Comportamento assintótico das soluções de uma família de sistemas de Boussinesq

Ademir Pazoto
Instituto de Matemática
Universidade Federal do Rio de Janeiro (UFRJ) ademir@im.ufrj.br

Em colaboração com
Sorin Micu - Universidade de Craiova (Romênia)

Outline

- Description of the model: a family of Boussinesq systems
- Setting of the problem: stabilization of a coupled system of two Benjamin-Bona-Mahony (BBM) equations
- Main results
- Main Idea of the proofs

■ Open problems

The Benjamin-Bona-Mahony (BBM) equation

The BBM equation

$$
\begin{equation*}
u_{t}+u_{x}-u_{x x t}+u u_{x}=0 \tag{1}
\end{equation*}
$$

was proposed as an alternative model for the Korteweg-de Vries equation (KdV)

$$
\begin{equation*}
u_{t}+u_{x}+u_{x x x}+u u_{x}=0 \tag{2}
\end{equation*}
$$

to describe the propagation of one-dimensional, unidirectional small amplitude long waves in nonlinear dispersive media.

- $u(x, t)$ is a real-valued functions of the real variables x and t. In the context of shallow-water waves, $u(x, t)$ represents the displacement of the water surface at location x and time t.

The Boussinesq system

J. L. Bona, M. Chen, J.-C. Saut - J. Nonlinear Sci. 12 (2002).

$$
\left\{\begin{array}{l}
\eta_{t}+w_{x}+(\eta w)_{x}+a w_{x x x}-b \eta_{x x t}=0 \tag{3}\\
w_{t}+\eta_{x}+w w_{x}+c \eta_{x x x}-d w_{x x t}=0
\end{array}\right.
$$

The model describes the motion of small-amplitude long waves on the surface of an ideal fluid under the gravity force and in situations where the motion is sensibly two dimensional.
η is the elevation of the fluid surface from the equilibrium position; $w=w_{\theta}$ is the horizontal velocity in the flow at height θh, where h is the undisturbed depth of the liquid;
a, b, c, d, are parameters required to fulfill the relations

The Boussinesq system

J. L. Bona, M. Chen, J.-C. Saut - J. Nonlinear Sci. 12 (2002).

$$
\left\{\begin{array}{l}
\eta_{t}+w_{x}+(\eta w)_{x}+a w_{x x x}-b \eta_{x x t}=0 \tag{3}\\
w_{t}+\eta_{x}+w w_{x}+c \eta_{x x x}-d w_{x x t}=0
\end{array}\right.
$$

The model describes the motion of small-amplitude long waves on the surface of an ideal fluid under the gravity force and in situations where the motion is sensibly two dimensional.
η is the elevation of the fluid surface from the equilibrium position; $w=w_{\theta}$ is the horizontal velocity in the flow at height θh, where h is the undisturbed depth of the liquid;
a, b, c, d, are parameters required to fulfill the relations

The Boussinesq system

J. L. Bona, M. Chen, J.-C. Saut - J. Nonlinear Sci. 12 (2002).

$$
\left\{\begin{array}{l}
\eta_{t}+w_{x}+(\eta w)_{x}+a w_{x x x}-b \eta_{x x t}=0 \tag{3}\\
w_{t}+\eta_{x}+w w_{x}+c \eta_{x x x}-d w_{x x t}=0
\end{array}\right.
$$

The model describes the motion of small-amplitude long waves on the surface of an ideal fluid under the gravity force and in situations where the motion is sensibly two dimensional.
η is the elevation of the fluid surface from the equilibrium position;
$w=w_{\theta}$ is the horizontal velocity in the flow at height θh, where h is the undisturbed depth of the liquid;
a, b, c, d, are parameters required to fulfill the relations

$$
a+b=\frac{1}{2}\left(\theta^{2}-\frac{1}{3}\right), \quad c+d=\frac{1}{2}\left(1-\theta^{2}\right) \geq 0,
$$

where $\theta \in[0,1]$ specifies which velocity the variable w represents.

Stabilization Results: $E(t) \leq c E(0) e^{-\omega t}, \omega>0, c>0$

The Boussinesq system posed on a bounded interval:

- A. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KdV-KdV type, System and Control Letters 57 (2008), 595-601.
- R. Capistrano Filho, A. Pazoto and L. Rosier, Control of Boussinesq system of KdV-KdV type on a bounded domain, Preprint.

The Boussinesq system posed on the whole real axis: $\left(-\eta_{x x},-w_{x x}\right)$

- M. Chen and O. Goubet, Long-time asymptotic behavior of dissipative Boussinesq systems, Discrete Contin. Dyn. Syst. Ser. 17 (2007), 509-528.

The Boussinesq system posed on a periodic domain:

- S Micu, J. H Ortega, I. Rosier and B -Y. Thang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst. 24 (2009), 273-313.

Stabilization Results: $E(t) \leq c E(0) e^{-\omega t}, \omega>0, c>0$

The Boussinesq system posed on a bounded interval:

- A. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KdV-KdV type, System and Control Letters 57 (2008), 595-601.
- R. Capistrano Filho, A. Pazoto and L. Rosier, Control of Boussinesq system of KdV-KdV type on a bounded domain, Preprint.

The Boussinesq system posed on the whole real axis: $\left(-\eta_{x x},-w_{x x}\right)$

- M. Chen and O. Goubet, Long-time asymptotic behavior of dissipative Boussinesq systems, Discrete Contin. Dyn. Syst. Ser. 17 (2007), 509-528.

The Boussinesq system posed on a periodic domain:

- S. Micu, J. H. Ortega, L. Rosier and B.-Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst. 24 (2009), 273-313

Stabilization Results: $E(t) \leq c E(0) e^{-\omega t}, \omega>0, c>0$

The Boussinesq system posed on a bounded interval:

- A. Pazoto and L. Rosier, Stabilization of a Boussinesq system of KdV-KdV type, System and Control Letters 57 (2008), 595-601.
- R. Capistrano Filho, A. Pazoto and L. Rosier, Control of Boussinesq system of KdV-KdV type on a bounded domain, Preprint.

The Boussinesq system posed on the whole real axis: $\left(-\eta_{x x},-w_{x x}\right)$

- M. Chen and O. Goubet, Long-time asymptotic behavior of dissipative Boussinesq systems, Discrete Contin. Dyn. Syst. Ser. 17 (2007), 509-528.

The Boussinesq system posed on a periodic domain:

- S. Micu, J. H. Ortega, L. Rosier and B.-Y. Zhang, Control and stabilization of a family of Boussinesq systems, Discrete Contin. Dyn. Syst. 24 (2009), 273-313.

Controllability and Stabilization

- S. Micu, J. H. Ortega, L. Rosier, B.-Y. Zhang - Discrete Contin. Dyn. Syst. 24 (2009).

$$
\begin{gathered}
b, d \geq 0, a \leq 0, c \leq 0 \quad \text { or } \quad b, d \geq 0, a=c>0 . \\
\left\{\begin{array}{l}
\eta_{t}+w_{x}+(\eta w)_{x}+a w_{x x x}-b \eta_{x x t}=f(x, t) \\
w_{t}+\eta_{x}+w w_{x}+c \eta_{x x x}-d w_{x x t}=g(x, t)
\end{array}\right.
\end{gathered}
$$

where $0<x<2 \pi$ and $t>0$, with boundary conditions

$$
\frac{\partial^{r} \eta}{\partial x^{r}}(0, t)=\frac{\partial^{r} \eta}{\partial x^{r}}(2 \pi, t), \quad \frac{\partial^{r} w}{\partial x^{r}}(0, t)=\frac{\partial^{r} w}{\partial x^{r}}(2 \pi, t)
$$

and initial conditions

$$
\eta(x, 0)=\eta^{0}(x), \quad w(x, 0)=w^{0}(x) .
$$

- f and g are locally supported forces.

Dirichlet boundary conditions

$$
\begin{array}{lc}
\eta_{t}+w_{x}-b \eta_{t x x}=-\varepsilon a(x) \eta, & x \in(0,2 \pi), t>0 \\
w_{t}+\eta_{x}-d w_{t x x}=0, & x \in(0,2 \pi), t>0
\end{array}
$$

with boundary conditions

$$
\eta(t, 0)=\eta(t, 2 \pi)=w(t, 0)=w(t, 2 \pi)=0, \quad t>0
$$

and initial conditions

$$
\eta(0, x)=\eta^{0}(x), \quad w(0, x)=w^{0}(x), \quad x \in(0,2 \pi)
$$

We assume that

- $b, d>0$ and $\varepsilon>0$ are parameters.
- $a=a(x)$ is a nonnegative real-valued function satisfying

Dirichlet boundary conditions

$$
\begin{array}{lc}
\eta_{t}+w_{x}-b \eta_{t x x}=-\varepsilon a(x) \eta, & x \in(0,2 \pi), t>0 \\
w_{t}+\eta_{x}-d w_{t x x}=0, & x \in(0,2 \pi), t>0
\end{array}
$$

with boundary conditions

$$
\eta(t, 0)=\eta(t, 2 \pi)=w(t, 0)=w(t, 2 \pi)=0, \quad t>0
$$

and initial conditions

$$
\eta(0, x)=\eta^{0}(x), \quad w(0, x)=w^{0}(x), \quad x \in(0,2 \pi)
$$

We assume that

- $b, d>0$ and $\varepsilon>0$ are parameters.
- $a=a(x)$ is a nonnegative real-valued function satisfying

$$
\begin{array}{r}
a(x) \geq a_{0}>0, \quad \text { in } \Omega \subset(0,2 \pi), \\
a \in W^{2, \infty}(0,2 \pi), \text { with } a(0)=a^{\prime}(0)=0 .
\end{array}
$$

The energy associated to the model is given by

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{2 \pi}\left(\eta^{2}+b \eta_{x}^{2}+w^{2}+d w_{x}^{2}\right) d x \tag{4}
\end{equation*}
$$

and we can (formally) deduce that

$$
\begin{equation*}
\frac{d}{d t} E(t)=-\varepsilon \int_{0}^{2 \pi} a(x) \eta^{2}(t, x) d x \tag{5}
\end{equation*}
$$

Theorem (S.Micu, A. Pazoto - Journal d'Analyse Mathématique)

Assume that $a \in T / 2 . \infty(n, 2 \pi)$ and $a(n)=a^{\prime}(n)=0$. Then, there exits ε_{0}, such that, for any $\varepsilon \in\left(0, \varepsilon_{0}\right)$ and $\left(\eta^{0}, w^{0}\right)$ in $\left(H_{0}^{1}(0,2 \pi)\right)^{2}$, the solution (η, w) of the system verifies

$$
\lim _{t \rightarrow \infty}\|(\eta(t), w(t))\|_{\left(H_{0}^{1}(0,2 \pi)\right)^{2}}=0 .
$$

Moreover, the decay of the energy is not exponential, i. e., there exists no positive constants M and ω, such that

The energy associated to the model is given by

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{2 \pi}\left(\eta^{2}+b \eta_{x}^{2}+w^{2}+d w_{x}^{2}\right) d x \tag{4}
\end{equation*}
$$

and we can (formally) deduce that

$$
\begin{equation*}
\frac{d}{d t} E(t)=-\varepsilon \int_{0}^{2 \pi} a(x) \eta^{2}(t, x) d x \tag{5}
\end{equation*}
$$

Theorem (S.Micu, A. Pazoto - Journal d'Analyse Mathématique)

Assume that $a \in W^{2, \infty}(0,2 \pi)$ and $a(0)=a^{\prime}(0)=0$. Then, there exits ε_{0}, such that, for any $\varepsilon \in\left(0, \varepsilon_{0}\right)$ and $\left(\eta^{0}, w^{0}\right)$ in $\left(H_{0}^{1}(0,2 \pi)\right)^{2}$, the solution (η, w) of the system verifies

$$
\lim _{t \rightarrow \infty}\|(\eta(t), w(t))\|_{\left(H_{0}^{1}(0,2 \pi)\right)^{2}}=0
$$

Moreover, the decay of the energy is not exponential, i. e., there exists no positive constants M and ω, such that

$$
\|(\eta(t), w(t))\|_{\left(H_{0}^{1}(0,2 \pi)\right)^{2}} \leq M e^{-\omega t}, \quad t \geq 0
$$

Spectral analysis and eigenvectors expansion of solutions

Since

$$
\begin{array}{lc}
\left(I-b \partial_{x}^{2}\right) \eta_{t}+w_{x}+\varepsilon a(x) \eta=0, & x \in(0,2 \pi), t>0 \\
\left(I-d \partial_{x}^{2}\right) w_{t}+\eta_{x}=0, & x \in(0,2 \pi), t>0
\end{array}
$$

the system can be written as

$$
\begin{aligned}
& U_{t}+\mathcal{A}_{\varepsilon} U=0 \\
& U(0)=U_{0}
\end{aligned}
$$

where $\mathcal{A}_{\varepsilon}:\left(H_{0}^{1}(0,2 \pi)\right)^{2} \rightarrow\left(H_{0}^{1}(0,2 \pi)\right)^{2}$ is given by

$$
\mathcal{A}_{\varepsilon}=\left(\begin{array}{cc}
\varepsilon\left(I-b \partial_{x}^{2}\right)^{-1} a(\cdot) I & \left(I-b \partial_{x}^{2}\right)^{-1} \partial_{x} \tag{6}\\
\left(I-d \partial_{x}^{2}\right)^{-1} \partial_{x} & 0
\end{array}\right)
$$

We have that

$$
\mathcal{A}_{\varepsilon} \in \mathcal{L}\left(\left(H_{0}^{1}(0,2 \pi)\right)^{2}\right) \text { and } \mathcal{A}_{\varepsilon} \text { is a compact operator. }
$$

The operator $\mathcal{A}_{\varepsilon}$ has a family of eigenvalues $\left(\lambda_{n}\right)_{n \geq 1}$, such that:

1. $\left|\Re\left(\lambda_{n}\right)\right| \leq \frac{c}{|n|^{2}}, \forall n \geq n_{0}, \quad$ and $\quad \Re\left(\lambda_{n}\right)<0, \quad \forall n$.
2. The corresponding eigenfunctions $\left(\Phi_{n}\right)_{n \geq 1}$ form a Riesz basis in $\left(H_{0}^{1}(0,2 \pi)\right)^{2}$.

Then

$E(t)$ converges to zero as $t \rightarrow \infty$.
The decay is not exnonential.

The operator $\mathcal{A}_{\varepsilon}$ has a family of eigenvalues $\left(\lambda_{n}\right)_{n \geq 1}$, such that:

1. $\left|\Re\left(\lambda_{n}\right)\right| \leq \frac{c}{|n|^{2}}, \forall n \geq n_{0}$, and $\quad \Re\left(\lambda_{n}\right)<0, \quad \forall n$.
2. The corresponding eigenfunctions $\left(\Phi_{n}\right)_{n \geq 1}$ form a Riesz basis in $\left(H_{0}^{1}(0,2 \pi)\right)^{2}$.

$E(t)$ converges to zero as $t \rightarrow \infty$.
The decay is not exnonential

The operator $\mathcal{A}_{\varepsilon}$ has a family of eigenvalues $\left(\lambda_{n}\right)_{n \geq 1}$, such that:

1. $\left|\Re\left(\lambda_{n}\right)\right| \leq \frac{c}{|n|^{2}}, \forall n \geq n_{0}, \quad$ and $\quad \Re\left(\lambda_{n}\right)<0, \quad \forall n$.
2. The corresponding eigenfunctions $\left(\Phi_{n}\right)_{n \geq 1}$ form a Riesz basis in $\left(H_{0}^{1}(0,2 \pi)\right)^{2}$.

Then,

$$
(\eta(t), w(t))=\sum_{n \geq 1} a_{n} e^{\lambda_{n} t} \Phi_{n}
$$

and
$c_{1} \sum_{n \geq n_{0}}\left|a_{n}\right|^{2} e^{2 \Re\left(\lambda_{n}\right) t} \leq\|(\eta(t), w(t))\|_{\left(H_{0}^{1}(0,2 \pi)\right)^{2}}^{2} \leq c_{2} \sum_{n \geq 1}\left|a_{n}\right|^{2} e^{2 \Re\left(\lambda_{n}\right) t}$.
$E(t)$ converges to zero as $t \rightarrow \infty$.
The decay is not exponential.

We obtain the asymptotic behavior of the high eigenfunctions and prove that they are quadratically close to a Riesz basis $\left(\Psi_{m}\right)_{m \geq 1}$ formed by eigenvectors of a well chosen dissipative differential operator with constant coefficients:

$$
\sum_{m \geq N+1}\left\|\Phi_{m}-\Psi_{m}\right\|_{\left(H_{0}^{1}(0,2 \pi)\right)^{2}}^{2} \sim \frac{1}{m^{2}}
$$

then

We obtain the asymptotic behavior of the high eigenfunctions and prove that they are quadratically close to a Riesz basis $\left(\Psi_{m}\right)_{m \geq 1}$ formed by eigenvectors of a well chosen dissipative differential operator with constant coefficients:

$$
\sum_{m \geq N+1}\left\|\Phi_{m}-\Psi_{m}\right\|_{\left(H_{0}^{1}(0,2 \pi)\right)^{2}}^{2} \sim \frac{1}{m^{2}}
$$

Theorem (S.Micu, A. Pazoto - Journal d'Analyse Mathématique)

Let (η, w) be a finite energy solution of the system with $a \equiv 0$. If there exist $T>0$ and an open set $\Omega \subset(0,2 \pi)$, such that

$$
\begin{equation*}
\eta(x, t)=0 \quad, \forall(x, t) \in \Omega \times(0, T), \tag{7}
\end{equation*}
$$

then

$$
\eta=w \equiv 0 \quad \text { in } \quad \mathbb{R} \times(0,2 \pi)
$$

Periodic boundary conditions

For $b, d>0$ and $\beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2} \geq 0$, we consider the system

$$
\begin{align*}
& \eta_{t}+w_{x}-b \eta_{t x x}+(\eta w)_{x}+\beta_{1} M_{\alpha_{1}} \eta=0 \tag{8}\\
& w_{t}+\eta_{x}-d w_{t x x}+w w_{x}+\beta_{2} M_{\alpha_{2}} w=0
\end{align*}
$$

with periodic boundary conditions

$$
\begin{aligned}
& \eta(0, t)=\eta(2 \pi, t) ; \eta_{x}(0, t)=\eta_{x}(2 \pi, t) \\
& w(0, t)=w(2 \pi, t) ; w_{x}(0, t)=w_{x}(2 \pi, t)
\end{aligned}
$$

and initial conditions

$$
\eta(x, 0)=\eta^{0}(x), \quad w(x, 0)=w^{0}(x) .
$$

In (8), $M_{\alpha_{j}}$ are Fourier multiplier operators given by

$$
M_{\alpha_{j}}\left(\sum_{k \in \mathbb{Z}} v_{k} e^{i k x}\right)=\sum_{k \in \mathbb{Z}}\left(1+k^{2}\right)^{\frac{\alpha_{j}}{2}} \widehat{v}_{k} e^{i k x}
$$

The energy associated to the model is given by

$$
\begin{equation*}
E(t)=\frac{1}{2} \int_{0}^{2 \pi}\left(\eta^{2}+b \eta_{x}^{2}+w^{2}+d w_{x}^{2}\right) d x \tag{9}
\end{equation*}
$$

and we can (formally) deduce that

$$
\begin{align*}
\frac{d}{d t} E(t) & =-\beta_{1} \int_{0}^{2 \pi}\left(M_{\alpha_{1}} \eta\right) \eta d x-\beta_{2} \int_{0}^{2 \pi}\left(M_{\alpha_{2}} w\right) w d x \\
& -\int_{0}^{2 \pi}(\eta w)_{x} \eta d x \tag{10}
\end{align*}
$$

Since $\beta_{1}, \beta_{2} \geq 0$ and

$$
\left(M_{\alpha_{j}} v, v\right)_{L^{2}(0,2 \pi)} \geq 0, \quad j=1,2
$$

the terms $M_{\alpha_{1}} \eta$ and $M_{\alpha_{2}} w$ play the role of feedback damping mechanisms, at least for the linearized system.

Assumptions on the Dissipation: $\int_{\mathbb{T}} M_{\alpha_{i}} \varphi(x) \varphi(x) d x \geq 0$

- Applications and study of asymptotic behavior os solutions:
- J. L. Bona and J. Wu, M2AN Math. Model. Numer. Anal. (2000).
- J.-P. Chehab, P. Garnier and Y. Mammeri, J. Math. Chem. (2001).
- D. Dix, Comm. PDE (1992).
- C. J. Amick, J. L. Bona and M. Schonbek, Jr. Diff. Eq. (1989).
- P. Biler, Bull. Polish. Acad. Sci. Math. (1984).
- J.-C. Saut, J. Math. Pures et Appl. (1979).
- Fractional derivative (Weyl fractional derivative operator)

Assumptions on the Dissipation: $\int_{\mathbb{T}} M_{\alpha_{i}} \varphi(x) \varphi(x) d x \geq 0$

- Applications and study of asymptotic behavior os solutions:
- J. L. Bona and J. Wu, M2AN Math. Model. Numer. Anal. (2000).
- J.-P. Chehab, P. Garnier and Y. Mammeri, J. Math. Chem. (2001).
- D. Dix, Comm. PDE (1992).
- C. J. Amick, J. L. Bona and M. Schonbek, Jr. Diff. Eq. (1989).
- P. Biler, Bull. Polish. Acad. Sci. Math. (1984).
- J.-C. Saut, J. Math. Pures et Appl. (1979).
- Fractional derivative (Weyl fractional derivative operator):

$$
h(x)=\sum_{k \in \mathbb{Z}} a_{k} e^{i k x} \Rightarrow W_{x}^{\alpha}(h)(x)=\sum_{k \in \mathbb{Z}}(i k)^{\alpha} a_{k} e^{i k x}, \quad \alpha \in(0,1)
$$

Main results

The energy $E(t)$ satisfies

$$
\frac{d E}{d t}=-\beta_{1} \int_{0}^{2 \pi}\left(M_{\alpha_{1}} \eta\right) \eta d x-\beta_{2} \int_{0}^{2 \pi}\left(M_{\alpha_{2}} w\right) w d x-\int_{0}^{2 \pi}(\eta w)_{x} \eta d x
$$

where

$$
M_{\alpha_{j}} v=\sum_{k \in \mathbb{Z}}\left(1+k^{2}\right)^{\frac{\alpha_{j}}{2}} \widehat{v}_{k} e^{i k x}
$$

Firstly, we analyze the linearized system:

- $\alpha_{1}=\alpha_{2}=2$ and $\beta_{1}, \beta_{2}>0 \Longrightarrow$ the exponential decay of solutions in the H^{s}-setting, for any $s \in \mathbb{R}$.
- $\max \left\{\alpha_{1}, \alpha_{2}\right\} \in(0,2), \beta_{1}, \beta_{2} \geq 0$ and $\beta_{1}^{2}+\beta_{2}^{2}>0 \Longrightarrow$ polynomial decay rate of solutions in the H^{s}-setting, by considering more regular initial data.

Exponential decay estimate and contraction mapping argument \Longrightarrow global well-posedness and the exponential stability property of the nonlinear system.

Main results

The energy $E(t)$ satisfies

$$
\frac{d E}{d t}=-\beta_{1} \int_{0}^{2 \pi}\left(M_{\alpha_{1}} \eta\right) \eta d x-\beta_{2} \int_{0}^{2 \pi}\left(M_{\alpha_{2}} w\right) w d x-\int_{0}^{2 \pi}(\eta w)_{x} \eta d x
$$

where

$$
M_{\alpha_{j}} v=\sum_{k \in \mathbb{Z}}\left(1+k^{2}\right)^{\frac{\alpha_{j}}{2}} \widehat{v}_{k} e^{i k x}
$$

Firstly, we analyze the linearized system:

- $\alpha_{1}=\alpha_{2}=2$ and $\beta_{1}, \beta_{2}>0 \Longrightarrow$ the exponential decay of solutions in the H^{s}-setting, for any $s \in \mathbb{R}$.
- $\max \left\{\alpha_{1}, \alpha_{2}\right\} \in(0,2), \beta_{1}, \beta_{2} \geq 0$ and $\beta_{1}^{2}+\beta_{2}^{2}>0 \Longrightarrow$ polynomial decay rate of solutions in the H^{s}-setting, by considering more regular initial data.
Exponential decay estimate and contraction mapping argument \Longrightarrow global well-posedness and the exponential stability property of the

Main results

The energy $E(t)$ satisfies

$$
\frac{d E}{d t}=-\beta_{1} \int_{0}^{2 \pi}\left(M_{\alpha_{1}} \eta\right) \eta d x-\beta_{2} \int_{0}^{2 \pi}\left(M_{\alpha_{2}} w\right) w d x-\int_{0}^{2 \pi}(\eta w)_{x} \eta d x
$$

where

$$
M_{\alpha_{j}} v=\sum_{k \in \mathbb{Z}}\left(1+k^{2}\right)^{\frac{\alpha_{j}}{2}} \widehat{v}_{k} e^{i k x}
$$

Firstly, we analyze the linearized system:
■ $\alpha_{1}=\alpha_{2}=2$ and $\beta_{1}, \beta_{2}>0 \Longrightarrow$ the exponential decay of solutions in the H^{s}-setting, for any $s \in \mathbb{R}$.
$\square \max \left\{\alpha_{1}, \alpha_{2}\right\} \in(0,2), \beta_{1}, \beta_{2} \geq 0$ and $\beta_{1}^{2}+\beta_{2}^{2}>0 \Longrightarrow$ polynomial decay rate of solutions in the H^{s}-setting, by considering more regular initial data.
Exponential decay estimate and contraction mapping argument \Longrightarrow global well-posedness and the exponential stability property of the

Main results

The energy $E(t)$ satisfies

$$
\frac{d E}{d t}=-\beta_{1} \int_{0}^{2 \pi}\left(M_{\alpha_{1}} \eta\right) \eta d x-\beta_{2} \int_{0}^{2 \pi}\left(M_{\alpha_{2}} w\right) w d x-\int_{0}^{2 \pi}(\eta w)_{x} \eta d x
$$

where

$$
M_{\alpha_{j}} v=\sum_{k \in \mathbb{Z}}\left(1+k^{2}\right)^{\frac{\alpha_{j}}{2}} \widehat{v}_{k} e^{i k x}
$$

Firstly, we analyze the linearized system:

- $\alpha_{1}=\alpha_{2}=2$ and $\beta_{1}, \beta_{2}>0 \Longrightarrow$ the exponential decay of solutions in the H^{s}-setting, for any $s \in \mathbb{R}$.
$\square \max \left\{\alpha_{1}, \alpha_{2}\right\} \in(0,2), \beta_{1}, \beta_{2} \geq 0$ and $\beta_{1}^{2}+\beta_{2}^{2}>0 \Longrightarrow$ polynomial decay rate of solutions in the H^{s}-setting, by considering more regular initial data.
Exponential decay estimate and contraction mapping argument \Longrightarrow global well-posedness and the exponential stability property of the nonlinear system.

The Linearized System

Since

$$
\begin{aligned}
& \left(I-b \partial_{x}^{2}\right) \eta_{t}+w_{x}+\beta_{1} M_{1} \eta=0 \\
& \left(I-d \partial_{x}^{2}\right) w_{t}+\eta_{x}+\beta_{2} M_{2} \eta=0
\end{aligned}
$$

the linear system can be written as

$$
\begin{aligned}
& U_{t}+A U=0 \\
& U(0)=U_{0}
\end{aligned}
$$

where A is given by

$$
A=\left(\begin{array}{cc}
\beta_{1}\left(I-b \partial_{x}^{2}\right)^{-1} M_{\alpha_{1}} & \left(I-b \partial_{x}^{2}\right)^{-1} \partial_{x} \tag{11}\\
\left(I-d \partial_{x}^{2}\right)^{-1} \partial_{x} & \beta_{2}\left(I-b \partial_{x}^{2}\right)^{-1} M_{\alpha_{2}}
\end{array}\right) .
$$

For $\alpha>0$, the operator $\left(I-\alpha \partial_{x}^{2}\right)^{-1}$ is defined in the following way:

$$
\left(I-\alpha \partial_{x}^{2}\right)^{-1} \varphi=v \Leftrightarrow \begin{cases}v-\alpha v_{x x}=\varphi & \text { in }(0,2 \pi) \\ v(0)=v(2 \pi), & v_{x}(0)=v_{x}(2 \pi) .\end{cases}
$$

Spectral Analysis

If we assume that

$$
\left(\eta^{0}, w^{0}\right)=\sum_{k \in \mathbb{Z}}\left(\widehat{\eta}_{k}^{0}, \widehat{w}_{k}^{0}\right) e^{i k x}
$$

the solution can be written as

$$
(\eta, \omega)(x, t)=\sum_{k \in \mathbb{Z}}\left(\widehat{\eta}_{k}(t), \widehat{\omega}_{k}(t)\right) e^{i k x}
$$

where the pair $\left(\widehat{\eta}_{k}(t), \widehat{w}_{k}(t)\right)$ fulfills

$$
\begin{align*}
& \left(1+b k^{2}\right)\left(\widehat{\eta}_{k}\right)_{t}+i k \widehat{w}_{k}+\beta_{1}\left(1+k^{2}\right)^{\frac{\alpha_{1}}{2}} \widehat{\eta}_{k}=0 \\
& \left(1+d k^{2}\right)\left(\widehat{w}_{k}\right)_{t}+i k \widehat{\eta}_{k}+\beta_{2}\left(1+k^{2}\right)^{\frac{\alpha_{2}}{2}} \widehat{w}_{k}=0 \tag{12}\\
& \widehat{\eta}_{k}(0)=\widehat{\eta}_{k}^{0}, \quad \widehat{w}_{k}(0)=\widehat{w}_{k}^{0}
\end{align*}
$$

where $t \in(0, T)$.

We set

$$
A(k)=\left(\begin{array}{ll}
\frac{\beta_{1}\left(1+k^{2}\right)^{\frac{\alpha_{1}}{2}}}{1+b k^{2}} & \frac{i k}{1+b k^{2}} \\
\frac{i k}{1+d k^{2}} & \frac{\beta_{2}\left(1+k^{2}\right)^{\frac{\alpha_{2}}{2}}}{1+d k^{2}}
\end{array}\right) .
$$

Then system (12) is equivalent to

$$
\binom{\widehat{\eta}_{k}}{\widehat{w}_{k}}_{t}(t)+A(k)\binom{\widehat{\eta}_{k}}{\widehat{w}_{k}}(t)=\binom{0}{0}, \quad\binom{\widehat{\eta}_{k}}{\widehat{w}_{k}}(0)=\binom{\widehat{\eta}_{k}^{0}}{\widehat{w}_{k}^{0}}
$$

Hence, the solution of (12) is given by

$$
\begin{equation*}
\binom{\widehat{\eta}_{k}}{\widehat{w}_{k}}(t)=e^{-A(k) t}\binom{\widehat{\eta}_{k}^{0}}{\widehat{w}_{k}^{0}} . \tag{13}
\end{equation*}
$$

Lemma

The eigenvalues of the matrix A are given by
$\lambda_{k}^{ \pm}=\frac{1}{2}\left(\frac{\beta_{1}\left(1+k^{2}\right)^{\frac{\alpha_{1}}{2}}}{1+b k^{2}}+\frac{\beta_{2}\left(1+k^{2}\right)^{\frac{\alpha_{2}}{2}}}{1+d k^{2}} \pm \frac{2|k| \sqrt{e_{k}^{2}-1}}{\sqrt{\left(1+b k^{2}\right)\left(1+d k^{2}\right)}}\right)$,
where

$$
e_{k}=\frac{1}{2 k}\left(\beta_{1}\left(1+k^{2}\right)^{\frac{\alpha_{1}}{2}} \sqrt{\frac{1+d k^{2}}{1+b k^{2}}}-\beta_{2}\left(1+k^{2}\right)^{\frac{\alpha_{2}}{2}} \sqrt{\frac{1+b k^{2}}{1+d k^{2}}}\right)
$$

and $k \in \mathbb{Z}^{*}$.
Observe that
■ $\lambda_{k}^{ \pm}=\lambda_{-k}^{ \pm}$.

- If $e_{k}<1$, the eigenvalues $\lambda_{k}^{ \pm} \in \mathbb{C}$.
- If $e_{k} \geq 1$, the eigenvalues $\lambda_{k}^{ \pm} \in \mathbb{R}$.

The solution $\left(\widehat{\eta}_{k}(t), \widehat{w}_{k}(t)\right)$ of (12) is given by

$$
\begin{aligned}
& \widehat{\eta}_{k}(t)=\frac{1}{1-\zeta_{k}^{2}}\left[\left(\widehat{\eta}_{k}^{0}+i \alpha_{k} \zeta_{k} \widehat{w}_{k}^{0}\right) e^{-\lambda_{k}^{+} t}-\left(\zeta_{k}^{2} \widehat{\eta}_{k}^{0}+i \alpha_{k} \zeta_{k} \widehat{w}_{k}^{0}\right) e^{-\lambda_{k}^{-} t}\right], \\
& \widehat{w}_{k}(t)=\frac{1}{1-\zeta_{k}^{2}}\left[\left(i \theta_{k} \zeta_{k} \widehat{\eta}_{k}^{0}-\zeta_{k}^{2} \widehat{w}_{k}^{0}\right) e^{-\lambda_{k}^{+} t}-\left(i \theta_{k} \zeta_{k} \widehat{\eta}_{k}^{0}-\widehat{w}_{k}^{0}\right) e^{-\lambda_{k}^{-} t}\right],
\end{aligned}
$$

if $\left|e_{k}\right| \neq 1$ and $k \neq 0$,

$$
\begin{aligned}
& \widehat{\eta}_{k}(t)=\left[\left(1-\frac{k \zeta_{k}}{\sqrt{\left(1+b k^{2}\right)\left(1+d k^{2}\right)}} t\right) \widehat{\eta}_{k}^{0}-\frac{i k t}{1+b k^{2}} \widehat{w}_{k}^{0}\right] e^{-\lambda_{k}^{+} t}, \\
& \widehat{w}_{k}(t)=\left[-\frac{i k t}{1+d k^{2}} \widehat{\eta}_{k}^{0}+\left(1+\frac{k \zeta_{k}}{\sqrt{\left(1+b k^{2}\right)\left(1+d k^{2}\right)}} t\right) \widehat{w}_{k}^{0}\right] e^{-\lambda_{k}^{+} t},
\end{aligned}
$$

if $\left|e_{k}\right|=1$ and $k \neq 0$, and finally,

$$
\widehat{\eta}_{0}(t)=\widehat{\eta}_{0}^{0} e^{-\beta_{1} t}, \quad \widehat{w}_{0}(t)=\widehat{w}_{0}^{0} e^{-\beta_{2} t} .
$$

Here, $\alpha_{k}=\sqrt{\frac{1+d k^{2}}{1+b k^{2}}}, \theta_{k}=\sqrt{\frac{1+b k^{2}}{1+d k^{2}}}$ and $\zeta_{k}=e_{k}-\sqrt{e_{k}^{2}-1}$.

The case $s=0$

For any $t \geq 0$ and $k \in \mathbb{Z}$, we have that

$$
b\left|\widehat{\eta}_{k}(t)\right|^{2}+d\left|\widehat{w}_{k}(t)\right|^{2} \leq M\left(b\left|\widehat{\eta}_{k}^{0}\right|^{2}+d\left|\widehat{w}_{k}^{0}\right|^{2}\right) e^{-2 t \min \left\{\left|\Re\left(\lambda_{k}^{+}\right)\right|,\left|\Re\left(\lambda_{k}^{-}\right)\right|\right\}}
$$

where

$$
\min \left\{\left|\Re\left(\lambda_{k}^{+}\right)\right|,\left|\Re\left(\lambda_{k}^{-}\right)\right|\right\} \geq D>0
$$

and D is a positive number, depending on the parameters $\beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2}$, b and d.

Moreover,

■ If $\beta_{1} \beta_{2}=0$, then $\Re\left(\lambda_{k}^{ \pm}\right) \rightarrow 0$, as $|k| \rightarrow \infty$, and we cannot expect uniform exponential decay of the solutions.

- The fact that the decay of the solutions is not exponential is equivalent to the non uniform decay rate: given any non increasing positive function Θ, there is an initial data $\left(\eta^{0}, w^{0}\right)$ such that the $H_{p}^{s} \times H_{p}^{s}$-norm of the corresponding solution decays slower that Θ

The case $s=0$

For any $t \geq 0$ and $k \in \mathbb{Z}$, we have that

$$
b\left|\widehat{\eta}_{k}(t)\right|^{2}+d\left|\widehat{w}_{k}(t)\right|^{2} \leq M\left(b\left|\widehat{\eta}_{k}^{0}\right|^{2}+d\left|\widehat{w}_{k}^{0}\right|^{2}\right) e^{-2 t \min \left\{\left|\Re\left(\lambda_{k}^{+}\right)\right|,\left|\Re\left(\lambda_{k}^{-}\right)\right|\right\}}
$$

where

$$
\min \left\{\left|\Re\left(\lambda_{k}^{+}\right)\right|,\left|\Re\left(\lambda_{k}^{-}\right)\right|\right\} \geq D>0
$$

and D is a positive number, depending on the parameters $\beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2}$, b and d.

Moreover,
■ If $\beta_{1} \beta_{2}=0$, then $\Re\left(\lambda_{k}^{ \pm}\right) \rightarrow 0$, as $|k| \rightarrow \infty$, and we cannot expect uniform exponential decay of the solutions.

- The fact that the decay of the solutions is not exponential is equivalent to the non uniform decay rate: given any non increasing positive function Θ, there is an initial data $\left(\eta^{0}, w^{0}\right)$ such that the $H_{p}^{s} \times H_{p}^{s}$-norm of the corresponding solution decays slower that Θ.

The case $s=0$

For any $t \geq 0$ and $k \in \mathbb{Z}$, we have that

$$
b\left|\widehat{\eta}_{k}(t)\right|^{2}+d\left|\widehat{w}_{k}(t)\right|^{2} \leq M\left(b\left|\widehat{\eta}_{k}^{0}\right|^{2}+d\left|\widehat{w}_{k}^{0}\right|^{2}\right) e^{-2 t \min \left\{\left|\Re\left(\lambda_{k}^{+}\right)\right|,\left|\Re\left(\lambda_{k}^{-}\right)\right|\right\}},
$$

where

$$
\min \left\{\left|\Re\left(\lambda_{k}^{+}\right)\right|,\left|\Re\left(\lambda_{k}^{-}\right)\right|\right\} \geq D>0,
$$

and D is a positive number, depending on the parameters $\beta_{1}, \beta_{2}, \alpha_{1}, \alpha_{2}$, b and d.

Moreover,

- If $\beta_{1} \beta_{2}=0$, then $\Re\left(\lambda_{k}^{ \pm}\right) \rightarrow 0$, as $|k| \rightarrow \infty$, and we cannot expect uniform exponential decay of the solutions.
- The fact that the decay of the solutions is not exponential is equivalent to the non uniform decay rate: given any non increasing positive function Θ, there is an initial data $\left(\eta^{0}, w^{0}\right)$ such that the $H_{p}^{s} \times H_{p}^{s}-$ norm of the corresponding solution decays slower that Θ.

Let us introduce the space

$$
V^{s}=H_{p}^{s}(0,2 \pi) \times H_{p}^{s}(0,2 \pi) .
$$

Then, the following holds:

Theorem

The family of linear operators $\{S(t)\}_{t \geq 0}$ defined by

$$
\begin{equation*}
S(t)\left(\eta^{0}, w^{0}\right)=\sum_{k \in \mathbb{Z}}\left(\widehat{\eta}_{k}(t), \widehat{w}_{k}(t)\right) e^{i k x}, \quad\left(\eta^{0}, w^{0}\right) \in V^{s} \tag{14}
\end{equation*}
$$

is an analytic semigroup in V^{s} and verifies the following estimate

$$
\begin{equation*}
\left\|S(t)\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}} \leq C\left\|\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}} \tag{15}
\end{equation*}
$$

where C is a positive constant. Moreover, its infinitesimal generator is the compact operator $(D(A), A)$, where $D(A)=V^{s}$ and A is given by

$$
A=\left(\begin{array}{cc}
\beta_{1}\left(I-b \partial_{x}^{2}\right)^{-1} M_{\alpha_{1}} & \left(I-b \partial_{x}^{2}\right)^{-1} \partial_{x} \tag{16}\\
\left(I-d \partial_{x}^{2}\right)^{-1} \partial_{x} & \beta_{2}\left(I-b \partial_{x}^{2}\right)^{-1} M_{\alpha_{2}}
\end{array}\right) .
$$

Definition

The solutions decay exponentially in V^{s} if there exist two positive constants M and μ, such that

$$
\begin{equation*}
\left\|S(t)\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}} \leq M e^{-\mu t}\left\|\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}} \tag{17}
\end{equation*}
$$

$\forall t \geq 0$ and $\left(\eta^{0}, w^{0}\right) \in V^{s}$.
We have the following result:
Theorem
The solutions decay exponentially in V^{s} if and only if $\alpha_{1}=\alpha_{2}=2$ and $\beta_{1}, \beta_{2}>0$. Moreover, μ from (17) is given by

$$
\mu=\inf _{k \in \mathbb{Z}}\left\{\left|\Re\left(\lambda_{k}^{+}\right)\right|,\left|\Re\left(\lambda_{k}^{-}\right)\right|\right\}
$$

Definition

The solutions decay exponentially in V^{s} if there exist two positive constants M and μ, such that

$$
\begin{equation*}
\left\|S(t)\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}} \leq M e^{-\mu t}\left\|\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}} \tag{17}
\end{equation*}
$$

$\forall t \geq 0$ and $\left(\eta^{0}, w^{0}\right) \in V^{s}$.
We have the following result:

Theorem

The solutions decay exponentially in V^{s} if and only if $\alpha_{1}=\alpha_{2}=2$ and $\beta_{1}, \beta_{2}>0$. Moreover, μ from (17) is given by

$$
\begin{equation*}
\mu=\inf _{k \in \mathbb{Z}}\left\{\left|\Re\left(\lambda_{k}^{+}\right)\right|,\left|\Re\left(\lambda_{k}^{-}\right)\right|\right\} \tag{18}
\end{equation*}
$$

where $\lambda_{k}^{ \pm}$are the eigenvalues of the operator A.

Theorem

Suppose that $\beta_{1}, \beta_{2} \geq 0, \beta_{1}^{2}+\beta_{2}^{2}>0$ and $\min \left\{\alpha_{1}, \alpha_{2}\right\} \in[0,2)$. Then, there exists δ and $M>0$, such that

$$
\left\|S(t)\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}} \leq \frac{M}{(1+t)^{\frac{1}{\delta}\left(q-\frac{1}{2}\right)}}\left\|\left(\eta^{0}, w^{0}\right)\right\|_{V^{s+q}}, \forall t>0
$$

where $s \in \mathbb{R}$ and $q>\frac{1}{2}$. Moreover, $\delta>0$ is defined by

$$
\delta= \begin{cases}2-\max \left\{\alpha_{1}, \alpha_{2}\right\} & \text { if } \alpha_{1}+\alpha_{2} \leq 2, \\ \max \left\{\alpha_{1}, \alpha_{2}\right\} & \text { if } \alpha_{1}+\alpha_{2} \leq 2, \\ 2-\min \left\{\alpha_{1}, \alpha_{2}\right\} & \text { if } \left.\alpha_{1}+\alpha_{2}\right\} \leq 1, \\ 2-2 . & \end{cases}
$$

Remark: If $\alpha_{1}=\alpha_{2}=2$ and $\beta_{1}=0$ or $\beta_{2}=0$, then $\delta=2$.

The nonlinear problem

Theorem

Let $s \geq 0$ and suppose that $\beta_{1}, \beta_{2}>0$ and $\alpha_{1}=\alpha_{2}=2$. There exist $r>0, C>0$ and $\mu>0$, such that, for any $\left(\eta^{0}, w^{0}\right) \in V^{s}$, satisfying

$$
\left\|\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}} \leq r
$$

the system admits a unique solution $(\eta, w) \in C\left([0, \infty) ; V^{s}\right)$ which verifies

$$
\|(\eta(t), w(t))\|_{V^{s}} \leq C e^{-\mu t}\left\|\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}}, \quad t \geq 0
$$

Moreover, μ may be taken as in the linearized problem.
The energy $E(t)$ satisfies

$$
\frac{d E}{d t}=-\beta_{1} \int_{0}^{2 \pi}\left(M_{\alpha_{1}} \eta\right) \eta d x-\beta_{2} \int_{0}^{2 \pi}\left(M_{\alpha_{2}} w\right) w d x-\int_{0}^{2 \pi}(\eta w)_{x} \eta d x
$$

We define the space

$$
Y_{s, \mu}=\left\{(\eta, w) \in C_{b}\left(\mathbb{R}^{+} ; V^{s}\right): e^{\mu t}(\eta, w) \in C_{b}\left(\mathbb{R}^{+} ; V^{s}\right)\right\}
$$

with the norm

$$
\|(\eta, w)\|_{Y_{s, \mu}}:=\sup _{0 \leq t<\infty}\left\|e^{\mu t}(\eta, w)(t)\right\|_{V^{s}},
$$

and the function $\Gamma: Y_{s, \mu} \rightarrow Y_{s, \mu}$ by

$$
\Gamma(\eta, w)(t)=S(t)\left(\eta^{0}, w^{0}\right)-\int_{0}^{t} S(t-\tau) N(\eta, w)(\tau) \mathrm{d} \tau
$$

where $N(\eta, w)=\left(-\left(I-b \partial_{x}^{2}\right)^{-1}(\eta w)_{x},-\left(I-d \partial_{x}^{2}\right)^{-1} w w_{x}\right)$ and $\{S(t)\}_{t \geq 0}$ is the semigroup associated to the linearized system.

Combining the estimates obtained for the linearized system we have

$$
\|\Gamma(\eta, w)(t)\|_{V^{s}} \leq M e^{-\mu t}\left\|\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}}+M C e^{-\mu t} \sup _{0 \leq \tau \leq t}\left\|e^{\mu \tau}(\eta, w)\right\|_{V^{s}}
$$ for any $t \geq 0$ and some positive constants M and C.

- If we take $(\eta, w) \in B_{R}(0) \subset Y_{s, \mu}$, the following estimate holds
- A similar calculations shows that,

for any $\left(\eta_{1}, w_{1}\right),\left(\eta_{2}, w_{2}\right) \in B_{R}(0)$.

Combining the estimates obtained for the linearized system we have

$$
\|\Gamma(\eta, w)(t)\|_{V^{s}} \leq M e^{-\mu t}\left\|\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}}+M C e^{-\mu t} \sup _{0 \leq \tau \leq t}\left\|e^{\mu \tau}(\eta, w)\right\|_{V^{s}}
$$

for any $t \geq 0$ and some positive constants M and C.
■ If we take $(\eta, w) \in B_{R}(0) \subset Y_{s, \mu}$, the following estimate holds

$$
\|\Gamma(\eta, w)\|_{Y_{s, \mu}} \leq M\left\|\left(\eta^{0}, w^{0}\right)\right\|_{V^{s}}+M C\|(\eta, w)\|_{Y_{s, \mu}}^{2} \leq M r+M C R^{2}
$$

- A similar calculations shows that,

$$
\begin{aligned}
& \left\|\Gamma\left(\eta_{1}, w_{1}\right)-\Gamma\left(\eta_{2}, w_{2}\right)\right\|_{Y_{s, \mu}} \leq 2 R M C\left\|\left(\eta_{1}, w_{1}\right)-\left(\eta_{2}, w_{2}\right)\right\|_{Y_{s, \mu}} \\
& \text { for any }\left(\eta_{1}, w_{1}\right),\left(\eta_{2}, w_{2}\right) \in B_{R}(0)
\end{aligned}
$$

A suitable choice of R guarantees that Γ is a contraction.

Open problems

■ Dirichlet boundary conditions:

- Less regularity for the potential a.
- Stabilization results for the nonlinear problem.
- Dissipative mechanisms, like $-\left[a(x) \varphi_{x}\right]_{x}$, ensures the uniform decay?
■ The mixed KdV-BBM system is exponentially stabilizable?
- Periodic boundary conditions:
- The decay of solutions of a nonlinear problem with a linearized part that does not decay uniformly.
- Unique Continuation Property for the BBM-BBM system.

Open problems

■ Dirichlet boundary conditions:

- Less regularity for the potential a.
- Stabilization results for the nonlinear problem.
- Dissipative mechanisms, like $-\left[a(x) \varphi_{x}\right]_{x}$, ensures the uniform decay?
■ The mixed KdV-BBM system is exponentially stabilizable?
- Periodic boundary conditions:
- The decay of solutions of a nonlinear problem with a linearized part that does not decay uniformly.
- Unique Continuation Property for the BBM-BBM system.

Open problems

■ Dirichlet boundary conditions:
■ Less regularity for the potential a.

- Stabilization results for the nonlinear problem.
- Dissipative mechanisms, like $-\left[a(x) \varphi_{x}\right]_{x}$, ensures the uniform decay?
■ The mixed KdV-BBM system is exponentially stabilizable?
■ Periodic boundary conditions:
- The decay of solutions of a nonlinear problem with a linearized part that does not decay uniformly.
■ Unique Continuation Property for the BBM-BBM system.

