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Introduction

I Review quaternions and rotations.

I Extend to dual quaternions and rigid displacements.

I Study quadric is the group manifold.

I Some geometry of the Study quadric.



Quaternions

Quaternions invented by Hamilton on Monday 16th October 1843
in Dublin.

ijk = −1

General quaternion has the form,

q = a0 + a1i + a2j + a3k

where ai ∈ R are just numbers and i , j , k are the unit quaterions
which satisfy the relations,

i2 = j2 = k2 = −1

and
ij = −ji = k, jk = −kj = i , ki = −ki = j

Associative algebra generated by i , j , k .



Gibbs Relation

Given a quaternion q = a0 + a1i + a2j + a3k the scalar part of the
quaternion is a0 and the vector part is a1i + a2j + a3k. (This is
where the terms scalar and vector come from). Often write
quaternion as,

q = a0 + a

with a = a1i + a2j + a3k. Now multiplication of quaternions can
be written,

(a0 + a)(b0 + b) = (a0b0 − a · b) + (a0b + b0a + a× b)

Origin of dot and cross product.



Quaternion Conjugate

Similar to the complex conjugate,
with q = a0 + a1i + a2j + a3k , its conjugate is,

q− = a0 − a1i − a2j − a3k

Note that,
qq− = a20 + a21 + a22 + a23,

a real number.



Rotations

Rotations about vector v by angle θ is given by a quaternion,

r = cos
θ

2
+ sin

θ

2
v

The action of this of this rotation on a point, written as a vector,

p = xi + yj + zk

is given by

p′ = rpr− = (cos
θ

2
+ sin

θ

2
v)(xi + yj + zk)(cos

θ

2
− sin

θ

2
v)



Rotations — Continued

Using the Gibbs relation to expand gives,

p′ = rpr− = cos2
θ

2
p + 2 sin

θ

2
cos

θ

2
(v × p)

+ sin2
θ

2
(v · p)p + sin2 θ

2

(
v × (v × p)

)
Note: have assumed that v is a unit vector, v · v = 1.
Using trigonometric relations and rearranging gives,

p′ = rpr− = p + sin θ(v × p) + (1− cos θ)
(
v × (v × p)

)
The well known Rodrigues formula for rotations.



Unit Quaternions

Above identifies rotations with unit quaternions, that is
quaternions satisfying rr− = 1.

rr− = (cos
θ

2
+ sin

θ

2
v)(cos

θ

2
− sin

θ

2
v) = cos2

θ

2
+ sin2 θ

2
v · v = 1

Writing r = a0 + a1i + a2j + a3k this means,

rr− = a20 + a21 + a22 + a23 = 1

the elements of the group lie on a unit 3-dimensional sphere. Unit
quaternions for a 2-to-1 cover of the group of rotations.



Group of Rotations

But both r and −r correspond to the same rotation, since
rpr− = (−r)p(−r)−.
Line through the centre of the 3-sphere meets it in antipodal points
r and −r . So can identify elements of the rotation group with lines
through the origin in R4 with coordinates (a0, a1, a2, a3).

r

-r

Space of lines through the origin in R4 know as 3-dimensional
projective space, RP3. Group manifold of rotation group SO(3).



Rigid Body Displacements

Rotations and translations—no reflections. Proper rigid-body
displacements. General displacement (r , t), where r is a rotation
and t a translation vector. Action of rigid displacement on a point
p given by,

p′ = rpr− + t

Rotations act on translations. Effect of applying (r1, t1) then
(r2, t2) is

p′′ = r2p
′r−2 + t2 = r2(r1pr

−
1 + t1)r−2 + t2

The combined effect of the two displacements is a displacement,
(r2r1, r2t1r

−
2 + t2).

Group SE (3) is the semi-direct product of rotation with
translations, SE (3) = SO(3) nR3



Dual Quaternions

Clifford introduced new generator ε which squares to zero ε2 = 0
and commutes with all other quaternions iε = εi and so on. Called
the dual unit.
General dual quaternion now has the form,

h = q0 + εq1 = (a0 + a1i + a2j + a3k) + ε(c0 + c1i + c2j + c3k)

The dual quaternion conjugate is simply

h− = q−0 + εq−1 = (a0 − a1i − a2j − a3k) + ε(c0 − c1i − c2j − c3k)

but we will need another conjugate

h† = q−0 − εq
−
1 = (a0− a1i − a2j − a3k) + ε(−c0 + c1i + c2j + c3k)



Dual Quaternions and Rigid Body Displacements

Use dual quaternions to represent rigid displacements,
displacement (g , t) represented by the dual quaternion,

h = r +
1

2
εtr

Composing displacements represented by multiplication of dual
quaternions,

(r2 +
1

2
εt2r2)(r1 +

1

2
εt1r1) = r2r1 +

1

2
ε(t2 + r2t1r

−
2 )r2r1

relys on fact that r2 is a unit quaternion (rotation) r2r
−
2 = 1.



Action on Points

Now represent a point p = xi + yj + zk as the dual quaternion,

p̃ = 1 + εp = 1 + ε(xi + yj + zk)

Action of a rigid displacement on a point given by,

p̃′ = hph† = (r +
1

2
εtr)(1 + εp)(r− − 1

2
εr−t−)

notice that since t is a vector t− = −t, so

(r +
1

2
εtr)(1 + εp)(r− − 1

2
εr−t−) = 1 + ε(rpr− + t)

again rr− = 1 has been use to simplify.
Notice once more that h and −h give the same rigid-body
displacement.



The Group Manifold

Not all dual quaternions represent rigid body displacements only
those h = q0 + εq1 where,

q0 = r and q1 =
1

2
tr

As quaternion equations we have,

q0q
−
0 = rr− = 1

and

q0q
−
1 + q1q

−
0 = −1

2
rr−t +

1

2
trr− = 0

Writing q0 = a0 + a1i + a2j + a3k and q1 = c0 + c1i + c2j + c3k
these give two algebraic equations,

a20 + a21 + a22 + a23 = 1 and a0c0 + a1c1 + a2c2 + a3c3 = 0



The Study Quadric

Can do the same as we did with rotation to remove the double
valued nature of the representation. Take
(a0 : a1 : a2 : a3 : c0 : c1 : c2 : c3) as homogeneous coordinates in a
RP7. Now h and −h are the same point. The lines through the
origin in R8 each meet the space a20 + a21 + a22 + a23 = 1 in just two
antipodal points. So just have to satisfy the second equation,

a0c0 + a1c1 + a2c2 + a3c3 = 0

This is a homogeneous, degree 2 equation so defines a quadric in
RP7 — the Study quadric.



The Study Quadric — continued

Each rigid-body displacement corresponds to a point in this
quadric, but not all points in the quadric correspond to
displacements. The points with a0 = a1 = a2 = a3 = 0 form a
3-dimensional plane (RP3), lying entirely inside the quadric. This
is because points on this 3-plane are given by
(0 : 0 : 0 : 0 : c0 : c1 : c2 : c3) and these satisfy the equation above
for the Study quadric. Call this 3-plane A∞.

Clearly, such points do not correspond to rigid displacements. Set
of ideal points, like points at infinity in projective space. The group
manifold for SE (3) is the Study quadric with this 3-plane deleted.



Displacement Subvarieties

Look at subvarieties of the Study quadric. That is subspaces
determined by algebraic equations in the homogeneous coordinates
a0, . . . , c3.

I Curves correspond to rigid-body motions, a subject in its own
right with many applications to robot path-planning and
computer animation.

I Subvarieties determined by the possible motion of a body
attached to the end of a serial linkage. Intersect these to get
information about closed loop mechanisms and parallel robots.

I Subvarieties determined by geometric constraints. For
example the set of displacements which move a particular
point so that it stays on a given plane.

Begin with subvarieties determined by linear equations.



Lines in the Study Quadric I

Consider a line in P7 joining the points 1 = 1 + ε0 and
` = q0 + εq1. The point 1 is the identity in the group and it is
clear that any line in the Study quadric can be moved to a line of
this form by transforming any point on the line to the identity.

A general line through the identity will have the form,

g(c , s) = c + s`

where c and s are homogeneous parameters.

For such a line to lie entirely in the Study quadric ` must lie in the
quadric and every other point on the line must too. This can be
expressed as

q0q
−
1 + q1q

−
0 = 0, and q1 + q−1 = 0



Lines in the Study Quadric II

If q0 = a0 + a1i + a2j + a3k and q1 = c0 + c1i + c2j + c3k then
these equations give,

` = (a1i + a2j + a3k) + ε(c1i + c2j + c3k)

with a1c1 + a2c2 + a3c3 = 0. These elements ` correspond to lines
in space. If we assume that the parameters c = cos(θ/2) and
s = sin(θ/2) then the line in the Study quadric c + s` corresponds
to the one parameter sub-group of rotations about the line in
space represented by `.
Notice this set of displacements are the same as those that can be
generated by a revolute (hinge) joint.



Lines in the Study Quadric III

If the components a1 = a2 = a3 = 0 then ` represents a line at
infinity. Here the line in the Study quadric c + s` represents a
subgroup of translations, all in the directed along the vector
c1i + c2j + c3k . These displacements can be generated by a
prismatic (sliding) joint.

A line of rotations in the Study quadric doesn’t meet A∞ the ideal
element of the Study quadric. However, a line representing a
translation subgroup does meet A∞ at a single point; when c = 0.

These properties are not changed if we take a line that doesn’t
pass through the identity since points on A∞ stay on A∞ after a
left (or right) translation in the group.

Hence, all lines in the Study quadric are either translates of a
one-parameter subgroup of rotations or translates of a
one-parameter subgroup of translations.



A and B-planes

Two families of 3-planes lying entirely within the Study quadric. In
P7 4 linearly independent equations define a 3-plane, these can be
written,

(I + M)~a + (I −M)~c = ~0

where

~a =


a0
a1
a2
a3

 and ~c =


c0
c1
c2
c3


and M ∈ O(4). (To see how this works change coordinates to
~x = ~a + ~c , ~y = ~a− ~c .)

Gives A-planes if det(M) = 1 and B-planes when det(M) = −1.



A and B-planes — Continued

A and B-planes behave like lines on a 2-D
hyperboloid.

A-plane are sets of displacements which
move one point in space to another, or
move one plane in space to another.

B-planes through the identity are sets of
rotations with axes lying in a particular
plane, or the subgroup of all translations.



Subspaces of all Rotations

Consider the set of all rotations about arbitrary lines in space. If,
as before, r is a rotation about some vector v then
r = cos θ

2 + sin θ
2v then this is a rotation about a line through the

origin. A general rotation about a line through some point p will
be given by the conjugation,

(1 +
1

2
εp)r(1− 1

2
εp) = r +

1

2
ε(pr − pr)

= cos
θ

2
+ sin

θ

2
v + ε sin

θ

2
p× v

So the set of rotations lie on the intersection of the Study quadric
with the hyperplane c0.



Intersection with Quadrics

Sets of displacements lie on the intersection of the Study quadric
with another quadric in P7, only time for a quick look.

I The variety of displacements which move a given point in
such a way that it meets a given plane.

I The variety of displacements which move a given points to
meet a given sphere.

I The variety of displacements which move a given line in such
a way that it lies in a particular linear line complex.

Some of these varieties model the capabilities of open-loop
mechanical chains.



The RRR Linkage

The end-effector of a 3R linkage generates a P1 × P1 × P1 Segre
variety.

Lies on the intersection of 9 linearly independent quadrics in P7,
not a complete intersection. One of the 9 quadrics is the Study
quadric here.

Variety has degree 6. Also it meets a general A-plan in 4 points
and a generic B-plane in 2 points.



Conclusions

I Biquaternions, different groups according to relation for ε2.
Get SO(4) with ε2 = 1 and SO+(3, 1) with ε2 = −1.

I Can do Euclidean geometry with dual quaternions but simpler
to use Clifford algebra Cl(0, 3, 1), note that dual quaternions
form the even sub-algebra of this Clifford algebra. Or
Cl(3, 0, 1).

I Means to an end. Really want to look at algebraic geometry
of configurations spaces defined by mechanisms.

I Many other application of this geometry and algebra.

THANK YOU
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