forma um conjunto ortonormal em relação ao produto interno (2). Deixaremos a cargo do leitor a verificação do fato de que, ao adicionarmos as funções

$$\operatorname{sen} x$$
, $\operatorname{sen} 2x$, ..., $\operatorname{sen} nx$

ao conjunto acima, obtemos outro conjunto ortonormal. Podemos, portanto, utilizar o Teorema 5.5.8 para encontrar a melhor aproximação de uma função contínua em termos de um polinômio trigonométrico de grau menor ou igual a um *n* dado, no sentido dos mínimos quadrados. Observe que

$$\left\langle f, \frac{1}{\sqrt{2}} \right\rangle \frac{1}{\sqrt{2}} = \left\langle f, 1 \right\rangle \frac{1}{2}$$

de modo que, se

$$a_0 = \langle f, 1 \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx$$

e

$$a_k = \langle f, \cos kx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx \, dx$$

$$b_k = \langle f, \operatorname{sen} kx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \operatorname{sen} kx \, dx$$

para k = 1, 2, ..., n, então esses coeficientes determinam a melhor aproximação de f por mínimos quadráticos. Os a_j e b_k são *coeficientes de Fourier*, bastante conhecidos, que aparecem em diversas aplicações envolvendo aproximação de funções por séries trigonométricas.

EXERCÍCIOS

1. Quais dos conjuntos de vetores a seguir formam uma base ortonormal para R^2 ?

(a)
$$\{(1,0)^T, (0,1)^T\}$$

(b)
$$\{(\frac{3}{5}, \frac{4}{5})^T, (\frac{5}{13}, \frac{12}{13})^T\}$$

(c)
$$\{(1,-1)^T, (1,1)^T\}$$

(d)
$$\left\{ \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)^T, \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)^T \right\}$$

2. Sejam

$$\mathbf{u}_{1} = \left(\frac{1}{3\sqrt{2}}, \frac{1}{3\sqrt{2}}, -\frac{4}{3\sqrt{2}}\right)^{T}, \qquad \mathbf{u}_{2} = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)^{T}$$

$$\mathbf{u}_{3} = \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)^{T}$$

(a) Mostre que $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ formam uma base ortonormal para R^3 .

(b) Seja $\mathbf{x} = (1, 1, 1)^T$. Escreva \mathbf{x} como uma combinação linear de \mathbf{u}_1 , \mathbf{u}_2 e \mathbf{u}_3 usando o Teorema 5.5.2 e use a fórmula de Parseval para calcular || \mathbf{x} ||.

3. Seja S o subespaço de \mathbb{R}^3 gerado pelos vetores \mathbf{u}_2 e \mathbf{u}_3 do Exercício 2. Seja $\mathbf{x} = (1, 2, 2)^T$. Encontre a projeção ortogonal \mathbf{p} de \mathbf{x} sobre S. Mostre que $(\mathbf{p} - \mathbf{x}) \perp \mathbf{u}_2$ e $(\mathbf{p} - \mathbf{x}) \perp \mathbf{u}_3$.

4. Seja θ um número real fixo e sejam

$$\mathbf{x}_1 = \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$
 \mathbf{e} $\mathbf{x}_2 = \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}$

- (a) Mostre que $\{x_1, x_2\}$ é uma base ortonormal para \mathbb{R}^2 .
- (b) Escreva um vetor arbitrário y em R^2 como uma combinação linear c_1 **x**₁ + c_2 **x**₂.
- (c) Verifique que

$$c_1^2 + c_2^2 = \|\mathbf{y}\|^2 = y_1^2 + y_2^2$$

- **5.** Suponha que \mathbf{u}_1 e \mathbf{u}_2 formam uma base ortonormal para R^2 e seja \mathbf{u} um vetor unitário em R^2 . Se $\mathbf{u}^T \mathbf{u}_1 = 1/2$, determine o valor de $|\mathbf{u}^T \mathbf{u}_2|$.
- **6.** Seja $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ uma base ortonormal para um espaço V munido de produto interno e sejam

$$\mathbf{u} = \mathbf{u}_1 + 2\mathbf{u}_2 + 2\mathbf{u}_3$$
 e $\mathbf{v} = \mathbf{u}_1 + 7\mathbf{u}_3$

Determine o valor de:

- (a) < u, v >:
- (b) ||u|| e ||v||;
- (c) o ângulo θ entre \mathbf{u} e \mathbf{v} .
- **7.** As funções cos x e sen x formam um conjunto ortonormal em $C[-\pi, \pi]$. Se

$$f(x) = 3\cos x + 2\sin x$$
 e $g(x) = \cos x - \sin x$

use o Corolário 5.5.3 para determinar o valor de

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)g(x) dx$$

8. O conjunto

$$S = \left\{ \frac{1}{\sqrt{2}}, \cos x, \cos 2x, \cos 3x, \cos 4x \right\}$$

é um conjunto ortonormal de vetores em $C[-\pi,\pi]$ em relação ao produto interno definido por

- (a) Use identidades trigonométricas para escrever a função sen⁴ x como uma combinação linear de elementos de S.
- (b) Use o item (a) e o Teorema 5.5.2 para encontrar os valores das integrais a seguir.

(i)
$$\int_{-\pi}^{\pi} \sin^4 x \cos x \, dx$$

(ii)
$$\int_{-\infty}^{\pi} \sin^4 x \cos 2x \, dx$$

(iii)
$$\int_{-\pi}^{\pi} \sin^4 x \cos 3x \, dx$$

(i)
$$\int_{-\pi}^{\pi} \sin^4 x \cos x \, dx$$
 (ii) $\int_{-\pi}^{\pi} \sin^4 x \cos 2x \, dx$ (iii) $\int_{-\pi}^{\pi} \sin^4 x \cos 2x \, dx$ (iv) $\int_{-\pi}^{\pi} \sin^4 x \cos 4x \, dx$

- 9. Prove que a transposta de uma matriz ortogonal é uma matriz ortogonal.
- **10.** Se Q é uma matriz ortogonal $n \times n$ e se x e y são vetores não-nulos em R^n , qual a relação entre o ângulo entre Qx e Qy e o ângulo entre x e y? Prove.
- **11.** Seja Q uma matriz ortogonal $n \times n$. Use indução matemática para provar cada uma das afirmações a seguir.
 - (a) $(Q^m)^{-1} = (Q^T)^m = (Q^m)^T$ para todo inteiro positivo m.
 - (b) $||Q^m \mathbf{x}|| = ||\mathbf{x}||$ para todo $\mathbf{x} \in \mathbb{R}^n$.
- **12.** Seja **u** um vetor unitário em R^n e seja $H = I 2\mathbf{u}\mathbf{u}^T$. Mostre que H é ao mesmo tempo ortogonal e simétrica e, portanto, sua própria inversa.
- **13.** Seja Q uma matriz ortogonal e seja d = det(Q). Mostre que |d| = 1.
- 14. Mostre que o produto de duas matrizes ortogonais é ortogonal. O produto de duas matrizes de permutação é uma matriz de permutação? Explique.
- **15.** Mostre que, se U é uma matriz ortogonal $n \times n$, então

$$\mathbf{u}_1\mathbf{u}_1^T + \mathbf{u}_2\mathbf{u}_2^T + \cdots + \mathbf{u}_n\mathbf{u}_n^T = I$$

16. Use indução matemática para mostrar que, se $Q \in \mathbb{R}^{n \times n}$ é, ao mesmo tempo, triangular superior e ortogonal, então $\mathbf{q}_i = \pm \mathbf{e}_i, j = 1, ..., n$.

17. Seja

$$A = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$

- (a) Mostre que as colunas de A formam um conjunto ortonormal em R^4 .
- (b) Resolva o problema de mínimos quadráticos para $A\mathbf{x} = \mathbf{b}$ para cada uma das escolhas de \mathbf{b} a seguir.
 - (i) $\mathbf{b} = (4, 0, 0, 0)^T$
 - (ii) $\mathbf{b} = (1, 2, 3, 4)^T$
 - (iii) $\mathbf{b} = (1, 1, 2, 2)^T$
- **18.** Seja A a matriz do Exercício 17.
 - (a) Encontre a matriz de projeção P que projeta ortogonalmente vetores em \mathbb{R}^4 sobre I(A).
 - (b) Para cada uma das soluções **x** encontradas no Exercício 17(b), calcule A**x** e compare com P**b**.
- **19.** Seja *A* a matriz do Exercício 17.
 - (a) Encontre uma base ortonormal para $N(A^T)$.
 - (b) Determine a matriz de projeção que projeta ortogonalmente vetores em R^4 sobre $N(A^T)$.
- **20.** Sejam A uma matriz $m \times n$, P a matriz de projeção que projeta ortogonalmente vetores em R^m sobre I(A) e Q a matriz de projeção que projeta ortogonalmente vetores em R^n sobre $I(A^T)$. Mostre que:
 - (a) I P é a matriz de projeção de R^m sobre $N(A^T)$;
 - (b) I Q é a matriz de projeção de \mathbb{R}^n sobre $\mathbb{N}(A)$.
- **21.** Seja P a matriz de projeção correspondente a um subespaço S de R^m . Mostre que:

(a)
$$P^2 = P$$
 (b) $P^T = P$

22. Seja A uma matriz $m \times n$ cujos vetores colunas são ortogonais dois a dois e seja $\mathbf{b} \in R^m$. Mostre que, se $\hat{\mathbf{x}}$ é a solução de mínimos quadráticos para o sistema $A\mathbf{x} = \mathbf{b}$, então

$$\hat{x}_i = \frac{\mathbf{b}^T \mathbf{a}_i}{\mathbf{a}_i^T \mathbf{a}_i} \qquad i = 1, \dots, n$$

23. Considere o espaço vetorial C[-1, 1] com o produto interno

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$$

e a norma

$$||f|| = (\langle f, f \rangle)^{1/2}$$

- (a) Mostre que os vetores 1 e x são ortogonais.
- (b) Calcule ||1|| e ||x||.
- (c) Encontre a melhor aproximação de mínimos quadráticos, por uma função linear $l(x) = c_1 1 + c_2 x$, de $x^{1/3}$ em [-1, 1].
- (d) Esboce os gráficos de $x^{1/3}$ e de l(x) em [-1, 1].
- **24.** Considere o espaço C[0, 1] munido do produto interno

$$\langle f, g \rangle = \int_0^1 f(x)g(x) dx$$

Seja S o subespaço gerado pelos vetores 1 e 2x - 1.

- (a) Mostre que 1 e 2x 1 são ortogonais.
- (b) Determine ||1|| e ||2x 1||.
- (c) Encontre a melhor aproximação de mínimos quadráticos para \sqrt{x} por uma função pertencente ao subespaço S.
- **25.** Seja

$$S = \{1/\sqrt{2}, \cos x, \cos 2x, \dots, \cos nx, \sin x, \sin 2x, \dots, \sin nx\}$$

Mostre que S é um conjunto ortonormal em $C[-\pi, \pi]$ munido do produto interno definido por (2).

- **26.** Encontre a melhor aproximação de mínimos quadráticos para f(x) = |x| em $[-\pi, \pi]$ por um polinômio trigonométrico de grau menor ou igual a 2.
- **27.** Seja $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k, \mathbf{x}_{k+1}, ..., \mathbf{x}_n\}$ uma base ortonormal para um espaço V munido de um produto interno. Seja S_1 o subespaço gerado por $\mathbf{x}_1, ..., \mathbf{x}_k$ e seja S_2 o subespaço gerado por $\mathbf{x}_{k+1}, \mathbf{x}_{k+2}, ..., \mathbf{x}_n$. Mostre que $S_1 \perp S_2$.
- **28.** Seja x um elemento do espaço vetorial V do Exercício 27 e sejam \mathbf{p}_1 e \mathbf{p}_2 as projeções ortogonais de x sobre S_1 e S_2 , respectivamente. Mostre que:
 - (a) $\mathbf{x} = \mathbf{p}_1 + \mathbf{p}_2$;
 - (b) se $\mathbf{x} \in S_1^{\perp}$, então $\mathbf{p}_1 = \mathbf{0}$ e, portanto, $S^{\perp} = S_2$.
- **29.** Seja S um subespaço de um espaço V munido de um produto interno. Seja $\{x_1, ..., x_n\}$ uma base ortogonal para S e seja $x \in V$. Mostre que a melhor aproximação de x de mínimos quadráticos por elementos de S é dada por

$$\mathbf{p} = \sum_{i=1}^{n} \frac{\langle \mathbf{x}, \mathbf{x}_{i} \rangle}{\langle \mathbf{x}_{i}, \mathbf{x}_{i} \rangle} \mathbf{x}_{i}$$

6 O PROCESSO DE ORTOGONALIZAÇÃO DE GRAM-SCHMIDT

Nesta seção, vamos aprender um processo para a construção de uma base ortonormal para um espaço V de dimensão n munido de um produto interno. Começando com um base $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n\}$, o método envolve a utilização de projeções ortogonais para a construção de uma base ortonormal $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$.

Vamos construir os \mathbf{u}_i de modo que $[\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}] = [\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k\}]$ para k = 1, ..., n. Para começar o processo, seja

$$\mathbf{u}_1 = \left(\frac{1}{\|\mathbf{x}_1\|}\right) \mathbf{x}_1$$

 $[\{\mathbf{u}_1\}] = [\{\mathbf{x}_1\}]$, já que \mathbf{u}_1 é um vetor unitário com mesma direção que \mathbf{x}_1 . Seja \mathbf{p}_1 a projeção ortogonal de \mathbf{x}_2 sobre $[\{\mathbf{x}_1\}] = [\{\mathbf{u}_1\}]$.

$$\mathbf{p}_1 = \langle \mathbf{x}_2, \mathbf{u}_1 \rangle \mathbf{u}_1$$

Pelo Teorema 5.5.7,

$$(\mathbf{x}_2 - \mathbf{p}_1) \perp \mathbf{u}_1$$

Observe que $\mathbf{x}_2 - \mathbf{p}_1 \neq \mathbf{0}$, já que

(2)
$$\mathbf{x}_2 - \mathbf{p}_1 = \frac{-\langle \mathbf{x}_2, \mathbf{u}_1 \rangle}{\|\mathbf{x}_1\|} \mathbf{x}_1 + \mathbf{x}_2$$

e x₁ e x₂ são linearmente independentes. Definindo

(3)
$$\mathbf{u}_2 = \frac{1}{\|\mathbf{x}_2 - \mathbf{p}_1\|} (\mathbf{x}_2 - \mathbf{p}_1)$$