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The Benjamin-Bona-Mahony (BBM) equation

The BBM equation
Ut + Uy — Uggt + Uy = 0, (1)

was proposed as an alternative model for the Korteweg-de Vries
equation (KdV)

Ut + Uy + Uggy + vty =0, (2)
to describe the propagation of one-dimensional, unidirectional
small amplitude long waves in nonlinear dispersive media.

e u(x,t) is a real-valued functions of the real variables x and t.

In the context of shallow-water waves, u(x,t) represents the
displacement of the water surface at location x and time t.



The Boussinesq system

J. L. Bona, M. Chen, J.-C. Saut - J. Nonlinear Sci. 12 (2002).

{ Nt + Wg + (nw)x + QWgzz — UMzt = 0 (3)
Wt + Ny + WWy + gz — dWagt = 0,

The model describes the motion of small-amplitude long waves on the
surface of an ideal fluid under the gravity force and in situations where
the motion is sensibly two dimensional.
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w = wy is the horizontal velocity in the flow at height 8k, where h is the
undisturbed depth of the liquid;
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{ N+ we + (nw)x + QWggqy — b77$a:t =0 (3)

Wy + Mg + WWz + CMNpge — dWeqt = 0,

The model describes the motion of small-amplitude long waves on the
surface of an ideal fluid under the gravity force and in situations where
the motion is sensibly two dimensional.

7 is the elevation of the fluid surface from the equilibrium position;

w = wy is the horizontal velocity in the flow at height 8k, where h is the
undisturbed depth of the liquid;

a, b, c,d, are parameters required to fulfill the relations

1/, 1 1 )
_ = _ = = —(1-6% >
a+b 2(0 3), ctd=(1-6%)>0,

where 6 € [0, 1] specifies which velocity the variable w represents.
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Controllability and Stabilization

eS. Micu, J. H. Ortega, L. Rosier, B.-Y. Zhang - Discrete Contin. Dyn.
Syst. 24 (2009).

b,d>0,a<0,c<0 or bd>0,a=c>0.
{ N + Wy + (nw)x+awxmx _bnxa:t = f((L',t)

W + Ng + WWx + Mgz — dwmct = g(‘T, t)

where 0 < x < 27 and t > 0, with boundary conditions

d"n 0™ 0" w 0w
@(0, t) = axr (271', t)7 %(O,t) = axr (271', t)

and initial conditions
n(z,0) =n(x), w(z,0)=w’(x).

e f and g are locally supported forces.



Dirichlet boundary conditions

e+ Wy — Ny = —ea(x)n,  x € (0,2m), t >0,
Wy + Mg — dwige = 0, 336(0,27‘(‘), t >0,

with boundary conditions
n(t,0) = n(t,2r) = w(t,0) = w(t,2r) =0, t>0,
and initial conditions

n(0,z) = n°(z), w(0,z)=w"(z), x € (0,27).



Dirichlet boundary conditions

e+ Wy — Ny = —ea(x)n,  x € (0,2m), t >0,
Wy + Mg — dwige = 0, 336(0,27‘(‘), t >0,

with boundary conditions

n(t,0) = n(t,2r) = w(t,0) = w(t,2r) =0, t>0,
and initial conditions

n(0,2) = n°(x), w(0,z) =w’(z), x € (0,2m).

We assume that
e b,d >0 and € > 0 are parameters.

e o = a(x) is a nonnegative real-valued function satisfying

a(x) >ag >0, inQC(0,27),
a € W»°°(0,2n), with a(0) = a/(0) = 0.



The energy associated to the model is given by

1 2m
B(t) = 5/ (n* +bn2 + w® + dw?)dx
0

and we can (formally) deduce that

%E(t) - —6/0 " @)t 2)d



The energy associated to the model is given by

1 27
B(t) = 3 /0 (n* + b2 + w? + dw?)dz (4)

and we can (formally) deduce that

0= [ e ©)

Theorem (S.Micu, A. Pazoto - Journal d'Analyse Mathématique)

Assume that a € W%>(0,2r) and a(0) = a/(0) = 0. Then, there exits
€0, such that, for any € € (0,&9) and (n°,w°) in (HZ(0,27))?, the
solution (1), w) of the system verifies

lim ||(n(¢), w(®))ll 22 0,2r))2 = O

t—o0

Moreover, the decay of the energy is not exponential, i. e., there exists
no positive constants M and w, such that

I(n(t), wt)llmz(0,2my2 < Me™, £ >0.



Spectral analysis and eigenvectors expansion of solutions

Since

(I —b0?)n + wy +ea(x)n =0, x€(0,27), t >0,
(I —do?)wi +n, =0, x € (0,27), t >0,

the system can be written as

Uy + AU =0,
U(0) = Uy,

where A. : (H}(0,27))? — (HE(0,27))? is given by
e(I—002) " a()T (I—b02)"" 0,
A= : (6)
(I-dd2)~" o, 0

We have that
Ac € L((H}(0,27))?) and A, is a compact operator.



The operator A. has a family of eigenvalues (\;,),>1, such that:

c
Inf?’

1. R\ < Vn>ng, and R\, <0, Vn.
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The operator A. has a family of eigenvalues (\;,),>1, such that:
1. R\ < = |2, Vn>ng, and R\, <0, Vn.

2. The corresponding eigenfunctions (®,,),>1 form a Riesz basis
in (H(0,27))2.

Then,
t) = Z anet®,
n>1
and
c1 \an|2€2§R(/\n)t < H(n(t%w(t))HQHl ooy < € Z |&n|262%(>\")t,
(Hg(0,2m))
n>ng o1

E(t) converges to zero as t — oo.

The decay is not exponential.



We obtain the asymptotic behavior of the high eigenfunctions and
prove that they are quadratically close to a Riesz basis (¥,;,)m>1
formed by eigenvectors of a well chosen dissipative differential
operator with constant coefficients:

1

2
> 1®m = Unlts00mpe ~ 7o

m>N-+1



We obtain the asymptotic behavior of the high eigenfunctions and
prove that they are quadratically close to a Riesz basis (¥,;,)m>1
formed by eigenvectors of a well chosen dissipative differential
operator with constant coefficients:

1

2
> 1®m = Unlts00mpe ~ 7o

m>N-+1

Theorem (S.Micu, A. Pazoto - Journal d'Analyse Mathématique)

Let (n,w) be a finite energy solution of the system with a = 0. If
there exist T > 0 and an open set Q) C (0, 2m), such that

n(z,t) =0 ,V (z,t) € Qx(0,T), (7)

then
n=w=0 in Rx(0,2m).



Periodic boundary conditions

For b, d > 0 and (1, B2, a1, ag > 0, we consider the system

N + Wy — bntxx + (nw)x + /BlMaln =0, (8)
Wi + Ny — dWize + WWy + BaMa,w = 0,

with periodic boundary conditions

n(0,t) = n(2m,t); n:(0,t) = nx(27, 1),
w(0,t) = w(2m,t); wy(0,t) = wy(2m,1),

and initial conditions
n(z,0) =n°(z), w(z,0)=u’(z).
In (8), M,, are Fourier multiplier operators given by

o (et ) = 04 2

keZ kEZ



The energy associated to the model is given by

1 21
E(t) = 3 /0 (7?4 bn? + w? + dw?)dx (9)

and we can (formally) deduce that

d 27 27
S B() = /0 (Mayn) ndz — B /0 (Mayw) w dz »

2T
—/ (nw)zndz.

0

Since 1,82 > 0 and
(Ma;v,0)120,27) = 0, J=12

the terms M,,n and M,,w play the role of feedback damping
mechanisms, at least for the linearized system.
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e Fractional derivative (Weyl fractional derivative operator):

=3 e = W h) (@) = (k) ae™®, o€ (0,1).

keZ keZ



Main results

The energy E(t) satisfies

dE 27

2m 2m
E = _61 /0 (Mm"?) 77d93 - 62 /0 (Ma2w) wdr— /O (nw)l‘ 77d$,

where o
Mo;v = Z(l + k?) 2 Dt
keZ
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Main results

The energy E(t) satisfies

dE 27 27 27
E=h [ Otamnde— s [ (Masw)wde— [ (w)and
dt 0 0 0

where
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keZ
Firstly, we analyze the linearized system:

B o1 = ay =2 and (1, B2 > 0 = the exponential decay of solutions
in the H®-setting, for any s € R.

m max{ay, as} € (0,2), 81,52 > 0 and 5% + 32 > 0 = polynomial
decay rate of solutions in the H?-setting, by considering more
regular initial data.

Exponential decay estimate and contraction mapping argument —>
global well-posedness and the exponential stability property of the
nonlinear system.



The Linearized System

Since
(I = bd2)ns + wy + B1Min =0,
(I — dO2)wy + ny + B2 Man = 0,

the linear system can be written as

Ut—|—AU:0,
U(0) = Uy,

where A is given by

B (I—b02) " M,  (I—b02)"" 0,
A= .y

(I—do?) " 0,  Bo(I—b02)"" M,

For v > 0, the operator (I — ad?) ! is defined in the following way:

V— gy =¢ in (0,2m),

(I—ad®)ltp=ve {
v(0) = v(27), v,(0) = v, (2).



Spectral Analysis

If we assume that

(n°,w®) =Y (@, @)™

the solution can be written as

(@) (@, 8) = D (7 (t), Dk ()™,
kEZ
where the pair (7 (t), W (t)) fulfills

(1 + bk2) (P )¢ + ikt + Br(1 + k2) 27 = 0,
(1+ dk?) (@), + ik, + Bo(1 + KD T @ =0,  (12)
76(0) = 75, W (0) = Wy,

where t € (0,T).



We set

BL(1+k?) 7 ik
1+bk2 1+bk2
A(k) =
ik Ba(14+k2) T
T+dk? 1+dk?
Then system (12) is equivalent to
Mk Tk 0 Mk i
(t)+A(K) (t) = , (0) =
Wy . Wy, 0 Wy, @2
Hence, the solution of (12) is given by
Tk 0
(t) = e~ ARt : (13)



Lemma

The eigenvalues of the matrix A are given by

1 /31(1+k2)%+52(1+k2)%2i 2/kly/ef — 1

A =2 :
k2 1+ bk2 1+ dk? V(1 + bk2)(1 + dk2)
where
1 oo |1+ dk2 ov a2 |1+ bk2
= — By(1+k
Gk 2k<ﬂ1(1+k)2 T PU+E) 2 e |
and k € Z*.

Observe that
] )\ZE = )\fk.
m If e < 1, the eigenvalues )\If e C.
m If e > 1, the eigenvalues )\lf eR.



Lemma

The solution (7 (t), Wy (t)) of (12) is given by

Aet) = i [0 + ioncu@}) e — (GG + inGud) e+
wr(t) = ﬁ [(wkgkﬁg — Y et — (i0xCmy — W) e M t} ,
if lex| # 1 and k # 0,

P _ k¢ =0 ikt ~0| ,—\ft
Nk (t) = {(1 — ,7(1+bk2)k(l+dk2)t> n, — libkg wk} e "kt

= _ | _ikt 50 1763 S0 —Aft
w(t) = [ Taez i T (1 + ,7(1+bk2)(1+dk2)t> wk} e Mt
if lex| =1 and k # 0, and finally,

No(t) = 77 e Pt wo(t) = @86_B2t.

_ [ixdk® . _  [1ibk2 _ p
Here, a = /1355, Ok = \/ 1Eg5z and G = e — \/ef — 1.




For any t > 0 and k € Z, we have that
i (1)[2 + dln (£)[* < M (bl70) + d] g |2) e 2 min{RODLROOI

where
min{ RN, RO = D >0,

and D is a positive number, depending on the parameters 31, 52, a1, as,
b and d.
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b and d.

Moreover,

m If 8182 = 0, then R(\;") — 0, as |k| — oo, and we cannot expect
uniform exponential decay of the solutions.



For any t > 0 and k € Z, we have that
bl (DI + dli(1)[2 < M (B[} + djf|?) 2 mn{IRODL ROOL},
where
min{[RO)|. [ROG = D >0,
and D is a positive number, depending on the parameters 31, 52, a1, as,

b and d.

Moreover,

m If 8182 = 0, then R(\;") — 0, as |k| — oo, and we cannot expect
uniform exponential decay of the solutions.

m The fact that the decay of the solutions is not exponential is
equivalent to the non uniform decay rate: given any non increasing
positive function ©, there is an initial data (1°,w") such that the
H; x Hj—norm of the corresponding solution decays slower that ©.



Let us introduce the space
V*® = H3(0,2m) x Hy(0,27).
Then, the following holds:

Theorem

The family of linear operators {S(t)},>¢ defined by

S(t)(ﬁoa wO) = Z(ﬁk(t)7 {U\k(t))eikmv (no’wo) eve, (14)
kezZ

is an analytic semigroup in V'° and verifies the following estimate

1S (0%, w”)llv+ < Cll(n°,w°)]

v, (15)

where C' is a positive constant. Moreover, its infinitesimal generator is
the compact operator (D(A), A), where D(A) = V* and A is given by

B (I—b02)"" My,  (I—002)"" 0,
A= . (16)
(I—do2) " 0,  Bo(I—b02)"" M,



Definition
The solutions decay exponentially in V* if there exist two positive
constants M and u, such that

1S@®) (0°, w®)[lvs < Me#|(1°, w®) v, (17)

vt >0 and (°,w®) € V*.



Definition
The solutions decay exponentially in V* if there exist two positive
constants M and p, such that

1S@®) (0°, w®)[lvs < Me#|(1°, w®) v, (17)
vt >0 and (°,w®) € V*.

We have the following result:

Theorem

The solutions decay exponentially in V*° if and only if a; = ag = 2
and 1, P2 > 0. Moreover, . from (17) is given by

p= it {[ROD)], RO} (18)

where )\f are the eigenvalues of the operator A.



Theorem

Suppose that 31,82 > 0, 32 + 35 > 0 and min{ay, as} € [0,2).
Then, there exists 6 and M > 0, such that

M

O w)||ys € ———F—+—
1S(@) (0", w)l[vs < (1+t)%(q*%>”

(n°, w®)[|ys+a, VE > 0,
where s € R and q > % Moreover, § > 0 is defined by

2 —max{aq, as} ifa;+as <2, max{ag, as} <1,
0 =< max{ag, as} ifag + a2 <2, max{a, as} >1,

2 —min{ay, ae} ifa;+ag > 2.

Remark: If &y = ags =2 and B1 =0 or B3 =0, then § = 2.



The nonlinear problem

Theorem
Let s > 0 and suppose that 31,32 > 0 and aq; = ag = 2. There
exist 7 >0, C > 0 and p > 0, such that, for any (no,wo) evs,
satisfying
1(n°, w®)[lvs <7,

the system admits a unique solution (n,w) € C([0,00); V*) which
verifies

I(n(2), w(t))llvs < Ce ™ |[(n°, w®)[lvs, t>0.

Moreover, ;1 may be taken as in the linearized problem.

The energy E(t) satisfies

dE 2m 27 2m
— = —51/ (Mu,m)ndx — 52/ (MOQw)wd;U—/ (nw)zndx.
dt 0 0 0



We define the space
Y = {(n,w) € Co(RT;V?) : e (n,w) € Cp(RT;V?)},
with the norm

[ w)lle,, = sup e (. w)(O)lv-.

t<oo

and the function I' : Y, , — Y5 ;, by

I@ﬂMﬂ=ﬂWWW%AS@ﬂmeﬁmﬂ

where N (n,w) = (—(I — b02)"Y(qw),, —(I — dd?)~Lww,) and
{S(t)}+>0 is the semigroup associated to the linearized system.



Combining the estimates obtained for the linearized system we have

0 w)(@)llve < Me 1%, w)lve + MCe sup [|e (n,w)lv-,
ST

for any ¢ > 0 and some positive constants M and C.



Combining the estimates obtained for the linearized system we have
IT(n, w)(@)][ve < Me (1%, w")||vs + MCe™ " sup [[e’ (n, w)||v,
0<r<t
for any ¢ > 0 and some positive constants M and C.
m If we take (9, w) € Bgr(0) C Y, the following estimate holds

1T (0, w)lly..,. < M|, w®) v +MC||(n,w)I,, < Mr+MCR?.

m A similar calculations shows that,
[T (1, w1) =T (2, wa)lly, ,, < 2RMC|[(n1,w1)—(n2, w2)lly, .,
for any (n1,w1), (n2, w2) € Br(0).

A suitable choice of R guarantees that I' is a contraction.



Open problems

Dirichlet boundary conditions:

[
m Less regularity for the potential a.

m Stabilization results for the nonlinear problem.
[

Dissipative mechanisms, like —[a(z)¢,]., ensures the uniform
decay?
m The mixed KdV-BBM system is exponentially stabilizable?
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Open problems

Dirichlet boundary conditions:

Less regularity for the potential a.

Stabilization results for the nonlinear problem.

Dissipative mechanisms, like —[a(z)¢,]., ensures the uniform
decay?

The mixed KdV-BBM system is exponentially stabilizable?
Periodic boundary conditions:

The decay of solutions of a nonlinear problem with a
linearized part that does not decay uniformly.

Unique Continuation Property for the BBM-BBM system.



