adjoint and is also the hessian of the
functional Υ at (A, φ);

1recall the relation ∗̂ = −∗ among the Hodge star opertaors. From now on, the ˆ is being ignored.
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1. For the sake of simplicity, let L(A,φ) = (dFs(α))(A,φ).

2. If (A, φ) ∈ F−1
s(α)(0), then by equation 2.17 L(A,φ) ◦G(A,φ) = 0.

3. At (A, φ), the linearization of Fs(α) yields the sequence

Ω0(Y, iR)
G(A,φ)−→ Ω1(Y, iR)⊕ Γ (Ss(α))

L(A,φ)−→ Ω1(Y, iR)⊕ Γ (Ss(α)), (2.18)

which is a complex if (A, φ) is a SW-monopole and exact ifKer(L(A,φ)) = Im(G(A,φ)).
In analogy with Hodge Theory, the introduction of the vector spaces

H0
(A,φ) = Ker(G(A,φ)), H1

(A,φ) = Ker(L(A,φ)) ∩Ker(G∗(A,φ)), (2.19)

H2
(A,φ) =

{
Ω1(Y, iR)⊕ Γ (Ss(α))

}
/Imag(L(A,φ)), (2.20)

leads to the following useful interpretations;

(a) H0
(A,φ) 6= 0 ⇔ (A, φ) is reducible.

(b) H2
(A,φ) = 0 ⇔ L(A,φ) is onto. It is also equivalent to the transversality of the

section Fs(α) : Bs(α) → Es(α).

(c) if H0
(A,φ) = 0 and H2

(A,φ) = 0, then Ms(α) is a manifold and H1
(A,φ) =

T(A,φ)Ms(α).

4. At (A, 0),

L(A,0) =
(
∗d 0
0 DA

)
.

(
Θ
V

)
.

5. let HΥ(A, φ) : T(A,φCs(α) × T(A,φ)Cs(α) → R be the bilinear map associated to the
hessian of the functional Υ; thus,

HΥ((Θ, V ), (Λ,W )) = < (Θ, V ), L(A,φ)(Λ,W ) >.

Lemma 2.3. If (A, φ) ∈Ms(α), then

L(A,φ) : Ker(G∗(A,φ))→ Ker(G∗(A,φ))
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Demonstração. Let (A, φ) ∈Ms(α) and (θ, V ) ∈ Ker(G∗(A,φ)).

G∗(A,φ) ◦ L(A,φ)(θ, V ) = d∗(− ∗ dθ + σ3(φ, V )) + iIm

(
< φ,DAV +

1
2
θ • V >

)
=

= d∗(σ3(φ, V )) + iIm

(
< φ,

1
2
φ • V >

)
By lemma 2.2, iIm

(
< φ, 1

2φ • V >
)

= 0. The computation of term d∗(σ3(φ, V )) is
performed assuming the identity

d∗(σ3(φ)) = iIm (< DAφ, φ >) ,

and applying it to φ+ V . Comparing the terms in the expressions below,

d∗(σ3(φ+ V )) = d∗(σ3(φ)) + d∗(σ3(V )) + 2d∗(σ3(φ, V )),
Im (< DA(φ+ V ), φ+ V >) = Im (< DAφ, φ >) + Im (< DAV, V >) + 2Re(< DAφ, V >),

it follows that d∗(σ3(φ, V )) = 0.

Claim: d∗(σ3(φ)) = iIm (< DAφ, φ >);

In order to prove it, consider at y0 a normal frame β = {e1, e2, e3} and its coframe
β∗ = {e1.e2, e3} (ei ∧ ∗ej = δijdvg), such that (OAejei)(y0) = 0. So,

OAej (ei • φ)(y0) = (ei • OAejφ)(y0).

Since A ∈ su2 and d∗ = − ∗ d∗,

d∗(σ3(φ)) = −1
2

3∑
i=1

d∗(< ei • φ, φ > ei) =
1
2

3∑
i=1

∗d ∗ (< ei • φ, φ > ei) =

=
1
2

3∑
i=1

∗
(
< ei • OAejφ, φ > + < ei • φ,OAejφ >

)
∗ (ei ∧ ∗ei) =

=
1
2

3∑
i=1

∗
(
< ei • OAejφ, φ > − < φ, ei • OAejφ >

)
∗ (ei ∧ ∗ei) =

=
1
2

(< DAφ, φ > − < φ,DAφ >) ∗ dvg = iIm(< DAφ, φ >).
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The analysis becames more neat by introducing the self-adjoint operator T(A,φ) :
(Ω1(Y, iR)⊕ Γ (Ss(α)))⊕ Ω0(X, iR)→ (Ω1(Y, iR)⊕ Γ (Ss(α)))⊕ Ω0(Y, iR), defined by

T(A,φ)((Θ, V ), f) = (L(A,φ)(Θ, V ) +G(A,φ)(f), G∗(A,φ)(Θ, V )) =

=
(
L(A,φ) G(A,φ)

G∗(A,φ) 0

)
.

(Θ
V

)
f

 .

Note that T(A,φ) may have a chance of being an isomorphism (this analysis will be
carried out later in order to achieve the surjectivity). It is important to keep track
of the term Ker(T(A,φ) |Ω0) = H0(Y, iR) introduced along with the Ω0(Y, iR) direct
summand because this sort of solution, named virtual solution, do not belongs to the
monopole space .

Now, the whole of the information of the complex 2.18 is incoded into the kernel of
the operator T(A,φ) as follows; assume (A, φ) ∈ (Fs(α))−1(0), so

((Θ, V ), f) ∈ Ker(T(A,φ)) ⇔


(i) L(A,φ)(Θ, V ) = 0,
(ii) G∗(A,φ)(Θ, V ) = 0

(iii) G(A,φ)(f) = 0.

Hence, Ker(T(A,φ)) = H0
(A,φ)⊕H

1
(A,φ). The vector space H2

(A,φ) is the obstruction to the
surjectivity of T(A,φ). In this set up, the cohomology groups defined in 2.19 are described
as follows:

H0
(A,φ) = Ker(G(A,φ)), H1

(A,φ) = Ker(L(A,φ)) ∩Ker(G∗(A,φ)) = Ker(T(A,φ)),

H2
(A,φ) =

{
Ω1(Y, iR)⊕ Γ (Ss(α))

}
/Imag(T(A,φ)).

Besides,

1. H0
(A,φ) 6= 0 ⇔ (A, φ) is reducible.

2. H2
(A,φ) = 0 ⇔ T(A,φ) is onto.

3. if H0
(A,φ) = 0 and H2

(A,φ) = 0, thenMs(α) is a manifold and H1
(A,φ) = T(A,φ)Ms(α) =

Ker(T(A,φ)).

The space M∗s(α) seen as the intersection in Es(α) of sections Fs(α) : B∗s(α) → Es(α)

and 0-section is a manifold. However, the transversality condition may not occur and to
handle the lack of transversality a perturbation will be performed later.

The operator T(A,φ) described in coordinates is
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T(A,φ) =
(
L(A,φ) G(A,φ)

G∗(A,φ) 0

)
.

(Θ
V

)
f

 =

 ∗d −σ3(φ, .) 2d
1
2(.).φ DA −(.).φ
2d∗ iIm(< φ, . >) 0

 .

Θ
V
f

 =

=

 ∗d 0 2d
0 DA 0

2d∗ 0 0

 .

Θ
V
f

+

 0 −σ3(φ, .) 0
1
2(.).φ 0 −(.)φ

0 iIm(< φ, . >) 0

 .

Θ
V
f

 .

It can be decomposed as T(A,φ) = P(A,φ) ⊕Q(A,φ) +K(A,φ), where

P(A,φ) =

 ∗d 0 2d
0 0 0

2d∗ 0 0

 , Q(A,φ)

0 0 0
0 DA 0
0 0 0


are self-adjoint elliptic operators and

K(A,φ) =

 0 −σ3(φ, .) 0
1
2(.).φ 0 −(.)φ

0 iIm(< φ, . >) 0

 .

Θ
V
f

 .

is a compact operator (the resolvent). The operator P(A,φ) : Ω1(Y, iR) ⊕ Ω0(Y, iR) →
Ω1(Y, iR)⊕ Ω0(Y, iR) is the rolled-up operator obtained by the composition

Ω1 ⊕ Ω0

0@∗ 0
0 2.I

1A
−→ Ω2 ⊕ Ω0

0@d∗ d
d 0

1A
−→ Ω1 ⊕ Ω3

0@I 0
0 2∗

1A
−→ Ω1 ⊕ Ω0

Remark 4. At a reducible solution (A, 0),

1. H0
(A,0) = H0(Y,R),

2. H1
(A,0) = Ker(T(A,0)) = H0(Y,R)⊕H1(Y,R)⊕Ker(DA). The H0(Y, iR) summand

correspond to the virtual solutions and the H1(Y, iR) corresponds to the tangent
space to the Jacobian torus T b1(Y ).

3. The self-adjointness of P(A,0) and Q(A,0) yields H2
(A,0) = H1

(A,0).

4. For later purposes: if b1(Y ) = 0, then H1
(A,0) = H2

(A,0) = Ker(DA).

Theorem 2.2. The operator T(A,φ) is a self-adjoint operator with domain the vector
space (Ω1(Y, iR) ⊕ Γ (Ss(α))) ⊕ Ω0(X, iR) endowed with a L1,2 Sobolev structure and
image in the vector space (Ω1(Y, iR) ⊕ Γ (Ss(α))) ⊕ Ω0(X, iR) endowed with a L2 Sobo-
lev structure. Moreover, T(A,φ) has compact resolvent and thus discrete spectrum. In
particular, it is a Fredholm operator.
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Demonstração. Its symbol defines a isomorphism, so T(A,φ) is an elliptic operator over a
compact manifold, hence it is an Fredholm operator.

Definition 2.8. A monopole (A, φ) ∈Ms(α) is non-degenerated if H1
(A,φ) = 0.

The non-degenerency means that, up to gauge equivalence, Ker(HΥ) = {0} at (A, φ)
and HΥ is surjective. If (A, 0) is a reducible solution and b1(Y ) > 0, then the non-
degenerecency is never achieved because H2

(A,0) = H1(Y,R)⊕Ker(DA), by remark 4.3.
If b1(Y ) = 0, then the obstruction to achieve the transversality is H2

(A,0) = Ker(DA).

Proposition 2.9. The non-degenerated points are isolated.

Demonstração. Let (A, φ) ∈ Ms(α) be a non-degenerated point. Thus, the linear map
(dFs(α))(A,φ) : Ker(G∗(A,φ)) → Ω1 ⊕ Γ (Ss(α)) ((dFs(α))(A,φ) = L(A,φ)) is non singular,
or equivalently Ker(L(A,φ))/Gs(α) = {0}. Hence, F is an immersion at (A, φ). By the
Inverse Function Theorem, there exists a neighbourhood U of (A, φ) such that F : U →
F(U) is a difeomorphism. If (A, φ) were not isolated it would exist a sequence of points
(An, φn) ∈Ms(α) and n0 ∈ N such that, ∀n > n0, (An, φn) ∈ U , which is a contradiction
with the fact that F |U is a difeomorphism.

Thanks to the compacity of Ms(α), whenever the non-degenerecency is satisfied for
all (A, φ) ∈M∗s(α), then M∗s(α) is a 0-dimensional manifold, hence a finite set of points.

2.3.4 Perturbed SW-Equations

In order to achieve the transversal condition H2
(A,φ) = 0 a perturbation is performed

on the functional Υ. Let Z2(Y, iR) = {ν ∈ Ω2(Y, iR) | dν = 0} be the space of closed
2-forms.

Definition 2.9. Fix A0 ∈ Aα and ν ∈ Z2(Y, iR). Consider Υν : Cs(α) → R as

Υν =
1
2

∫
Y
{(A−A0) ∧ (FA + F0 + 2ν)+ < DAφ, φ >}

Remark 5. .

1. Υν is Gs(α)-invariant.

2. The formula 2 becames

Υν(g.(A, φ)) = Υν(A, φ)− {(4πg∗(µ) + [ν])) ∪ 2πc1(L)) ([Y ]).

3. The L2-gradient of Υν is

grad(Υν)(A, φ) = (− ∗ FA + σ3(φ) + ∗ν,DAφ). (2.21)

The map ν 7→ grad(Υν) defines a section of Fνs(α) : Bs(α) → Es(α).
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Definition 2.10. Let ν ∈ Ω2(Y, iR) be a closed 2-form. The ν-perturbed SW-equations
are

− ∗ FA + σ3(φ) + ∗ν = 0, DAφ = 0. (2.22)

The ν-monopole space is Ms(α)(ν) = (Fνs(α))
−1(0).

Remark 6. .

1. Consider the map

F :Z2(Y, iR)× Ω1(Y, iR)× Γ (Ss(α))→ Ω1(Y, iR)× Γ (Ss(α)), (2.23)

F(ν,A, φ) = Fν(A, φ) = (− ∗ FA + σ3(φ) + ∗ν,DAφ). (2.24)

Its derivative is the linear operator

Lν(A,φ) : Z2(Y, iR)⊕ Ω1(X, iR)⊕Ker(G∗(A,φ))→ Ker(G∗(A,φ)),

Lν(A,φ)((ζ, (Θ, V ))) = L(A,φ)(Θ, V ) + (∗ζ, 0).

2. Fixed ν and suppose that the equation FA = ν admits a solution A0; recall that
a necessary condition for the existence of A0 is ν

2πi = c1(Lα) ∈ H1(Y,Z). Thus,
(A0, 0) is a reducible solution for the ν-perturbed SW-equation. Whenever a ∈
Ω1(Y, iR) is closed, (A0 + a, 0) is also a reducible solution. Besides, A0 and A0 + a
are gauge equivalent iff [a] ∈ H1(Y,Z), where H1(Y,Z) is a lattice within H1(Y,R).
So, if the space of reducible solutions is not empty, then it is diffeomorphic to the
Jacobian torus T b1(Y ) = H1(Y,R)/H1(Y,Z). There are three cases to be analysed;

b2(Y ) > 1: The space H2(Y,R)−H2(Y,Z) is arc connected. Therefore, the space
of closed 2-forms ν not admiting reducible solutions is connected.

b2(Y ) = 1: Once dim(H2(Y,R)) = 1, the space H2(Y,R)−H2(Y,Z) has many arc
connect components. In his case, the space of closed 2-forms not admiting
reducible solutions has also many arc connected components.

b2(Y ) = 0: In this case, for every closed 2-form ν there exist a reducible solution
(A, 0) of FA = ν, and it is unique up to gauge equivalence. To construct such
solution it is enough to observe that ν being exact yields ν = dµ, for some
µ ∈ Ω1(Y, iR), and also that the bundle Lα admits a flat connection A0. So,
(A0 + µ, 0) is a ν-reducible solution, which is unique up to the Gs(α)-action.

Theorem 2.3. Consider the map Fs(α) : Z2(Y, iR) × Cs(α) → Ω1(X, iR) ⊕ Γ (Ss(α)),
defined by Fs(α)(A, φ, ν) = Fνs(α)(A, φ). The following claims are true:
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1. There is a Baire subset of 2-forms F2 ⊂ Z2(Y, iR) such that, for all ν ∈ F2, Fνs(α)

is tranversal to the 0-section at (A, φ) ∈ (Fνs(α))
−1(0) (H2

(A,φ)(ν) = 0).

2. If b1(Y ) = 0, then there is a Baire subset of 2-forms F2 ⊂ Z2(Y, iR) such that, for
all ν ∈ F2, Fνs(α) is tranversal to the 0-section at (A, 0) ∈ (Fνs(α))

−1(0) (H2
(A,0)(ν) =

0).

Demonstração. By considering the map

F :Z2(Y, iR)× Ω1(Y, iR)× Γ (Ss(α))→ Ω1(Y, iR)× Γ (Ss(α)), (2.25)

F(ν,A, φ) = Fν(A, φ) = (− ∗ FA + σ3(φ) + ∗ν,DAφ), (2.26)

the first step is to prove the surjectivity of the linear operator L = dF(ν,A,φ);

L : Z2(Y, iR)⊕Ker(G∗(A,φ))→ Ω1(Y, iR)⊕ Γ (Ss(α)),

L(ζ,Θ, V ) = L(A,φ)(Θ, V ) + (∗ζ, 0).

By the decomposition Ω1(Y, iR)⊕ Γ (Ss(α)) = Imag(L)⊕Ker(L∗), the surjectivity of L
is verified by proving that Ker(L∗) = {0}. In order to compute L∗, let

< L(α, θ, V ), (ζ,W ) > =< ∗α, ζ > ⊕{< ∗dθ − 1
2
σ3(φ, V ), ζ > + < DAV +

1
2
θ.φ,W >} =

=< α, ∗ζ > ⊕{< θ, ∗dζ +
1
2
σ3(φ,W ) > + < V,DAW −

1
2
ζ.φ >}

Thus,

L∗(ζ,W ) = (∗dζ +
1
2
σ3(φ,W ), DAW −

1
2
ζ.φ, ∗ζ). (2.27)

Therefore, if (ζ,W ) ∈ Ker(L∗), then

(i) ζ = 0, (ii) σ3(φ,W ) = 0 (2.28)

(iii) DAW −
1
2
ζ.φ = 0 (iv) d∗ζ + Im(< φ,W >) = 0. (2.29)

A solution (ζ,W ) of these equations is C∞. Let’s consider the following cases:

1. (A, φ) is irreducible (φ 6= 0);
The equation (ii) implies that W = irφ, where r ∈ Map(X,R). So, the equation
(iii) implies that dr = 0. Therefore, from equation (iv) it follows that

Im(−ir | φ |2) = 0 ⇔ φ = 0.
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Hence, φ = 0 and ζ = 0 yields the surjectivity of L. By Sard’s theorem, there
is a Baire set F∈ ∈ Z2(Y, iR) such that for all ν ∈ F∈ Fν is transversal to the
0-section.

2. (A, 0) is a ν-reducible solution, so FA = ν. If µ ∈ Z1(Y, iR), then (A + µ, 0) is a
solution of FA = ν. At (A+ µ, 0), it follows from ?? that Ker(L∗) = H1(Y,R)⊕
Ker(DA+µ), so the transversality can be achieved only by assuming b1(Y ) = 0.
Consider the map s : Ω1(Y, iR) × Γ (Ss(α)) → V, s(µ,w) = DA+µ(w), where V
is the vector bundle V → Γ (Ss(α)), which fiber over φ 6= 0 is the vector space
Vφ = Ker(Re < iφ, . >) = (SpanR(iφ))⊥. The definition of V yields from the fact
that, for all w ∈ Γ (Ss(α)), DA+µw ∈ VV , since

< DA+µw, iw >= −< DA+µw, iw > ⇒ Re(< DA+µw, iw >) = 0.

Because ind(D) = 0 and V is a codimension 1 subspace of Γ (Ss(α)), it follows
that indR(ds(µ,w)) = 1, for all (µ,w) ∈ Ω1(Y, iR) × Γ (Ss(α)). The derivative
ds(ν,φ) : Ω1(Y, iR)× Γ (Ss(α))→ Γ(V) is,

ds(ν,w)(λ, u) = λ.w +DA+µu (2.30)

Suppose that ∃ψ ∈ Γ (Ss(α)) such that ψ ⊥ Imag(dsµ,w) ⊂ {iw}⊥. So,

(a) for all λ ∈ Ω1(Y, iR), < ψ, λ.w >= 0 ⇒ σ3(ψ,w) = 0 and ψ = irw

(b) for all u ∈ Γ (Ss(α)), < ψ,DA+µu >= 0 ⇒ DA+µψ = 0, hence dr = 0 ⇒ r is
constant.

Once ψ ⊥ iw in L2, it follows that r = 0. Consequently, the map ds(µ,w) :
Ω1(Y, iR) ⊕ Γ (Ss(α)) → Γ (Ss(α)) is surjective and so, the map s is transversal.
Agian, by Sard’s theorem there exists a Baire subset of 1-forms F1 ⊂ Z1(Y, iR)
such that, for all µ ∈ F1, sµ = DA+µ : Γ (Ss(α)) → V is transversal to the 0-
section. Moreover, dimR(s−1

µ (0)) = 1. Neverthless, DA+µ is a C-linear operator,
so dimR(Ker(DA+µ)) must be an even number. Hence, for all µ ∈ F1 s−1

µ (0) =
Ker(DA+µ) = {0}. As a by-product, the transversality is settled in case b1(Y ) = 0.

Corollary 2.1. There is a Baire set of forms F2 ⊂ Ω2(Y, iR) such that, for all ν ∈ F2,
the space M∗s(α)(ν) is a compact, 0-dimensional manifold.
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Remark 7. .

1. The transversality attained in the last theorem does not take in account the quo-
tient by the Gs(α)-action. If the analysis is carried on to the quotient, then it is
not defined at reducible solutions.

2. For later applications, it is very important to understand the existence of reduci-
ble solutions of the ν-perturbed SW-equation whenever b1(Y ) ≤ 1. A necessary
condition to the existence of a solution (A, 0) of FA = ν is that c1(Lα) = ν

2πi ,
otherwise there is no such solution and the ν-perturbed SW-equation is free of
reducible connections. Let’s consider the following cases;

(i) b1(Y ) = 1: let A0 be a solution of FA = ν and θ0 ∈ H1(Y,R) such that
H1(Y,R)�H1(Y,Z) =< θ0 >. Thus, the space of ν-reducible solutions is
diffeomorphic to S1 and parametrized by Mred

s(α)(ν) = {A0 + tθ0 | t ∈ [0, 1]}.

(ii) b1(Y ) = 0: in this case, the equation FA = ν implies that there exists
a ∈ Ω1(Y, iR) such that da = ν. By considering A0 a flat connection (the
bundle Lα is trivial), thus (A0 + a, 0) is the unique reducible solution of the
ν-perturbed SW-invariant, therefore, Mred

s(α)(ν) = {A0 + a}.

2.3.5 Spectral Flow of the Dirac Operator

For later purposes, it is important to understand the spectrum behavior of a family
of Dirac operators. A C∞ curve µ : [0, 1] → Ω1(Y, iR) induces a curve Dt : [0, 1] →
Fred0(Γ (Ss(α))) ∈ Ω1(Y, iR), Dt(w) = DA+µ(t), where Fred0(Γ (Ss(α))) is the space of
Fredholm operators with index 0.

In this way, the spectrum varies smoothly with t, besides it can be assumed that the
eigenvalues are distincts. The spectrum is the subset⋃

t∈[0,1]

{t} × Spec(Dt) ⊂ [0, 1]× R.

The interesting aspect of Spec(Dt) is the change of signs of the eignevalues along the
path. If they don’t change, nothing different turns up, however if one eigenvalue λ
changes its sign, then at some t0 λ(t0) = 0.

Proposition 2.10. Let λt ∈ Spec(Dt) and vt an unitary λt-eigenvector. So,

dλt
dt

=<
dDt

dt
vt, vt > .

Demonstração. Once Dtvt = λtvt, it follows that D
′
tvt + Dtv

′
t = λ

′
tv + λtv

′
t. Since

< vt, v
′
t >= 0, by taking the L2-inner product with vt,

< D
′
tvt, vt > + < Dtv

′
t, vt >= λ

′
t
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Besides, the self-adjointness of Dt implies that

< Dtv
′
t, vt >=< v

′
t, Dtvt >= λt < v

′
t, vt >= 0.

Therefore, λ
′
t =< D

′
tvt, vt >.

Definition 2.11. The spectral flow of a path Dt : [0, 1]→ Fred0(Γ (Ss(α))) is

SF (Dt) = σ1 − σ0, where σi is the signature of Di.

All this topic concerning the Spectral flow is relevant to study the case b1(Y ) ≤ 1.
Let At = A+µ+tµ0, t ∈ [0, 1] be a 1-parameter family of reducible solutions of FAt = ν,
ν = dµ. The corresponding 1-parameter family of Dirac operators Dt = DA+µ+tµ0 ∈
Fred0(Γ (Ss(α))) may go through the 0-line in [0, 1]× R.

Proposition 2.11. Consider that for t0 ∈ [0, 1], 0 ∈ Spec(DA+µ+t0µ0). Let λt ∈
Spec(Dt) be the eigenvalue such that λt0 = 0. So, λ

′
t0 > 0 meaning that the curve

(t, λt) ⊂ [0, 1]× R across transversaly the axis [0, 1]× {0}.

Demonstração. Assume that µ ∈ F1, as in the theorem ??. So, the map sµ : [0, 1] ×
Γ (Ss(α))→ V, given by sµ(t, w) = DA+µ+tµ0(w), is transversal to the 0-section yielding
the surjectivity of (dsµ)(t0,w) : R× Γ (Ss(α))→ V, where

(dsµ)(t0,w)(1, u) =
d

dt
(DA+µ+tµ0(w)) |t=t0 +DA+µ+t0µ0u.

Now, let’s consider u0 ∈ V an unitary harmonic spinor of DA+µ+t0µ0 . Due to the
surjectivity of (dsµ)(t0,w), there exists v0 ∈ Γ (Ss(α)) such that

d

ds
(DA+µ+sµ0(w)) |s=0 +DA+µ+t0µ0v0 = u0.

Therefore, by taking the inner product with u0 and using the self-adjointness odDA+µ+t0µ0 ,
it follows that

d

dt
(λt) |t=t0=<

d

dt
(DA+µ+tµ0) |t=t0 , v0 > > = 0.

This is the required condition to (t, λt) be transversal to the axis [0, 1]× {0}.

2.3.6 Ms(α) is compact for all s(α) ∈ Spinc(X)

Lemma 2.4. Let (A, φ) be an irreducible solution of 2.3. Thus,

|| φ ||∞≤ max
y∈Y
{0,−kg(y)} (2.31)

autor: Celso M Doria 57



2.3. SW -EQUATIONS ON A 3-MANIFOLD Y Celso M Doria

2.3.7 Ms(α) is orientable for all s(α) ∈ Spinc(X)

Let ν ∈ F as in theorem ??. Therefore, the monopole space Ms(α)(ν) is a 0-
dimensional compact manifold, thus it is a finite set. Let’s describe a general procedure
to orient, at once, all Ms(α)(ν) = (Fνs(α))

−1(0). For the sake of simplicity, let’s consider
F = Fνs(α).

As seen before, the map F is a Fredholm map. Under the hypothesis of φ 6= 0
and ν ∈ F2,Ms(α)(ν) is a manifold and the tangent space at (A, φ) is T(A,φ)Ms(α)(ν) =
Ker(T(A,φ)) = H1

(A,φ). Thus,Ms(α)(ν) is orientable if the vector space Λmax(Ker(T(A,φ)))
is a trivial bundle (ΛmaxV stands for the highest exterior power of V ). The index of
T(A,φ) is

ind(T(A,φ)) = dim(Ker(T(A,φ)))− dim(CoKer(T(A,φ))), (2.32)

which corresponds to the dimension of the virtual bundle

[Ker(T(A,φ))]− [CoKer(T(A,φ))].

In order to achieve the triviality of Λmax(Ker(T(A,φ))), we consider the determinant line
bundle associated to a Fredholm operator;

Definition 2.12. The determinant line bundle of a Fredholm operator T (A, φ) is the
line bundle

det(T(A,φ)) = Λmax(Ker(T(A,φ)))⊗
[
Λmax(CoKer(T(A,φ)))

]∗
.

The determinant line bundle of a family of Fredholm operators {T (A, φ) | (A, φ) ∈ Cα}
is the line bundle

det(T ) =
⋃

(A,φ)∈Cs(α)

det(T(A,φ)).

Remark 8. .

1. Consider F(V,W ) the space of Fredholm operators F : V →W . The index defined
in 2.32 is invariant by a homotopy performed in F(V,W ). Thus, ind(T1) = ind(T2)
whenever T1, T2 ∈ F(V,W ) are connected by a continuous path in F(V,W ). Mo-
reover, det(T1) = det(T2).

2. Although the dimensions of the vector spaces Ker(T(A,φ)) and CoKer(T(A,φ)) may
jump, the index doesn’t and det(T ) is a complex line bundle over Cs(α). Once these
spaces are all gauge invariant, it turns out that det(T ) is a line bundle over Bs(α).
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By considering a connected path γ : [0, 1] → Cs(α), γ(t) = (1 − t)(A, φ) + t(A, 0),
the index of the operator T(A,φ), as in 2.28, is equal to the index of the elliptic operator
T(A,0) = P ⊕QA : Ω1(Y, iR)⊕ Γ (Ss(α))⊕Ω0(Y, iR)→ Ω1(Y, iR)⊕ Γ (Ss(α))⊕Ω0(Y, iR),
where

P =

 ∗d 0 2d
0 0 0

2d∗ 0 0

 : Ω1(Y, iR)⊕ Ω0(Y, iR)→ Ω1(Y, iR)⊕ Ω0(Y, iR),

QA =

0 0 0
0 DA 0
0 0 0

 : Γ (Ss(α))→ Γ (Ss(α)).

As observed before, ind(T ) = ind(P) + ind(QA), where P and QA are both self-adjoint
with kernel

Ker(P) = H0(Y,R)⊕H1(Y,R), Ker(QA) = Ker(DA).

Therefore, Ker(T(A,0)) = H0(Y,R) ⊕ H1(Y,R) ⊕ Kerd(DA). Moreover, the bundle
det(Tγ)→ [0, 1] is trivial, so det(Tγ(0)) and det(Tγ(1)) are isomorphics.

Theorem 2.4. The line bundle det(T )→ Bs(α) is trivial. Moreover, det(T ) is orientable
and an orientation is fixed by choosing a orientation of

ΛmaxH0(Y,R)⊕ ΛmaxH1(Y,R).

Demonstração. Since det(T(A,φ)) is isomorphic to det(T(A,0)), it follows that the fibers of
det(T(A,φ)) are isomorphic to V1(A)⊕V2(A), where V1(A) = ΛmaxH0(Y,R)⊕ΛmaxH1(Y,R)
and V2(A) = ΛmaxKer(DA). The sub-bundle V1, which fiber at A is V1(A), is trivial be-
cause its fibers independ on A. Also, the sub-bundle V2 is trivial because Ker(D)→ Aα
is a complex vector bundle, hence orientable. Besides, the Gs(α)-action preserves the
complex structure and all the decompositions in the setting.

Corollary 2.2. The manifold Ms(α) is orientable and an orientation is induced by
orienting the vector spaces H0(Y,R) and H1(Y,R).

In this way, if Ms(α) = {p1, . . . , pn}, then for each pi ∈ Ms(α), i = 1, . . . , n, we can
associate either ni = +1 or ni = −1.

2.3.8 Seiberg-Witten Invariants of Y 3

As seen in the sections before, under the hypothesis that ν ∈ F∈ and b1(Y ) > 1, there
are a finite number of classes s ∈ SpinC(X) (basic classes of Y ) such thatMs(α)(ν) 6= ∅
and is an orientable, compact 0-dimensional manifold.
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Definition 2.13. Let (Y, g) be a riemannian structure on Y . The Seiberg-Witten inva-
riant of (Y, g) is

SW :SpinC → Z (2.33)

s(α) −→ SW(s(α)) =

{∑
i ni, if s(α) is a basic class,

0, otherwise
(2.34)

where ni = ±1, according with the orientation given at pi ∈Ms(α).

Another way of looking at the SW-invariant is observing that it is the euler class of
the vector bundle Es(α) → Bs(α).

The hard work next is to deal with the cases b1 ≤ 1.

2.4 Metric Invariance of SW-Invariant

The definition of the SW-invariant requires a rimannian metric g on Y and also a
2-form ν ∈ F2 to guarantee thatMs(α) is a smooth, orientable manifold. Consider RMY

the space of riemannian metrics defined on Y . The metric dependence of is stressed in
the cases considered next;

2.4.1 Case b1(Y ) > 1

Let gt : [0, 1] →MY be a smooth path connecting g0 to g1, and νt : [0, 1] → F∈ ⊂
Ω2(Y, iR) be a smooth path of 2-forms connecting ν0 to ν1. Since b1(Y ) > 1, it can be
assumed that the class [νt] 6= [ FA2πi ], ∀t ∈ [0, 1]. Next, by fixing a class s(α) ∈ SpinC(Y ),
we may consider the map F̂ : [0, 1]× Cα × Ω2(Y iR)→ Ω1(Y, iR)⊕ Γ (Ss(α)).

F̂(t, A, φ, ν) = (∗tFA − σ3(φ)− ∗νt, Dt
Aφ), (2.1)

where ∗t and Dt
A are the operators associated to gt. The Chern-Simons-Dirac functional

Υ̂ : [0, 1] × Cα → R has non-degenerated critical points since νt ⊂ F2, for all t ∈ [0, 1],
and the linear map dF̂ : R⊕Ω1(Y, iR)⊕ Γ (Ss(α))⊕Ω2(Y, iR)→ Ω1(Y, iR)⊕ Γ (Ss(α)) is
surjective. Hence, M̂s(α) = F̂−1(0) is a manifold. By the same arguments, the moduli
space M̂s(α) of solutions of 2.1 is a compact, oriented manifold which is either empty or
1-dimensional; in the former case it is a set of arcs. From the construction above, the
map π : M̂s(α) → [0, 1] given by π−1(t) = Mt

s(α) is a fibration. As a manner of fact, if

b1(Y ) > 1, then M̂s(α) =M0
s(α) × [0, 1].

Theorem 2.5. Let s(α) ∈ SpinC(X) and consider SW0(s(α)) and SW1(s(α)) the in-
variants associated to the spaces M0

s(α) and M1
s(α), respectively. If b1(Y ) > 1, then

SW0(s(α)) = SW1(s(α)).
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Demonstração. From the construction, the space M̂s(α) is a cobordism among M0
s(α)

and M1
s(α). However, for each t ∈ [0, 1], the invariant SWt(s(α)) can be written as

SWt(s(α)) =
∫
Mt

s(α)

1,

where µ is the Lebesgue measure defined on Mt
s(α). So, by Stoke’s theorem,

SW0(s(α))− SW1(s(α)) =
∫
M̂s(α)

d(1) = 0.

2.4.2 Case b1(Y ) = 1

This case is particularly more delicate since the condition b1(Y ) = 1 means that
H1(Y,R) is 1-dimensional, and so, along a variation νt : [a, b] → F2 it may occur that
ν0 and ν1 are in different connected component of H2(Y,R) − { FA2πi}. Therefore, the
fibration π : M̂s(α) → [0, 1] has a singular fiber at t = c because of existing a reducible
solution. Thus, the reducible solution (A, 0) has to be taken in account and no longer
M̂s(α) is a manifold.

At t = c, the space of reducible solutions is the 1-sphere S1 = H1(Y,R)/H1(Y,Z).
In order to understand the invariant, let’s consider the the projection Ω2(Y, iR) →

H2(Y,R), ν → [ν], and the 1-codimension wall

W = {ν ∈ Ω2(Y, iR) | [ν] = 2πic1(Lα)}.

The wall splits Ω2(Y, iR) into two connected components, named the chambers;

W+ = {ν ∈ Ω2(Y, iR); 2πic1(Lα)([ν]) > 0},
W− = {ν ∈ Ω2(Y, iR); 2πic1(Lα)([ν]) < 0}

As before, let’s assume that the path νt : [0, 1]→ Ω2(Y, iR) has not reducible solutions,
but at t = c. The linear map dF̂ : R⊕ Ω1(Y, iR)⊕ Γ (Ss(α))⊕ Ω2(Y, iR)→ Ω1(Y, iR)⊕
Γ (Ss(α)) is surjective, however the Gs(α)-action is not free. Thus, the fibration π :
M̂s(α) → [0, 1] has a singular fiber at t = c because the space π−1(t) =Mt

s(α) miss to be

a manifold. By cutting off the singular set Sc ⊂Mc
s(α), the moduli space M̂s(α) defines

an oriented cobordism amongM0
s(α) andMc

s(α)−Sc and another one amongM1
s(α) and

Mc
s(α) − Sc.
For each s(α) ∈ SpinC(X), consider the monopole moduli spaces M±s(α) correspon-

ding to the solutions of the perturbed SW-equations restricted to ν ∈ W±, respectively.
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Definition 2.14. The invariants SW± : SpinC(Y )→ Z are defined by

SW+(s(α)) =
∫
M+

s(α)

1, SW−(s(α)) =
∫
M−

s(α)

1.

Theorem 2.6. Let b1(Y ) = 1. The wall crossing formula is given by

SW+(s(α))− SW−(s(α)) =
∫
S1

dµ

Demonstração. It follows from the remark that the moduli space M̂s(α) −Sc defines an
oriented cobordism among M0

s(α) and M1
s(α). So,

∂(M̂s(α)) =M0
s(α) tM

1
s(α) t S

1

2.4.3 Case b1(Y ) = 0

In general, the existence of a reducible solution (A, 0) of the SW-equations means
that FA = 0, which corresponds to a representation ρA : π1(Y )→ U1, hence an element
ρ∗A ∈ H1(Y,U1).

The case b1(Y ) = 0 is restricted to the Q-homology spheres (H∗(Y,Q) = H∗(S3,Q)).

1. If Y is a Z-homology sphere, then H1(Y,Z2) = H2(Y,Z) = 0, so SpinC(Y ) = {0}.
In this case, H1(Y,U1) = H1(Y,Z) ⊗ U1 = 0, so the only representation is the
trivial one.

2. If H1(Y,Z) is a torsion group, then SpinC(Y ) = H1(Y,Z2) is finite. In this case,
it may exist non-trivial representations ρ∗A ∈ H1(Y,U1).

In both cases, there is no way of getting rid of the reducible solution of the perturbed
SW-equations. The map SW : SpinC(Y ) → Z is no longer a smooth invariant, it
depends on the metric on Y and also on the 2-form ν, whenever a perturbation has been
considered.

For all ν ∈ Ω2(Y ), the pertubed SW-equation admits only one reducible solution, up
to the gauge invariance. Let A0 be a flat connection and θ ∈ Ω1(Y, iR) the only 1-form
satisfying dθ = ν and d∗θ = 0, so A = A0 + θ is a solution of FA = ν. In this case, the
space Ms(α)(ν) is always singular and there is no path turning around the singularity
as in the case b2(Y ) > 1. Therefore, if we fix a class s(α) ∈ Spinc(Y ), then the moduli
space Ms(α)(g, ν) depends on the metric g and on ν. Hence, for each pair (g, ν) we
can associate the integer SW(s(α); (g, ν)). In order to obtain a smooth invariant, let’s
introduce a curve σ : [0, 1]→MY × Ω2(Y, iR) connecting the pairs (g0, ν0) and (g1, ν1).
Also consider the moduli space Ms(α)(σ) and the fibration π :Ms(α)(σ)→ [0, 1], where
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CAPÍTULO 2. SW-EQUATIONS Celso M Doria

π−1(t) = Ms(α)(gt, νt). ALTHOUGH, FOR EACH t ∈ [0, 1], π−1(t) IS A MANIFOLD
WHEN RETRICTED TO THE IRREDUCIBLES, IT CAN NOT BE GUARANTEE
THAT THE SPECTRAL FLOW OF THE DIRAC OPERATOR FAMILY D(σ) DOES
NOT JUMPS ALONG σ. WHENERVER IT JUMPS THE NUMBER SW(g(t), ν(t))
changes, since

SW(g(1), ν(1))− SW(g(0), ν(0)) = SF (D(σ)).

The spectral flow can also be computed via the Atiyah-Patodi-Singer index theorem.
It is known from ?? that a spin manifold (Y, sY ) bounds a 4-manifold (X, sX) with
only one 0-handle and finite many 2-handles (b1(X) = 0). The following objects can be
extended over X;

1. the SpinC-structure sY over Y extends to sX ∈ SpinC(X) over X,

2. the U1-bundle Lα over Y to the U1-bundle L̂α over X,

3. the unique flat connection θ on Lα to a connection Θ on L̂α,

4. ν ∈ Ω2(i,R) to ν̂ ∈ Ω2(X, iR).

Thus, by the Atiyah-Patodi-Singer index theorem, the spectral flow SF (D(σ)) is com-
puted by the formula

ζ(σ(1))− ζ(σ(0)) = SF (D(σ)),

where ζ(σ(t)) is defined as follows;

Definition 2.15. Consider b1(Y ) = 0 and fix (g, ν) ∈M(Y )× Ω2(Y, iR). Let θ be the
unique flat connection (up to gauge) on Lα and let a ∈ Ω1(Y, iR) be the unique 1-form
satisfying the equations d∗a = 0 and da = ν. Define

ζ(g, ν) =
1
8
η̂(δ, g) +

1
2

(dimCKer(Dθ+A) + η̂(Dθ+A) +
1

32π2

∫
Y

(A ∧ dA) (2.2)

where δ = d+ d∗ : Ωeven(X)→ Ωodd(X).

autor: Celso M Doria 63



2.4. METRIC INVARIANCE OF SW-INVARIANT Celso M Doria

autor: Celso M Doria 64



Referências Bibliográficas
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