
1 Kaplanski�s �niteness conjecture

Recall that Kaplanski�s �niteness conjecture for a countable discrete group �
asserts that if K is a �eld, then the group algebra K� is directly �nite. This
means that if a; b are elements of K� such that ab = 1 then also ba = 1. Equiv-
alently if b is a multiplicative right inverse of a, then b is also a multiplicative
left inverse of a. This conjecture has been con�rmed when � is a so�c group by
Elek and Szabo in [1].

De�nition 1 If R is a ring, then a rank function on R is a function N : R!
[0; 1] such that

� N (1) = 1;

� N (x) = 0 i¤ x = 0;

� N (xy) � min fN (x) ; N (y)g;

� N (x+ y) � N (x) +N (y).

If N is a rank function on R then

d (x; y) = N (x� y)

de�nes a metric that makes the function x 7! x+ a isometric and the functions
x 7! xa and x 7! ax contractive for every a 2 R. A ring endowed with rank
function is called a rank ring.
In the context of rank rings, a term in the variables x1; : : : ; xn is just a

polynomial in the indeterminates x1; : : : ; xn. Formulas, sentences and their
interpretation in a rank ring can then be de�ned starting from terms analogously
as in the case of metric groups. Also the notion of elementary property and
axiomatizable class carry over without change.
If Rn is a sequence of rank rings and U is an ultra�lter over N, the ultra-

product
Q
U Rn is the quotient of the product ring

Q
nRn by the ideal

IU =
n
(xn) 2

Y
n
Rn

��� lim
n!U

Nn (xn) = 0
o
.

The function
NU (xn) = lim

n!U
Nn (xn)

induces in the quotient a rank function, making
Q
U Rn a rank ring. Los theorem

for ultraproducts can be proved in this context in a way analogous to the case
of length groups.

Theorem 2 (Los for ranked rings) If (Rn)n2N is a sequence of rank rings
and ' is a sentence then

'R = lim
n!U

'Rn .
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A rank ring R is such that for every x; y 2 R

N (xy � 1) = N (yx� 1)

is called a �nite rank ring. Observe that clearly a �nite rank ring is a directly
�nite ring. Moreover the class of �nite rank rings is axiomatizable by the formula

sup
x
sup
y
jN (xy � 1)�N (yx� 1)j .

It follows that an ultraproduct of �nite rank rings is a �nite rank ring and in
paricular a directly �nite ring.

Exercise 3 Suppose that R is a �nite rank ring. De�ne

` (x) = N (x� 1)

for x 2 R. Show that ` is a length funtion on the multiplicative group R� of
invertible elements of R.

Suppose in the following that K is a �eld.

Exercise 4 Denote by Mn (K) the ring of n � n matrices with coe¢ cients in
K. If x 2Mn (K) de�ne � (x) to be the dimension of the range of x regarded as
an operator on Kn. This is the usual notion of rank of an n�n matrix. De�ne

Nn (x) =
1

n
� (x) .

Prove that Nn is a rank function on Mn (K) as in De�nition 1. Show that
Mn (K) endowed with the rank Nn is a �nite rank ring.

More generally a von Neumann algebra enowed with a faithful normalized
trace � can be regarded as a �nite rank ring with respect to the rank

N� (x) = sup f� (p) j p is a projection and xp = xg .

If U is an ultra�lter over N, then
Q
UMn (K) denotes the ultraproduct with

respect to U of the matrix rings Mn (K) regarded as rank rings. By Exercise
4 and Los theorem on ultraproducts

Q
UMn (K) is a �nite rank ring (and in

particular a directly �nite ring).

Exercise 5 If � 2 Sn denote as in by P� 2 Mn (K) the permutation matrix
associated with �. Prove that

Nn (P� � I) � `Sn (�)

where `Sn is the Hamming length function.
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Hint. De�ne c (�) the number of cycles of � (including �xed points). Show that

Nn (P� � I) = 1�
c (�)

n

by induction on the number of cycles.

Exercise 6 Suppose that �0; : : : ; �l�1 2 Sn and �0; : : : ; �l�1 2 Kn f0g. De�ne

" = min f1� d (��; 1Sn) j� 2 lg .

Prove that

Nn

 X
�2l

��P��

!
� 1� "l

l2
.

Hint. De�ne X to be a maximal subset of n such that for i; j 2 X and �; � 2 l
such that (i; �) 6= (j; �) one has

�� (i) 6= �� (j) .

Denote by fei j i 2 ng the canonical basis ofKn. Observe that if x 2 span fei j i 2 X g
then X

�2l
��P�� (x) 6= 0.

Infer that

Nn

 X
�2l

��P��

!
� jXj

n
.

By maximality of X for every i 2 n there is j 2 X and �; � 2 l such that

i = ��1� �� (j)

When �; � vary in l and j varies in X the expression

��1� �� (j)

attains at most "nl + l2 jXj values. Infer that

jEj
m

� 1� "l
l2

Exercise 7 De�ne using Exercise 5 a ring morphism 	 : K (
Q
U Sn)!

Q
UMn (K).

Prove using Exercise 6 that if x1; : : : ; xl 2
Q
U Sn are such that d (xi; 1) = 1 for

i = 1; 2; : : : ; l and �1; : : : ; �l 2 K then

N (�1x1 + � � �+ �lxl) �
1

l
.
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One can now easily prove that a so�c group � satis�es Kaplanski�s �niteness
conjecture. In fact if � is so�c then � embeds into

Q
U Sn in such a way that

the distance of any element in the range of �n f1g from the identity is 1. This
induces a ring morphism from K� into K (

Q
U Sn). Compositing with the ring

morphism described in Exercise 7 one obtains a ring morphis from K� intoQ
UMn (K) that is one to one by the second statement in Exercise 7. This shows

that K� is isomorphic to a subring of a directly �nite ring and, in particular,
directly �nite.
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