(Semilinear) Parabolic Equations with Unbounded Attractors

Juliana Fernandes S. Pimentel (UFABC)

Colóquio do Departamento de Matemática - UFSC

May 2018

Juliana Fernandes Pimentel (UFABC)

Unbounded Attractors

May 2018 1 / 28

▲ 同 ▶ → 三 ▶

Outline

1-D dissipative reaction-diffusion equations

2 Non-dissipative equations with unbounded attractors

3 Additional results

Outline

1-D dissipative reaction-diffusion equations

2 Non-dissipative equations with unbounded attractors

3 Additional results

Juliana Fernandes Pimentel (UFABC)

A b

Scalar reaction-diffusion equations

$$\begin{cases} u_t = u_{xx} + f(x, u, u_x) , \ x \in [0, \pi] \\ u_x(t, 0) = u_x(t, \pi) = 0 \\ u(0, x) = u_0(x), \quad f \in C^2, \end{cases}$$

• Defines a (local) C^1 -semiflow $(t, u_0) \mapsto u(t, \cdot) \in X$.

By Sobolev embedding

 $X = H^2([0,\pi]) \cap \{u_X(0), u_X(\pi) = 0\} \subset C^1.$

Juliana Fernandes Pimentel (UFABC)

イロト イポト イヨト イヨト

Scalar reaction-diffusion equations

$$\begin{cases} u_t = u_{xx} + f(x, u, u_x) , \ x \in [0, \pi] \\ u_x(t, 0) = u_x(t, \pi) = 0 \\ u(0, x) = u_0(x), \quad f \in C^2, \end{cases}$$

- Defines a (local) C^1 -semiflow $(t, u_0) \mapsto u(t, \cdot) \in X$.
- By Sobolev embedding

$$X = H^2([0,\pi]) \cap \{u_x(0), u_x(\pi) = 0\} \subset C^1.$$

Juliana Fernandes Pimentel (UFABC)

< ロ > < 同 > < 回 > < 回 >

f is dissipative: fixed large ball in *X* absorbing any solution *u*(*t*), for *t* > *t*₀(*u*₀).

• Explicit sufficient conditions are, for instance,

f(x, u, 0).u < 0, for |u| large enough,

and

 $|f(x, u, p)| \leq c(1+|p|^{\gamma}),$

with c > 0 and $0 \le \gamma < 2$, uniformly for x and u in compact sets: Amann 85.

Globally defined semiflow on

$$X = H^{2}([0,\pi]) \cap \{ u_{X}(0), u_{X}(\pi) = 0 \}.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- *f* is dissipative: fixed large ball in *X* absorbing any solution *u*(*t*), for *t* > *t*₀(*u*₀).
- Explicit sufficient conditions are, for instance,

f(x, u, 0).u < 0, for |u| large enough,

and

$$|f(x, u, p)| \leq c(1 + |p|^{\gamma}),$$

with c > 0 and $0 \le \gamma < 2$, uniformly for x and u in compact sets: Amann 85.

Globally defined semiflow on

$$X = H^2([0,\pi]) \cap \{u_x(0), u_x(\pi) = 0\}.$$

< ロ > < 同 > < 回 > < 回 >

- *f* is dissipative: fixed large ball in *X* absorbing any solution *u*(*t*), for *t* > *t*₀(*u*₀).
- Explicit sufficient conditions are, for instance,

f(x, u, 0).u < 0, for |u| large enough,

and

$$|f(x, u, p)| \leq c(1 + |p|^{\gamma}),$$

with c > 0 and $0 \le \gamma < 2$, uniformly for x and u in compact sets: Amann 85.

Globally defined semiflow on

$$X = H^{2}([0,\pi]) \cap \{ u_{x}(0), u_{x}(\pi) = 0 \}.$$

• By dissipativeness, the semiflow possesses a global attractor A.

- $A \subset X$ is the maximal compact invariant subset.
- General references on global attractors:
 - ► Evolution equations: Hale 88, Babin-Vishik 92, Hale-Magalhães-Oliva 02.
 - Parabolic equations: Fiedler-Scheel 02, Raugel 02

• By dissipativeness, the semiflow possesses a global attractor A.

- $A \subset X$ is the maximal compact invariant subset.
- General references on global attractors:
 - ► Evolution equations: Hale 88, Babin-Vishik 92, Hale-Magalhães-Oliva 02.
 - Parabolic equations: Fiedler-Scheel 02, Raugel 02

< 同 > < 回 > .

- By dissipativeness, the semiflow possesses a global attractor A.
- $A \subset X$ is the maximal compact invariant subset.
- General references on global attractors:
 - ► Evolution equations: Hale 88, Babin-Vishik 92, Hale-Magalhães-Oliva 02.
 - Parabolic equations: Fiedler-Scheel 02, Raugel 02

 The semiflow has a gradient structure due to the existence of a Lyapunov function V of the form

$$V(u)=\int_0^\pi h(x,u,u_x)dx.$$

- *V* is strictly decreasing along nonequilibrium solutions $u = u(t, \cdot)$.
- Any trajectory u(t), t ≥ 0, which is bounded in X converges to some steady state solution as t → ∞.
 - Matano 78, Matano 88, Zelenyak 68.
- \mathcal{A} is gradient-like and with an associated Morse decomposition.

 The semiflow has a gradient structure due to the existence of a Lyapunov function V of the form

$$V(u)=\int_0^\pi h(x,u,u_x)dx.$$

- *V* is strictly decreasing along nonequilibrium solutions $u = u(t, \cdot)$.
- Any trajectory u(t), t ≥ 0, which is bounded in X converges to some steady state solution as t → ∞.
 - Matano 78, Matano 88, Zelenyak 68.

• \mathcal{A} is gradient-like and with an associated Morse decomposition.

 The semiflow has a gradient structure due to the existence of a Lyapunov function V of the form

$$V(u)=\int_0^\pi h(x,u,u_x)dx.$$

- *V* is strictly decreasing along nonequilibrium solutions $u = u(t, \cdot)$.
- Any trajectory u(t), t ≥ 0, which is bounded in X converges to some steady state solution as t → ∞.
 - Matano 78, Matano 88, Zelenyak 68.
- \mathcal{A} is gradient-like and with an associated Morse decomposition.

 $\bullet\,$ At this stage the description of ${\cal A}$ reads

 $\mathcal{A} = \mathcal{E} \cup (\cup_{\mathbf{v},\mathbf{w}\in\mathcal{E}}\mathcal{C}(\mathbf{v},\mathbf{w})),$

where E denotes the set of equilibria and

$$\mathcal{H} := \cup_{\mathbf{v},\mathbf{w}\in \mathbf{E}} C(\mathbf{v},\mathbf{w})$$

is the heteroclinic set.

• Hyperbolicity of all the equilibria guarantees finiteness and nondegeneracy for *E*, then the global attractor is given as

 $\mathcal{A}=\cup_{\mathbf{v}\in E}W^{u}(\mathbf{v}),$

Henry 81.

 $\bullet\,$ At this stage the description of ${\cal A}$ reads

 $\mathcal{A} = \mathcal{E} \cup (\cup_{v,w \in \mathcal{E}} \mathcal{C}(v,w)),$

where E denotes the set of equilibria and

$$\mathcal{H} := \cup_{\mathbf{v},\mathbf{w}\in \mathbf{E}} C(\mathbf{v},\mathbf{w})$$

is the heteroclinic set.

• Hyperbolicity of all the equilibria guarantees finiteness and nondegeneracy for *E*, then the global attractor is given as

 $\mathcal{A} = \cup_{\mathbf{v}\in \mathbf{E}} \mathbf{W}^{u}(\mathbf{v}),$

Henry 81.

< 回 > < 回 > < 回 >

 For any ũ ∈ X let z(ũ), the zero number of ũ, denote the number of strict sign changes of

 $x\mapsto \tilde{u}(x).$

- Importance for the qualitative understanding of equations was first noted by Matano 82.
- It was established a zero number diminishing property along solutions.

 For any ũ ∈ X let z(ũ), the zero number of ũ, denote the number of strict sign changes of

 $x\mapsto \tilde{u}(x).$

- Importance for the qualitative understanding of equations was first noted by Matano 82.
- It was established a zero number diminishing property along solutions.

 For any ũ ∈ X let z(ũ), the zero number of ũ, denote the number of strict sign changes of

 $x\mapsto \tilde{u}(x).$

- Importance for the qualitative understanding of equations was first noted by Matano 82.
- It was established a zero number diminishing property along solutions.

 For any ũ ∈ X let z(ũ), the zero number of ũ, denote the number of strict sign changes of

$$x\mapsto \tilde{u}(x).$$

- Importance for the qualitative understanding of equations was first noted by Matano 82.
- It was established a zero number diminishing property along solutions.

- The PDE information is contained in the connecting orbits *C*(*v*, *w*). The main goal is to determine precisely which equilibria are connected, using only information on *E*.
- Consider the IVP

$$u_{xx} + f(x, u, u_x) = 0$$

 $u(0) = a, \ u_x(0) = 0.$

$$M_f = \{(x, u, v) \in \mathbb{R}^3 : u = u(x; a), v = u_x(x; a)\}$$

is a smooth bidimensional manifold determining the dynamics on the attractor.

• It was proved that if $M_f = M_g$, then $\mathcal{A}_f \cong \mathcal{A}_g$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The PDE information is contained in the connecting orbits *C*(*v*, *w*). The main goal is to determine precisely which equilibria are connected, using only information on *E*.
- Consider the IVP

$$u_{xx} + f(x, u, u_x) = 0$$

 $u(0) = a, \ u_x(0) = 0.$

$$M_f = \{(x, u, v) \in \mathbb{R}^3 : u = u(x; a), v = u_x(x; a)\}$$

is a smooth bidimensional manifold determining the dynamics on the attractor.

• It was proved that if $M_f = M_g$, then $\mathcal{A}_f \cong \mathcal{A}_g$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The PDE information is contained in the connecting orbits *C*(*v*, *w*). The main goal is to determine precisely which equilibria are connected, using only information on *E*.
- Consider the IVP

$$u_{xx} + f(x, u, u_x) = 0$$

 $u(0) = a, \ u_x(0) = 0.$

$$M_f = \{(x, u, v) \in \mathbb{R}^3 : u = u(x; a), v = u_x(x; a)\}$$

is a smooth bidimensional manifold determining the dynamics on the attractor.

• It was proved that if $M_f = M_g$, then $\mathcal{A}_f \cong \mathcal{A}_g$.

- The PDE information is contained in the connecting orbits *C*(*v*, *w*). The main goal is to determine precisely which equilibria are connected, using only information on *E*.
- Consider the IVP

$$u_{xx} + f(x, u, u_x) = 0$$

 $u(0) = a, \ u_x(0) = 0.$

$$M_f = \{(x, u, v) \in \mathbb{R}^3 : u = u(x; a), v = u_x(x; a)\}$$

is a smooth bidimensional manifold determining the dynamics on the attractor.

• It was proved that if $M_f = M_g$, then $\mathcal{A}_f \cong \mathcal{A}_g$.

イロト イポト イラト イラト

- The importance of the permutation σ of the equilibria was pointed out by Fusco-Rocha 91. This permutation contains all information on the nodal properties of the equilibria.
- The exact criterion, based on the permutation *σ*, for connections was obtained: Fiedler-Rocha 96, Wolfrum 01.
- The global attractor is given by A = E ∪ H where the heteroclinic set H is completely determined by σ:

$$z(u - v) = z(v - w) = z(u - w)$$

$$u(0) < w(0) < v(0)$$

Juliana Fernandes Pimentel (UFABC)

- The importance of the permutation σ of the equilibria was pointed out by Fusco-Rocha 91. This permutation contains all information on the nodal properties of the equilibria.
- The exact criterion, based on the permutation *σ*, for connections was obtained: Fiedler-Rocha 96, Wolfrum 01.
- The global attractor is given by A = E ∪ H where the heteroclinic set H is completely determined by σ:

$$z(u - v) = z(v - w) = z(u - w)$$

$$u(0) < w(0) < v(0)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The importance of the permutation σ of the equilibria was pointed out by Fusco-Rocha 91. This permutation contains all information on the nodal properties of the equilibria.
- The exact criterion, based on the permutation *σ*, for connections was obtained: Fiedler-Rocha 96, Wolfrum 01.
- The global attractor is given by A = E ∪ H where the heteroclinic set H is completely determined by σ:

$$z(u - v) = z(v - w) = z(u - w)$$

$$u(0) < w(0) < v(0)$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The importance of the permutation σ of the equilibria was pointed out by Fusco-Rocha 91. This permutation contains all information on the nodal properties of the equilibria.
- The exact criterion, based on the permutation *σ*, for connections was obtained: Fiedler-Rocha 96, Wolfrum 01.
- The global attractor is given by A = E ∪ H where the heteroclinic set H is completely determined by σ:

$$z(u - v) = z(v - w) = z(u - w)$$

$$u(0) < w(0) < v(0)$$

Juliana Fernandes Pimentel (UFABC)

A (10) A (10)

- The importance of the permutation σ of the equilibria was pointed out by Fusco-Rocha 91. This permutation contains all information on the nodal properties of the equilibria.
- The exact criterion, based on the permutation *σ*, for connections was obtained: Fiedler-Rocha 96, Wolfrum 01.
- The global attractor is given by A = E ∪ H where the heteroclinic set H is completely determined by σ:

$$z(u - v) = z(v - w) = z(u - w)$$

$$u(0) < w(0) < v(0)$$

4 **A** N A **B** N A **B** N

- The importance of the permutation σ of the equilibria was pointed out by Fusco-Rocha 91. This permutation contains all information on the nodal properties of the equilibria.
- The exact criterion, based on the permutation *σ*, for connections was obtained: Fiedler-Rocha 96, Wolfrum 01.
- The global attractor is given by A = E ∪ H where the heteroclinic set H is completely determined by σ:

$$z(u-v) = z(v-w) = z(u-w)$$

 $u(0) < w(0) < v(0)$

Juliana Fernandes Pimentel (UFABC)

4 **A** N A **B** N A **B** N

Outline

1-D dissipative reaction-diffusion equations

2 Non-dissipative equations with unbounded attractors

3 Additional results

Juliana Fernandes Pimentel (UFABC)

A b

Non-dissipative reaction-diffusion equations

- fast non-dissipative equation: singularities may develop after finite time.
- **slowly non-dissipative equation**: longtime existence without dissipativity features trajectories which escape to infinity in infinite time (grow-up).
 - ► Non-dissipative nonlinearities with slow growth.
 - An elementary but instructive example:

$$u_t = u_{xx} + bu$$
,

with b > 0.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-dissipative reaction-diffusion equations

- fast non-dissipative equation: singularities may develop after finite time.
- **slowly non-dissipative equation**: longtime existence without dissipativity features trajectories which escape to infinity in infinite time (grow-up).
 - Non-dissipative nonlinearities with slow growth.
 - An elementary but instructive example:

$$u_t = u_{xx} + bu$$
,

with b > 0.

< 回 > < 回 > < 回 >

Slowly non-dissipative example

Consider the linear equation

$$u_t = u_{xx} + bu, \quad b > 0$$

for $0 < x < \pi$ with Neumann boundary conditions.

- Any solution u(t) either converges to zero or goes to infinity as $t \to \infty$, being attracted to the $([\sqrt{b}] + 1)$ -dimensional eigenspace E_+ .
- It is natural to define the attractor as the invariant subspace E_+ , i.e., an unbounded set.
- Unbounded attractors of evolution equations: Chepyzhov-Goritskii 92.

Slowly non-dissipative example

Consider the linear equation

$$u_t = u_{xx} + bu$$
, $b > 0$

for $0 < x < \pi$ with Neumann boundary conditions.

- Any solution u(t) either converges to zero or goes to infinity as $t \to \infty$, being attracted to the $(\sqrt{b}] + 1$ -dimensional eigenspace E_+ .
- It is natural to define the attractor as the invariant subspace *E*₊, i.e., an unbounded set.
- Unbounded attractors of evolution equations: Chepyzhov-Goritskii 92.

A (10) A (10)

Slowly non-dissipative example

Consider the linear equation

$$u_t = u_{xx} + bu, \quad b > 0$$

for $0 < x < \pi$ with Neumann boundary conditions.

- Any solution u(t) either converges to zero or goes to infinity as $t \to \infty$, being attracted to the $(\sqrt{b}] + 1)$ -dimensional eigenspace E_+ .
- It is natural to define the attractor as the invariant subspace *E*₊, i.e., an unbounded set.
- Unbounded attractors of evolution equations: Chepyzhov-Goritskii 92.

Slowly nondissipative equations

.

$$\begin{cases} u_t = u_{xx} + bu + g(x, u, u_x), & x \in [0, \pi] \\ u_x(t, 0) = u_x(t, \pi) = 0. \end{cases}$$

 A positive linear growth for f is sufficient to ensure grow-up with no blow-up

$$f(x, u, u_x) = bu + g(x, u, u_x)$$

 $b > 0, \quad g: [0, \pi] imes \mathbb{R}^2 o \mathbb{R}^2$ is a bounded C^2 function

• Global well-posedness with solutions blowing-up in the L^2 -norm as $t \to \infty$.

Slowly nondissipative equations

.

$$\begin{cases} u_t = u_{xx} + bu + g(x, u, u_x), & x \in [0, \pi] \\ u_x(t, 0) = u_x(t, \pi) = 0. \end{cases}$$

 A positive linear growth for f is sufficient to ensure grow-up with no blow-up

$$f(x,u,u_x)=bu+g(x,u,u_x)$$

 $b>0, \quad g:[0,\pi] imes \mathbb{R}^2 o \mathbb{R}^2$ is a bounded C^2 function

• Global well-posedness with solutions blowing-up in the L^2 -norm as $t \to \infty$.

4 E 5

• Existence of unbounded global solution: no compactness for the attractor.

- Unbounded global attractor: nonempty minimal set which is positively invariant and attracts all bounded subsets.
- Gradient structure (Lyapunov functional): any bounded solution converges forwards in time to some (bounded) equilibrium.
- Any normalized unbounded solution converges to an eigenvalue $\varphi_k(x)$ of $-\partial_{xx} bI$,

$$\lim_{t\to\infty}\frac{u(t,\cdot)}{\|u(t,\cdot)\|}=\pm\varphi_k(\cdot), \text{ in the } L^2\text{-norm.}$$

• The original trajectory converges to equilibria at infinity.

イロト イポト イラト イラト

- Existence of unbounded global solution: no compactness for the attractor.
- Unbounded global attractor: nonempty minimal set which is positively invariant and attracts all bounded subsets.
- Gradient structure (Lyapunov functional): any bounded solution converges forwards in time to some (bounded) equilibrium.
- Any normalized unbounded solution converges to an eigenvalue $\varphi_k(x)$ of $-\partial_{xx} bI$,

$$\lim_{t\to\infty}\frac{u(t,\cdot)}{\|u(t,\cdot)\|}=\pm\varphi_k(\cdot), \text{ in the } L^2\text{-norm.}$$

- Existence of unbounded global solution: no compactness for the attractor.
- Unbounded global attractor: nonempty minimal set which is positively invariant and attracts all bounded subsets.
- Gradient structure (Lyapunov functional): any bounded solution converges forwards in time to some (bounded) equilibrium.
- Any normalized unbounded solution converges to an eigenvalue $\varphi_k(x)$ of $-\partial_{xx} bI$,

$$\lim_{t\to\infty}\frac{u(t,\cdot)}{\|u(t,\cdot)\|}=\pm\varphi_k(\cdot), \text{ in the } L^2\text{-norm.}$$

- Existence of unbounded global solution: no compactness for the attractor.
- Unbounded global attractor: nonempty minimal set which is positively invariant and attracts all bounded subsets.
- Gradient structure (Lyapunov functional): any bounded solution converges forwards in time to some (bounded) equilibrium.
- Any normalized unbounded solution converges to an eigenvalue $\varphi_k(x)$ of $-\partial_{xx} bI$,

$$\lim_{t\to\infty}\frac{u(t,\cdot)}{\|u(t,\cdot)\|}=\pm\varphi_k(\cdot), \text{ in the } L^2\text{-norm.}$$

- Existence of unbounded global solution: no compactness for the attractor.
- Unbounded global attractor: nonempty minimal set which is positively invariant and attracts all bounded subsets.
- Gradient structure (Lyapunov functional): any bounded solution converges forwards in time to some (bounded) equilibrium.
- Any normalized unbounded solution converges to an eigenvalue $\varphi_k(x)$ of $-\partial_{xx} bI$,

$$\lim_{t\to\infty}\frac{u(t,\cdot)}{\|u(t,\cdot)\|}=\pm\varphi_k(\cdot), \text{ in the } L^2\text{-norm.}$$

Poincaré Projection

•
$$\mathcal{H} = \{(\chi, z) \in X^{\alpha} \times \mathbb{R} | \langle \chi, \chi \rangle_{\alpha}^2 + z^2 = 1, z \ge 0 \}.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Equilibria at infinity

• Φ_i^{\pm} are equilibrium points on the *sphere at infinity*.

• We thus define objects $\Phi_i^{\pm,\infty}$ at infinity as

$$\mathcal{P}(\Phi_j^{\pm,\infty}) = \Phi_j^{\pm}, \text{ for } j = 0, 1, ..., [\sqrt{b}],$$

and we refer to these as equilibria at infinity.

▲ 同 ▶ → 三 ▶

Equilibria at infinity

- Φ_i^{\pm} are equilibrium points on the *sphere at infinity*.
- We thus define objects $\Phi_i^{\pm,\infty}$ at infinity as

$$\mathcal{P}(\Phi_j^{\pm,\infty}) = \Phi_j^{\pm}, \text{ for } j = 0, 1, ..., [\sqrt{b}],$$

and we refer to these as equilibria at infinity.

▲ 同 ▶ → 三 ▶

The unbounded global attractor

Theorem (P.-Rocha, J. Dyn. Diff. Eq. (2016))

The unbounded global attractor A related to the SND problem is composed by the set of equilibria and their heteroclinic connections,

 $\mathcal{A} = \mathbf{E}^{\mathbf{b}} \cup \mathbf{E}^{\infty} \cup \{\text{heteroclinic connections}\}.$

Moreover, there is a permutation σ of the equilibria providing the criteria to describe the heteroclinics set.

- Asymptotic analysis for g = g(u): Ben-Gal (2010)
- Realizable permutations: P.-Rocha (2015)

The unbounded global attractor

Theorem (P.-Rocha, J. Dyn. Diff. Eq. (2016))

The unbounded global attractor A related to the SND problem is composed by the set of equilibria and their heteroclinic connections,

 $\mathcal{A} = \mathbf{E}^{\mathbf{b}} \cup \mathbf{E}^{\infty} \cup \{\text{heteroclinic connections}\}.$

Moreover, there is a permutation σ of the equilibria providing the criteria to describe the heteroclinics set.

- Asymptotic analysis for g = g(u): Ben-Gal (2010)
- Realizable permutations: P.-Rocha (2015)

The unbounded global attractor

Theorem (P.-Rocha, J. Dyn. Diff. Eq. (2016))

The unbounded global attractor A related to the SND problem is composed by the set of equilibria and their heteroclinic connections,

 $\mathcal{A} = \mathbf{E}^{\mathbf{b}} \cup \mathbf{E}^{\infty} \cup \{\text{heteroclinic connections}\}.$

Moreover, there is a permutation σ of the equilibria providing the criteria to describe the heteroclinics set.

- Asymptotic analysis for g = g(u): Ben-Gal (2010)
- Realizable permutations: P.-Rocha (2015)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unbounded global attractor related to σ

Figure: Unbounded global attractor with permutation $\sigma = \{5, 2, 3, 4, 1\}$.

Outline

1-D dissipative reaction-diffusion equations

2 Non-dissipative equations with unbounded attractors

3 Additional results

Periodic Slowly Non-dissipative Problem

Theorem (P., SIAM J. Math. Anal. (2016))

The non-compact global attractor A related to the periodic SND problem decomposes into equilibria, equilibria at infinity, periodic orbits, frozen waves at infinity, and heteroclinics,

 $\mathcal{A} = \mathcal{E}^{b} \cup \mathcal{R}^{b} \cup \mathcal{E}^{\infty} \cup \mathcal{R}^{\infty} \cup \{\text{heteroclinic connections}\}.$

Moreover, the heteroclinics set can be described using only information on nodal properties.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Carvalho-P., Proc. Royal Soc. of Edinb. A (2017))

Unbounded attractors of slowly non-dissipative equations are stable under small autonomous $b = b_{\epsilon}$ and non-autonomous perturbations b = b(t).

Theorem (Carvalho-P., Proc. Royal Soc. of Edinb. A (2017))

Unbounded attractors of slowly non-dissipative equations are stable under small autonomous $b = b_{\epsilon}$ and non-autonomous perturbations b = b(t).

• Two-parameter Chafee-Infante equation

$$u_t = u_{xx} + bu - \epsilon u^3$$
.

• Consider the one-parameter family of dissipative PDEs, as the parameter $\epsilon \rightarrow 0$

$$u_t = u_{xx} + bu + g(u) - \epsilon u^{2n+1}$$

• Stability only on compact sets.

• Two-parameter Chafee-Infante equation

$$u_t = u_{xx} + bu - \epsilon u^3$$
.

• Consider the one-parameter family of dissipative PDEs, as the parameter $\epsilon \rightarrow 0$

$$u_t = u_{xx} + bu + g(u) - \epsilon u^{2n+1}$$

• Stability only on compact sets.

- A - TH

• Two-parameter Chafee-Infante equation

$$u_t = u_{xx} + bu - \epsilon u^3$$
.

• Consider the one-parameter family of dissipative PDEs, as the parameter $\epsilon \rightarrow 0$

$$u_t = u_{xx} + bu + g(u) - \epsilon u^{2n+1}$$

Stability only on compact sets.

Theorem (Bruschi,Carvalho-P., Indiana U. Math. J. (2018))

The compact global attractors

$$\mathcal{A}_{\epsilon} = \mathcal{E}^{\boldsymbol{u}}_{\epsilon} \cup \mathcal{E}^{\boldsymbol{b}}_{\epsilon} \cup \mathcal{H}$$

converge to the unbounded attractor \mathcal{A} as $\epsilon \to 0$, in compact sets $K \subset X^{\alpha}$. However, each nonconstant equilibrium solution $\phi_j^{\pm \epsilon} \in \mathcal{E}_{\epsilon}^{u}$, does not converge to the equilibrium at infinity $\Phi_j^{\pm} \in \mathcal{A}$, as $\epsilon \to 0$.

Juliana Fernandes Pimentel (UFABC)

Theorem (Bruschi, Carvalho-P., Indiana U. Math. J. (2018))

The compact global attractors

 $\mathcal{A}_{\epsilon} = \mathcal{E}^{u}_{\epsilon} \cup \mathcal{E}^{b}_{\epsilon} \cup \mathcal{H}$

converge to the unbounded attractor \mathcal{A} as $\epsilon \to 0$, in compact sets $K \subset X^{\alpha}$. However, each nonconstant equilibrium solution $\phi_j^{\pm \epsilon} \in \mathcal{E}_{\epsilon}^{u}$, does not converge to the equilibrium at infinity $\Phi_i^{\pm} \in \mathcal{A}$, as $\epsilon \to 0$.

Theorem (Bruschi, Carvalho-P., Indiana U. Math. J. (2018))

The compact global attractors

$$\mathcal{A}_{\epsilon} = \mathcal{E}^{u}_{\epsilon} \cup \mathcal{E}^{b}_{\epsilon} \cup \mathcal{H}$$

converge to the unbounded attractor \mathcal{A} as $\epsilon \to 0$, in compact sets $K \subset X^{\alpha}$. However, each nonconstant equilibrium solution $\phi_{j}^{\pm \epsilon} \in \mathcal{E}_{\epsilon}^{u}$, does not converge to the equilibrium at infinity $\Phi_{i}^{\pm} \in \mathcal{A}$, as $\epsilon \to 0$.

Juliana Fernandes Pimentel (UFABC)

Theorem (Bruschi, Carvalho-P., Indiana U. Math. J. (2018))

The compact global attractors

$$\mathcal{A}_{\epsilon} = \mathcal{E}_{\epsilon}^{\boldsymbol{u}} \cup \mathcal{E}_{\epsilon}^{\boldsymbol{b}} \cup \mathcal{H}$$

converge to the unbounded attractor \mathcal{A} as $\epsilon \to 0$, in compact sets $K \subset X^{\alpha}$. However, each nonconstant equilibrium solution $\phi_j^{\pm \epsilon} \in \mathcal{E}_{\epsilon}^u$, does not converge to the equilibrium at infinity $\Phi_j^{\pm} \in \mathcal{A}$, as $\epsilon \to 0$.

 Lappicy-P. (2018): construct explicitly unbounded attractors of quasilinear parabolic equations

$$u_t = a(x, u, u_x)u_{xx} + bu + f(x, u, u_x)$$

- Take linearizations around the N bounded equilibria \mathcal{E} ;
- $\mathcal{E}^{\infty} = \{\Phi_{i,k}^{\pm} : 1 \le i \le N, 0 \le k \le N_i\}$ set at infinity;
- ▶ N_i is the number of unstable directions for the equilibrium $e_i \in \mathcal{E}$;
- ► The attractor also decomposes into equilibria *E* ∪ *E*[∞] and heteroclinics;
- ► *N* Chafee-Infante-like structures at the sphere at infinity.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 Lappicy-P. (2018): construct explicitly unbounded attractors of quasilinear parabolic equations

$$u_t = a(x, u, u_x)u_{xx} + bu + f(x, u, u_x)$$

- Take linearizations around the N bounded equilibria E;
- $\mathcal{E}^{\infty} = \{\Phi_{i,k}^{\pm} : 1 \le i \le N, 0 \le k \le N_i\}$ set at infinity;
- ▶ N_i is the number of unstable directions for the equilibrium $e_i \in \mathcal{E}$;
- ► The attractor also decomposes into equilibria *E* ∪ *E*[∞] and heteroclinics;
- ► *N* Chafee-Infante-like structures at the sphere at infinity.

 Lappicy-P. (2018): construct explicitly unbounded attractors of quasilinear parabolic equations

$$u_t = a(x, u, u_x)u_{xx} + bu + f(x, u, u_x)$$

- Take linearizations around the N bounded equilibria E;
- $\mathcal{E}^{\infty} = \{\Phi_{i,k}^{\pm} : 1 \le i \le N, 0 \le k \le N_i\}$ set at infinity;
- ▶ N_i is the number of unstable directions for the equilibrium $e_i \in \mathcal{E}$;
- The attractor also decomposes into equilibria $\mathcal{E} \cup \mathcal{E}^\infty$ and heteroclinics;
- ► *N* Chafee-Infante-like structures at the sphere at infinity.

 Lappicy-P. (2018): construct explicitly unbounded attractors of quasilinear parabolic equations

$$u_t = a(x, u, u_x)u_{xx} + bu + f(x, u, u_x)$$

- Take linearizations around the N bounded equilibria E;
- $\mathcal{E}^{\infty} = \{\Phi_{i,k}^{\pm} : 1 \le i \le N, 0 \le k \le N_i\}$ set at infinity;
- ▶ N_i is the number of unstable directions for the equilibrium $e_i \in \mathcal{E}$;
- \blacktriangleright The attractor also decomposes into equilibria $\mathcal{E} \cup \mathcal{E}^\infty$ and heteroclinics;
- ► *N* Chafee-Infante-like structures at the sphere at infinity.

 Lappicy-P. (2018): construct explicitly unbounded attractors of quasilinear parabolic equations

$$u_t = a(x, u, u_x)u_{xx} + bu + f(x, u, u_x)$$

- Take linearizations around the N bounded equilibria \mathcal{E} ;
- $\mathcal{E}^{\infty} = \{\Phi_{i,k}^{\pm} : 1 \le i \le N, 0 \le k \le N_i\}$ set at infinity;
- ▶ N_i is the number of unstable directions for the equilibrium $e_i \in \mathcal{E}$;
- \blacktriangleright The attractor also decomposes into equilibria $\mathcal{E} \cup \mathcal{E}^\infty$ and heteroclinics;
- ► *N* Chafee-Infante-like structures at the sphere at infinity.

Workshop for Women in Differential Equations

UFABC - Santo André, Brazil, July 25-27 ICM 2018 Satellite Event

ORGANIZING COMMITTEE	SCIENTIFIC COMMITTEE	PLENARY SPEAKERS
Juliana Berbert (Brazil)		
		Zuzana Dosla (Czech Republic)
		Irena Lasiecka (USA) (to be confirmed)
		Liliane Maia (Brazil)
		Monica Musso (UK, Chile)
PLENARY LECTURES		
· TEEMINT EEDIDINED		
INVITED LECTORES		
► POSTER S	ESSION	
s	CIENTIFIC CONTENT INCLUDES	
Partial differential equations, Fluid Controllability and variational meth- differential equations, Fu	dynamics, Transport theory, Free boundar ods, Differential equations with impulses, B nctional differential equations, Dynamical e	y problems, Blow-up phenomena, loundary value problems, Fractional quations on time scales.
	te: eventos.ufabc.edu.br/ww	/de2018/
Record and the second sec		

Juliana Fernandes Pimentel (UFABC)

▲ E ▶ E シへの May 2018 27 / 28

イロト イヨト イヨト イヨト

A SATELLITE OF

Thank you!

Juliana Fernandes Pimentel (UFABC)

ヘロト 人間 とくほとくほう