1 Kaplanski conjectures

1.1 Group algebras and the statements of Kaplanski’s con-
jectures

Suppose that I' is a group and K is a field. The group algebra KT is the
K-algebra of formal finite linear combinations

kiyi+ ...+ kay,

of elements of I' with coefficients in K. A typical element a of KT can be
denoted by

>y
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where the coefficients a, € K are zero for all but finitely many v € I'. The
operations on KT are defined by

(; a~ﬂ> + (; bw) = ; (ay +by)y

and
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Several conjectures concerning KT are attributed to Kaplanski:
e Zero divisors conjecture: KT has no zero divisors;
e Nilpotent elements conjecture: KT has no nilpotent elements;

e Idempotent elements conjecture: the only idempotent elements of KT are
0 and 1;

e Units conjecture: the only units of KT are kv for k € K\ {0} and v € T}

e Finiteness conjecture: KT is directly finite, i.e. ab = 1 for a,b € KT’
implies ba = 1;
e Values of traces on idempotent elements: if 7 is the trace on KT defined
by
To (a) = Q1p

and b is an idempotent element of KT then 7¢ (b) belongs to the prime
field K, of K.

Recall that a trace on a K-algebra A is a K-linear functional 7 : A — K
such that 7 (ab) = 7 (ba) for a, b € A.



1.2 Zalesskii’s theorem

Among the conjectures mentioned, only the one concerning values of traces
on idempotent elemements has been establihed in full generality. This is the
content of a theorem of Zalesskii from [3].

Theorem 1 Ifp € KT is an idempotent element and T is a trace on KT', then
7 (p) belongs to the prime field Ky of K.

Let us consider the particular case when K is a finite field of characteristic
p. If n > 0 and a € KT, define 7, (a) to be the sum of the coefficients of a
corresponding to elements of I' of order p™. In particular 7¢ (a) is the coefficient
of a corresponding to the identity element 1 of T'.

Exercise 2 Show that T, is a trace on KT for everyn > 0, i.e. 7, is a K-linear
map such that T (ab) = 7 (ba).

Lemma 3 Recall that K is supposed to be a finite field of characteristic p. Show
that if T is any trace on KT then

7((a+b)") =7 (") +7 (")

for every a,b € KT'. Thus by induction
7(a?) = Zaf;T (v?).
v

The latter identities can be referred to as "Frobenius under trace", in anal-
ogy with the corresponding identity for elements of a field of characteristic p.
Suppose now that e € KT is an idempotent element. We want to show that
7 (€) belongs to the prime field Ky of K. To this purpose it is enough to show
that 7 (e)” = 7 (e). For n > 1 we have

Tn (e) = Tn(el)

= Z ebn (7F)
Y
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On the other hand

To(e) = T()(ep)

= Yerro ()
Y
Doty e

[v[=1 [vI=p
= To(e)p+’r1(€)p.

From these identities it is easy to prove by induction that

70 (€) = 70 (e) + 7 (¢)”
for every n € N. Since e has finite support, there is n € N such that 7, (¢) = 0.
This implies that 7o (¢) = 7o (¢)” and hence 7 (e) € K.
The proof of the general case of Zalesskii’s theorem can be inferred from this
particular case. The details can be found in [2].

1.3 The complex case of Kaplanski’s finiteness conjecture

The particular instance of Kaplanski’s finiteness conjecture for the field of com-
plex numbers C asserts that for any group I' the complex group algebra CI' is
directly finite. This case can be treated by means of functional analysis and
operator algebras. Recall that the complex group algebra CI' can be embedded
into the group von Neumann algebra LI of I'. Moreover the trace 79 on CI'
defined by 7¢ (a) = a1, can be extended to a faithful normalized trace 7o on LT.
Thus the complex case of Kaplanski’s finiteness conjecture is a consequence of
the following result.

Theorem 4 If M is a von Neumann algebra endowed with a faithful finite trace
T, then M is a directly finite algebra.

Assume that M is a von Neumann algebra an 7 is a faithful normalized trace
on M. If x,y € M are such that xy = 1 then yx € M is an idempotent element
such that

T(yz)=T(@y)=7(1) =1
It is thus enough to prove that if e € M is an idempotent element such that
7(e) = 1 then e = 1. This is equivalent to the assertion that if e € M is an

idempotent element such that 7 (e) = 0 then e = 0. This assertion is proved in
Lemma 5 (cf. Lemma 2.1 in [2]).

Lemma 5 If M is a von Neumann algebra endowed with a faithful finite trace
T and e € M is an idempotent such that 7 (e) = 0, then e = 0.

Proof. The conclusion is obvious if e is a self-adjoint idempotent element (i.e.
a projection). In fact in this case

T(e) =7(e"e) =0



implies e = 0 by faithfulness of 7. In order to establish the general case it is
enough to show that if e € M is idempotent, then there is a self-adjoint invertible
element z of M such that f = ee*z~! is a projection and 7 (¢) = 7 (f). Define

z=1+(e"—¢€)" (e" —e).

Observe that z is an invertible element (see [1], I1.3.1.4) commuting with e. It
is not difficult to check that f = ee*z~! has the required properties. m

1.4 Kaplanski’s finiteness conjecture for finite fields and
Gottschalk’s conjecture

Suppose that I' is a group and A is a finite set. Denote by Al the set of I'-
sequences of elements of A. The product topology on Al with respect to the
discrete topology on A is compact metrizable. The Bernoulli shift of I' with
alphabet A is the left action of I' on A" defined by

P (ay)er = (“pfl’v)yer :

A continuous function f : AT — AU is equivariant if it preserves the Bernoulli
action, i.e. f(p-z)=p- f(x) for every z € A'. Gottschalk’s surjunctivity
conjecture asserts that if f : AT — AU is a continuous injective equivariant
function, then f is surjective.

Gottschalk’s surjunctivity conjecture implies Kaplanski’s finiteness conjec-
ture for finite groups. Suppose that I' is a group and K is a finite field. Consider
the Bernoulli action of I' with alphabet K. Denote the element (a,) . of KT
by Zv a~. Observe that the group algebra KT' can be regarded as a subset of
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for > ayy € KT and >, byy € KT gives aright action of KT on KT extending
the multiplication operation in KT and commuting with the left action of I" on
KT. Suppose that a, b € KT are such that ab = 1p. Define the continuous
equivariant map f : K — KU by f (z) = x - a. Observe that for every x € KV

x=x-ab=(z-a)-b=f(x)-0.

It follows that f is injective. Gottschalk’s conjecture for I' implies that f is also
surjective. In particular there is o € K' such that z-a = f(2¢) = 1p. In
particular

b:1F'b:(SL‘()'CL)'b:.’L‘Q'(ab):ZBO'lF:ZCo.

Therefore
Ir = x9-a = ba.



1.5 Kervaire-Laudenbach conjecture
Suppose vy, -..,7v; € I' and define the monomial

w(z) =a™y, ... a2y,
where n; € Z for i = 1,2,...,1. Consider the following problem: Determine if
the equation
w(z)=1

has a solution in some group extending I'. The answer in general is "no".
Consider for example the equation

zaz bl =1

If a and b are different orders then clearly this equation hsa no solution in any
group extending I'. Assuming that the sum Zlizl n; of the exponents of x in
w () is nonzero is a way to rule out this obstruction. A conjecture attributed to
Kervaire and Laudenbach asserts that this is enough to guarantee the existence
of a solution of the equation w (z) = 1 in some group extending T
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