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Lie algebras

A Lie algebra is vector space L over a field k with a bilinear map

L× L→ L, (x , y) 7→ [x , y ]

which

is skew, [x , y ] = −[y , x ]

satisfies the Jacobi identity,
[x , [y , z ]] + [z , [x , y ]] + [y , [z , x ]] = 0
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Examples

• R3 with the cross
product,

a× b = |a| |b| sin θ u

If we identify R3 with the space of skew-symmetric 3× 3 matrices

(a, b, c) 7→ A =

 0 b −a
−b 0 c
a −c 0


the cross product becomes the commutator of matrices,

(a, b, c)× (a′, b′, c ′) 7→ [A,A′] = AA′ − A′A

We denote this Lie algebra o(3).
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Note that if R is an orthogonal 3× 3 matrix RT R = I (i.e. an
element of the group O(3)), and we write

R = I + tA

for small t we have

I = RT R = (I+tAT )(I+tA) = I+t(AT+A)+O(t2) ⇒ AT = −A

So the elements of the Lie algebra o(3) are “infinitesimal rotations”

More generally, n × n matrices with entries in a field k make up a
Lie algebra (denoted gln(k)), and the corresponding group is
GLn(k) — the group of invertible n × n matrices
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Lie algebra homomorphisms

Given two Lie algebras L, L′, a Lie algebra homomophism
φ : L→ L′ is a linear map compatible with the brackets:

φ([x , y ]) = [φ(x), φ(y)]

Example:

L = gln(k), L′ = k with the trivial Lie algebra structure (zero
bracket)

φ(A) = tr(A) =
n∑

i=1

Aii

φ([A,B]) = tr(AB − BA) = 0

[φ(A), φ(B)] = tr(A) tr(B)− tr(B) tr(A) = 0
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Vector bundles

Given a differentiable manifold X and a vector space V , we can
take its cartesian product X × V , but we can also consider
“twisted” products: so B is a space with a projection π : B → X ,
and X has an open cover {Ui} such that

π−1(Ui ) ' Ui × V

If Ui ∩ Uj 6= ∅, the identifications

(Ui ∩ Uj)× V → (Ui ∩ Uj)× V

are required to be linear in their second argument, thus obtaining
maps (transition functions)

gij : Ui ∩ Uj → GLn(k)
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Example: the tangent bundle to the 2-sphere S2

Not a trivial bundle (i.e., TS2 6' S2 × R2)
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Notion of section: if U ⊂ X ,
a section s : U → B is a mor-
phism such that π ◦ s = id .

Sections of a tangent bundle are vector fields.

Vector fields act on functions as derivations: if in given local
coordinates (x1, . . . , nn) a vector field has components
(v1, . . . , vn), then

v(f ) =
n∑

i=1

v i
∂f

∂x i
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So one can consider the commutator of vector fields:

[u, v ](f ) = u(v(f ))− v(u(f ))

This is a first-order object, as

[u, v ](f ) =
n∑

i ,j=1

(
ui
∂v j

∂x i
− v i

∂uj

∂x i

)
∂f

∂x j

One can also consider bundles of Lie algebras: i.e., the “standard
fibre” V is a Lie algebra L, and the transition functions are Lie
algebra homomorphisms.

Examples: if B → X is a vector bundle, then End(B) is a bundle of
Lie algebras. The standard fibre is glk(n) if n = dimV .
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Lie algebroids

X : a differentiable manifold, or some other kind of geometric
space (complex manifold, analytic space, scheme...)

TX the tangent bundle

Lie algebroid: a vector bundle A with a morphism a : A→ TX (the
anchor) and a Lie bracket on the sections of A satisfying

[s, ft] = f [s, t] + a(s)(f ) t

Note that if s, t are sections of ker(a) then

[s, ft] = f [s, t]

i.e., ker(a) is a bundle of Lie algebras.
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Examples

A bundle of Lie algebras, with a = 0

TX , with a = id

Poisson structures, symplectic structures, etc.
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Foliations

A foliation F in a manifold X is an involutive subbundle of TX , i.e.:

it is a vector bundle on X which injects into TX

it is closed under the bracket, i.e.

u, v sections of F ⇒ [u, v ] is a section of F

By definition, a foliation is a Lie algebroid, with anchor given by
the injection F ↪→ TX

Foliations can be integrated, i.e., they are tangent to submanifolds
of X ; hence their name
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Examples

X = R2

v = −y i + x j

(Singular at the origin)
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x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

[eφ, eθ] = 1
r cot θ eφ

A = subbundle of TR3

generated by eφ, eθ
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Atiyah algebroid of a vector bundle

E vector bundle on a manifold X

DE: bundle of 1-st order differential operators on E with scalar
symbol

D(s)α =
∑
i ,β

A(x)αiβ
∂sβ

∂x i
+
∑
β

B(x)αβ s
β

D has scalar symbol if

A(x)αiβ = δαβ v
i (x)

Bracket: commutator of operators

Anchor: the symbol map, σ : D 7→ v

Exact sequence

0→ End (E)→ DE
σ−→ TX → 0
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Connections

Connection on E:

0 // End (E) // DE
σ // TX

//

∇
gg 0

σ ◦ ∇ = idTx

Curvature of a connection:

R(u, v) = [∇u,∇v ]−∇[u,v ]
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Lie algebroids as tangent objects

A grupoid is a small category G where al morphisms (arrows) are
isomorphisms

(a group is a groupoid with one object)

A Lie groupoid is a groupoid where

The sets M = Ob(G) and G = Mor(G) are manifolds

the source and target operations are submersions

the category operations

id : M → G, comp: G t×s G→ G

are differentiable
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id : M → G, t : G→ M

T tG =
⋃
p∈M

T (t−1(p)) ⊂ T G

A = id∗T tG

This is a vector bundle on M

Bracket is the commutator of left-invariant vector fields in T G

Anchor is the differential of the source map
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Summing up:

The notion of Lie algebroid generalizes both the notion of Lie
algebra, and that of tangent bundle. In a sense it is an
interpolation between the two.

Main examples are

Foliations, allowing for singularities

Poisson and symplectic structures

Atiyah algebroids (connections, curvatures etc.)

Tangent objects to Lie groupoids
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Of course this was just the tip of the iceberg: the basic definition
and a few examples.

The theory has a lot of structure, for example Lie algebroids give
rise to a rich cohomology theory (generalizing both the
Chevalley-Eilenberg cohomology of Lie algebras, and the de Rham
cohomology of manifolds – varieties – schemes).

This cohomology theory can be applied to study all the examples
cited in the previous slide
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