Virtually Fibering Random Right-Angled Coxeter Groups

Gonzalo Fiz Pontiveros
Departamento de Matemática
Universidade Federal de Santa Catarina

Abstract

A group K virtually algebraically fibers if there is a finite index subgroup K^{\prime} admitting a surjective homomorphism $K^{\prime} \rightarrow \mathbb{Z}$ with finitely generated kernel. This notion arises from topology: a 3 -manifold M is virtually a surface bundle over a circle precisely when the fundamental group of M virtually algebraically fibers, a well known result of Stallings. ses.

A Right-Angled Coxeter group (RACG) K is a group given by a presentation of the form $$
\left\langle x_{1}, x_{2}, \ldots x_{n} \mid x_{i}^{2},\left[x_{i}, x_{j}\right]^{\sigma_{i j}}: 1 \leq i<j \leq n\right\rangle
$$ where $\sigma_{i j} \in\{0,1\}$ for each $1 \leq i<j \leq n$. One can encode this information with a graph Γ_{K} whose vertices are the generators x_{1}, \ldots, x_{n} and $x_{i} \sim x_{j}$ if and only if $\sigma_{i j}=1$. Conversely given a graph G on n vertices, we will denote the corresponding RACG by $K(G)$. Recently, Jankiewicz, Norin, and Wise developed a framework to show virtual fibering of a RACG using BetsvinaBrady Morse theory and ultimately translated the virtual fibering problem for K into a combinatorial game on the graph Γ_{K}. The method was successful on many special cases and also allowed them to construct examples where BetsvinaBrady cannot be applied to find a virtual algbraic fibering.

A natural question to consider is whether this approach is successful for a 'generic' RACG, i.e., given a probability measure μ_{n} on the set of RACG's of rank at most n, is it true that a.a.s. as $n \rightarrow \infty$, a group sampled from μ_{n} virtually algebraically fibers. This question is also considered in the work of Jankiewicz, Norin and Wise. Specifically they consider sampling Γ_{K} from the Erdős-Renyi random graph model $\mathcal{G}(n, p)$ and they prove the following result:

Theorem (Jankiewicz-Norin-Wise). Assume that

$$
\frac{(2 \log n)^{\frac{1}{2}}+\omega(n)}{n^{\frac{1}{2}}} \leq p<1-\omega\left(n^{-2}\right)
$$

and let G be sampled from $\mathcal{G}(n, p)$. Then, asymptotically almost surely, the associated Right-Angled Coxeter group $K(G)$ virtually algebraically fibers.

We extend this result to the smallest possible range of p, in fact we prove a hitting time type result. Namely we show that as soon as Γ_{K} has minimum degree 2 then a.a.s. K virtually algebraically fibers.

Theorem. Let $G_{0}, G_{1}, \ldots, G_{\binom{n}{2}}$ denote the random graph graph process on n vertices where $G_{i+1}=G_{i} \cup\left\{e_{i}\right\}$ and e_{i} is picked uniformly at random from the non-edges of G_{i}. Let $T=\min _{t}\left\{t: \delta\left(G_{t}\right)=2\right\}$, then a.a.s. the random graph process is such that $K\left(G_{m}\right)$ virtually algebraically fibers if and only if $T \leq m<\binom{n}{2}$. In particular for any p satisfying

$$
\frac{\log n+\log \log n+\omega(n)}{n} \leq p<1-\omega\left(n^{-2}\right)
$$

and $G \mathcal{G}(n, p)$, the random Right-Angled Coxeter group $K(G)$ virtually algebraically fibers a.a.s.

This is joint work with R. Glebov and I. Karpas.

