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The understanding of superconductivity goes through many interesting phenomena, the planar
structure in High Tc cuprates, the coexistence between two order states (for instance the supercon-
ducting phase with a magnetic order), the presence of two gaps and the formation of configura-
tions like stripes (interplay between spin and charge). In this paper we proposed a geometrical-
phenomenological model to discuss some of the mentioned phenomena, using the formalism of
Eintein-Cartan geometry and obtaining the ground state equations. We showed that these two
ground state equations are enough to solve in the limi κ = 1√

2
all the four equations of motion of

our model. Also a detailed discussion of the limits of the ground state equations are considered.
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I. INTRODUCTION

The Ginzburg-Landau (GL) model20 explained satis-
factorily many of the phenomenological features of su-
perconductivity, its form it is based on the theory of
second order phase transitions, the principle of minimal
coupling to electromagnetism and the presence of macro-
scopic wave function that acts as an order parameter.
Moreover, this model also describes a mechanism for the
spontaneous symmetry breaking (SSB) of gauge theories
and with this we explain succesfully the Meissner effect.

The SSB idea inspired physicists who used it to de-
scribe the mechanism of mass generation developed in
high energy physics. This idea is also used in grand uni-
fied theories (GUTs) which attempt to describe physics
beyond the Standar Model. Within the GUTs, there
is a N = 2, Supersymmetric Yang-Mills theory that is
equivalent to the Donaldson theory25. In this context,
E. Witten proposes a new way to calculate many of the
results of Donaldson theory by using the Seiberg-Witten
functional whose dual equations turn to be the ground
state equations used in many gauge theories with SSB
mechanism including the Ginzburg-Landau model.

Because we needed to explain the Meissner effect in
condensed matter physics we now are able to use the
SSB mechanism in high energy physics, we believe that
there is a feedback coming from the Seiberg-Witten equa-
tions that can help us to understand the formation of the
superconducting phase at High Tc in condensed matter
physics.

A hundred years have passed since the discovery of
superconductivity and we still finding new types of su-
perconductors whose properties cannot be explained by
its microscopical theory (BCS theory)3 nor by its phe-
nomenological counterpart the GL model20. For in-
stance, the planar structure in High Tc cuprates, the
presence of superconductivity in coexistence with an-
other order state, the appereance of two gaps and the
inhomogeneities of them, the formation of new geometri-
cal electronic structures as spin and charge density waves

(SDW-CDW), all of them are very interesting topics that
goes beyond the conventional theories (BCS and GL). In
fact, the interplay between charge and spin together with
the superconducting phase do not only coexist but seems
to reciprocally stabilize1,4,19,22. We will address this co-
existence by introducing a minimal coupling of the charge

and spin degrees of freedom (electromagnetic potential A⃗
and spin connection ω⃗ab) with a two component spino-
rial order parameter. The spin connection not only allow
us to coupled the order parameter with spin degrees of
freedom but also introduces a local symmetry of rota-
tions. This rotational symmetry seems to be important
for the understanding of the pseudogap phase of High
Tc superconductors8. The presence of the spin connec-
tion will turn out to be one of the key ingredients for the
introduction of a geometrical background of the Einstein-
Cartan type.

Besides the introduction of the two component order
parameter Ψα and the spin connection ω⃗ab we also in-
troduce another field that we called the spin correlation
eai (x), its name is because it introduce position depen-
dence in the Pauli matrices (spin operators) through the
relation eai (x)σa = σi(x). The introduction of all these
new degrees of freedom have physical motivation from the
point of view of condensed matter and superconductivity,
however at this point we can also analyze our new fields as
they were coming from a gravitational theory (remember
we were highly inspired with the Seiberg-Witten func-
tional). Therefore if we treat the spin connection ω⃗ab as
the gauge field of Lorentz rotations and the spin correla-
tion eai (x) as the vielbein which introduce the symmetry
of general coordinate transformations, we ended up with
a genuine framework to study superconductivity geomet-
rically. This framework turns out to be the geometry of
Einstein-Cartan11,12,17,23,24.

When we use the Einstein-Cartan theory for the study
of superconductivity, we need to give an interpretation
for new physical quantities like torsion and curvature
from the condensed matter perspective. One of the most
common intepretations is related with the gauge theory
of defects in state solid physics10,13,15,16,18 where the ef-
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fects of torsion and curvature can be viewed as the inser-
tions of the densities of dislocations and disclinations in
the atoms arrangements of the material.
Finally the purpose of this paper is to propose a free

energy to study superconductivity from a geometric per-
spective considering a spinorial order parameter mini-
mally coupled with a spin-charge framework. Moreover
we will use the first order formalism to introduce a geo-
metric framework of the Einstein-Cartan type, this mech-
anism is convenient because is closed related with theory
of defects in solids. All geometrical quantities will be mo-
tivated in ideas coming from the understanding of High
Tc superconductors.
This paper is divided as follows, in section II we pro-

pose a free energy functional respecting the main ideas of
the Ginzburg-Landu model but with a geometrical struc-
ture and then we calculate the four equations of motion.
Section III is devoted to the introduction of a genereliza-
tion of the Lichnerowicz-Weitzenböck formula for spaces
with torsion, applying this formula we obtain the ground
state equations for a specific value of κ. Then we ana-

lyze the ground state equations in section IV from the
perspective of condensed matter physics and study its
diferent limits. Finally we present the conclusions of our
proposed model in section V.

II. THE GINZBURG-LANDAU-LIKE FREE
ENERGY AND THE EQUATIONS OF MOTION

In this section, we propose a phenomenological model
that considers charge and spin interactions minimally
coupled with a two order spinorial parameter Ψα whose
ground state contains both spin-vortices and magnetic-
vortices.

Taking into account the theory of second order phase
transitions20, spin-charge density background4 and the
principle of minimal coupling of gauge theories we pro-
posed the following free energy in analogy with Ginzburg-
Landau model20.

F =

∫
d3xe

{
1

2m
(|D⃗Ψ|2 − gR|Ψ|2 − ϵijl

T k
ij

2
[Ψ†σk(DlΨ) + (DlΨ)†σkΨ])− α⃗.(Ψ†σ⃗Ψ) +

β

2m
|Ψ|4 + h⃗2

8π
+

|α⃗|2

2β

}
, (1)

where, α⃗ is a constant vector, the covariant derivative is
given by

DiΨα = [
h̄

i
δβα∂i −

h̄g

2
ωab
i (Σab)

β
α − h̄q

c
δβαAi]Ψβ , (2)

in the above expression, Ai and ω
ab
i are the electromag-

netic and spin connection responsible for the local U(1)
and SU(2) symmetries respectively. Also e is the deter-
minant of local field eai which allow us to introduce the
notion spin correlations through the relation

eai (x) =

⟨
0

∣∣∣∣12 {σi(x), σa}
∣∣∣∣ 0⟩ (3)

σa are the constant Pauli matrices. The quantities R and
T k
ij are related to the field strengths of the SU(2) symme-

try together with the spin correlations and h⃗ is the local
magnetic field coming from the U(1) symmetry. See the
appendix (A).
This model (1), have many parameters h̄, q, c, m, β, g we
will perform a scale transformation to reduce the number
of these. To achieve this we will perform a scale transfor-
mation (reduce units), see the appendix (B). After the
scale transformation we ended up with the following free
energy

F =

∫
d3xe

{
|D⃗Ψ|

2
− gR|Ψ|2 − α̂.(Ψ†σ⃗Ψ)− 1

2
ϵijlT k

ij [Ψ
†σk(DlΨ) + (DlΨ)†σkΨ] +

1

2
|Ψ|4 + κ2h⃗2 +

1

2

}
, (4)

This free energy have four independent fields, the order
parameter Ψα(x) which will obey a Ginzburg-Landau-
like equation, the electromagnetic field Ai(x) together
with the spin connection ωab

i (x) wich describe the in-
tertwined interaction of magnetism and spin minimally
coupled with the order parameter.

We also introduce the vielbein field eai (x) which, together
with the spin connection ωab

i (x), allow us to introduce a
geometric framework to the study of the free energy17,24.
The approach we used here is well-known in gravitational
theories as the first order formalism for an Einstein-
Cartan space, moreover it have shown to be useful also
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in defect theory of materials10,16,18, this last view we will
adopt here as is more properly for non relativistic sys-
tems. Now using the variational principle we obtain(

∇⃗.D⃗ − gR− α̂.σ⃗ − T lDl −∇lT
l + |Ψ|2

)
Ψ = 0, (5)

∂i(eF
ij) =

e

2κ2
(
Ψ†T jΨ− jj

)
, (6)

g|Ψ|2
(
Rij −

1

2
gijR

)
+

1

2
∇kJ

k
ji + T k

jmJ
m
ik = Θij , (7)(

T i
ba − ei[b∂a]

)
|Ψ|2 +Ψ†T iΣabΨ+Ψ†ΣabT

iΨ = Ki
ab,(8)

where

T l = σk
1

2
ϵijlT k

ij , (9)

jj =
1

2

[
Ψ†(DjΨ) + (DjΨ)†Ψ

]
, (10)

J ij
k = ϵijl

[
Ψ†σk(DlΨ) + (DlΨ)†σkΨ

]
, (11)

Ki
ab =

1

2

[
Ψ†Σab(D

iΨ) + (DiΨ)†ΣabΨ
]
+

1

4
J i
ab, (12)

The energy momentum tensor of our free energy (1) is
given by

Θij = (DiΨ)†(DjΨ)− α̂i(Ψ
†σjΨ) + κ2hihj −

1

2
gij

[
(D⃗Ψ)†.(D⃗Ψ)− α̂.(Ψ†σ⃗Ψ) +

1

2
|Ψ|4 + κ2h⃗2 +

1

2

]
, (13)

Besides the complexity of the equations of motion and
its mixing, we will show in the next section that thanks to
the Lichnerowicz-Weitzenböck formula these four equa-
tions of motion are not that complicated as first appears.
In fact, chossing a properly value of κ can reduce these
four equations of motion to only two first order differen-
tial equations.

III. THE LICHNEROWICZ-WEITZENBÖCK
FORMULA WITH TORSION AND THE NEW

EQUATIONS OF MOTION

The Lichnerowicz-Weitezenböck formula7 is often used
when we want to obtain the ground state equations that

minimize the energy of our system. Although this for-
mula is mainly related when we have spinors on a pseudo
Riemannian manifolds, its form and idea is always used
when we study topological configurations in gauge theo-
ries as kinks, vortices or monopoles.
Usually this formula is applied in spaces with symmetric
affine conection (zero torsion), but here in this section we
will formulated a generalization for spaces with torsion,
this formula takes the following form:

∫
d3xe

(
|σ⃗.D⃗Ψ|2 +Ψ†σ⃗Ψ.⃗h

)
=

∫
d3xe

[
|D⃗Ψ|2 − gR|Ψ|2 −Ψ†T i(DiΨ)− (DiΨ)†T iΨ

]
. (14)

The above formula (14) is obtained by neglecting the
surface terms and using the metricity condition

∇igjk(x) = 0, (15)

this condition is naturally defined in pseudo Rieman-
nian spaces and means that we preserve the distances
(scalar product), and angles, its definition in the lan-
guage of the first order formalism is given by condition

for the vielbein:

∇ie
a
j (x) = 0, (16)

which allow us to obtain the Fock-Ivanenko condition

∇iσj(x) = 0, (17)



4

a detailed derivation of the Fock-Ivanenko condition can
be seen in21.
Now we applied the formula (14) into the free energy

(4) and complete some squares, then the free energy be-

comes

F =

∫
d3xe

[
|σ⃗.D⃗Ψ|2 + 1

2

(
h⃗+Ψ†σ⃗Ψ− α̂

)2

+

(
κ2 − 1

2

)
h⃗2 + h⃗.α̂

]
. (18)

This mechanism to obtain the ground state equations
was first developed by Bogomolnyi5 and in this particular
model for κ = 1√

2
those are

(σ⃗.D⃗)Ψ = 0, (19)

h⃗ = α̂−Ψ†σ⃗Ψ. (20)

It is not easily to see that these two first order differen-
tial equations satisfy all four equations of motion (5-8),
in order to understand how this happens we obtain again
the equations of motion for κ = 1√

2
using the free energy

expression given by (18) rather than (4).

σ⃗.∇⃗(σ⃗.D⃗)Ψ + (⃗h− α̂).σ⃗Ψ+Ψ|Ψ|2 = 0, (21)

e(σ⃗.D⃗Ψ)σkΨ+
1

2
∂j [eϵ

ijk(hi +Ψ†σiΨ− α̂i)] = 0, (22)

1

2
GiGj + (DijΨ)†(Dk

kΨ) + (Dk
kΨ)†(DijΨ) = θij , (23)

Ψ†Σabσ
i(σ⃗.D⃗Ψ) + (σ⃗.D⃗Ψ)†ΣabΨ = 0, (24)

where

Dij = σiDj (25)

Gi = hi −Ψ†σiΨ− α̂i (26)

θij =
1

2

(
|Dk

kΨ|2 + 1

2
G⃗2

)
. (27)

It is readily to see that these two first order differen-
tial equations (19, 20) are indeed solutions of the four
equations of motion (5-8), (21-24). This limit of course
was obtained for an specific value of κ = 1√

2
, however

the validity of the ground state equations can go beyond
that specific value6.

IV. ANALYSIS OF THE GROUND STATE
EQUATIONS

In this section we will study the the Seiberg-Witten
equations25 (ground states) using the the tools of for a
Riemann-Cartan geometry in the first order formalism.
The equations (19, 20) have the following form:

eiaσ
a(δαβ

1

i
∂i −

1

2
ωab
i (Σab)αβ −Aiδαβ)Ψβ = 0, (28)

α̂i −Ψ†eai σaΨ = hi,(29)

The equation (19), looks like a massless Dirac equation
minimally coupled to the electromagnetic field and spin
connection, however our framework is not relativistic so
we must be careful with the analogies. Now, we will
discuss the diferent limits of the ground state equations.

A. Interaction free and no spin correlations

This limit is obtained by taking

ωab
i = 0, (30)

Ai = 0, (31)

eai = δai , (32)

and is characterized by planar confinent9 perpendicu-
lar to given coordinate that exponentially decreases the
value of the order parameter Ψα. The solutions in this
case for the ground state equations have the following
form

Ψ ∝ e−q3ei(k1x1+k2x2), (33)

α̂i ∝ e−2q3σi. (34)

In this limit the constant vector α̂i can be interpreted
as the spin operators rescricted to the plane perpendic-
ular to the coordinate q3, because it is proportional to
the Pauli matrices with a factor e−2q3 . It is important
to mention that some high Tc superconductors, specifi-
cally the cuprates, present layers of CuO2 that are weakly
coupled, therefore they show a planar structure14. The
idea to simulate this planar behaviour by introducing a
two component order paramter Ψα have been already
studied9 and it occurs because the order parameter obeys
a Dirac-like equation in three dimensions.
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B. The Abrikosov limit

This is the limit where we obtained the Abrikosv
vortices2, no spin correlation neither spin connection are
consider

Ai ̸= 0, (35)

ωab
i = 0, (36)

eai = δai , (37)

Considering a two component spinor as our order pa-
rameter

Ψα =

(
ψ1

ψ2

)
, (38)

then the ground state equations in its matrix language
reads

D3ψ1 + (D1 − iD2)ψ2, (39)

(D1 + iD2)ψ1 −D3ψ2 = 0, (40)

hi = αi −Ψ†σiΨ. (41)

The above equations are strongly coupled to each
other, however if we consider a weak electromagnetic in-
teraction, then we can assume a planar behavior similar
to the free interaction case. The ground state equations
now are

(D1 − iD2)ψ2, (42)

(D1 + iD2)ψ1 = 0, (43)

h3 = α3 −Ψ†σ3Ψ, (44)

these equations are the Abrikosov ground state condi-
tions and contains vortices solutions. Vortices are carried
by ψ1 and anti-vortices by ψ2, the spinorial order param-
eter Ψα carries both in a single representation.
If we consider the spin connection (ω⃗ab) interaction

instead of the electromagnetic one, we would have ob-
tained another type of topological defect. In fact the
homotopy group related with the local symmetry of this
gauge field (SU(2)) let us to work with monopoles and
no vortices. One of the reason for not having vortices
but monopoles is because the group of rotations is non
Abelian. Nevertheless, the condition of confinment of the
order parameter restrict the ground state equations to a
plane, in this case the group of rotations is Abelian and
type of topological defect is of spin vortices.

V. CONCLUSION

We have proposed a phenomenological model for
studying superconductivity in a geometrical fashion and

relate many of the geometrical fetures with the problems
currently discussed in superconductivity. Even though
the model have many new degrees of freedom (curva-
ture and torsion) we discussed the viability to interpret
those as densities of defects (disclinations and disloca-
tions). Moreover, the free energy of the model obeys the
Abrikosov-like ground state equations that turn out to
be the Seiberg-Witten equations. We have demonstrated
that these two equations are totally enough to solve the
four equations of motion coming from the free energy
and describe topological defects such as magnetic and
spin vortices.
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APPENDIX A: SOME ASPECTS OF THE
SU(2)-U(1) GAUGE MODEL WITH SPIN

CORRELATIONS

This model is based on the ideas of the Einstein-Cartan
geometry, where the spin correlation eai (x) is identified as
the tetrad or vielbein which more generically is related
to the general coordinate transformation as follows

eai (x) =
∂xi
∂xa

, (A1)

in our presented model (1) this will introduce the notion
of local spins through eai (x)σa = σi(x) and no neces-
sarily should be related to any general coordinate trans-
formation in this sense here we differ a little bit with
the approach of Einstein-Cartan geometry. The geom-
etry of Einstein-Cartan describes a gravitational pseudo
Riemannian space with torsion17,23,24, but also can be in-
terpreted as the material space of solids where curvature
and torsion are the density of disclinations and disloca-
tions respectively13,15,16,18.
The field strengths of the SU(2)-U(1) gauge model with
spin correlations are given by

Rab
ij = ∂iω

ab
j − ∂jω

ab
i + g(ωa

icω
cb
j − ωa

jcω
cb
i ), (A2)

T a
ij = ∂ie

a
j − ∂je

a
i + g(ωa

ice
c
j − ωa

jce
c
i ), (A3)

Fij = ∂iAj − ∂jAi, (A4)

the above equation means that the local magnetic field
is given by hi = 1/2ϵijkF

jk.
Using the tetrad we construct the metric

gij(x) = ηabe
a
i (x)e

b
j(x), (A5)

where,

ηab =

 1 0 0
0 1 0
0 0 1

 , (A6)

celso
Highlight
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so we can use both the metric and/or the tetrad to raise,
lower and contract indices. The scalar of curvature and
the torsion in the equation (1) are contracted expressions
of the field strengths A2 and A3

R = eibe
j
aR

ab
ij (A7)

T k
ij = ekaT

a
ij , (A8)

APPENDIX B: THE SCALE TRANSFORMATION
OF THE FREE ENERGY

To reduce the number of parameters of the free energy
(1) we make a scale transformation

Ψ =

√
|α⃗|
β

Ψ′, (B1)

xi = ξx′i, (B2)

ξ2 =
h̄2

2m|α⃗|
, (B3)

ϕ0 =
2πh̄c

q
, (B4)

Di =
h̄

ξ
D′

i, (B5)

Ai =
ϕ0
2πξ

A′
i, (B6)

ωab
i =

1

ξ
ωab
i , (B7)

κ =
mc

h̄q

√
β

2π
, (B8)

the above expressions allow us to rewrite the free en-
ergy (1) in the form of (4), where the free energy is nor-
malized to a factor

F =
β

|α⃗|2
F, (B9)

therefore we ended up with only two parameters g and
κ, this scaling was first developed by A. Abrikosov in his
seminal work2.
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