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The Benjamin-Bona-Mahony (BBM) equation

The BBM equation

ut + ux − uxxt + uux = 0, (1)

was proposed as an alternative model for the Korteweg-de Vries
equation (KdV)

ut + ux + uxxx + uux = 0, (2)

to describe the propagation of one-dimensional, unidirectional
small amplitude long waves in nonlinear dispersive media.

• u(x, t) is a real-valued functions of the real variables x and t.

In the context of shallow-water waves, u(x, t) represents the
displacement of the water surface at location x and time t.



The Boussinesq system

J. L. Bona, M. Chen, J.-C. Saut - J. Nonlinear Sci. 12 (2002).{
ηt + wx + (ηw)x + awxxx − bηxxt = 0

wt + ηx + wwx + cηxxx − dwxxt = 0,
(3)

The model describes the motion of small-amplitude long waves on the
surface of an ideal fluid under the gravity force and in situations where
the motion is sensibly two dimensional.

η is the elevation of the fluid surface from the equilibrium position;

w = wθ is the horizontal velocity in the flow at height θh, where h is the
undisturbed depth of the liquid;

a, b, c, d, are parameters required to fulfill the relations

a+ b =
1

2

(
θ2 − 1

3

)
, c+ d =

1

2
(1− θ2) ≥ 0,

where θ ∈ [0, 1] specifies which velocity the variable w represents.
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Stabilization Results: E(t) ≤ cE(0)e−ωt, ω > 0, c > 0

The Boussinesq system posed on a bounded interval:

A. Pazoto and L. Rosier, Stabilization of a Boussinesq system of
KdV-KdV type, System and Control Letters 57 (2008), 595-601.

R. Capistrano Filho, A. Pazoto and L. Rosier, Control of Boussinesq
system of KdV-KdV type on a bounded domain, Preprint.

The Boussinesq system posed on the whole real axis: (−ηxx,−wxx)

M. Chen and O. Goubet, Long-time asymptotic behavior of
dissipative Boussinesq systems, Discrete Contin. Dyn. Syst. Ser. 17
(2007), 509-528.

The Boussinesq system posed on a periodic domain:

S. Micu, J. H. Ortega, L. Rosier and B.-Y. Zhang, Control and
stabilization of a family of Boussinesq systems, Discrete Contin.
Dyn. Syst. 24 (2009), 273-313.
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Controllability and Stabilization

• S. Micu, J. H. Ortega, L. Rosier, B.-Y. Zhang - Discrete Contin. Dyn.

Syst. 24 (2009).

b, d ≥ 0, a ≤ 0, c ≤ 0 or b, d ≥ 0, a = c > 0.

{
ηt + wx + (ηw)x + awxxx − bηxxt = f(x, t)
wt + ηx + wwx + cηxxx − dwxxt = g(x, t)

where 0 < x < 2π and t > 0, with boundary conditions

∂rη

∂xr
(0, t) =

∂rη

∂xr
(2π, t),

∂rw

∂xr
(0, t) =

∂rw

∂xr
(2π, t)

and initial conditions

η(x, 0) = η0(x), w(x, 0) = w0(x).

• f and g are locally supported forces.



Dirichlet boundary conditions

ηt + wx − bηtxx = −εa(x)η, x ∈ (0, 2π), t > 0,
wt + ηx − dwtxx = 0, x ∈ (0, 2π), t > 0,

with boundary conditions

η(t, 0) = η(t, 2π) = w(t, 0) = w(t, 2π) = 0, t > 0,

and initial conditions

η(0, x) = η0(x), w(0, x) = w0(x), x ∈ (0, 2π).

We assume that

• b, d > 0 and ε > 0 are parameters.

• a = a(x) is a nonnegative real-valued function satisfying

a(x) ≥ a0 > 0, in Ω ⊂ (0, 2π),

a ∈W 2,∞(0, 2π), with a(0) = a′(0) = 0.
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The energy associated to the model is given by

E(t) =
1

2

∫ 2π

0

(η2 + bη2x + w2 + dw2
x)dx (4)

and we can (formally) deduce that

d

dt
E(t) = −ε

∫ 2π

0

a(x)η2(t, x)dx. (5)

Theorem (S.Micu, A. Pazoto - Journal d’Analyse Mathématique)

Assume that a ∈W 2,∞(0, 2π) and a(0) = a′(0) = 0. Then, there exits
ε0, such that, for any ε ∈ (0, ε0) and (η0, w0) in (H1

0 (0, 2π))2, the
solution (η, w) of the system verifies

lim
t→∞

‖(η(t), w(t))‖(H1
0 (0,2π))

2 = 0.

Moreover, the decay of the energy is not exponential, i. e., there exists
no positive constants M and ω, such that

‖(η(t), w(t))‖(H1
0 (0,2π))

2 ≤Me−ωt, t ≥ 0.
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Spectral analysis and eigenvectors expansion of solutions

Since

(I − b∂2x)ηt + wx + εa(x)η = 0, x ∈ (0, 2π), t > 0,
(I − d∂2x)wt + ηx = 0, x ∈ (0, 2π), t > 0,

the system can be written as

Ut + AεU = 0,
U(0) = U0,

where Aε : (H1
0 (0, 2π))2 → (H1

0 (0, 2π))2 is given by

Aε =

 ε
(
I − b∂2x

)−1
a(·) I

(
I − b∂2x

)−1
∂x(

I − d∂2x
)−1

∂x 0

 . (6)

We have that

Aε ∈ L((H1
0 (0, 2π))2) and Aε is a compact operator.



The operator Aε has a family of eigenvalues (λn)n≥1, such that:

1. |<(λn)| ≤ c

|n|2
, ∀n ≥ n0, and <(λn) < 0, ∀n.

2. The corresponding eigenfunctions (Φn)n≥1 form a Riesz basis
in (H1

0 (0, 2π))2.

Then,
(η(t), w(t)) =

∑
n≥1

ane
λntΦn

and

c1
∑
n≥n0

|an|2e2<(λn)t ≤ ‖(η(t), w(t))‖2(H1
0 (0,2π))

2 ≤ c2
∑
n≥1
|an|2e2<(λn)t.

E(t) converges to zero as t→∞.

The decay is not exponential.
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We obtain the asymptotic behavior of the high eigenfunctions and
prove that they are quadratically close to a Riesz basis (Ψm)m≥1
formed by eigenvectors of a well chosen dissipative differential
operator with constant coefficients:∑

m≥N+1

||Φm −Ψm||2(H1
0 (0,2π))

2 ∼
1

m2
.

Theorem (S.Micu, A. Pazoto - Journal d’Analyse Mathématique)

Let (η, w) be a finite energy solution of the system with a ≡ 0. If
there exist T > 0 and an open set Ω ⊂ (0, 2π), such that

η(x, t) = 0 , ∀ (x, t) ∈ Ω× (0, T ), (7)

then
η = w ≡ 0 in R× (0, 2π).
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Periodic boundary conditions

For b, d > 0 and β1, β2, α1, α2 ≥ 0, we consider the system

ηt + wx − bηtxx + (ηw)x + β1Mα1η = 0,
wt + ηx − dwtxx + wwx + β2Mα2w = 0,

(8)

with periodic boundary conditions

η(0, t) = η(2π, t); ηx(0, t) = ηx(2π, t),
w(0, t) = w(2π, t); wx(0, t) = wx(2π, t),

and initial conditions

η(x, 0) = η0(x), w(x, 0) = w0(x).

In (8), Mαj are Fourier multiplier operators given by

Mαj

(∑
k∈Z

vke
ikx

)
=
∑
k∈Z

(1 + k2)
αj
2 v̂ke

ikx.



The energy associated to the model is given by

E(t) =
1

2

∫ 2π

0
(η2 + bη2x + w2 + dw2

x)dx (9)

and we can (formally) deduce that

d

dt
E(t) = −β1

∫ 2π

0
(Mα1η) η dx− β2

∫ 2π

0
(Mα2w)w dx

−
∫ 2π

0
(ηw)x η dx.

(10)

Since β1, β2 ≥ 0 and

(Mαjv, v)L2(0,2π) ≥ 0, j = 1, 2,

the terms Mα1η and Mα2w play the role of feedback damping
mechanisms, at least for the linearized system.



Assumptions on the Dissipation:

∫
T
Mαiϕ(x)ϕ(x)dx ≥ 0

•Applications and study of asymptotic behavior os solutions:

- J. L. Bona and J. Wu, M2AN Math. Model. Numer. Anal. (2000).

- J.-P. Chehab, P. Garnier and Y. Mammeri, J. Math. Chem. (2001).

- D. Dix, Comm. PDE (1992).

- C. J. Amick, J. L. Bona and M. Schonbek, Jr. Diff. Eq. (1989).

- P. Biler, Bull. Polish. Acad. Sci. Math. (1984).

- J.-C. Saut, J. Math. Pures et Appl. (1979).

• Fractional derivative (Weyl fractional derivative operator):

h(x) =
∑
k∈Z

ake
ikx ⇒Wα

x (h)(x) =
∑
k∈Z

(ik)αake
ikx, α ∈ (0, 1).
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Main results

The energy E(t) satisfies

dE

dt
= −β1

∫ 2π

0
(Mα1η) η dx− β2

∫ 2π

0
(Mα2w)w dx−

∫ 2π

0
(ηw)x η dx,

where

Mαjv =
∑
k∈Z

(1 + k2)
αj
2 v̂ke

ikx.

Firstly, we analyze the linearized system:

α1 = α2 = 2 and β1, β2 > 0 =⇒ the exponential decay of solutions

in the Hs-setting, for any s ∈ R.

max{α1, α2} ∈ (0, 2), β1, β2 ≥ 0 and β2
1 + β2

2 > 0 =⇒ polynomial

decay rate of solutions in the Hs-setting, by considering more

regular initial data.

Exponential decay estimate and contraction mapping argument =⇒
global well-posedness and the exponential stability property of the

nonlinear system.
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The Linearized System

Since
(I − b∂2x)ηt + wx + β1M1η = 0,
(I − d∂2x)wt + ηx + β2M2η = 0,

the linear system can be written as

Ut +AU = 0,
U(0) = U0,

where A is given by

A =

 β1
(
I − b∂2x

)−1
Mα1

(
I − b∂2x

)−1
∂x(

I − d∂2x
)−1

∂x β2
(
I − b∂2x

)−1
Mα2

 . (11)

For α > 0, the operator (I − α∂2x)−1 is defined in the following way:

(I − α∂2x)−1ϕ = v ⇔

 v − αvxx = ϕ in (0, 2π),

v(0) = v(2π), vx(0) = vx(2π).



Spectral Analysis

If we assume that

(η0, w0) =
∑
k∈Z

(η̂0k, ŵ
0
k)e

ikx,

the solution can be written as

(η, ω)(x, t) =
∑
k∈Z

(η̂k(t), ω̂k(t))e
ikx,

where the pair (η̂k(t), ŵk(t)) fulfills

(1 + bk2)(η̂k)t + ikŵk + β1(1 + k2)
α1
2 η̂k = 0,

(1 + dk2)(ŵk)t + ikη̂k + β2(1 + k2)
α2
2 ŵk = 0,

η̂k(0) = η̂0k, ŵk(0) = ŵ0
k,

(12)

where t ∈ (0, T ).



We set

A(k) =


β1(1+k2)

α1
2

1+bk2
ik

1+bk2

ik
1+dk2

β2(1+k2)
α2
2

1+dk2

 .

Then system (12) is equivalent to η̂k

ŵk


t

(t)+A(k)

 η̂k

ŵk

 (t) =

 0

0

 ,

 η̂k

ŵk

 (0) =

 η̂0k

ŵ0
k

 .

Hence, the solution of (12) is given by η̂k

ŵk

 (t) = e−A(k) t

 η̂0k

ŵ0
k

 . (13)



Lemma

The eigenvalues of the matrix A are given by

λ±k =
1

2

β1(1 + k2)
α1
2

1 + bk2
+
β2(1 + k2)

α2
2

1 + dk2
±

2|k|
√
e2k − 1√

(1 + bk2)(1 + dk2)

 ,

where

ek =
1

2k

(
β1(1 + k2)

α1
2

√
1 + dk2

1 + bk2
− β2(1 + k2)

α2
2

√
1 + bk2

1 + dk2

)
,

and k ∈ Z∗.

Observe that

λ±k = λ±−k.

If ek < 1, the eigenvalues λ±k ∈ C.

If ek ≥ 1, the eigenvalues λ±k ∈ R.



Lemma

The solution (η̂k(t), ŵk(t)) of (12) is given by

η̂k(t) = 1
1−ζ2k

[(
η̂0k + iαkζkŵ

0
k

)
e−λ

+
k t −

(
ζ2k η̂

0
k + iαkζkŵ

0
k

)
e−λ

−
k t
]
,

ŵk(t) = 1
1−ζ2k

[(
iθkζkη̂

0
k − ζ2kŵ0

k

)
e−λ

+
k t −

(
iθkζkη̂

0
k − ŵ0

k

)
e−λ

−
k t
]
,

if |ek| 6= 1 and k 6= 0,

η̂k(t) =

[(
1− kζk√

(1+bk2)(1+dk2)
t

)
η̂0k − ikt

1+bk2 ŵ
0
k

]
e−λ

+
k t,

ŵk(t) =

[
− ikt

1+dk2 η̂
0
k +

(
1 + kζk√

(1+bk2)(1+dk2)
t

)
ŵ0
k

]
e−λ

+
k t,

if |ek| = 1 and k 6= 0, and finally,

η̂0(t) = η̂00e
−β1t, ŵ0(t) = ŵ0

0e
−β2t.

Here, αk =
√

1+dk2

1+bk2 , θk =
√

1+bk2

1+dk2 and ζk = ek −
√
e2k − 1.



The case s = 0

For any t ≥ 0 and k ∈ Z, we have that

b|η̂k(t)|2 + d|ŵk(t)|2 ≤M
(
b|η̂0k|2 + d|ŵ0

k|2
)
e−2tmin{|<(λ+

k )|, |<(λ−
k )|},

where
min{|<(λ+k )|, |<(λ−k )|} ≥ D > 0,

and D is a positive number, depending on the parameters β1, β2, α1, α2,
b and d.

Moreover,

If β1β2 = 0, then <(λ±k )→ 0, as |k| → ∞, and we cannot expect
uniform exponential decay of the solutions.

The fact that the decay of the solutions is not exponential is
equivalent to the non uniform decay rate: given any non increasing
positive function Θ, there is an initial data

(
η0, w0

)
such that the

Hs
p ×Hs

p−norm of the corresponding solution decays slower that Θ.
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Let us introduce the space

V s = Hs
p(0, 2π)×Hs

p(0, 2π).

Then, the following holds:

Theorem

The family of linear operators {S(t)}t≥0 defined by

S(t)(η0, w0) =
∑
k∈Z

(η̂k(t), ŵk(t))eikx, (η0, w0) ∈ V s, (14)

is an analytic semigroup in V s and verifies the following estimate

‖S(t)(η0, w0)‖V s ≤ C‖(η0, w0)‖V s , (15)

where C is a positive constant. Moreover, its infinitesimal generator is
the compact operator (D(A), A), where D(A) = V s and A is given by

A =

 β1
(
I − b∂2x

)−1
Mα1

(
I − b∂2x

)−1
∂x(

I − d∂2x
)−1

∂x β2
(
I − b∂2x

)−1
Mα2

 . (16)



Definition

The solutions decay exponentially in V s if there exist two positive
constants M and µ, such that

‖S(t)(η0, w0)‖V s ≤Me−µt‖(η0, w0)‖V s , (17)

∀t ≥ 0 and (η0, w0) ∈ V s.

We have the following result:

Theorem

The solutions decay exponentially in V s if and only if α1 = α2 = 2
and β1, β2 > 0. Moreover, µ from (17) is given by

µ = inf
k∈Z

{∣∣<(λ+k )
∣∣ , ∣∣<(λ−k )

∣∣} , (18)

where λ±k are the eigenvalues of the operator A.



Definition

The solutions decay exponentially in V s if there exist two positive
constants M and µ, such that

‖S(t)(η0, w0)‖V s ≤Me−µt‖(η0, w0)‖V s , (17)

∀t ≥ 0 and (η0, w0) ∈ V s.

We have the following result:

Theorem

The solutions decay exponentially in V s if and only if α1 = α2 = 2
and β1, β2 > 0. Moreover, µ from (17) is given by

µ = inf
k∈Z

{∣∣<(λ+k )
∣∣ , ∣∣<(λ−k )

∣∣} , (18)

where λ±k are the eigenvalues of the operator A.



Theorem

Suppose that β1, β2 ≥ 0, β21 + β22 > 0 and min{α1, α2} ∈ [0, 2).
Then, there exists δ and M > 0, such that

‖S(t)(η0, w0)||V s ≤
M

(1 + t)
1
δ
(q− 1

2
)
||(η0, w0)||V s+q , ∀t > 0,

where s ∈ R and q > 1
2 . Moreover, δ > 0 is defined by

δ =


2−max{α1, α2} if α1 + α2 ≤ 2, max{α1, α2} ≤ 1,

max{α1, α2} if α1 + α2 ≤ 2, max{α1, α2} > 1,

2−min{α1, α2} if α1 + α2 > 2.

Remark: If α1 = α2 = 2 and β1 = 0 or β2 = 0, then δ = 2.



The nonlinear problem

Theorem

Let s ≥ 0 and suppose that β1, β2 > 0 and α1 = α2 = 2. There
exist r > 0, C > 0 and µ > 0, such that, for any (η0, w0) ∈ V s,
satisfying

||(η0, w0)||V s ≤ r,

the system admits a unique solution (η, w) ∈ C([0,∞);V s) which
verifies

‖(η(t), w(t))‖V s ≤ Ce−µt‖(η0, w0)‖V s , t ≥ 0.

Moreover, µ may be taken as in the linearized problem.

The energy E(t) satisfies

dE

dt
= −β1

∫ 2π

0
(Mα1η) η dx− β2

∫ 2π

0
(Mα2w)w dx−

∫ 2π

0
(ηw)x η dx.



We define the space

Ys,µ = {(η, w) ∈ Cb(R+;V s) : eµt(η, w) ∈ Cb(R+;V s)},

with the norm

||(η, w)||Ys,µ := sup
0≤t<∞

||eµt(η, w)(t)||V s ,

and the function Γ : Ys,µ → Ys,µ by

Γ(η, w)(t) = S(t)(η0, w0)−
∫ t

0
S(t− τ)N(η, w)(τ) dτ,

where N(η, w) = (−(I − b∂2x)−1(ηw)x,−(I − d∂2x)−1wwx) and
{S(t)}t≥0 is the semigroup associated to the linearized system.



Combining the estimates obtained for the linearized system we have

||Γ(η, w)(t)||V s ≤Me−µt||(η0, w0)||V s +MCe−µt sup
0≤τ≤t

||eµτ (η, w)||V s ,

for any t ≥ 0 and some positive constants M and C.

If we take (η, w) ∈ BR(0) ⊂ Ys,µ, the following estimate holds

||Γ(η, w)||Ys,µ ≤M ||(η0, w0)||V s+MC||(η, w)||2Ys,µ ≤Mr+MCR2.

A similar calculations shows that,

||Γ(η1, w1)−Γ(η2, w2)||Ys,µ ≤ 2RMC||(η1, w1)−(η2, w2)||Ys,µ ,

for any (η1, w1), (η2, w2) ∈ BR(0).

A suitable choice of R guarantees that Γ is a contraction.
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Open problems

Dirichlet boundary conditions:

Less regularity for the potential a.

Stabilization results for the nonlinear problem.

Dissipative mechanisms, like −[a(x)ϕx]x, ensures the uniform
decay?

The mixed KdV-BBM system is exponentially stabilizable?

Periodic boundary conditions:

The decay of solutions of a nonlinear problem with a
linearized part that does not decay uniformly.

Unique Continuation Property for the BBM-BBM system.
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