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MOTIVATION:

A key aspect of Lorentzian geometry is the emphasis on geodesic
(in)completeness of manifolds with physically motivated geometric
conditions. A primary application of Lorentzian geometry is to
General Relativity, where incompleteness of the so-called causal
geodesics are related to the geometric description of black holes and
the “big bang singularities” in cosmological models.
The question of geodesic completeness is much better understood in
Riemannian geometry. For example, it is well known that every
compact Riemannian manifold is geodesically complete (a
consequence of the Hopf-Rinow theorem), and that the set of
complete Riemannian metrics is dense in the space of all Riemannian
metrics (with the compact-open topology) on a given manifold
(Morrow ’70).
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MOTIVATION:

In Lorentzian geometry, by contrast, some of the physically most
important examples are geodesically incomplete. Consequently,
geodesically complete Lorentzian manifolds of relevance to physics
seem to be fairly special. This gives the rise to rigidity questions:
giving a geometric description of such geodesically complete
manifolds.

In this talk, we wish to review some old and new such rigidity results
which underscore this general philosophy.
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Lorentz vector spaces

Definition

A Lorentz vector space is a real vector space V of finite dimension n ≥ 2,
endowed with a bilinear symmetric form 〈. .〉 : V × V → R with the
following property: there exists a basis with respect to which

〈v ,w〉 = −v1w1 + · · ·+ vnwn.

Such a bilinear form is called a Lorentz scalar product.
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Causal character of vectors

Definition

If V is a Lorentz vector space, a nonzero vector v ∈ V is said to be

Timelike, if 〈v , v〉 < 0;

Spacelike, if 〈v , v〉 > 0;

Lightlike or null, if 〈v , v〉 = 0;
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Causal character of vectors

Figure: The lightcone in a Lorentzian space has two connected componentsLorentzian Geometry Rigidity of geodesic completeness in Lorentzian geometry
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Spacetime: definition

Definition

A Lorentzian metric on a smooth manifold M of dimension n ≥ 2 is a
smooth mapping g which assigns to each p ∈ M a Lorentz scalar product
gp( . , . ) on the tangent space TpM at p. The pair (M, g) is then said to
be a Lorentzian manifold. If in addition M is connected and (M, g) is
time-oriented, then (M, g) is said to be a spacetime.

Definitions of (Levi-Civita) connection, curvature, Ricci tensor and
curvature scalar are exactly as in Riemannian geometry.
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Causal character extended

A smooth curve α : I ⊆ R→ M [resp. a vector field X : M → TM]
on a Lorentzian manifold (M, g) is timelike (resp. spacelike, null) if
α′(t) [resp. X (p) ∈ TpM] has the corresponding causal character for
every t ∈ I [resp. p ∈ M]. If α′(t) is everywhere nonzero and
nonspacelike, then α is said to be nonspacelike (or causal).

A submanifold N ⊂ M is spacelike if the induced metric on N is
Riemannian.

A subset A ⊂ M is achronal if no two points of A can be connected
by a timelike curve. A Cauchy hypersurface is a subset S ⊂ M which
is met exactly once by every inextendible timelike curve in M. If a
Cauchy hyperurface exists, then (M, g) is said to be globally
hyperbolic.
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Geodesics and geodesic completeness defined

A smooth curve α : I ⊆ R→ M is a geodesic if ∇α′α′ = 0.

α is complete if we can extend its domain to R. Otherwise it is
incomplete.

The notion of geodesic completeness for null, timelike and spacelike
geodesics are logically independent (Geroch).

(M, g) is timelike [resp. null, spacelike] geodesically incomplete if
there exists at least one timelike [resp. null, spacelike] geodesic which
is incomplete.
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An example: Schwarzschild spacetime

Figure: The extended Schwarzschild-Kruskal spacetime
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Conformaly compactfied Schwarzschild-Kruskal spacetime

Figure: Schwarzschild-Kruskal spacetime: Penrose diagram
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The Lorentzian Splitting Theorem
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A motivating example: Robertson-Walker spacetimes

A Robertson-Walker spacetime is of the form
((a, b)× S ,−dt2 + f (t)2h), where −∞ ≤ a < b ≤ +∞,
f : (a, b)→ (0,+∞) a positive smooth function and (S , h) is a
Riemannian space form, i.e., a connected simply connected
geodesically complete Riemannian manifold of constant curvature.

Such spacetimes are timelike geodesically incomplete if a > −∞
and/or b < +∞, and null geodesically incomplete if
limt→a+

∫ c
t f (s)ds and/or limt→b−

∫ t
c f (s)ds are finite.

In General Relativity, these spacetimes are used as idealized models
for the universe as a whole. Singularities are interpreted as the big
bang and/or the big crunch.
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Space forms

Figure: Space forms: sphere, euclidean or hyperbolic space.
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The Big Bang

Figure: The Big bang
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The Hawking-Penrose singularity theorem

Theorem

[ Hawking & Penrose (1970)] Let (Mn, g) be a spacetime, with n ≥ 3.
Assume that:

i) (M, g) is chronological, i.e., has no closed timelike curves.

ii) (M, g) satisfies the nonspacelike generic condition.

iii) Ric(v , v) ≥ 0, ∀v ∈ TM timelike.

iv) There exists an achronal, spacelike, connected, compact hypersurface
without boundary S ⊂ M.

Then some causal geodesic in (M, g) is incomplete.
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The Lorentzian splitting theorem

Theorem

[Galloway, Horta, Beem, Erhlich, Markovsen, ...] Let (Mn, g) be a
spacetime, with n ≥ 3. Assume that:

i) (M, g) is either globally hyperbolic or timelike geodesically complete.

ii) (M, g) has a timelike geodesic line.

iii) Ric(v , v) ≥ 0, ∀v ∈ TM timelike.

Then (M, g) splits isometrically as (R× S ,−dt2 + h), where (S , h) is a
complete Riemannian manifold.

Lorentzian Geometry Rigidity of geodesic completeness in Lorentzian geometry



Motivation
Preliminaries

Generalities about spacetimes
Rigidity I: the Lorentzian splitting

Rigidity in stationary and Brinkmann spacetimes
Brinkmann rigidity: outline of Proof

Open problem: the Bartnik conjecture

Conjecture

[R. Bartnik, 1988] Let (Mn, g) be a spacetime, with n ≥ 2. Assume that:

i) (M, g) is globally hyperbolic with a compact Cauchy hypesurface.

ii) (M, g) is timelike geodesically complete.

iii) Ric(v , v) ≥ 0, ∀v ∈ TM timelike.

Then (M, g) splits isometrically as (R× S ,−dt2 + h), where (S , h) is a
compact Riemannian manifold.

Recent progress towards proving this conjecture has been made by G.
Galloway and C. Vega.
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Rigidity of stationary and Brinkmann
spacetimes
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Definition

A spacetime (M, g) is said to be

i) stationary if there exists a complete timelike Killing vector field
X ∈ Γ(TM),

ii) Brinkmann if there exists a complete null parallel vector field
X ∈ Γ(TM), i.e., ∇X = 0.

Stationary spacetimes have important application in black hole physics,
while certain Brinkmann spacetimes model an idealized class of
gravitational wave solutions in GR.

Lorentzian Geometry Rigidity of geodesic completeness in Lorentzian geometry



Motivation
Preliminaries

Generalities about spacetimes
Rigidity I: the Lorentzian splitting

Rigidity in stationary and Brinkmann spacetimes
Brinkmann rigidity: outline of Proof

Anderson’s rigidity of stationary spacetimes

Theorem

[M. Anderson (2000)] Any geodesically complete chronological Ricci-flat
4-d stationary spacetime is isometric to (a quotient of) Minkowski
spacetime.

Query: is there an analogue of this result for Brinkmann spacetimes?

Answer: There exists a conjectural, partially proven analogue!
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Plane waves

Definition

A spacetime (Mn+2, g) is said to be a (standard) pp-wave if M = Rn+2

with metric

g = 2du(dv + H(u, x)du) +
n∑

i ,j=1

dx2i ,

where X = ∂v is a null parallel vector field. If H (the potential) does not
depend of u, the pp-wave is said to be autonomous. Moreover, if

H(u, x) =
n∑

i ,j=1

aij(u)x ix j ,

the corresponding pp-wave is called a plane wave.
Lorentzian Geometry Rigidity of geodesic completeness in Lorentzian geometry
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The Ehlers-Kundt conjecture

Conjecture

[Ehlers and Kundt (1962)] Any geodesically complete Ricci-flat 4-d
pp-wave is a plane wave.

We will instead consider an alternative version with stronger assumptions:

Brinkmann Rigidity Theorem

[IPCS, J.L. Flores, J. Herrera’16] Let (M, g) be a 4-d strongly causal,
geodesically complete, Ricci-flat transversally Killing Brinkmann
spacetime. Then, the universal covering spacetime (M, g) of (M, g) is
isometric to a plane wave.
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RESULTS II:

A concrete situation where this result applies is when the Brinkmann
spacetime is an autonomous pp-wave. In this case the pp-wave is
indeed transversally Killing. Therefore, we deduce the following
version of the Ehlers-Kundt conjecture.

Corollary: Autonomous Ehlers-Kundt

[IPCS, J.L. Flores, J. Herrera ’16] Every geodesically complete, strongly
causal, autonomous, Ricci-flat, 4-dimensional pp-wave is a
Cahen-Wallach space.

A Cahen-Wallach space is an indecomposable, solvable geodesically
complete symmetric Lorentzian manifold. These were classified by M.
Cahen and N. Wallach in 1970.
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Outline of Proof

Geodesic completeness implies that X is complete, so it has a global
flow φ : R×M → M.

The flow φ is an (isometric) R-action, which by virtue of strong
causality is free and proper.

Since Y is complete and commutes with X , its flow ϕ together with
φ defines an R2-action Φ which is also free and proper.

M is then a (trivial) principal R2-bundle over the (smooth) quotient
Q := M/Φ. In particular M ' R2 × Q.

The metric splits accordingly. Passing to the covering and using
Ricci-flatness we show that Q is Euclidean and the distribution
X⊥ ∩ Y⊥ is integrable.
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Outline of Proof
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Definition:

A function F : Rn → R is at most quadratic if there exist numbers
a, b > 0 such that

F(x) ≤ a‖x‖2 + b, ∀x ∈ Rn.

Note that if a function F : Rn → R is not at most quadratic, then
there exists a sequence {xk}k in Rn for which

F(xk) > k‖xk‖2 + k, ∀k ∈ N,

and, in particular, ‖xk‖ → +∞ as k → +∞.

Clearly, if F remains bounded above by a polynomial of degree at
most 2 outside a compact subset of Rn then F is at most quadratic.
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The following Lemma is key.

Lemma 1

[H.P. Boas and R.P. Boas, ’88] A harmonic function F : Rn → R bounded
from one side by a polynomial of degree m is also a polynomial of degree
at most m. In particular, if F is at most quadratic, then there exist
numbers aij , bj ∈ R (i , j ∈ {1, . . . , n}) such that

F(x) =
n∑

i ,j=1

aijx
ix j +

n∑
j=1

bjx
j + F(0).
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Lemma 2

Let Ω ⊆ C ≡ R2 be an open set containing 0, and let F : Ω→ R be a
harmonic function such that F(0) = 0. Then, for each R > 0 such that
BR(0) ⊂ Ω, and for each p ∈ ∂BR(0), there exists a piecewise smooth
curve z : [0, 1]→ BR(0) such that

i) z(0) = z(1) = 0 and z(t0) = p for some t0 ∈ (0, 1),

ii)
∫ 1
0 F(z(t))dt ≥ 1

5F(p), and

iii)
∫ 1
0 ‖ż(t)‖2dt ≤ 50π2R2.
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And now, for something NOT completely different....

We can then assume without loss of generality that (M, g) is a
pp-wave.

In particular, we have global coordinates {u, v , x , y} for which g has
the expression

g = 2du(dv + H(u, x , y)du) + dx2 + dy2,

with H harmonic in x , y .

We wish to show that H is quadratic in the coordinates x , y .
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Assume then, by way of contradiction, that H is not quadratic. Since
−H is spatially harmonic, due to Lemma 1 −H can not be at most
quadratic in x , y . Therefore we can pick a sequence pk = (xk , yk) in
R2 for which

−H(u, pk) > k‖pk‖2 + k, ∀k ∈ N (1)

and Rk := ‖pk‖ → +∞ as k → +∞.
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Basic strategy: We show the existence of some open set U0
containing the origin (0, 0, 0, 0) of M ≡ R4 and timelike curve
segments with endpoints arbitrarily close to the origin, such that they
are not contained in U0, in violation of our assumption of strong
causality for (M, g).

This contradiction then yields that H is indeed quadratic, which in
turn establishes the theorem.

For any two numbers ∆,E > 0 and for each k ∈ N, we can define the
curve ΓE

k : [0, 1]→ R4 given, for each t ∈ [0, 1], for the form

ΓE
k (t) := (V E

k (t),∆t,Zk(t)),

where Zk(t) is chosen using Lemma 2, and V E
k (t) is chosen to make

ΓE
k be timelike curve, with

g(Γ̇E
k , Γ̇

E
k ) = −E .
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Consider the smooth functions hk : E ∈ (0,+∞) 7→ V E
k (1) ∈ R

(k ∈ N). For each k ∈ N, hk(E ) < 0 for large enough E . However,
collecting appropriate estimates we get

hk(1) ≥ (
k

5
∆− C (α,∆)

2∆
)R2

k +
k

5
− 1

2∆
.

It is clear from this inequality that we can pick k0 ∈ N for which
hk0(1) > 0, and since hk0 is continuous, there exists E0 > 0 for which
hk0(E0) = 0.

We then conclude that ΓE0
k0

is a timelike curve such that

ΓE0
k0

(0) = (0, 0, 0, 0) and ΓE0
k0

(1) = (0,∆, 0, 0) ∈ U0 but

ΓE0
k0

(tk0) = (V E0
k0

(tk0),∆tk0 , pk0) /∈ U0, for some t0 ∈ [0, 1] as desired,
thus completing the proof.
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