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Scalar reaction-diffusion equations


ut = uxx + f (x ,u,ux ) , x ∈ [0, π]

ux (t ,0) = ux (t , π) = 0
u(0, x) = u0(x), f ∈ C2,

Defines a (local) C1-semiflow (t ,u0) 7→ u(t , ·) ∈ X .
By Sobolev embedding

X = H2([0, π]) ∩ {ux (0),ux (π) = 0} ⊂ C1.
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f is dissipative: fixed large ball in X absorbing any solution u(t),
for t > t0(u0).

Explicit sufficient conditions are, for instance,

f (x ,u,0).u < 0, for |u| large enough,

and
|f (x ,u,p)| ≤ c(1 + |p|γ),

with c > 0 and 0 ≤ γ < 2, uniformly for x and u in compact sets:
Amann 85.

Globally defined semiflow on

X = H2([0, π]) ∩ {ux (0),ux (π) = 0}.
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Global attractor

By dissipativeness, the semiflow possesses a global attractor A.

A ⊂ X is the maximal compact invariant subset.

General references on global attractors:

I Evolution equations: Hale 88, Babin-Vishik 92,
Hale-Magalhães-Oliva 02.

I Parabolic equations: Fiedler-Scheel 02, Raugel 02
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Global attractor

The semiflow has a gradient structure due to the existence of a
Lyapunov function V of the form

V (u) =

∫ π

0
h(x ,u,ux )dx .

V is strictly decreasing along nonequilibrium solutions u = u(t , ·).

Any trajectory u(t), t ≥ 0, which is bounded in X converges to
some steady state solution as t →∞.

I Matano 78, Matano 88, Zelenyak 68.

A is gradient-like and with an associated Morse decomposition.
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Global attractor

At this stage the description of A reads

A = E ∪ (∪v ,w∈EC(v ,w)),

where E denotes the set of equilibria and

H := ∪v ,w∈EC(v ,w)

is the heteroclinic set.

Hyperbolicity of all the equilibria guarantees finiteness and
nondegeneracy for E , then the global attractor is given as

A = ∪v∈EW u(v),

Henry 81.
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The nodal properties of solutions play an important role on the
analysis of the heteroclinics set H.

For any ũ ∈ X let z(ũ), the zero number of ũ, denote the number
of strict sign changes of

x 7→ ũ(x).

Importance for the qualitative understanding of equations was first
noted by Matano 82.

It was established a zero number diminishing property along
solutions.
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The PDE information is contained in the connecting orbits
C(v ,w). The main goal is to determine precisely which equilibria
are connected, using only information on E .

Consider the IVP

uxx + f (x ,u,ux ) = 0
u(0) = a, ux (0) = 0.

The manifold of solutions

Mf = {(x ,u, v) ∈ R3 : u = u(x ; a), v = ux (x ; a)}

is a smooth bidimensional manifold determining the dynamics on
the attractor.
It was proved that if Mf = Mg , then Af

∼= Ag .
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The importance of the permutation σ of the equilibria was pointed
out by Fusco-Rocha 91. This permutation contains all information
on the nodal properties of the equilibria.

The exact criterion, based on the permutation σ, for connections
was obtained: Fiedler-Rocha 96, Wolfrum 01.

The global attractor is given by A = E ∪H where the heteroclinic
set H is completely determined by σ:

u connects to v if, and only if, there is no blocking equilibrium w

z(u − v) = z(v − w) = z(u − w)

u(0) < w(0) < v(0)
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Non-dissipative reaction-diffusion equations

fast non-dissipative equation: singularities may develop after
finite time.

slowly non-dissipative equation: longtime existence without
dissipativity features trajectories which escape to infinity in infinite
time (grow-up).

I Non-dissipative nonlinearities with slow growth.

I An elementary but instructive example:

ut = uxx + bu,

with b > 0.
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Slowly non-dissipative example
Consider the linear equation

ut = uxx + bu, b > 0

for 0 < x < π with Neumann boundary conditions.

Any solution u(t) either converges to zero or goes to infinity as
t →∞, being attracted to the ([

√
b] + 1)-dimensional eigenspace

E+.

It is natural to define the attractor as the invariant subspace E+,
i.e., an unbounded set.

Unbounded attractors of evolution equations:
Chepyzhov-Goritskii 92.
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Slowly nondissipative equations

{
ut = uxx + bu + g(x ,u,ux ), x ∈ [0, π]

ux (t ,0) = ux (t , π) = 0.

A positive linear growth for f is sufficient to ensure grow-up with no
blow-up

f (x ,u,ux ) = bu + g(x ,u,ux )

b > 0, g : [0, π]× R2 → R2 is a bounded C2 function

Global well-posedness with solutions blowing-up in the L2-norm
as t →∞.

Juliana Fernandes Pimentel (UFABC) Unbounded Attractors May 2018 15 / 28



Slowly nondissipative equations

{
ut = uxx + bu + g(x ,u,ux ), x ∈ [0, π]

ux (t ,0) = ux (t , π) = 0.

A positive linear growth for f is sufficient to ensure grow-up with no
blow-up

f (x ,u,ux ) = bu + g(x ,u,ux )

b > 0, g : [0, π]× R2 → R2 is a bounded C2 function

Global well-posedness with solutions blowing-up in the L2-norm
as t →∞.

Juliana Fernandes Pimentel (UFABC) Unbounded Attractors May 2018 15 / 28



Existence of unbounded global solution: no compactness for the
attractor.

Unbounded global attractor: nonempty minimal set which is
positively invariant and attracts all bounded subsets.

Gradient structure (Lyapunov functional): any bounded solution
converges forwards in time to some (bounded) equilibrium.

Any normalized unbounded solution converges to an eigenvalue
ϕk (x) of −∂xx − bI,

lim
t→∞

u(t , ·)
‖u(t , ·)‖

= ±ϕk (·), in the L2-norm.

The original trajectory converges to equilibria at infinity.

Juliana Fernandes Pimentel (UFABC) Unbounded Attractors May 2018 16 / 28



Existence of unbounded global solution: no compactness for the
attractor.

Unbounded global attractor: nonempty minimal set which is
positively invariant and attracts all bounded subsets.

Gradient structure (Lyapunov functional): any bounded solution
converges forwards in time to some (bounded) equilibrium.

Any normalized unbounded solution converges to an eigenvalue
ϕk (x) of −∂xx − bI,

lim
t→∞

u(t , ·)
‖u(t , ·)‖

= ±ϕk (·), in the L2-norm.

The original trajectory converges to equilibria at infinity.

Juliana Fernandes Pimentel (UFABC) Unbounded Attractors May 2018 16 / 28



Existence of unbounded global solution: no compactness for the
attractor.

Unbounded global attractor: nonempty minimal set which is
positively invariant and attracts all bounded subsets.

Gradient structure (Lyapunov functional): any bounded solution
converges forwards in time to some (bounded) equilibrium.

Any normalized unbounded solution converges to an eigenvalue
ϕk (x) of −∂xx − bI,

lim
t→∞

u(t , ·)
‖u(t , ·)‖

= ±ϕk (·), in the L2-norm.

The original trajectory converges to equilibria at infinity.

Juliana Fernandes Pimentel (UFABC) Unbounded Attractors May 2018 16 / 28



Existence of unbounded global solution: no compactness for the
attractor.

Unbounded global attractor: nonempty minimal set which is
positively invariant and attracts all bounded subsets.

Gradient structure (Lyapunov functional): any bounded solution
converges forwards in time to some (bounded) equilibrium.

Any normalized unbounded solution converges to an eigenvalue
ϕk (x) of −∂xx − bI,

lim
t→∞

u(t , ·)
‖u(t , ·)‖

= ±ϕk (·), in the L2-norm.

The original trajectory converges to equilibria at infinity.

Juliana Fernandes Pimentel (UFABC) Unbounded Attractors May 2018 16 / 28



Existence of unbounded global solution: no compactness for the
attractor.

Unbounded global attractor: nonempty minimal set which is
positively invariant and attracts all bounded subsets.

Gradient structure (Lyapunov functional): any bounded solution
converges forwards in time to some (bounded) equilibrium.

Any normalized unbounded solution converges to an eigenvalue
ϕk (x) of −∂xx − bI,

lim
t→∞

u(t , ·)
‖u(t , ·)‖

= ±ϕk (·), in the L2-norm.

The original trajectory converges to equilibria at infinity.

Juliana Fernandes Pimentel (UFABC) Unbounded Attractors May 2018 16 / 28



Poincaré Projection

Figure: Projection of M = (u,1) ∈ Xα × {1}.

H = {(χ, z) ∈ Xα × R|〈χ, χ〉2α + z2 = 1, z ≥ 0}.

Juliana Fernandes Pimentel (UFABC) Unbounded Attractors May 2018 17 / 28



Equilibria at infinity

Φ±j are equilibrium points on the sphere at infinity.

We thus define objects Φ±,∞j at infinity as

P(Φ±,∞j ) = Φ±j , for j = 0,1, ..., [
√

b],

and we refer to these as equilibria at infinity.
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The unbounded global attractor

Theorem (P.-Rocha, J. Dyn. Diff. Eq. (2016) )
The unbounded global attractor A related to the SND problem is
composed by the set of equilibria and their heteroclinic connections,

A = Eb ∪ E∞ ∪ {heteroclinic connections}.

Moreover, there is a permutation σ of the equilibria providing the
criteria to describe the heteroclinics set.

Asymptotic analysis for g = g(u): Ben-Gal (2010)
Realizable permutations: P.-Rocha (2015)
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Unbounded global attractor related to σ

v
3

v
1 v
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v
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v
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F
1-F
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0

F
0

Figure: Unbounded global attractor with permutation σ = {5,2,3,4,1}.
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Periodic Slowly Non-dissipative Problem

Theorem (P. , SIAM J. Math. Anal. (2016) )
The non-compact global attractor A related to the periodic SND
problem decomposes into equilibria, equilibria at infinity, periodic
orbits, frozen waves at infinity, and heteroclinics,

A = Eb ∪Rb ∪ E∞ ∪R∞ ∪ {heteroclinic connections}.

Moreover, the heteroclinics set can be described using only
information on nodal properties.
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Stability of unbounded attractors

Theorem (Carvalho-P., Proc. Royal Soc. of Edinb. A (2017))
Unbounded attractors of slowly non-dissipative equations are stable
under small autonomous b = bε and non-autonomous perturbations
b = b(t).
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Stability of unbounded attractors

Two-parameter Chafee-Infante equation

ut = uxx + bu−εu3.

Consider the one-parameter family of dissipative PDEs, as the
parameter ε→ 0

ut = uxx + bu + g(u)−εu2n+1.

Stability only on compact sets.
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Stability of unbounded attractors

Theorem (Bruschi,Carvalho-P., Indiana U. Math. J. (2018))
The compact global attractors

Aε = Eu
ε ∪ Eb

ε ∪H

converge to the unbounded attractor A as ε→ 0, in compact sets
K ⊂ Xα. However, each nonconstant equilibrium solution φ±εj ∈ E

u
ε ,

does not converge to the equilibrium at infinity Φ±j ∈ A, as ε→ 0.
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Quasilinear equations with unbounded attractors

Lappicy-P. (2018): construct explicitly unbounded attractors of
quasilinear parabolic equations

ut = a(x ,u,ux )uxx + bu + f (x ,u,ux )

I Take linearizations around the N bounded equilibria E ;

I E∞ = {Φ±i,k : 1 ≤ i ≤ N, 0 ≤ k ≤ Ni} set at infinity;

I Ni is the number of unstable directions for the equilibrium ei ∈ E ;

I The attractor also decomposes into equilibria E ∪ E∞ and
heteroclinics;

I N Chafee-Infante-like structures at the sphere at infinity.
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Sponsors

SCIENTIFIC COMMITTEE PLENARY SPEAKERSORGANIZING COMMITTEE

PLENARY LECTURES

INVITED LECTURES

POSTER SESSION

Partial di�erential equations,  Fluid dynamics,  Transport theory,  Free boundary problems,  Blow-up phenomena,
 Controllability and variational methods,  Di�erential equations with impulses, Boundary value problems, Fractional 

di�erential equations, Functional di�erential equations, Dynamical equations on time scales.

SCIENTIFIC CONTENT INCLUDES

For any general questions, please contact us at   wwde2018@gmail.com
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Thank you!
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