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Historical remarks: Ancient World

� Philosophical speculations and not only ....

� Oldest documentation of

how to produce a water

clock (clepsydra) is from c.

(1417-1379) BC

Figure: Egyptian water-clock
(Google Commons).

� Archimedes' Principle (c. 250 BC): the buoyant force

is equal to the weight of the displaced water � applied

e.g. in shipbuilding

Figure: Archimedes' Principle (Google Commons).
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Historical remarks: Late Renaissance

� Torricelli's Law (1644): v =
p
2gh

applied e.g. in water towers.

Figure: Torricelli's law (Wikipedia
Commons).

� Pascal's principle (1663): the pressure at

a point in a �uid at rest is the same in all

directions

Figure: Pascal's Principle (www.
protecdive-international.com)

� Hooke (1678): "deformations su�ered by bodies are proportional to the forces that

are applied on them"

� Newton (1687): "The resistance which arises from the lack of slipperiness of the parts

of the liquid, other things being equal, is proportional to the velocity with which the

parts of the liquid are separated from one another"
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The rise of Di�erential Calculus

� Newton (1687) and Leibniz (1684) develop the Di�erential Calculus.

� Bernoulli (1738) � an increase in u occurs simultaneously with a decrease in p:

v 2

2
+ gz +

p

�
= Constant:

� Euler (1755): Inviscid (Euler) �uids

@ u

@ t
+ (u � r)u = f + divT; Pascal's law: T = �pI (1)

� Coulomb, Poisson, Navier (1773-1820), Cauchy (1822):

�
@2 u

@ t2
= f + divT; Hooke's law: T = Errru; (2)

where u are the displacements and E the modulus of elasticity (Young (1807))
� Navier (1823) proposed an improvement of Euler equations,

@u

@t
+ (u � rrr)u = f �r p + "4u (3)

� Due to the e�orts of Poisson (1831), St. Venant (1843), but, mainly, of Stokes (1845):

div u = 0; (4)

@u

@t
+ (u � rrr)u = f � 1

�
r p + � div (D(u)) ; D(u) =

1

2

(
rrru+rrruT

)
(5)
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Derivation from the Principles of Mechanics

� Conservation of mass: incompressible and homogeneous

@�

@t
+ div(� u) = 0 ) div u = 0; (6)

� Conservation of linear momentum

�
[
@u

@t
+ (u � rrr)u

]
= � f + divT; T = �pI+ S; S = 2�D(u) + �divu I (7)

+ (incompressible and homogeneous: � = Const:; div u = 0) +

@ u

@ t
+ (u � r)u = f � 1

�
rrrp + 2�div(D(u)); � =

�

�
; D(u) =

1

2

(
rrru+rrruT

)
(8)

� Conservation of angular momentum: T 2MN�N
sym � T is symmetric;

� Notation: u � velocity �eld, p � pressure, � � density, u � external forces �eld, T �

Cauchy stress tensor, S � extra stress tensor, �; � - cinematic viscosities, � � kinematic

viscosity.

� Dimensions of physical interest: N = 2; N = 3; but mathematically is interesting to

study a generalized dimension.
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The beginning of the turbulence study

� Stokes (1851) already observed the inadequacy of (4) and (5) to model certain �ow

regimes that could probably result from eddies which rendered the motion more chaotic.

� Reynolds (1883): into a �ow

through a glass tube, was in-

jected a dye to observe the

nature of �ow. When the

speeds were small the �ow

seemed to follow a straight

line path. As the �ow speed

was increased the dye �uctu-

ates and one observes inter-

mittent bursts. As the �ow

speed is further increased the

dye is blurred and seems to

�ll the entire pipe.

Figure: Reynolds Experiment (www.learncax.com)
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Flow regimes

Reynolds (1883) has succeeded to prove the importance of a threshold value separating

the laminar �ow regime from the turbulent one within a similar �uid,

Re =
u(l) l

�
� (u � r)u

�4u � inertia forces

viscosity forces
; (9)

where l an u(l) are characteristic length and velocity scales.

Whenever the Re � 2000, �ow in a pipe is generally laminar.

Laminar �ow occurs at low Reynolds numbers, where viscous forces are dominant, and

is characterized by smooth, constant �uid motion.

At values of Re > 2000, �ow is usually turbulent.

Turbulent �ow occurs at high Reynolds numbers and is dominated by inertial forces, which

tend to produce chaotic eddies, vortices and other �ow instabilities.

The transition usually begins with 1000 � Re � 2000 and extends upward to

3000 � Re � 5000.

Transitional �ow can refer to transition in either direction, that is laminar-turbulent transi-

tional or turbulent-laminar transitional �ow. The transition between laminar and turbulent

�ow occurs not at a speci�c value of the Reynolds number but in a range.
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The Reynolds-averaged Navier-Stokes equations

� Reynolds hypothesis (1895): the �ow has two di�erent scales which makes possible to

decompose the �ow quantities

u = u+ u
0; : : : ; u0 = �uctuating velocity, u = average velocity.

(10)

� Today, this mean is seen as a �lter de�ned by an operator (Reynolds operator)

R : R3 �! R
3; R(u) = u; e:g: R(u) =

1

�t

ˆ t+�t

t

u dt ; (11)

where the interval �t is small compared with the �uctuations of the average value u.

Properties of the Reynolds operator

1 R(u+ �v) = R(u) + �R(v) for any u; v 2 R3 and any � 2 R;
2 R(R(u)) = R(u) for any u 2 R3 implies R(u0) = 0 for any u 2 R3;

3 R(@u) = @ (R(u)) for any u 2 R3;

4 R(u 
 v) = R(u) 
 R(v) + R((u � R(u)) 
 (v � R(v))) for any u; v 2 R
3 implies

R(u
R(v)) = R(u)
R(v) = R(R(u)
 v).

� The Reynolds operator is used to �lter the NS eqs (4) and (5), leading to the RANS:

div u = 0; (12)

@u

@t
+ div(u
 u) = f � 1

�
rp + � divD(u)� div(u0 
 u0): (13)
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decompose the �ow quantities

u = u+ u
0; : : : ; u0 = �uctuating velocity, u = average velocity. (10)

� Today, this mean is seen as a �lter de�ned by an operator (Reynolds operator)

R : R3 �! R
3; R(u) = u; e:g: R(u) =

1

�t

ˆ t+�t

t

u dt ; (11)

where the interval �t is small compared with the �uctuations of the average value u.

Properties of the Reynolds operator

1 R(u+ �v) = R(u) + �R(v) for any u; v 2 R3 and any � 2 R;
2 R(R(u)) = R(u) for any u 2 R3 implies R(u0) = 0 for any u 2 R3;

3 R(@u) = @ (R(u)) for any u 2 R3;

4 R(u 
 v) = R(u) 
 R(v) + R((u � R(u)) 
 (v � R(v))) for any u; v 2 R
3 implies

R(u
R(v)) = R(u)
R(v) = R(R(u)
 v).

� The Reynolds operator is used to �lter the NS eqs (4) and (5), leading to the RANS:

div u = 0; (12)
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+ div(u
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The turbulent kinetic energy

� Reynolds stress tensor: the additional term in (13),

R := �u0 
 u0 ; (14)

and expresses the average of changes in u0 due to the particle transport with the �uid

movement.
� Reynolds suggested that

R = F(ru) for reasons of symmetry R = F(D (u)):

� Boussinesq hypothesis: Boussinesq (1877) has proposed (in analogy with the Stokes

law for laminar �ows),

R = �T D (u) ; (15)

where �T is the eddy or turbulent viscosity, a concept introduced earlier by Saint-Venant

(1843)
� By comparing the traces of the two expressions in (14) and in (15), the Boussinesq

hypothesis needs to be corrected to

R = �2

3
kI+ �T D(u) ; k :=

1

2
ju0j2 is the turbulent kinetic energy: (16)

� The issue of �nding an expression for the Reynolds tensor implies the search for an

expression for the eddy viscosity.
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Modelling the turbulent viscosity

� Prandtl's mixing-length model (1925): inspired in the kinetic theory of perfect gases,

�T = � l2mjruj ) �T = � l2mjD(u)j ; with lm algebraic prescribed (17)

where lm is the mixing length, a distance that a �uid parcel keeps its original charac-

teristics before dispersing them into the surrounding �uid.

� The mixing length depends on the nature of the �ow and, in general, is space dependent,

which makes the algebraic description of lm hard to obtain.

� Kolmogorov's model (1942): the turbulence is described by two independent quantities:

k and the characteristic frequency of the energy containing movements, f ,

�T = �
k

f
; l =

k
1
2

f
; where l denotes a length scale. (18)

� Kolmogorov's model (18) suggested that k and f should be determined by transport

equations.

� Prandtl's model (1945): �T is determined from an equation for the transport of k,

�T = � k
1
2 l ; but l is still algebraically prescribed. (19)
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The equation for the turbulent kinetic energy

� We start by considering (4) with the velocity �eld decomposed in the form (10) and

then we subtract (13) to this equation,

div u0 = 0: (20)

� The RANS equations (13) are subtracted to the momentum equation (5), where all

the quantities are decomposed as in (10). Then, we multiply the resulting equation

by k and we apply the �lter produced by the Reynolds operator. Using some vectorial

calculus together with (14), (16)2 and (20), we obtain

@ k

@ t
+ (u+ u0) � r ju

0j2
2

= R : D(u)� 1

�
div (p0u0) + � u0 � divD(u0): (21)

� Using hypotheses of the Ergodic Theory, (u+ u0) � r ju0j2

2
' u �rk�div (�Drk), where

�D :=
�T
�k

is the turbulent di�usivity and �k is the Schmidt-Prandtl number; (22)

and div (p0u0) ' 0 and u0 � divD(u0) ' jD(u0)j2.
� Using these simpli�cations, (21) can be written as

@ k

@ t
+ u � rk = div (�Drk) + �T jD(u)j2 � jD(u0)j2: (23)
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The equation for the turbulent dissipation

� Launder and Spalding (1970) observed the importance of the rate of dissipation of the

turbulent kinetic energy in the turbulent �ow process,

" := �jru0j2 ) " := jru0 +ru0T j2 ' jD(u0)j2: (24)

� Since " scales as u30=l0, and independently of �, where u0 and l0 are characteristic

eddy's velocity and length scales, " is modelled as

" = CD

k
3
2

l
; CD is a closure constant: (25)

� As a consequence of (19), (22) and (25),

�T = C�

k2

"
and �D =

C�

�k

k2

"
; (26)

where C� is a constant related with the kinematic viscosity.

� The derivation of the equation for the evolution of " is much more involved: taking

the curl of the RANS equation (13), some calculus tools and Ergodic hypotheses,

@"

@t
+ u � r" = div (�Dr") + C1k jD(u)j2 + C2

"2

k
: (27)

where C1 and C2 are positive constants that can be determined from the experiments.
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The turbulent k-epsilon model

Since experiments show that two more equations are more then enough to obtain

reliable results, the turbulent k-epsilon model is the most common model used in CFD

to simulate mean �ow characteristics for turbulent �ow conditions,

div u = 0; (28)

@u

@t
+ div(u
 u) = f � 1

�
rp + div(� + �T (k; ")D(u); (29)

@ k

@ t
+ u � rk = div (�D(k; ")rk) + �T (k; ")jD(u)j2 � "; (30)

@"

@t
+ u � r" = div (�D(k; ")r") + C1k jD(u)j2 + C2

"2

k
: (31)

The consideration of one-equation models is acceptable in the sense that the

equation for " may be discarded by prescribing an appropriate length scale

div u = 0; (32)

@u

@t
+ div(u
 u) = f � 1

�
rp + div(� + �T (k)D(u); (33)

@ k

@ t
+ u � rk = div (�D(k)rk) + �T (k)jD(u)j2 � "(k); "(k) =

CD

l
k

3
2 : (34)
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The problem under consideration

A boundary-value problem for a general turbulent k-epsilon model

div u = 0 in 
; (35)

(u � r)u = g� f(u)�rp + div ((� + �T (k))D(u)) in 
; (36)

u � rk = div (�D(k)rk) + �T (k)jD(u)j2 + P(u; k)� "(k) in 
; (37)

u = 0 and k = 0 on @
 ; (38)

where 
 is a bounded domain of Rd , d = 2; 3.

where:

� the velocity vector �eld u, the pressure p and the external forces �eld g are, in fact,

averages that result by the application of one or two average concepts;
� the averaged tensor D(u) is the symmetric part of the averaged gradient r u;
� the positive constant � = �

�
is the kinematic viscosity, � is the dynamic viscosity, and

� is the mass density;
� the scalar function k characterizes the energy of the turbulence in the �ow (turbulent

kinetic energy, TKE);
� the rate of dissipation of k is described by the function " (turbulent dissipation);
� the scalar function �T is the turbulent, or eddy, viscosity, whereas �D is the turbulent

di�usion;
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Simulation of a porous media �ow

Figure: Video by Kerstin Kantiem, YouTube.
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Darcy's law

� Fluid �ows through porous media are usually described by Darcy's law (1856), an

empirical �ow model that represents a simple linear relationship between �ow rate and

the pressure drop in a porous media

� Unidirectional �ow:

u = �K

�

@p

@x
, 0 = �@p

@x
� �

K
u ; (39)

where the coe�cient K, called permeability, is independent of the nature of the �uid

but it depends on the geometry of the medium.

� In three dimensions, (39) generalizes to

u = �K
�
rrrp , 0 = �Krrrp � �u ; (40)

where K is the permeability tensor (scalar if the medium is isotropic).

� If the gravity forces �eld is taken into account, then (40) comes as

u = �K
�
(rrrp � �g) , 0 = �K (rrrp � �g)� �u: (41)

� For an isotropic medium, (41) reads as

u = �K

�
(rrrp � �g) , 0 = �g�rrrp � �

K
u: (42)
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Brinkman's equation

� The Darcy law assumes no e�ect of boundaries and the �uid velocity in Darcy's equation

is determined by the permeability of the matrix.

� If the boundary is impermeable, then the usual assumption is that the normal compo-

nent of the velocity must vanish,

u � n = 0 on the solid-�uid interface: (43)

� At a solid wall boundary, the �uid velocity will not reduce to the no-slip condition when

the Darcy law is enforced.

� In this situation, the Brinkman equation may be employed, which is an extension of

the Darcy law and facilitates the matching of boundary conditions.

� By using the theory of �ow past an individual sphere, Brinkman (1947) has suggested

to add the di�usion term simply to meet the boundary speci�cations,

rrrp = �g� �

K
u+ �̃444u , 0 = �g�rrrp � �

K
u+ �̃444u ; (44)

where the coe�cient �̃ (e�ective viscosity) is a quantity having the dimension of vis-

cosity.
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Flow at high �ow rates

The literature recognizes distinct �ow regimes based on the so-called pore Reynolds

number,

Rep :=
� qd

�
; q :=

Q

A
;

where q is the speci�c discharge (volume of �uid �owing per unit time, Q, through a

unit cross-sectional area, A, normal to the direction of the �ow) and d is some

representative (microscopic) length characterizing the void space.

Rep � 1 : Darcy's equation (42) is linear in the velocity u

It holds when u is su�ciently small.

1 < Rep � 10 : there is no sudden transition

As u increases, the transition to nonlinear drag is quite smooth.

Rep > 10 : breakdown in the linearity of u

� Is due to the fact that the form drag due to solid obstacles is now comparable with

the surface drag due to friction.

� Forchheimer's law (1901) remedies this situation by stating that the relationship be-

tween the �ow rate and pressure gradient is nonlinear at su�ciently high velocity and

that this nonlinearity increases with �ow rate.
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Forchheimer equations

� According to many authors (e.g. Joseph, Nield and Papanicolaou (1982)), the ap-

propriate modi�cation to Darcy's equation, to take into account high �ow rates, is to

replace (42) by the following Forchheimer Darcy model

rrrp = �g� �

K
u� cF�p

K
juju , 0 = �g�rrrp � �

K
u� cF�p

K
juju ; (45)

where cF is a dimensionless form-drag constant.

� Several authors (Nakayama (1992) and Kuznetsov (1998)) have added, in their studies,

a di�usion term to (45) in order to form a Brinkman-Forchheimer Darcy model,

rrrp = �g� �

K
u� cF�p

K
juju+ �̃444u , 0 = �g�rrrp� �

K
u� cF�p

K
juju+ �̃444u: (46)

� Other authors (e.g. Vafai & Kim (1991)) have added, too, the advective inertia

terms of the Navier-Stokes equations to form what is now commonly known as the

Brinkman-Forchheimer-extended Darcy model (or generalized model)

�(u � rrr)u = �g�rrrp � �

K
u� cF�p

K
juju+ �̃444u ; (47)

model that was derived based on local volume averaging.
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terms of the Navier-Stokes equations to form what is now commonly known as the

Brinkman-Forchheimer-extended Darcy model (or generalized model)

�(u � rrr)u = �g�rrrp � �

K
u� cF�p

K
juju+ �̃444u ; (47)

model that was derived based on local volume averaging.
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Post-Forchheimer �ows

The literature (cf. Dybbs & Edwards (1984),) recognizes distinct �ow regimes based on

the pore Reynolds number, Rep:

Darcy, or viscous-drag, dominated �ow regime if Rep < 1

Forchheimer, or form-drag, dominated �ow regime if 1 � 10 < Rep < 150

Post-Forchheimer �ow regime (unsteady laminar �ow) if 150 < Rep < 300

In this case, the time inertia terms need to be considered:

�
(
@u

@t
+ (u � rrr)u

)
= �g�rrrp � �

K
u� cF�p

K
juju+ �̃444u (48)

Fully turbulent �ow if Rep > 300 : turbulence modelling is required

� The turbulence k-epsilon model is considered;

� The microscopic equations are volume-averaged and then the macroscopic equations

are Reynolds-averaged; or

� The Reynolds averaging procedure is applied �rst and then the resultant (microscopic)

turbulent equations are volume-averaged.

H.B. de Oliveira (holivei@ualg.pt) Existence for a one-equation turbulent model Florianópolis, October 7th, 2016 21 / 50



Post-Forchheimer �ows

The literature (cf. Dybbs & Edwards (1984),) recognizes distinct �ow regimes based on

the pore Reynolds number, Rep:

Darcy, or viscous-drag, dominated �ow regime if Rep < 1

Forchheimer, or form-drag, dominated �ow regime if 1 � 10 < Rep < 150

Post-Forchheimer �ow regime (unsteady laminar �ow) if 150 < Rep < 300

In this case, the time inertia terms need to be considered:

�
(
@u

@t
+ (u � rrr)u

)
= �g�rrrp � �

K
u� cF�p

K
juju+ �̃444u (48)

Fully turbulent �ow if Rep > 300 : turbulence modelling is required

� The turbulence k-epsilon model is considered;

� The microscopic equations are volume-averaged and then the macroscopic equations

are Reynolds-averaged; or

� The Reynolds averaging procedure is applied �rst and then the resultant (microscopic)

turbulent equations are volume-averaged.

H.B. de Oliveira (holivei@ualg.pt) Existence for a one-equation turbulent model Florianópolis, October 7th, 2016 21 / 50



Post-Forchheimer �ows

The literature (cf. Dybbs & Edwards (1984),) recognizes distinct �ow regimes based on

the pore Reynolds number, Rep:

Darcy, or viscous-drag, dominated �ow regime if Rep < 1

Forchheimer, or form-drag, dominated �ow regime if 1 � 10 < Rep < 150

Post-Forchheimer �ow regime (unsteady laminar �ow) if 150 < Rep < 300

In this case, the time inertia terms need to be considered:

�
(
@u

@t
+ (u � rrr)u

)
= �g�rrrp � �

K
u� cF�p

K
juju+ �̃444u (48)

Fully turbulent �ow if Rep > 300 : turbulence modelling is required

� The turbulence k-epsilon model is considered;

� The microscopic equations are volume-averaged and then the macroscopic equations

are Reynolds-averaged; or

� The Reynolds averaging procedure is applied �rst and then the resultant (microscopic)

turbulent equations are volume-averaged.

H.B. de Oliveira (holivei@ualg.pt) Existence for a one-equation turbulent model Florianópolis, October 7th, 2016 21 / 50



Post-Forchheimer �ows

The literature (cf. Dybbs & Edwards (1984),) recognizes distinct �ow regimes based on

the pore Reynolds number, Rep:

Darcy, or viscous-drag, dominated �ow regime if Rep < 1

Forchheimer, or form-drag, dominated �ow regime if 1 � 10 < Rep < 150

Post-Forchheimer �ow regime (unsteady laminar �ow) if 150 < Rep < 300

In this case, the time inertia terms need to be considered:

�
(
@u

@t
+ (u � rrr)u

)
= �g�rrrp � �

K
u� cF�p

K
juju+ �̃444u (48)

Fully turbulent �ow if Rep > 300 : turbulence modelling is required

� The turbulence k-epsilon model is considered;

� The microscopic equations are volume-averaged and then the macroscopic equations

are Reynolds-averaged; or

� The Reynolds averaging procedure is applied �rst and then the resultant (microscopic)

turbulent equations are volume-averaged.

H.B. de Oliveira (holivei@ualg.pt) Existence for a one-equation turbulent model Florianópolis, October 7th, 2016 21 / 50



Post-Forchheimer �ows

The literature (cf. Dybbs & Edwards (1984),) recognizes distinct �ow regimes based on

the pore Reynolds number, Rep:

Darcy, or viscous-drag, dominated �ow regime if Rep < 1

Forchheimer, or form-drag, dominated �ow regime if 1 � 10 < Rep < 150

Post-Forchheimer �ow regime (unsteady laminar �ow) if 150 < Rep < 300

In this case, the time inertia terms need to be considered:

�
(
@u

@t
+ (u � rrr)u

)
= �g�rrrp � �

K
u� cF�p

K
juju+ �̃444u (48)

Fully turbulent �ow if Rep > 300 : turbulence modelling is required

� The turbulence k-epsilon model is considered;

� The microscopic equations are volume-averaged and then the macroscopic equations

are Reynolds-averaged; or

� The Reynolds averaging procedure is applied �rst and then the resultant (microscopic)

turbulent equations are volume-averaged.
H.B. de Oliveira (holivei@ualg.pt) Existence for a one-equation turbulent model Florianópolis, October 7th, 2016 21 / 50



The governing microscopic equations

� For simplicity, we consider the isothermal case.

� The properties of the �uid (density, viscosity) are assumed to be constant and thus

the �uid under consideration is incompressible and Newtonian.

� On the pore scale (microscopic scale) the �ow quantities (velocity, pressure) are de-

termined by the incompressible Navier-Stokes equations

div u = 0; (49)

@u

@t
+ (u � rrr)u = g� 1

�
rrrp + �D(u) ; D(u) =

1

2

(
rrru+rrruT

)
; (50)

where u 2 R3 is the velocity �eld, p 2 R is the pressure, � is the density, � is the

kinematic viscosity and g 2 R3 is the gravity forces �eld.

� If the boundary is impermeable, then the usual assumption is that the normal compo-

nent of the velocity must vanish,

u � n = 0 on the solid-�uid interface: (51)

� Contrary to the the Darcy �ow model (the maximum velocity occurs at the impermeable

surface), the no-slip boundary condition can be used,

u � � = 0 on the solid-�uid interface: (52)
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REV: Representative elementary volume

� However in typical experiments the quantities of interest are measured over a su�ciently

large representative elementary volume (REV).

Figure: from Nield & Bejan (2006).

� REV is the smallest volume over which a measurement can be made that will yield a

value representative of the whole porous medium.

� The length scale of the REV is larger than the pore scale, but much smaller than the

size of the entire �ow domain.
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From continuum to porous-continuum

� The evolution from continuum to porous-continuum level involves an averaging process,

similar to the one from molecular to continuum level.

Figure: from Merrikh & Lage (2005).
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Volume averaging

� The volumetric average2 of a �ow quantity, say ', taken over a REV:

Volumetric average: h'i := 1

V

ˆ
V

' dV : (53)

� The intrinsic average of a �ow quantity, say ', taken over a REV:

Intrinsic average: h'ii = 1

V

ˆ
V

' dV : (54)

� These averages are related by the Dupuit-Forchheimer relationship:

h'i = �h'ii ; � =
V

V
is the local medium porosity. (55)

� The property ' can then be de�ned as

' = h'ii + i' ; (56)

where i' is the spatial deviation of ' w.r.t. h'ii , i.e. is the di�erence between the real

value (microscopic) and its intrinsic (�uid based average) value

� From (54) and (56) it follows that hi'ii = 0.

2Aka: seepage velocity, �ltration velocity, super�cial velocity, Darcy velocity, volumetric �ux density.
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The governing microscopic equations

� Authors: Lee & Howell (1987), Wang & Takle (1995), Antohe & Lage (1997),

Getachewa et al. (2000).

� Assumptions: rigid, isotropic and �xed porous matrix; Newtonian �uid with constant

properties; and isothermal �ow (here, for simplicity).

� The volumetric average of Eqs. (49)-(50) results (cf. Hsu & Cheng (1990)):

div huii = 0; (57)

@

@t
huii + div(huii 
 huii) = hgii �

1

�
rrrhpii +

�e
�
D (huii)� div

(〈
i
u
i

u
〉
i

)
+ R; (58)

� where R represents the total drag force per unit volume due to the presence of the

porous matrix:

R = � �

K
� huii �

cFp
K
�2j huii j huii : (59)

� and div
(〈

iu
i u
〉
i

)
represents the hydrodynamic dispersion due to spatial deviations.

� Eqs. (57)-(58) model typical porous media �ow for 150 < Rep < 300.

� When extending the analysis to turbulent �ow, time-varying quantities have to be

considered.
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Turbulence in porous media

� The �ow becomes fully turbulent when Rep > 300.

Two main di�erences exist between turbulent �ow through porous media and

turbulent �ow in the absence of a porous matrix

� the size of the turbulent eddies within the pores is limited by the pore size;

� the presence of porous matrix induces additional drag while preventing motion of larger size
eddies.

Figure: To illustrate this

�ow regime, let us look at

the �ow in a much larger

geometry than the pore

scale �ow: a typical ozone

puri�cation reactor (from

https://www.comsol.pt).

The results show the �ow

patterns, �ow velocity, and

turbulent viscosity.
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Modelling turbulence in porous media

� From a broad perspective, for high pore Reynolds number (Rep > 300), turbulent

models presented in the literature follow two di�erent approaches.

� The �rst method (Lee & Howell (1987), Wang & Takle (1995), Antohe & Lage (1997),

Getachewa et al. (2000)), starts with the volume-average of the microscopic equations

and then the macroscopic equations are averaged in time to produce the turbulence

equations.

� The second (Masuoka & Takatsu (1996), Kuwahara et al. (1996), Takatsu & Masuoka

(1998), Kuwahara & Nakayama (1998), Nakayama & Kuwahara (1999)), makes use,

�rst, of the time-averaged equations, and then proceeds with volume-averaging for

deriving the turbulence equations.

� These two methodologies lead, in general, to distinct sets of turbulence equations

because of the di�erent averaging order, i.e., space-time and time-space, respectively.

� A third, and probably the most consistent method (Pedras-de Lemos (2000-2001)) is

based on a double decomposition approach. In this method, the momentum equation

is closed by using the Hazen-Dupuit-Darcy model for the total drag e�ect only after

the space-time averaging (or time-space averaging) is performed.
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Time-averaging then volume-averaging: Nakayama & Kuwahara (1999)

� The governing equations are obtained by volume-averaging the microscopic Reynolds-

averaged equations:

div huii = 0; (60)

@

@t
huii + div(huii 
 huii) = hgii �

1

�
rrr
(
hpii +

2

3
� hkii

)
+ div

[(
�T +

�e
�

)
D (huii)

]
� �

K
� huii �

cFp
K
�2j huii j huii :

(61)

� The macroscopic transport equation for hkii is obtained by volume-averaging the

Reynolds-averaged equation for k:

@ hkii
@t

+ huii � rrrhkii = div [(� + �D)rrrhkii ] + 2�T jD (huii)j2

� h"ii + 39�2 5
√

(1� �)2
j huii j3

d
;

(62)

where d is the hydraulic diameter.
� Features of the model:

� the hydrodynamic dispersion was incorporated in the drag forces:

�div
(〈

iu
i u
〉
i

)
+ R = � �

K
� huii �

cFp
K
�2j huii j huii ;

� Additional terms, due to the presence of the porous medium, appearing in the governing
equations for hkii and for h"ii , were determined by using two unknown model constants.
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�2j huii j huii :

(61)

� The macroscopic transport equation for hkii is obtained by volume-averaging the

Reynolds-averaged equation for k:

@ hkii
@t

+ huii � rrrhkii = div [(� + �D)rrrhkii ] + 2�T jD (huii)j2

� h"ii + 39�2 5
√

(1� �)2
j huii j3

d
;

(62)

where d is the hydraulic diameter.
� Features of the model:

� the hydrodynamic dispersion was incorporated in the drag forces:

�div
(〈

iu
i u
〉
i

)
+ R = � �

K
� huii �

cFp
K
�2j huii j huii ;

� Additional terms, due to the presence of the porous medium, appearing in the governing
equations for hkii and for h"ii , were determined by using two unknown model constants.
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Time-averaging then volume-averaging: Pedras & de Lemos (2000)

� Volume-averaging the microscopic Reynolds-averaged equations,

div huii = 0; (63)

@

@t
huii + div(huii 
 huii) = hgii �

1

�
rrr
(
hpii +

2

3
� hkii

)
+ div

[(
�T�

+ �
)
D (huii)

]
+R :

(64)

� The macroscopic transport equation for hkii is obtained by volume-averaging the tur-

bulent microscopic equation for k:

@ hkii
@t

+ huii �rrrhkii = div
[(
� + �D�

)
rrrhkii

]
+ 2�T jD (huii)j2�h"ii +

ck�
3

p
K
hkii j huii j :

(65)
� Features of the model:

� To model the Reynolds stresses it is proposed a macroscopic Boussinesq assumption:〈
u0 
 u0

〉
i
=

2

3
hkii I� �T�

hD (u)ii ; �T�
:= C�

hki2i
h"ii

;

� where �T�
is a macroscopic turbulent viscosity satisfying to: �T�

D (huii ) = h�TD (u)ii ;
� and �D�

is a macroscopic turbulent dissipation de�ned by �D�
:=

�T�

�k
.

� The total drag term R is only closed after all the equations are obtained;
� An additional term is included in the equation for k to account for the porous structure.
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The feedback terms in the scope of turbulent �ows through porous media

A boundary-value problem for a general turbulent k-epsilon model

div u = 0 in 
; (66)

(u � r)u = g� f(u)�rp + div ((� + �T (k))D(u)) in 
; (67)

u � rk = div (�D(k)rk) + �T (k)jD(u)j2 + P(u; k)� "(k) in 
; (68)

u = 0 and k = 0 on @
 ; (69)

Nakayama & Kuwahara (1999) model

f(u) = � �

K
�u� cFp

K
�2juju ; P(u; k) � P(u) = 39�2 5

√
(1� �)2

juj3
d

;

Pedras & de Lemos (2000) model

f(u) = � �

K
�u� cFp

K
�2juju ; P(u; k) =

ck�
3

p
K

k juj :
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The feedback terms in other �elds:

A boundary-value problem for a general turbulent k-epsilon model

div u = 0 in 
; (70)

(u � r)u = g� f(u)�rp + div ((� + �T (k))D(u)) in 
; (71)

u � rk = div (�D(k)rk) + �T (k)jD(u)j2 + P(u; k)� "(k) in 
; (72)

u = 0 and k = 0 on @
 ; (73)

Turbulent �ows in a rotating frame

f(u) = 2


� u ; P(u; k) = 0 ; 


 is the vector of angular velocity;

Turbulent �ows controlled by a magnetic �eld B

f(u;B) = �J� B ; J = �(r�� u� B) ; 4� = div(u� B) ;

where J is the total electric current intensity, � is the electric potential, and � is the

conductivity, a material dependent parameter.
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Assumptions physically admissible

f : 
�Rd ! Rd is a Carathéodory function; (74)

"; �T ; �D : 
�R! R+ are Carathéodory functions; (75)

P : 
�Rd �R! R is a Carathéodory function: (76)

In particular, the assumption (75) �ts with turbulent dissipation, turbulent viscosity and

turbulent di�usion functions involved in realistic models when giving, for instance, by

the following formula

"(k) =
k
p
k

l
; �T (k) = C1l

p
k ; �D(k) = �e + C2l

p
k ; l 6= 0; k � 0 ; (77)

where �e is an e�ective (dynamic) viscosity, C1, C2 are dimensionless constants and

l : 
! R is the mixing length function which is usually assumed to satisfy l(x) � l0 for

a.e. x 2 
 and for some positive constant l0.

Assumptions mathematically needed

j�T (k)j � CT ; j�D(k)j � CD ; (78)

for some positive constants CT and CD .
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Notion of weak solutions

Let us introduce the following function spaces:

V := fv 2 C
1
0 (
) : divv = 0g; H := closure of V in L2(
); V := closure of V in H1(
):

De�nition

Let the conditions (74)-(78) be ful�lled and assume that g 2 V0. We say a pair (u; k) is

a weak solution to the problem (70)-(73), if:

1 u 2 V and for every v 2 V \ Ld(
) there hold f(u) � v 2 L1(
) and

ˆ



(u � rrr)u � v dx+
ˆ



(� + �T (k))D(u) : rrrv dx+
ˆ



f(u) � v dx =
ˆ



g � v dx; (79)

2 k 2 W1;q
0 (
), with 2d

d+2
� q < d 0, and for every ' 2 W1;q0

0 (
) there hold

"(k)' ; P(u; k)' 2 L1(
) and

ˆ



(u � rrrk)' dx+

ˆ



�D(k)rk � rrr' dx+

ˆ



"(k)' dx =

ˆ



�T (k)jD(u)j2' dx+

ˆ



P(u; k)' dx;

(80)

3 k � 0 and "(k) � 0 a.e. in 
.
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Growth conditions on the feedbacks

On the functions f(u) and "(k)

We assume the existence of nonnegative constants Cf and C" such that (a.e. in 
)

jf(u)j � Cf juj� for 0 � � � d + 2

d � 2
if d 6= 2; or for any � � 0 if d = 2; (81)

j"(k)j � C"jk j� for 0 � � � d + 2

d � 2
if d 6= 2; or for any � � 0 if d = 2: (82)

On the term P(u; k), we consider P(u; k) � �(u) and P(u; k) � $(u)k , where

�; $ : 
�Rd ! R+
0 are Carathéodory:

� If P(u; k) � �(u), we assume the existence of a constant C� � 0 such that

j�(u)j � C�juj� for 0 � � � d + 2

d � 2
if d 6= 2; or for any � � 0 if d = 2 : (83)

� If P(u; k) � $(u)k, we assume the existence of a constant C$ > 0 such that

j$(u)j � C$juj� for 0 � � � 4

d � 2
if d 6= 2 ; or for any � � 0 if d = 2 : (84)
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More assumptions

Sign conditions

f(u) � u � 0 for all u 2 Rd and a.e. in 
 ; (85)

"(k) k � 0 for all k 2 R and a.e. in 
 : (86)

We are particularly interested in the case of

"(k) := e(k)k ; e : 
�R! R+
0 is Carathéodory

[
" = CD

k
3
2

l

]
: (87)

Remark

Condition (85) is satis�ed by any feedback's forces �eld that we have considered above:

Coriolis, Darcy or Darcy-Forchheimer. With respect to (86), this condition is always

veri�ed due to the de�nition of k and "(k) in the turbulent k�epsilon model.

Assumptions, already touched on at (78), mathematically needed

0 � �T (k) � CT for all k 2 R and a.e. in 
; CT 2 R+; (88)

0 < cD � �D(k) � CD for all k 2 R and a.e. in 
; cD ;CD 2 R+: (89)

To avoid the trivial solution k = 0, we assume, and in addition to (134), that

�T (k) 6= 0 when k = 0 : (90)
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"(k) := e(k)k ; e : 
�R! R+
0 is Carathéodory

[
" = CD

k
3
2

l

]
: (87)

Remark

Condition (85) is satis�ed by any feedback's forces �eld that we have considered above:

Coriolis, Darcy or Darcy-Forchheimer. With respect to (86), this condition is always

veri�ed due to the de�nition of k and "(k) in the turbulent k�epsilon model.

Assumptions, already touched on at (78), mathematically needed

0 � �T (k) � CT for all k 2 R and a.e. in 
; CT 2 R+; (88)

0 < cD � �D(k) � CD for all k 2 R and a.e. in 
; cD ;CD 2 R+: (89)

To avoid the trivial solution k = 0, we assume, and in addition to (134), that

�T (k) 6= 0 when k = 0 : (90)
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Existence under growth conditions

Theorem

Let 
 be a bounded domain of Rd , d = 2; 3, with a Lipschitz-continuous compact

boundary @
. Assume g 2 L2(
) and all the conditions (74), (81)-(82), (85)-(86),

(134)-(90) hold. In addition assume that one, but only one, of the following conditions

is satis�ed:

1 P(u; k) = �(u) a.e. in 
 and (129) holds;

2 P(u; k) = $(u)k a.e. in 
, (130) holds, and

cD > C

(kgkL2(
)
�

)�

(91)

for the positive constant C := C$ �(2; d)2�(2; d)�C 2�
K
�P(d)

�.

Then there exists, at least, a weak solution to the problem (70)-(73).

Remark

Observe that the possibility of P(u; k) = 0 a.e. in 
 is covered by condition (1), in

particular when we take C� = 0 in (129). On the other hand, the case of P(u; k) = k

a.e. in 
 is contained in the condition (2) as a limit situation.
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Proof: STEP 1 - The regularized problem

We start by considering, for each n 2 N, the following regularized problem

div u = 0 in 
; (92)

(u � rrr)u = g� f(u)�rp + div ((� + �T (k))D(u)) in 
; (93)

u � rrrk = div (�D(k)rk) + �T (k)Rn

(
jD(u)j2

)
+ P(u; k)� "(k) in 
; (94)

u = 0 and k = 0 on @
; (95)

where Rn(a) denotes the following regularization of the nonnegative term a

Rn(a) :=
a

1+ 1
n
a
: (96)

De�nition

Under the assumptions of De�nition 1, we say a pair (u; k) is a weak solution to the regularized
problem (92)-(95) if, for each n 2 N, (1) and (3) of De�nition 1 hold, and

(2') k 2 H1
0 (
) and for every ' 2 H1

0 (
) \ Ld (
) there holdsˆ



(u � rrrk)' dx+

ˆ



�D(k)rk � rrr' dx+

ˆ



"(k)' dx =

ˆ



�T (k)Rn

(
jD(u)j2

)
' dx+

ˆ



P(u; k)' dx:

(97)
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Proof: STEP 2 - Proof of the existence for the regularized problem

Proposition

Let the conditions of Theorem 2 be ful�lled. Then (for each n 2 N) there exists, at least, a

weak solution to the problem (92)-(95).

Proof.

Using the Galerkin approximations together with compactness arguments, we prove that, for
each n 2 N, there exists a weak solution (un; kn) 2 V � H1

0 (
) to the problem (92)-(95) and
such that ˆ




(un � rrr)un � v dx+
ˆ



(� + �T (kn))D(un) : rrrv dx+

ˆ



f(un) � v dx

=

ˆ



g � v dx
(98)

and ˆ



(un � rrrkn)v dx+

ˆ



�D(kn)rrrkn � rrrv dx+

ˆ



"(kn)v dx

=

ˆ



�T (kn)Rn

(
jD(un)j2

)
v dx+

ˆ



P(un; kn) v dx

(99)

hold for all (v; v) 2 (V \ Ld (
))� (H1
0 (
) \ Ld (
)).
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Proof: STEP 3 - A priori estimates

We start by obtaining an estimate for un, Since the sought solutions and the test functions are
in the same function space, we can take v = un in (98) and we obtain,

krrrunkL2(
) �
C2
K

�
�P(d)kgkL2(
): (100)

In view of (100) and of the assumption that g 2 L2(
), we have

un ! u weakly in H1
0(
), as n !1, (101)

un ! u strongly in Ls(
), as n !1, for any s : 1 � s < 2� (102)

un ! u a.e. in 
, as n !1 (103)

We take

v = '(kn); where '(kn) := 1� 1

(1+ kn)�
; (104)

where � is a positive constant, in (99) to getˆ



jrrrknjq dx � C ; C = C(�; �; cD ;CT ;C�; d ; q;
; kgkL2(
)); if P(u; k) = �(u); (105)

ˆ



jrrrknjq dx � C ; C = C(�; �; cD ;CT ;C$; d ; q;
; kgkL2(
)); if :P(u; k) = $(u)k:(106)

Consequently,

kn ! k weakly in W1;q
0 (
), as n !1, for q < d 0, (107)

kn ! k strongly in Ls(
), as n !1, for all s: 1 � s < q�, (108)

kn ! k a.e. in 
, as n !1. (109)
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STEP 4A - Passing Rn

(
jD(un)j

2
)
to the limit n !1

To prove this, �rst we need to show that

D(un)! D(u) strongly in L2(
), as n !1, (110)

D(un)! D(u) a.e. in 
, as n !1. (111)

To do it, we take vn = un � u in (98) and after some algebraic manipulations, we getˆ



(� + �T (kn)) jD(un)�D(u)j2 dx

=

ˆ



(un � rrr)un � (u� un) dx+

ˆ



[�T (kn)D(u)� �T (k)D(u)] : (D(u)�D(un)) dx

+

ˆ



(� + �T (k))D(u) : (D(u)�D(un)) dx+

ˆ



g � (un � u) dx+

ˆ



f(un) � (u� un) dx

Using Hölder's and Cauchy's inequalities together with (81) and (134), we get

�

2

ˆ



jD(un)�D(u)j2 dx � kunkL4(
)krrrunkL2(
)kun � uk
L4(
) +

1

2�
k�T (kn)D(u)� �T (k)D(u)k2

L2(
)

+

ˆ



(� + �T (k))D(u) : (D(u)�D(un)) dx+ kgk
L2(
)kun � uk

L2(
) + Cf kunk�
L2

�
(
)
ku� unkL2(
):

(112)

Then can apply Lebesgue's dominated convergence theorem, to show that

j�T (kn)D(u)� �T (k)D(u)j2 ! 0 strongly in L1(
), as j !1. (113)

As a consequence (110) holds and, due to Riesz-Fisher's theorem, (111) also holds.
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STEP 4B - Passing Rn

(
jD(un)j

2
)
to the limit n !1

Using the de�nition of Rn, we haveˆ



∣∣(�T (kn)Rn

(
jD(un)j2

)
� �T (k)jD(u)j2

)
v
∣∣ dx

�
ˆ



∣∣�T (kn)jD(un)j2 � �T (k)jD(u)j2
∣∣ jv j dx+ ˆ




1

n

�T (k)jD(u)j2jD(un)j2
1+ 1

n
jD(un)j2

jv j dx:
(114)

Testing (98) with v = un, we have, due to the symmetry of D(un), thatˆ



(� + �T (kn))jD(un)j2 dx =
ˆ



g � un dx�
ˆ



f(un) � un dx: (115)

Then, we take v = u in (79),ˆ



(� + �T (k)) jD(u)j2 dx =
ˆ



g � u dx�
ˆ



f(u) � u dx : (116)

Now, in view of (115)-(116), we haveˆ



�T (k)jD(u)j2 dx � lim inf

ˆ



�T (kn)jD(un)j2 dx � lim sup

ˆ



�T (kn)jD(un)j2 dx �

lim sup
(ˆ




g � un dx�
ˆ



f(un) � un dx�
ˆ



�jD(un)j2 dx
)
�

ˆ



g � u dx�
ˆ



f(u) � u dx�
ˆ



�jD(u)j2 dx =
ˆ



�T (k)jD(u)j2 dx :
Thus,

�T (kn)jD(un)j2 ! �T (k)jD(u)j2 strongly in L1(
), as m !1
and, consequently, the �rst integral of the right-hand side of (114) also converges to zero.
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Uniqueness

Additional assumptions of monotonicity

(f(u1)� f(u2)) � (u1 � u2) � 0 for all u1; u2 2 Rd and a.e. in 
; (117)

("(k1)� "(k2)) (k1 � k2) � 0 for all k1; k2 2 R and a.e. in 
: (118)

Additional assumptions of Lipschitz-continuity

There exist positive constants L�T , L�D and �(u) or $(u):

j�T (k1)� �T (k2)j � L�T jk1 � k2j for all k1; k2 2 R and a.e. in 
; (119)

j�D(k1)� �D(k2)j � L�D jk1 � k2j for all k1; k2 2 R and a.e. in 
: (120)

j�(u1)� �(u2)j � L� ju1 � u2j for all u1; u2 2 Rd and a.e. in 
; (121)

j$(u1)� �(u2)j � L$ ju1 � u2j for all u1; u2 2 Rd and a.e. in 
:(122)

Theorem

Let (u; k) be a weak solution to (70)-(73) in the conditions of Theorem 2. Assume (117)-

(118), (119)-(120) and (121)-(122) are ful�lled. If 9 C1 = C(�) ; C2 = C(�; cD) > 0 :

kr ukL�(
) < C1 for some � > 2 if d = 2, or for some � � d if d 6= 2 ,(123)

krkkL� (
) < C2 for some � > 2 if d = 2, or for some � � d if d 6= 2 ,(124)

then the weak solution (u; k) is unique.
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Existence of a unique pressure

Proposition

Let (u; k) be a weak solution to the problem (70)-(73) in the conditions of Theorem 2.
Then there exist positive constants C, C1 and C2 such that

kruk
L2(
) � Ckgk

L2(
) ; (125)

krkkLq(
) � C1kgkL2(
) + C2: (126)

Theorem

Let (u; k) be a weak solution to the problem (70)-(73) in the conditions of Theorem 2.

Then there exists a unique p 2 L�(
), with
´


p dx = 0 and � � max

{
2; d

2
; 2d
2d��(d�2)+2

}
if d 6= 2, or � � 2 if d = 2, such thatˆ




(u �r)u �v dx+
ˆ



(�+�T (k))D(u) : rv dx+

ˆ



f(u) �v dx�
ˆ



g �v dx =
ˆ



p div v dx (127)

for any v 2W1;�
0 (
). Moreover, there exist positive constants C1; C2; C3 and C4 such

that
kpkL�(
) � C1kruk2

L2(
)
+ C2kruk

L2(
) + C3kruk�
L2(
)

+ C4kgkL2(
): (128)
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Existence under no growth conditions

Growth conditions only on P(u; k):

If P(u; k) = �(u); j�(u)j � C�juj� 0 � � � 2d

d � 2
if d 6= 2; any � � 0 if d = 2; (129)

If P(u; k) = $(u)k; j$(u)j � C$juj� for 0 � � � d

d � 2
if d 6= 2 ; or for any � � 0 if d = 2:(130)

Theorem

Let 
 be a bounded domain of Rd , d = 2; 3, with a Lipschitz-continuous compact

boundary @
. Assume g 2 L2(
) and all the conditions (74), (85)-(86), (134)-(90) and

(129)-(130) hold. In addition, assume that

9 � > 0 : j\(f(u); u)j 62
(
�

2
� �;

�

2
+ �
)

8 u : juj � L ; 8 L > 0; (131)

HL 2 L
1(
) 8 L > 0; where HL := sup

juj�L
jf(u)j; (132)

GM 2 L1(
) 8 M > 0; where GM := sup
jkj�M

j"(k)j: (133)

If one of the following conditions is satis�ed:

1 P(u; k) = �(u) a.e. in 
 and (129) holds;

2 P(u; k) = $(u)k a.e. in 
, (130) holds and (91) is satis�ed for the positive constant

C de�ned bellow at (??);

then there exists, at least, a weak solution to the problem (70)-(73) in the sense of

De�nition ??. Moreover f(u) 2 L1(
) and "(k) 2 L1(
).
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Existence under no growth conditions
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d � 2
if d 6= 2; any � � 0 if d = 2; (129)

If P(u; k) = $(u)k; j$(u)j � C$juj� for 0 � � � d

d � 2
if d 6= 2 ; or for any � � 0 if d = 2:(130)
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9 � > 0 : j\(f(u); u)j 62
(
�

2
� �;

�

2
+ �
)
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Concluding remarks

� Comparing the models: The Nakayama & Kuwahara (1999) model requires less as-

sumptions then the model from Pedras & de Lemos (2000):

f(u) =
�

K
�u� cFp

K
�2juju ;

PNK (u; k) � P(u) = 39�2 5
√

(1� �)2
juj3
d

; PPL(u; k) =
ck�

3

p
K

k juj:

� Work on progress: with growth conditions on f(u) and on "(k):

� Regularity up to boundary;

� Work on progress: with no growth conditions on f(u) and on "(k):

� Uniqueness;
� Existence of the pressure;
� Regularity.

� Open problems:

� Removing not admissible physics restrictions:

0 � �T (k) � CT for all k 2 R and a.e. in 
; CT 2 R+;

0 < cD � �D(k) � CD for all k 2 R and a.e. in 
; cD ;CD 2 R+;

� Generalized dimension d ;
� The parabolic version of problem.
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Muito obrigado!
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