
ar
X

iv
:n

lin
/0

20
70

42
v1

  [
nl

in
.S

I]
  2

4 
Ju

l 2
00

2

Dispersionless Limit of Integrable Models

J. C. Brunelli

Universidade Federal de Santa Catarina
Departamento de F́ısica – CFM

Campus Universitário – Trindade
C.P. 476, CEP 88040-900
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Abstract

Nonlinear dispersionless equations arise as the dispersionless limit of well know inte-

grable hierarchies of equations or by construction, such as the system of hydrodynamic

type. Some of these equations are integrable in the Hamiltonian sense and appear in the

study of topological minimal models. In the first part of the review we will give a brief

introduction to integrable models, mainly its Lax representation. Then, we will intro-

duce the dispersionless limit and show some of our results concerning the two-component

hyperbolic system of equations such as the polytropic gas and Born-Infeld equations.

http://arXiv.org/abs/nlin/0207042v1


1. Introduction

The study of integrable models or solvable nonlinear partial differential equations

is an active area of research since the discovery of the inverse scattering method [1-

3]. These models are in a sense universal since they show up in many areas of physics

such as solid state, nonlinear optics, hydrodynamics, field theory just to name a few.

Also, integrable models are linked to many areas of mathematics (see the chart in

http://www.ma.hw.ac.uk/solitons/procs/bullough1/bullough1/bullough1.html) and have

beautiful structures behind them.

In this review we want to approach the dispersionless limit of some integrable models

and describe some of our work on this subject [4-7]. This review is organized as follows: In

Section 2 we review or at least introduce some basic facts on integrable models. We use the

Korteweg-de Vries equation (KdV) as an example. In Section 3 we introduce the disper-

sionless limit of an integrable model using the KdV equation to obtain the corresponding

Riemann equation. Section 4 reviews our work with a special class of dispersionless sys-

tems known as two-component hyperbolic systems. We show our results concerning the

Hamiltonian structures for the Riemann equation [4] the dispersionless Lax representation

for the polytropic gas dynamics [5] and Born-Infeld equation [6]. Finally, in Section 5, we

conclude with some problems that deserve further investigations.

2. Integrable Models

2.1 Solitons

We are interested in nonlinear partial differential equations such as the sine-Gordon

equation, nonlinear Schrödinger equation, Korteweg-de Vries equation (KdV), etc. These

equations, as we will see, are very special since they are integrable. From now on we will

illustrate the main results concerning integrability using the KdV equation.

The KdV equation has as solution what is called today a soliton. We can trace the

discovery of the soliton back to 1834 with the Scott Russell’s experiment [8] to generate

solitary waves in water, i.e., localized single entity waves. A modern version of his experi-

ment is shown in Figure 1 (see http://www.ma.hw.ac.uk/∼chris/scott russel.html for an

attempt to recreate Scott Russell’s soliton). Scott Russell found that the volume V of

water wave is equal to the volume of water displaced and that the speed c of the solitary

wave is related with its amplitude a, depth of water h and acceleration of gravity g by

c2 = g(h+ a) (2.1)

This equation shows that higher waves travel faster. Attempts to obtain (2.1) theoretically

were done by Boussinesq (1871) and Lord Rayleigh (1876) but an equation for u(x, t) in the

http://www.ma.hw.ac.uk/solitons/procs/bullough1/bullough1/bullough1.html
http://www.ma.hw.ac.uk/~chris/scott_russel.html
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Figure 1. Generation of a solitary wave.

small amplitude (h≫ a) and in the long wave regime (h≪ ℓ) was deduced by Korteweg-de

Vries in 1895 [9]. This is the now famous KdV equation

ut = uux + uxxx
(2.2)

where u(x, t) is the wave profile and ut = ∂u
∂t

, ux = ∂u
∂x
, . . . .

The interest in the KdV equation (2.2) was resumed after studies of Fermi, Pasta

and Ulam in 1955 [10] on numerical models of phonons in non-linear lattices, which are

models closely related with the discretisation of the KdV equation. Motivated by these

results, Zabusky and Kruskal in 1965 [11] studied numerically equations like (2.2) with

periodic boundary conditions and were led to introduce the concept of “soliton” solutions.

In 1967 Gardner, Greene, Kruskal and Miura [12] solved equation (2.2) exactly, introducing

the “Inverse Scattering Transform Method” (ISTM), and were able to obtain its analytic

expression. The so called 1-soliton and 2-soliton solutions of the KdV equation (2.2), for

rapidly decreasing boundary conditions

u(x, t)→ 0 for x→ ±∞ ,

are

u(x, t) =
1

2
c2sech2

(
1

2
c(x+ c2t)

)
→ 1− soliton

u(x, t) =12
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)

{3 cosh(x− 28t) + cos(3x− 36t)}2 → 2− soliton

(2.3)

In Figure 2 we have pictures for the time evolution of the KdV soli-

tons (2.3) (for some brief solitons movies see http://www.ma.hw.ac.uk/solitons and

http://www.physics.otago.ac.nz/Physics100/simulations/Gamelan/java/toda). The 1-

soliton solution in Figure 2 is the solitary wave obtained in the Scott Russell’s experiment.

Observe that as the time evolves the wave keeps its form. For the 2-soliton solution in

http://www.ma.hw.ac.uk/solitons
http://www.physics.otago.ac.nz/Physics100/simulations/Gamelan/java/toda
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Figure 2. Time evolution for the solitons of the KdV equation.

Figure 2, since the taller the soliton the faster it moves, the two solitons will interact nonlin-

early when they meet. But, the amazing fact is that the two solitons will almost keep their

initial form after interaction, there will be only a shift in their positions. This particle-like

character and ability to retain its identity after interactions is what characterize a soliton

solution of a nonlinear equation such as the KdV one.

2.2 Inverse Scattering

The next breakthrough in the soliton thread came in 1968 with the Lax [13] discov-

ery about the meaning of the ISTM. His observation is that the KdV equation has the

representation

∂L

∂t
= [B,L]

(2.4)

where

L =∂2 +
1

6
u

B =4 ∂3 +
1

2
(∂u+ u∂)

(2.5)

are operators. Here ∂ ≡ ∂
∂x satisfies ∂f = fx + f∂. We call L the Lax operator and in

some sense we can find a Lax representation such as (2.4) for any integrable system. In

this way, starting from (2.4), we can apply the ISTM for other nonlinear equations.

We can write the following eigenvalue problem for the Lax operator L

Lψ = −λψ (2.6)



It is easy to see that since L evolves in time as (2.4) we have λt = 0, i.e., the eigenvalue

problem is isospectral. For the KdV equation (2.6) assumes the form

∂2ψ

∂x2
+

(
1

6
u(x, t) + λ

)
ψ = 0 (2.7)

which is the time-independent Schrödinger equation and where t is a parameter (not the

time in the Schrödinger equation). Now we can obtain a solution u(x, t) as follows: For

some given initial condition u(x, 0) we solve (2.7) and obtain the scattering data S(t = 0),

since u satisfies the KdV equation we can obtain the scattering data for any t, so from

S(t) we use the inverse scattering (as we usually do in quantum mechanics) to find the

“potential” u(x, t) from the scattering data S(t). This is the ISTM routine and the main

steps are illustrated in the diagram bellow.

initial condition scattering data can
(given) be calculated
⇑ ⇑

u(x, 0) −→ S(t = 0)

↑ ↓ ⇒ KdV

u(x, t) ←− S(t)
inverse

scattering

Inverse Scattering Transform Method

2.3 Hamiltonian Systems

In 1970 Gardner [14] showed that the KdV equation is a Hamiltonian integrable

system. Then, Faddeev and Zakharov in 1971 [15] were able to interpret the ISTM as a

change of variables to the action angle variables. In fact, the representation of integrable

models as integrable Hamiltonian systems is the starting point to the “Quantum Inverse

Scattering Method”. Before we see how the KdV equation can be expressed in Hamiltonian

form let us review the symplectic formalism for Hamiltonian systems. A Hamiltonian

system is described by a phase space qi, pi, with i = 1, . . . , N , and a Hamiltonian function



H(pi, qi). The equations of motion are then given by the Hamilton’s equations

q̇i =
∂H

∂pi

ṗi = −∂H
∂qi

(2.8)

Alternatively, we can describe a Hamiltonian system using Poisson brackets, for the dy-

namical variables A(q, p) and B(q, p), defined by

{A,B} =
∂A

∂qi

∂B

∂pi
− ∂A

∂pi

∂B

∂qi
(2.9)

which is skew-symmetric and satisfies the Jacobi identity. The variables of phase space

satisfy the canonical relations {qi, qj} = {pi, pj} = 0 and {qi, pj} = δij . The Hamilton’s

equations (2.8) assume the form
q̇i ={qi, H}
ṗi ={pi, H}

(2.10)

Putting the variables qi and pi in an 2N dimension column z the equations (2.8) assume

the form

d

dt




q1
...
qN
p1
...
pN




︸ ︷︷ ︸
≡ z

=

(
0 I
−I 0

)

︸ ︷︷ ︸
≡ J




∂/∂q1
...

∂/∂qN
∂/∂p1

...
∂/∂pN




︸ ︷︷ ︸
≡ ~∇

H (2.11)

or

ża = Jab∂bH a, b = 1, . . . , 2N (2.12)

and even in a more compact form as

ż = J ~∇H
(2.13)

This is the symplectic formalism for Hamiltonian systems. The Poisson brackets can be

written as

{A,B} =
(
~∇A
)t

J
(
~∇B
)

(2.14)

where Jab = −Jba and
∑(

Jab∂dJ
bc + cyclic

)
= 0. The canonical relations are given by

{z, z} = J and (2.10) by

ż = {z,H}
(2.15)



We can perform some generalizations, allowing J to depend on z, J(z), and going

from a discret sympletic space, of dimension 2N , to the continuum where we have now a

field u(x, t) instead of z(t). Then, we have the following “dictionary”

z(t) → u(x, t)

H(z) → H[u] functional

~∇H → δH

δu
functional derivative

J(z) skew-symmetric matrix → D(u) skew-adjoint operator

ż = J ~∇H → u̇ = D δH[u]

δu

{z, z} = J(z) → {u(x), u(x′)} = Dδ(x− x′)

{A,B} =
(
~∇A
)t

J
(
~∇B
)

→ {A[u], B[u]} =

∫
dx
δA

δu
D δB
δu

If there is a J−1 we say that we are in a symplectic manifold, otherwise we are in a more

general situation of a Poisson manifold. Note that the functional derivative δH[u]
δu

is defined

as
δH[u(x)]

δu(y)
= lim

ǫ→0

H[u(x) + ǫδ(x− y)]−H[u(x)]

ǫ
(2.16)

which for H[u] = u(x) yields
δH[u(x)]

δu(y)
= δ(x− y)

and for H[u] =
∫
dx h(x, u, ux, uxx, . . .)

δH[u(x)]

δu(y)
=

(
∂

∂u
− ∂

∂x

∂

∂ux
+
∂2

∂x2

∂2

∂u2
xx

+ . . .

)
h

where the right hand side is just the Euler-Lagrange operator acting on h.

Now, let us return to the KdV equation (2.2) and observe that it can be rewritten as

ut =uux + uxxx

=
∂

∂x

(
1

2
u2 + uxx

)
(2.17)



Introducing the Hamiltonian

H2 =

∫
dx

(
1

3!
u3 − 1

2
u2

x

)
(2.18)

we see that δH2

δu
= 1

2
u2 + uxx and dH2

dt
= 0. The operator

D1 =
∂

∂x
(2.19)

is skew-adjoint and satisfies the Jacobi identity. So, (2.17) can be written in Hamiltonian

form as

ut = D1
δH2

δu
= {u(x), H2}1 (2.20)

where

{u(x), u(y)}1 = D1δ(x− y) (2.21)

and we are omitting the explicit dependence on t.

Besides (2.18) the KdV equation (2.2) has an infinite number of conserved charges

H0 =

∫
dx u

H1 =

∫
dx

1

2
u2

H2 =

∫
dx

(
1

3!
u3 − 1

2
u2

x

)

H3 =

∫
dx

(
1

4
u4 − 3uux +

9

5
u2

xx

)

H4 =

∫
dx

(
1

5
u5 − 6u2u2

x +
36

5
uu2

xx −
108

35
u2

xxx

)

...

(2.22)

and it can be shown that these charges are in involution, i.e.,

{Hn, Hm}1 = 0 (2.23)

making the KdV equation integrable in Lioville’s sense.

In 1978 Magri [16] discovered that equations like KdV have a second Hamiltonian

structure. The operator

D2 =
∂3

∂x3
+

1

3

(
∂

∂x
u+ u

∂

∂x

)
(2.24)



is skew-adjoint and satisfies Jacobi identity, and the KdV equation can be written in the

alternative Hamiltonian form

ut = D2
δH1

δu
= {u(x), H1}2 (2.25)

where

{u(x), u(y)}2 = D2δ(x− y) (2.26)

These charges (2.22) are also in involution with respect to this second Hamiltonian struc-

ture

{Hn, Hm}2 = 0 (2.27)

We say that the KdV equation is a bi-Hamiltonian system. In general we say that a system

is bi-hamiltonian if there are Hamiltonian operators D1 and D2 which are compatible, i.e.,

such that D1, D2 and λ1D1 + λ2D2 satisfy the Jacobi identity. It can be shown [16] that

if a system is bi-Hamiltonian it is integrable in Lioville’s sense.

Starting with the works of Gel’fand and Dickey in 1975 [17], Adler in 1979 [18] and

many others, algebraic developments started to take place. The key role played by the

Lax operator L, in obtaining the conserved charges Hn, the Hamiltonian structures, the

hierarchy of equations that share Hn was then revealed. In the next sections we will

introduce and apply some of these techniques in the dispersionless situation.

3. Dispersionless Limit

We have seen that solitons preserve their shape and speed after collision. The soliton

solution has a nondispersive nature. This is so not because dispersion effects are absent

but because there is a compensation by the nonlinearities of the system. Let us look at

the KdV equation (2.2) more closelly. If we eliminate the nonlinear term in (2.2) we get

the linear dispersive equation

ut = uxxx (3.1)

which admits the solution

u(x, t) =

∫
dk A(k)ei(kx−w(k)t) (3.2)

This is a pure dispersive solution. In Figure 3 we see that a initial configuration at t = 0

will disperse as time goes on. Eliminating the dispersive term we get the pure nonlinear

equation

ut = uux (3.3)

It can be easily checked by substitution that

u(x, t) = f(x− ut) (3.4)



with f arbitrary, satisfies (3.3). From this solution we conclude that the velocity of a

point of the wave, with constant amplitude u, is proportional to its amplitude leading to

the “breaking” of the wave, as shown in Figure 3. The wave also develops discontinuities

(indicated by the vertical dashed line in Figure 3) in its evolution. The “miracle” of the

soliton solution is due to a balance between the dispersion and the breaking of the wave,

both phenonema placed together lead to the wave profile to propagate without changing

its shape.

t = 0 t > 0

t = 0 t > 0 t > 0

t = 0 t > 0

Nonlinear Breaking of Wave

Dispersion of Wave

Soliton
Balance
Leads to

c

Figure 3. The balance effects of dispersion and breaking in a soliton.

Equation (3.3) is called the dispersionless KdV or Riemann equation [19]. The inter-

esting fact is that this equation is a integrable Hamiltonian system. We will return to study

this equation in the next section but for the moment let us analyse how we get dispersionless

equations. Dispersionless equations can be obtained by construction or as a quasi-classical

limit of integrable ones [20] . In the latter case we make the scaling ∂
∂t → α∂

∂t ,
∂
∂x → α ∂

∂x

and take the limit α→ 0. For the KdV equation (2.2) (we will change the constant factors

on it, so instead of (2.5) we have L = ∂2 + u and B = ∂3 + 3
4
(∂u+ u∂))

4ut = uxxx + 6uux ⇒ 4αut = α3ր0uxxx + 6αuxu

⇓ ut = 3
2uux

KdV ⇓

Riemann



This is like the WKB aproximation in quantum mechanics and we will use it as our guideline

[20].

Dispersionless integrable systems were introduced by Lebedev and Manin [21] and

Zakharov [22], and although interesting on their own started to appear recently in de-

velopments in low-dimensional quantum field theory. It has been shown that there is a

connection between 2-dimensional field theories and integrable equations of hydrodynam-

ical type [23-25] (which are dispersionless systems). In 2-dimensional topological field

theories [26] we are interested in calculating, from the partition function

ZM =

∫
[dφ] e−S[φ] (3.5)

the correlation functions

〈φα(x)φβ(y) · · ·〉M = 〈φαφβ · · ·〉M (3.6)

which depend only on the topology of the manifold M . The 2-point and 3-point correlation

functions are given respectively by [27]

〈φαφβ〉 = ηαβ = nondegenerate constant

〈φαφβφγ〉 = cαβγ(t) =
∂3F (t)

∂tα∂tβ∂tγ
α, β, γ = 1, 2, . . . , n

(3.7)

where t = (t1, t2, . . . , tn) are the coupling constants and F (t) is the free energy. The

correlations (3.7) define a commutative and associative algebra (with an identity)

eα ◦ eβ = cγαβeγ (3.8)

with eα defining a basis for the algebra. The associativity of the algebra, (eα ◦ eβ) ◦ eγ =

eα ◦ (eβ ◦ eγ), gives

∂3F (t)

∂tα∂tβ∂tλ
ηλµ ∂3F (t)

∂tγ∂tδ∂tµ
=

∂3F (t)

∂tγ∂tβ∂tλ
ηλµ ∂3F (t)

∂tα∂tδ∂tµ
(3.9)

These are the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations [26,27] and can be

identified with equations of hydrodynamic type. So, solutions of hydrodynamic equation

can be identified with particular solutions of the topological field theory [25].

4. Two-Component Hyperbolic Systems

In a series of papers [28-31] Nutku and collaborators started to study dispersionless

systems of equations that are in-between the simple Riemann equation [19] and the more

general equations of hydrodynamic type [24]



Riemann

Two Component Hyperbolic

Equations of Hydrodynamic Type

ui
t = V ij(u)uj

x i, j = 1, . . . , n

In Figure 4 we can find a chart with the main equations, of the two-component hyperbolic

system type, studied on these papers.

A wealth of results concerning the integrability of these systems were revealled. In-

finitely many conservation laws and multi-Hamiltonian structures were obtained. In this

section we will be interested in reproduce some of these results from an algebraic point of

view. In order to achive this goal we must understand the Lax representation for these

systems.

4.1 Riemann Equation

The Riemann equation

ut = 3
2
uux

(4.1)

is the prototype for the hyperbolic systems. We address the following question: Is there a

Lax representation for (4.1)? Yes, and we can obtain it performing the semiclassical limit

[20] explained in Section 3. So, if the KdV equation goes to the Riemann equation (4.1)

in the semiclassical limit, the Lax operator L = ∂2 + u and B = ∂3 + 3
4 (∂u+ u∂) goes to

the polynomials in the variable p

E = p2 + u

M = p3 +
3

2
up

(4.2)

and the Lax representation (2.4) goes to

∂E

∂t
= {M,E} (4.3)

called dispersionless Lax representation (note the resemblance when we pass from quantum

to classical mechanics doing ∂ → p and [ , ]→ { , }). Here

{A(x, p), B(x, p)} =
∂A

∂p

∂B

∂x
− ∂B

∂p

∂A

∂x
(4.4)

is the dispersionless Poisson bracket [21,22]. So, if we substitute (4.2) in (4.3) we get (4.1).



Two-Component Hyperbolic

ut =Huvux +Hvvvx

vt =Huuux +Huvvx

∗

→ ut =
3

2
uux

†

Riemann

ւ
y ց

H(u,v)= u
v
+ v

u

H(u,v)=−( 1
2 u2v+F (v))

f(v)=F ′′(v)

H(u,v)= 1
2 u2+F̃ (v)

σ(v)=F̃ ′(v)

↓
y y

ut =

(
1

u2
+

1

v2

)
ux −

2u

v3
vx

vt =

(
1

v2
+

1

u2

)
vx −

2v

u3
ux

‡

ut + uux + f(v)vx =0

vt + (uv)x =0

ut =[σ(v)]x

vt =ux

Born−Infeld Gas Dynamics Elastic Mediay y y
ũ=−(u−2+v−2)

ṽ= 1
2 uv

F (v)= vγ

γ(γ−1)
γ≥2 F̃ (v)= vγ−1

(γ−1)(γ−2)

Verosky Transformationy y y

γ = −1 ←−
Chaplygin Gas

ut + uux + vγ−2vx =0

vt + (uv)x =0

†

ut =vγ−3vx

vt =ux

†

Polytropic Gas Polytropic Elastic
Media

↓
γ = 2

Shallow Water
(Dispersionless TB)

∗ bi−Hamiltonian if
Huu

Hvv
= λ(u)

µ(v)

† quadri−Hamiltonian

‡ six−Hamiltonian

Figure 4. Two-component hyperbolic equations.



From now on we will apply some of the techniques described in [17] and [18] in a very

informal way, since we want to give only a flavor of how the “machinery” works.

Let us calculate the square root of E in (4.2). So, we write the Laurent polynomial

E1/2 = p+ a0 + a1p
−1 + a2p

−2 + a3p
−3 + · · · (4.5)

and from E = E1/2E1/2 we obtain a0, a1, a2, a3, . . ., or equivalently, we perform a series

expansion for p→∞

E1/2 =

[
p2

(
1 +

u

p2

)]1/2
p→∞
= p+

1

2
up−1 − 1

8
u2p−3 +

1

16
u3p−5 − 5

128
u4p−7 + · · · (4.6)

Now we calculate E3/2 = E1/2E, E5/2 = E1/2E2 and so on

E3/2 =p3 +
3

2
up+

3

8
u2p−1 + . . .

E5/2 =p5 +
5

2
up3 +

15

8
u2p+

5

16
u3p−1 + · · ·

...

(4.7)

The set of general Laurent polynomial A =
∑+∞

i=−∞ aip
i gives rise to an associative algebra

g = {A}. This algebra can be written as a direct sum g = g+⊕ g−, where g+ = {A+} and

g− = {A−} with A+ =
∑

i≥0 aip
i and A− =

∑
i<0 aip

i, respectively. We can recognize M

in (4.2) as

M = (E3/2)+ (4.8)

In fact, from (4.3) we are motivated to write

∂E

∂t
= {(E1/2)+, E} ⇒ ut = ux

∂E

∂t
= {(E3/2)+, E} ⇒ ut =

3

2
uux

∂E

∂t
= {(E5/2)+, E} ⇒ ut =

15

8
u2ux

...

(4.9)

and we have a hierarchy of equations. We call it dispersionless KdV (or Riemann) hierarchy

and we write
∂E

∂tk
= {(E 2k+1

2 )+, E} , k = 0, 1, 2, 3, . . . (4.10)



treating u as a function of k + 1 variables

u = u(x, t0, t1, t2, . . .) (4.11)

For each tk we have what is called a flow and it can be shown that they commute

∂2E

∂tℓ∂tk
=

∂2E

∂tk∂tℓ
(4.12)

consequently, the whole set of equations (4.9) is integrable since, as we have already pointed

out, the Riemann equation is an integrable Hamiltonian system (all the equations in (4.9)

share the same set of conserved charges).

The Riemann equation can be put in the form

ut =
3

2
uux =

3

4
(u2)x (4.13)

It follows that the quantity H ∝
∫
dx u2 is conserved. In fact

∫
dx un are conserved as we

can show explicitly. These conserved charges can also be obtained from E. Let be A any

general Laurent polynomial

A = · · ·+ a−1p
−1 + · · · (4.14)

following [18] we introduce the Adler’s trace as

TrA =

∫
dxResA =

∫
dx a−1 (4.15)

which satisfies the usual relation TrAB = TrBA. From (4.6) and (4.7) we see that

TrE1/2 =
1

2

∫
dx u

TrE3/2 =
3

8

∫
dx u2

TrE5/2 =
5

16

∫
dx u3

...

and we have

Hn =
2

n
TrEn/2
︸ ︷︷ ︸

p→∞

(4.16)

whit Ḣn = 0. From a Hamiltonian point of view the Riemann equation is a quadri-

Hamiltonian system [30]. There are Hamiltonian operators D1, D2, D3 which are com-

patible and another Hamiltonian operator E which is compatible only with D1. We can

write

ut = D1
δH5

δu
= D2

δH3

δu
=

3

4
D3

δH1

δu
=

35

8
E δH9

δu (4.17)



where
H1 =

∫
dx u , D1 = 2∂

H3 =
1

4

∫
dx u2 , D2 = u∂ + ∂u

H5 =
1

8

∫
dx u3 , D3 = u2∂ + ∂u2

H9 =
7

128

∫
dx u5 , E = ∂ 1

ux
∂ 1

ux
∂

(4.18)

Hamiltonian structures can also be obtained from the Lax operator L (E in the disper-

sionless case). They are the symplectic structures of Kostant-Kirillov [32] on the orbits of

the coadjoint representation of Lie groups [18,33]. For dispersionless equations the corre-

sponding Lie algebra is given by the associative algebra of Laurent polynomials endowed

with the bracket (4.4). For the KdV equation the Lie algebra is given by the algebra of

the pseudo-differential operators with the usual commutator. Following this scheme the

Hamiltonian structures D1, D2, D3 can be derived (see [4] for details) while we were not

able to obtain E from this scheme.

4.2 Polytropic Gas Equation

We will try to apply the results of the last Section to some others dispersionless

equations, such as the ones in the chart of Figure 4. The polytropic gas dynamics equation

ut + uux + vγ−2vx =0

vt + (uv)x =0
γ ≥ 2 (4.19)

was studied from a Hamiltonian point of view in [30]. In (4.19) u is the velocity of the

fluid, v is its density, f = vγ−2 and is related to the pressure (f(v) = p′(v)
v ) and γ is the

ratio of specific heats (we call an ideal gas polytropic if the specific heats are constant over

a large range of temperature).

The first step will be to derive a Lax representation for (4.19). We get a hint if we

consider γ = 2 in (4.19). In this case we have the shallow water equation [19] also known as

the irrotational Benney equation [34]. Even though we do not know the dispersive system

which originates (4.19) for any γ we do know it for the case γ = 2. This is the dispersive

shallow water [35] equation, also called the two boson equation in field theory

∂J0

∂t
=(2J1 + J2

0 + J ′
0)

′

∂J1

∂t
=(2J0J1 + J ′

1)
′

(4.20)



This equation has the following nonstandard Lax representation [36,37]

L =∂ − J0 + ∂−1J1

∂L

∂t
=[L, (L2)≥1]

(4.21)

where (L2)≥1 stands for the purely nonnegative (without p0 terms) part of the polynomial

in p and J0 ∝ u, J1 ∝ v are the two bosons fields. Now, if we perform the semiclassical

limit and do the appropriate identifications (4.20) yields (4.19) for γ = 2 and from (4.21)

we get the following dispersionless Lax representation

L =p+ u+ vp−1

∂L

∂t
=

1

2
{(L2)≥1, L}

(4.22)

For any γ we can use (4.22) as an ansatz to obtain the dispersionless Lax representation

for (4.19) and it reads [5]

L =pγ−1 + u+
vγ−1

(γ − 1)2
p−(γ−1)

∂L

∂t
=

(γ − 1)

γ

{(
L

γ

γ−1

)

≥1
, L

}

(4.23)

In [30] two sets of conserved charges were derived for (4.19) when γ 6= 2. So, if (4.23) is

really the correct Lax pair it must somehow provide both sets accordingly to the algebraic

scheme described in the last section. In fact, since L has singularities in p = 0 and p =∞
we can expand L

1
γ−1 in powers of p in the two following ways

L
1

γ−1 = p

{
1 +

1

γ − 1

[
up−(γ−1) +

vγ−1

(γ − 1)2
p−2(γ−1)

]
+

(2− γ)

2(γ − 1)2

[
· · ·
]2

+

+
(2− γ)(3− 2γ)

6(γ − 1)3

[
· · ·
]3

+ · · ·
}

p→∞ (4.24a)

L
1

γ−1 =
vp−1

(γ − 1)
2

γ−1

{
1 +

1

γ − 1

[
(γ − 1)2v−(γ−1)

(
up(γ−1) + p2(γ−1)

)]
+

+
(2− γ)

2(γ − 1)2

[
· · ·
]2

+
(2− γ)(3− 2γ)

6(γ − 1)3

[
· · ·
]3

+ · · ·
}

p→ 0 (4.24b)

So, the first set of charges follows from



Hn = TrLn+ γ−2
γ−1︸ ︷︷ ︸

p→∞

=
∫
dxHn

n = 0, 1, 2, 3, . . . (4.25)

where the first densities are

H0 =
(γ − 2)

(γ − 1)
u

H1 =
(2γ − 3)(γ − 2)

(γ − 1)2

(
1

2!
u2 +

1

(γ − 1)(γ − 2)
vγ−1

)

H2 =
(3γ − 4)(2γ − 3)(γ − 2)

(γ − 1)3

(
1

3!
u3 +

1

(γ − 1)(γ − 2)
uvγ−1

)

...

Hn =(n+ 1)!C
(n+1)(γ−1)−1

(γ−1)

n+1 Hn+1

(4.26)

and

Hn =

[n
2 ]∑

m=0

(
−

m∏

k=0

1

k(γ − 1)− 1

)
un−2m

m!(n− 2m)!

vm(γ−1)

(γ − 1)m
(4.27)

which are the first set of charges obtained in [30]. The second set follows from

H̃n = TrLn+ 1
γ−1︸ ︷︷ ︸

p→0

=
∫
dx H̃n

n = 0, 1, 2, 3, . . . (4.28)

and the first densities are

H̃0 =(γ − 1)−
2

γ−1 v

H̃1 =(γ − 1)−
2

γ−1
γ

(γ − 1)
uv

H̃2 =(γ − 1)−
2

γ−1
γ(2γ − 1)

(γ − 1)2

(
1

2!
u2v +

vγ

γ(γ − 1)

)

...

H̃n =
n!

(γ − 1)
2

γ−1

C
n(γ−1)+1

(γ−1)
n H̃n

(4.29)

where

H̃n =

[n
2 ]∑

m=0

(
m∏

k=0

1

k(γ − 1) + 1

)
un−2m

m!(n− 2m)!

vm(γ−1)+1

(γ − 1)m
(4.30)



is the second set of charges obtained in [30]

In (4.23) L
1

γ−1 was expanded in p =∞, a expansion around p = 0 provides a second

consistent dispersionless Lax equation

∂L

∂t
=

{(
L

γ−2
γ−1

)

≤0
, L

}
(4.31)

which yields (with the proper rescaling) the equations

ut = vγ−3vx

vt = ux

(4.32)

From the chart in Figure 4 we recognize this equations as the polytropic elastic media

equation.

4.3 Born-Infeld Equation

With the Lax representation for the polytropic gas, obtained in the last section, we

can get a Lax representation for the Born-Infeld equation given in the chart of Figure 4

ut =

(
1

u2
+

1

v2

)
ux −

2u

v3
vx

vt =

(
1

v2
+

1

u2

)
vx −

2v

u3
ux

(4.33)

In (4.33) the Born-Infeld equation is expressed in the so called null coordinates version

[31]. If we perform the transformation

u = φx

v = − φx√
1 + φxφt

(4.34)

we obtain the Born-Infeld equation written as a second-order equation in null coordinates

φ2
xφtt + φ2

tφxx − (4 + 2φxφt)φxt = 0 (4.35)

A Lax representation for (4.33) can be obtained as follows [6]. In the first place if we do

the change of variables
ũ = −(u2 + v2)

ṽ =
1

2
uv

(4.36)



called Verosky transformation [31], we will end up with the equation

ũt + ũũx +
ṽx

ṽ3
= 0

ṽt + (ũṽ)x = 0
(4.37)

known as the Chaplygin gas. In view of this it would be desirable to first obtain a Lax

description of the Chaplygin gas like equations

ũt + ũũx +
ṽx

ṽα+2
=0 , α ≥ 1

ṽt + (ũṽ)x =0
(4.38)

This is indeed possible if we set γ → −α, α ≥ 1 in (4.23), so (4.38) can be obtained from

L =p−(α+1) + ũ+
ṽ−(α+1)

(α+ 1)2
pα+1

∂L

∂t
=

(α+ 1)

α

{(
L

α
α+1
)
≤1
, L
} (4.39)

where L
1

α+1 is expanded around p = 0 and
(
L

α
α+1
)
≤1

is the polynomial in p that produces

consistent equations, instead of the purely nonnegative polynomial used in (4.23). For

α = 1 the Lax operator

L =p−2 −
(

1

u2
+

1

v2

)
+

1

u2v2
p2

∂L

∂t
=2

{(
L

1
2

)

≤1
, L

}

(4.40)

reproduces (4.33). Again, conserved charges follows from

H̃n = TrLn− 1
2︸ ︷︷ ︸

p→∞

=

∫
dx H̃n n = 0, 1, 2, 3, . . . (4.41)

and the first Born-Infeld charges are

H̃0 =− uv

H̃1 =
1

2

(u
v

+
v

u

)

H̃2 =− 3

4

(
u

2v3
+

3

uv
+

v

2u3

)

...

(4.42)



and these are exactly the charges derived in [31]. Another set is obtained from

Hn = TrLn+ 3
2︸ ︷︷ ︸

p→0

=

∫
dxHn n = 0, 1, 2, 3, . . . (4.43)

and the first ones are

H0 =− 3

2

(
1

u2
+

1

v2

)

H1 =
15

8

(
1

u4
+

11

6

1

u2v2
+

1

v4

)

H2 =− 35

16

(
1

u6
− 1

u4v2
− 1

u2v4
+

1

v6

)

...

(4.44)

This is a new set of conserved charges, for the Born-Infeld equation (4.33), not found

previously in [31].

5. Conclusions

We believe, from the results of the Section 4, that the study of dispersionless systems

via a Lax representation is worthwhile. So, the search for a dispersionless Lax representa-

tion for the equations in the upper part of the chart in Figure 4 is being pursued. Also,

the derivation of the multi-Hamiltonian structures of these systems, as described in [28-

31], is under investigation following the coadjoint orbit method [32,33]. Another question

that comes to mind is the dispersive generalization of these equations. Attempts in this

direction can be found in [38].

Some topological equations are also related with the systems discussed here. For

instance, the hyperbolic Monge-Ampère equation

UttUxx − (Utx)2 = −1 (5.1)

may be related with the Born-Infeld equation as follows. If we perform the change of

variables
a = Ux

b = Ut

(5.2)

the Monge-Ampère equation can be written as a first order system

at = bx

bt =
b2x − 1

ax

(5.3)



and this equation can be related to the Chaplygin gas equation (4.37) through the following

change of variables

ũ = − bx
ax

ṽ = ax

(5.4)

Thus, we can give a Lax description for the hyperbolic Monge-Ampère equation through the

Lax representation derived in Section 4.3. Finally, the Witten-Dijkgraaf-Verlinde-Verlinde

(WDVV) equations (3.9), for n = 3, with

F (t1, t2, t3) =
1

2
(t1)2t3 +

1

2
t1(t2)2 + f(t2, t3) (5.5)

where t2 ≡ x and t3 ≡ t, yields the third order Monge-Ampère equation

fttt = f2
xxt − fxxxfxtt (5.6)

This equation is a bi-Hamiltonian system and has a matrix Lax representation. It is then

possible to generate a whole set of nonlocal charges much like the nonlinear sigma model

(details are given in [7]). It is likely that a dispersionless sort of Lax representation for

(5.6) may exist.
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