Some results of analyticity and regularity for second order difference equations

Filipe Dantas dos Santos

July 7, 2017

Departamento de Matemática - UFS

Apresentação para o Colóquio do Departamento de Matemática da UFSC

ション ふゆ アメリア メリア しょうくしゃ

In

- S. Blunck, Studia Math (2001),
- S. Blunck, Journal of Functional Analysis (2001),

the concept of maximal $\ell^p\text{-}\text{regularity}\ (1\leq p\leq\infty)$ was introduced in an analogous way to the continuous case studied in

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

• L. Weis, Mathematische Annalen (2001).

In

- S. Blunck, Studia Math (2001),
- S. Blunck, Journal of Functional Analysis (2001),

the concept of maximal $\ell^p\text{-}\text{regularity}\ (1\leq p\leq\infty)$ was introduced in an analogous way to the continuous case studied in

• L. Weis, Mathematische Annalen (2001).

Following Blunck, let X be a (complex) Banach space and $A \in \mathcal{B}(X)$. We consider the first order Cauchy problem

$$\begin{cases} u_{n+1} = Au_n + f_n, n \in \mathbb{Z}^+ \\ u_0 = x \in \mathbb{X}. \end{cases}$$
(1)

We denote by u(x, f) the solution of (1) with initial condition $u_0 = x \in \mathbb{X}$ and inhomogeneous term $f : \mathbb{Z}^+ \to \mathbb{X}$. Let $(\Delta v)_n = v_{n+1} - v_n$.

Some results of analyticity and regularity for second order difference equations History of the Problem

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Maximal Regularity

Some results of analyticity and regularity for second order difference equations History of the Problem

Maximal Regularity

We say that $A \in \mathcal{B}(\mathbb{X})$ has maximal ℓ^p -Regularity if the operator $f \mapsto \Delta u(0, f)$ is well defined and continuous on $\ell^p(\mathbb{Z}^+, \mathbb{X})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Maximal Regularity

We say that $A \in \mathcal{B}(\mathbb{X})$ has maximal ℓ^p -Regularity if the operator $f \mapsto \Delta u(0, f)$ is well defined and continuous on $\ell^p(\mathbb{Z}^+, \mathbb{X})$.

In

• S. Blunck, Studia Math (2001),

it was shown that every powerbounded operator $A \in \mathcal{B}(\mathbb{X})$ (that is, $\sup_{n \in \mathbb{Z}^+} ||A^n|| < \infty$) that has Maximal ℓ^p -regularity $(1 is analytic in Ritt sense (that is, <math>n \mapsto n(A - I)A^n$ is bounded), which can be classified as follows:

ション ふゆ アメリア メリア しょうくしゃ

Some results of analyticity and regularity for second order difference equations History of the Problem

◆□ > < 個 > < E > < E > E 9 < 0</p>

Theorem - Blunck (2001)

Theorem - Blunck (2001)

Let $A \in \mathcal{B}(\mathbb{X})$. The following conditions are equivalent:

- a) A is powerbounded and analytic;
- b) $t \mapsto e^{t(A-I)}$ is a bounded analytic semigroup and $\sigma(A) \subset \mathbb{D}(0,1) \cup \{1\};$
- c) $\{(\lambda 1)R(\lambda, A); |\lambda| > 1\}$ is bounded;
- d) A is powerbounded and $\{(\lambda 1)R(\lambda, A); |\lambda| = 1, \lambda \neq 1\}$ is bounded.

ション ふゆ く 山 マ チャット しょうくしゃ

Characterization of maximal ℓ^p -Regularity - Blunck (2001)

Characterization of maximal ℓ^p -Regularity - Blunck (2001)

Let X be an UMD space and let $A \in \mathcal{B}(X)$ be powerbounded and analytic. The following conditions are equivalent:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

a) A has maximal
$$\ell^p$$
-regularity ($p \in (1,\infty)$);

b)
$$\{(\lambda - 1)R(\lambda, A); |\lambda| = 1, \lambda \neq 1\}$$
 is *R*-bounded;

c)
$$\{A^n, n(A-I)A^n; n \in \mathbb{Z}^+\}$$
 is *R*-bounded.

Important fact

Characterization of maximal ℓ^p -Regularity - Blunck (2001)

Let X be an UMD space and let $A \in \mathcal{B}(X)$ be powerbounded and analytic. The following conditions are equivalent:

a) A has maximal
$$\ell^p$$
-regularity ($p \in (1,\infty)$);

b)
$$\{(\lambda - 1)R(\lambda, A); |\lambda| = 1, \lambda \neq 1\}$$
 is *R*-bounded;

c)
$$\{A^n, n(A-I)A^n; n \in \mathbb{Z}^+\}$$
 is *R*-bounded.

Important fact

A detailed study on the analyticity of the functions $\lambda \mapsto R(\lambda, A)$ and $\lambda \mapsto (\lambda - 1)R(\lambda, A)$ is of fundamental importance in the characterization of maximal regularity above.

O Estudo de equações de segunda ordem

In

• C. Cuevas et. al., Journal of Diff. Eq. Appl. (2007),

it was studied maximal $\ell^p\text{-}\mathrm{regularity}$ of the equation

$$\begin{cases} \Delta^2 u_n - (I - T) = f_n, n \in \mathbb{Z}^+ \\ u_0 = 0 \\ \Delta u_0 = 0, \end{cases}$$
(2)

where $\mathcal{T}\in\mathcal{B}(\mathbb{X})$ is powerbounded and analytic:

Characterization of maximal ℓ^p -regularity - Cuevas (2007)

O Estudo de equações de segunda ordem

ln

• C. Cuevas et. al., Journal of Diff. Eq. Appl. (2007),

it was studied maximal $\ell^{p}\text{-}\mathsf{regularity}$ of the equation

$$\begin{cases} \Delta^2 u_n - (I - T) = f_n, n \in \mathbb{Z}^+ \\ u_0 = 0 \\ \Delta u_0 = 0, \end{cases}$$
(2)

where $\mathcal{T} \in \mathcal{B}(\mathbb{X})$ is powerbounded and analytic:

Characterization of maximal ℓ^p -regularity - Cuevas (2007)

Let X be an UMD space, $p \in (1, \infty)$ and assume that $T \in \mathcal{B}(X)$ is powerbounded and analytic. The following conditions are equivalent:

a) T has maximal ℓ^p -regularity of order 2;

b) $\{(\lambda - 1)^2 R((\lambda - 1)^2, I - T); |\lambda| = 1, \lambda \neq 1\}$ is *R*-bounded.

Some results of analyticity and regularity for second order difference equations

Objetivo

Objective

Objective

Our objective is to obtain analytical results for a special complex function related to the second-order equation

$$\begin{cases}
 u_{n+2} = Bu_{n+1} + Au_n + f_n, n \in \mathbb{Z}^+ \\
 u_0 = x \in \mathbb{X} \\
 \Delta u_0 = y \in \mathbb{X},
\end{cases}$$
(3)

where $A, B \in \mathcal{B}(\mathbb{X})$, and use them to study maximal ℓ^{p} -regularity for equation (3).

Remark

If B = 2I and A = -T, the equation (3) becomes (2).

We denote by u(x, y, f) the solution of (3) with initial conditions $u_0 = x$ and $\Delta u_0 = y$ and inhomogeneous term f.

ション ふゆ アメリア メリア しょうくしゃ

(A, B)-Sine Family

We denote by u(x, y, f) the solution of (3) with initial conditions $u_0 = x$ and $\Delta u_0 = y$ and inhomogeneous term f.

(A, B)-Sine Family

$$\begin{array}{l} (A,B)\text{-sine family } (S(n))_{n\in\mathbb{Z}^+}\subset\mathcal{B}(\mathbb{X})\text{: }S(n)x=u_n(0,x,0).\\ (A,B) \text{ is the generator of }n\mapsto S(n).\\ (A,B)\text{-cosine family } (C(n))_{n\in\mathbb{Z}^+}\subset\mathcal{B}(\mathbb{X})\text{:}\\ C(n)=S(n+1)x+S(n)(B+I)x. \end{array}$$

In order to obtain a integral representation of these families, we consider the function $\lambda \mapsto H(\lambda)^{-1}$, where $H(\lambda) = z^2 - zB - A$ and the sets $\rho(A, B) = \{z \in \mathbb{C}; H(\lambda)^{-1} \in \mathcal{B}(\mathbb{X})\}$ and $\sigma(A, B) = \mathbb{C} \setminus \rho(A, B)$.

Lema

We denote by u(x, y, f) the solution of (3) with initial conditions $u_0 = x$ and $\Delta u_0 = y$ and inhomogeneous term f.

(A, B)-Sine Family

$$\begin{array}{l} (A,B)\text{-sine family } (S(n))_{n\in\mathbb{Z}^+}\subset\mathcal{B}(\mathbb{X})\colon S(n)x=u_n(0,x,0).\\ (A,B) \text{ is the generator of } n\mapsto S(n).\\ (A,B)\text{-cosine family } (C(n))_{n\in\mathbb{Z}^+}\subset\mathcal{B}(\mathbb{X})\colon\\ C(n)=S(n+1)x+S(n)(B+I)x. \end{array}$$

In order to obtain a integral representation of these families, we consider the function $\lambda \mapsto H(\lambda)^{-1}$, where $H(\lambda) = z^2 - zB - A$ and the sets $\rho(A, B) = \{z \in \mathbb{C}; H(\lambda)^{-1} \in \mathcal{B}(\mathbb{X})\}$ and $\sigma(A, B) = \mathbb{C} \setminus \rho(A, B)$.

Lema

 $\sigma(A, B)$ is compact. Moreover, $\lambda \mapsto H(\lambda)^{-1}$ is analytic in $\rho(A, B)$ and there exists R > 0 such that $\lambda \mapsto \lambda H(\lambda)^{-1} \in H^{\infty}(\mathbb{C} \setminus \overline{\mathbb{D}(0, R)}).$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Integral representation

Integral representation

•
$$S(n) = \frac{1}{2\pi i} \int_{\Gamma} z^n H(z)^{-1} dz;$$

• $C(n) = \frac{1}{2\pi i} \int_{\Gamma} z^n H(z)^{-1} [(z+1)I - B] dz,$

where $\Gamma \subset \rho(A, B)$ is a path around $z_0 = 0$ and $\sigma(A, B)$.

Parameter Variation Formula

Integral representation

•
$$S(n) = \frac{1}{2\pi i} \int_{\Gamma} z^n H(z)^{-1} dz;$$

• $C(n) = \frac{1}{2\pi i} \int_{\Gamma} z^n H(z)^{-1} [(z+1)I - B] dz,$

where $\Gamma \subset \rho(A, B)$ is a path around $z_0 = 0$ and $\sigma(A, B)$.

Parameter Variation Formula

Let $A, B \in \mathcal{B}(\mathbb{X})$. The unique solution for (3) is given by

$$u_n(x,y,f) = C(n)x + S(n)y + (S*f)_{n-1}, n \in \mathbb{Z}^+ \setminus \{0\}$$

where $(S * f)_n = \sum_{k=0}^{n} S(n-k)f_k$.

The regions $\sum (c, \theta) \in \mathcal{D}(c, \eta)$

In order to obtain analyticity results for the family $n \mapsto S(n)$, we consider the following regions:

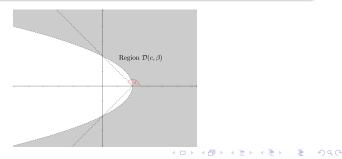
- $\sum_{i=1}^{n} (c, \theta) = \{z \in \mathbb{C}; 0 < |arg(z c)| < \theta\}$, where $\theta \in (0, \pi]$ and c > 0 (sector with center c and angle θ);
- $\mathcal{D}(c,\eta) = \{z \in \mathbb{C}; Re(z) c > -\eta^2 Im(z)^2\}$ (parabolic sector with center c > 0).

ション ふゆ く 山 マ チャット しょうくしゃ

The regions $\sum (c, \theta) \in \mathcal{D}(c, \eta)$

In order to obtain analyticity results for the family $n \mapsto S(n)$, we consider the following regions:

- $\sum_{i=1}^{n} (c, \theta) = \{z \in \mathbb{C}; 0 < |arg(z c)| < \theta\}$, where $\theta \in (0, \pi]$ and c > 0 (sector with center c and angle θ);
- $\mathcal{D}(c,\eta) = \{z \in \mathbb{C}; Re(z) c > -\eta^2 Im(z)^2\}$ (parabolic sector with center c > 0).



Proposition - Analyticity of (A, B)-Sine family (version 1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition - Analyticity of (A, B)-Sine family (version 1)

Assume that $\{z \in \mathbb{C}; Re(z) \ge c, z \ne c\} \subset \rho(A, B)$ and $\|(\lambda - c)H(\lambda)^{-1}\|_{\mathcal{B}(\mathbb{X})} \le M$ on $\{z \in \mathbb{C}; Re(z) \ge c, z \ne c\}$ for some c > 0 and some M > 0. Then, there exist $\theta \in (\frac{\pi}{2}, \pi)$ and L > 0 such that $H(\cdot)^{-1}$ admits an analytic extension on $\sum (c, \theta)$ and

$$\|(\lambda - c)H(\lambda)^{-1}\|_{\mathcal{B}(\mathbb{X})} \leq L$$

うして ふゆう ふほう ふほう うらう

for all $\lambda \in \sum (c, \theta)$.

Proposition - Analyticity of (A, B)-Sine family (version 2)

Proposition - Analyticity of (A, B)-Sine family (version 2)

Assume that $\{z \in \mathbb{C}; \operatorname{Re}(z) \geq c, z \neq c\} \subset \rho(A, B)$ and $\|(\lambda - c)^2 H(\lambda)^{-1}\|_{\mathcal{B}(\mathbb{X})} \leq M$ on $\{z \in \mathbb{C}; \operatorname{Re}(z) \geq c, z \neq c\}$ for some c > 0 and some M > 0. Then, for each $\delta > 0$ and $\beta \in \left(0, \frac{1}{M_{\delta}}\right)$, where

$$M_{\delta} = max \left\{ \delta^2 + M[1 + \|A\|_{\mathcal{B}(\mathbb{X})}], M\delta + M[1 + \|A\|_{\mathcal{B}(\mathbb{X})}] \right\},$$

 $H(\cdot)^{-1}$ admits an analytic extension on $\mathcal{D}(c,\beta) \cap \{z \in \mathbb{C}; |Im(z)| \le \delta\}$. In addition, there exists $L = L(\delta, \beta(\delta)) > 0$ such that

$$\|(\lambda - c)^2 H(\lambda)^{-1}\|_{\mathcal{B}(\mathbb{X})} \le L$$

for all $\lambda \in \mathcal{D}(c,\beta) \cap \{z \in \mathbb{C}; |Im(z)| \le \delta\}.$

The concept of R-boundedness was introduced - implicitly and explicitly, respectively - in

- J. Bourgain, Arkiv Math (1983)
- E. Berkson, T.A. Gillespie, Studia Math (1994).

R-Boundedness

The concept of R-boundedness was introduced - implicitly and explicitly, respectively - in

- J. Bourgain, Arkiv Math (1983)
- E. Berkson, T.A. Gillespie, Studia Math (1994).

R-Boundedness

A set $\tau \subset \mathcal{B}(\mathbb{X})$ is *R*-bounded if there exists C > 0 such that for all $n \in \mathbb{Z}^+$, $T_1, \cdots, T_n \in \tau$ and $x_1, \cdots x_n \in \mathbb{X}$,

$$\int_0^1 \left\| \sum_{k=0}^n r_k(t) T_k x_k \right\| dt \le C \int_0^1 \left\| \sum_{k=0}^n r_k(t) x_k \right\| dt$$

where $(r_k)_{k \in \mathbb{Z}^+}$ is a sequence of random functions $r_k : [0, 1] \rightarrow \{1, -1\}.$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Some facts about *R*-boundedness

Some facts about *R*-boundedness

- *R*-boundeness ⇒ boundedness. The reciprocal is true in Hilbert spaces;
- If τ is *R*-bounded, then $\overline{\tau}$ is *R*-bounded;
- If τ is *R*-bounded, then the absolute convex hull of τ is *R*-bounded.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition - R-Analyticity of (A, B)-Sine family (version 1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition - R-Analyticity of (A, B)-Sine family (version 1)

Assume that $\{z \in \mathbb{C}; Re(z) \ge c, z \ne c\} \subset \rho(A, B)$ and $\|(\lambda - c)H(\lambda)^{-1}\|_{\mathcal{B}(\mathbb{X})} \le M$ on $\{z \in \mathbb{C}; Re(z) \ge c, z \ne c\}$ for some c > 0 and M > 0. If $\mathcal{U} = \{(\lambda - c)H(\lambda)^{-1}; Re(\lambda) = c, \lambda \ne c\}$ is *R*-bounded, then the set

$$\left\{ (\lambda - c) H(\lambda)^{-1}; \lambda \in \sum (c, \gamma)
ight\}$$

うして ふゆう ふほう ふほう うらう

is *R*-bounded for some $\gamma \in (\frac{\pi}{2}, \pi)$.

Proposition - R-Analyticity of (A, B)-Sine family (version 2)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣�?

Proposition - R-Analyticity of (A, B)-Sine family (version 2)

Assume that $\{z \in \mathbb{C}; \operatorname{Re}(z) \geq c, z \neq c\} \subset \rho(A, B)$ and $\|(\lambda - c)^2 H(\lambda)^{-1}\|_{\mathcal{B}(\mathbb{X})} \leq M$ on $\{z \in \mathbb{C}; \operatorname{Re}(z) = c, z \neq c\}$ for some c > 0 and M > 0. If $\mathcal{U} = \{(\lambda - c)^2 H(\lambda)^{-1}; \operatorname{Re}(\lambda) = c, \lambda \neq c\}$ is *R*-bounded, then, for each $\delta > 0$, the set

$$\left\{ (\lambda - c)^2 H(\lambda)^{-1}; \lambda \in \mathcal{D}(c, \gamma), |\mathit{Im}(z)| \leq \delta \right\}$$

is *R*-bounded for all $\gamma \in \left(0, \frac{1}{N_{\delta}}\right)$, where $N_{\delta} = max\{\delta^{2} + R(\mathcal{U})[||A||_{\mathcal{B}(\mathbb{X})} + 1], \delta R(\mathcal{U}) + R(\mathcal{U})[||A||_{\mathcal{B}(\mathbb{X})} + 1]\}.$

うして ふゆう ふほう ふほう うらう

The concept of UMD space was introduced in

• B. Maurey, G. Pisier , Studia Math (1976).

For simplicity, We use the characterization given in

• J. Bourgain, Arkiv Math (1983)

UMD Space

The concept of UMD space was introduced in

- B. Maurey, G. Pisier , Studia Math (1976).
- For simplicity, We use the characterization given in
 - J. Bourgain, Arkiv Math (1983)

UMD Space

A Banach space X is an UMD space if the Hilbert Transform $H: S(\mathbb{R}, X) \to S(\mathbb{R}, X)$ given by

$$Hf(t) = rac{1}{\pi} \int_{-\infty}^{+\infty} rac{f(s)}{s-t} ds$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

admits a bounded extension on $L^p(\mathbb{R},\mathbb{X})$ for some $p\in(1,\infty).$

The following versions of maximal regularity of the pair (A, B) is analogous to Blunck's definition:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Definition - Maximal Regularity of (A, B)

The following versions of maximal regularity of the pair (A, B) is analogous to Blunck's definition:

Definition - Maximal Regularity of (A, B)

We say that (A, B) has maximal ℓ^p -regularity of order $m \in \{1, 2\}$ if the operator $f \mapsto \Delta^m u(0, 0, f)$ is well defined and continuous on $\ell^p(\mathbb{Z}^+, \mathbb{X})$.

ション ふゆ く 山 マ チャット しょうくしゃ

Remark

The following versions of maximal regularity of the pair (A, B) is analogous to Blunck's definition:

Definition - Maximal Regularity of (A, B)

We say that (A, B) has maximal ℓ^p -regularity of order $m \in \{1, 2\}$ if the operator $f \mapsto \Delta^m u(0, 0, f)$ is well defined and continuous on $\ell^p(\mathbb{Z}^+, \mathbb{X})$.

Remark

Using Parameter Variation Formula, the problem of maximal ℓ^p -regularity of order m of (A, B) is equivalent to show that the operator $f \mapsto \Delta^m S * f$ belongs to $\mathcal{B}(\ell^p(\mathbb{Z}^+, \mathbb{X}))$.

Some results of analyticity and regularity for second order difference equations Maximal Regularity

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Theorem

Theorem

Let $A, B \in \mathcal{B}(\mathbb{X})$, $p \in [1, \infty]$ and suppose that $S : \mathbb{Z}^+ \to \mathcal{B}(\mathbb{X})$ is bounded. If (A, B) has maximal ℓ^p -regularity of order $m \in \{1, 2\}$, then:

a) $n \|\Delta^m S(n)x\|_{\mathbb{X}} \leq L \|x\|_{\mathbb{X}}$ for some L > 0 and for all $x \in \mathbb{X}$ and $\{\lambda \in \mathbb{C}; |\lambda| \geq 1, \lambda \neq 1\} \subseteq \rho(A, B);$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

b) if $p \in (1, \infty)$, there exists M > 0 such that $||(\lambda - 1)^m H(\lambda)^{-1}||_{\mathcal{B}(\mathbb{X})} \leq M$, for all $|\lambda| > 1$.

Some results of analyticity and regularity for second order difference equations Maximal Regularity

Characterization of maximal ℓ^p -regularity of order 1

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

Characterization of maximal ℓ^p -regularity of order 1

Let X be an UMD space, $A, B \in \mathcal{B}(X)$, $p \in (1, \infty)$ and assume that $S : \mathbb{Z}^+ \to \mathcal{B}(X)$ is bounded. In addition, suppose that exists M > 0 such that $||(\lambda - 1)H(\lambda)^{-1}||_{\mathcal{B}(X)} \leq M$, for all $|\lambda| > 1$. The following conditions are equivalent:

うして ふゆう ふほう ふほう しょうく

- a) (A, B) has maximal ℓ^{p} -regularity of order 1;
- b) $\{z \in \mathbb{C}; |z| = 1, z \neq 1\} \subset \rho(A, B)$ and the set $\{(\lambda 1)H(\lambda)^{-1}; |\lambda| = 1, \lambda \neq 1\}$ is *R*-bounded.

c) $\{S(n), \Delta S(n); n \in \mathbb{Z}^+\}$ is *R*-bounded.

The study of maximal regularity of order 1 is more complicated. In the special case B = 2I, we have the following results:

Characterization of maximal ℓ^{p} -regularity of order 2 of (A, 2I)

The study of maximal regularity of order 1 is more complicated. In the special case B = 2I, we have the following results:

Characterization of maximal ℓ^{p} -regularity of order 2 of (A, 2I)

Let \mathbb{X} be an UMD space, $A \in \mathcal{B}(\mathbb{X})$, $p \in (1, \infty)$ and assume that $S : \mathbb{Z}^+ \to \mathcal{B}(\mathbb{X})$ is bounded. In addition, suppose that exists M > 0 such that $\left| \left| (\lambda - 1)^2 H(\lambda)^{-1} \right| \right|_{\mathcal{B}(\mathbb{X})} \leq M$, for all $|\lambda| > 1$ and

$$\sup\left\{\left|\left|(\lambda-1)^{2}H(\lambda)^{-1}\right|\right|_{\mathcal{B}(\mathbb{X})}; z=1+\eta i, \eta \in [-r,0) \cup (0,r]\right\}\right.$$
$$\leq \frac{2}{1+||\mathcal{A}||_{\mathcal{B}(\mathbb{X})}} \quad (4)$$

for some r > 0. The following conditions are equivalent:

a)
$$(A, 2I)$$
 has maximal ℓ^p -regularity;
b) $\{z \in \mathbb{C}; |z| = 1, z \neq 1\} \subset \rho(A, B)$ and the set
 $\{(\lambda - 1)^2 H(\lambda)^{-1}; |\lambda| = 1, \lambda \neq 1\}$ is *R*-bounded.

Sufficient Conditions for maximal regularity of order 2 of (A, 2I)Let X be an UMD space, $A \in \mathcal{B}(X)$, $p \in (1, \infty)$ and assume that

 $S : \mathbb{Z}^+ \to \mathcal{B}(\mathbb{X})$ is bounded. If $\mathcal{R}(\{S(n); n \ge n_0\}) \le \frac{1}{8(1 + ||\mathcal{A}||_{\mathcal{B}(\mathbb{X})})}$ for some $n_0 \in \mathbb{Z}^+$ and $n \mapsto n\Delta^2 S(n)$ is bounded, then $(\mathcal{A}, 2I)$ has

ション ふゆ く は マ く ほ マ く し マ

maximal ℓ^p -regularity of order 2 for all $p \in (1, \infty)$.

Some results of analyticity and regularity for second order difference equations Subpositive Analytic Contractions on L^q

We consider $L^q = L^q(\Omega, \mathbb{C})$, where $\Omega \subseteq \mathbb{R}^N$, $q \in (1, \infty)$.

Subpositive contraction

Some results of analyticity and regularity for second order difference equations Subpositive Analytic Contractions on L^q

We consider $L^q = L^q(\Omega, \mathbb{C})$, where $\Omega \subseteq \mathbb{R}^N$, $q \in (1, \infty)$.

Subpositive contraction

A linear operator $T \in \mathcal{B}(L^q)$ is a subpositive contraction if there exists a contraction S such that |T(f)| = S(|f|).

ション ふゆ アメリア メリア しょうくしゃ

Example

Some results of analyticity and regularity for second order difference equations Subpositive Analytic Contractions on L^q

We consider $L^q = L^q(\Omega, \mathbb{C})$, where $\Omega \subseteq \mathbb{R}^N$, $q \in (1, \infty)$.

Subpositive contraction

A linear operator $T \in \mathcal{B}(L^q)$ is a subpositive contraction if there exists a contraction S such that |T(f)| = S(|f|).

Example

Every integral operator $T(f)(x) = \int_{\Omega} K(x, y) f(y) dy$, with $\sup |K(x, y)| \le 1$, is a subpositive contraction.

It is well known that if $T \in \mathcal{B}(\mathbb{X})$ is powerbounded and analytic, then $\|(\lambda - 1)R(\lambda, T)\| \leq M$ for all $\lambda \in \sum (1, \theta)$, $\theta \in (\frac{\pi}{2}, \pi)$.

Theorem

Some results of analyticity and regularity for second order difference equations Subpositive Analytic Contractions on L^q

We consider
$$L^q = L^q(\Omega, \mathbb{C})$$
, where $\Omega \subseteq \mathbb{R}^N$, $q \in (1, \infty)$.

Subpositive contraction

A linear operator $T \in \mathcal{B}(L^q)$ is a subpositive contraction if there exists a contraction S such that |T(f)| = S(|f|).

Example

Every integral operator $T(f)(x) = \int_{\Omega} K(x, y) f(y) dy$, with $\sup |K(x, y)| \le 1$, is a subpositive contraction.

It is well known that if $T \in \mathcal{B}(\mathbb{X})$ is powerbounded and analytic, then $\|(\lambda - 1)R(\lambda, T)\| \leq M$ for all $\lambda \in \sum (1, \theta)$, $\theta \in (\frac{\pi}{2}, \pi)$.

Theorem

If $T \in \mathcal{B}(L^q)$, $q \in (1, \infty)$, is a subpositive analytic contration, with angle $\theta \in (\frac{\pi}{2}, \pi)$ and $\frac{e^{2it}}{be^{it} + a} \in \sum (1, \theta)$, then the pair (aT, bT) has maximal ℓ^p -regularity of order 1, for all $p \in (1, \infty)$.

Some results of analyticity and regularity for second order difference equations

References

References

- 1 BLUNCK, S. Analyticity and discrete maximal regularity on ℓ^p -spaces. Journal of Functional Analysis 183 (2001), 211-230.
- 2 BLUNCK, S. Maximal regularity of discrete and continuous time evolution equations. *Studia Mathematica 146* (2001), 157-176.
- 3 BOURGAIN, J. Some remarks on Banach spaces in which martingale difference sequences are unconditional. *Arkiv for Matematik 21* (1983), 163-168.
- 4 CUEVAS, C. ; LIZAMA, C. . Semilinear evolution equations on discrete time and maximal regularity. *Journal of Mathematical Analysis and Applications*, v. 361, p. 234-245, 2010.

Some results of analyticity and regularity for second order difference equations

MUITO OBRIGADO!!!

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○