1 Kaplanski’s finiteness conjecture

Recall that Kaplanski’s finiteness conjecture for a countable discrete group I'
asserts that if K is a field, then the group algebra KT is directly finite. This
means that if a, b are elements of KT such that ab =1 then also ba = 1. Equiv-
alently if b is a multiplicative right inverse of a, then b is also a multiplicative
left inverse of a. This conjecture has been confirmed when I is a sofic group by
Elek and Szabo in [1].

Definition 1 If R is a ring, then a rank function on R is a function N : R —
[0,1] such that

N1 =1

N (z) =0iff z = 0;

N (zy) < min{N (z),N (y)};
N(z+y) <N(z)+N(y).

If N is a rank function on R then
d(z,y) =N (z—y)

defines a metric that makes the function x — z + a isometric and the functions
x — za and x — ax contractive for every a € R. A ring endowed with rank
function is called a rank ring.

In the context of rank rings, a term in the variables xi,...,x, is just a
polynomial in the indeterminates x1,...,x,. Formulas, sentences and their
interpretation in a rank ring can then be defined starting from terms analogously
as in the case of metric groups. Also the notion of elementary property and
axiomatizable class carry over without change.

If R, is a sequence of rank rings and U is an ultrafilter over N, the ultra-
product ], R, is the quotient of the product ring [], R, by the ideal

Iy = {(xn) e[l &

Jim N () =0}

The function
Ny (z,) = lim Ny, (2,,)
n—U
induces in the quotient a rank function, making [[,, R, a rank ring. Los theorem
for ultraproducts can be proved in this context in a way analogous to the case
of length groups.

Theorem 2 (Los for ranked rings) If (R,),cy is a sequence of rank rings
and @ is a sentence then
= lim T

n—U



A rank ring R is such that for every z,y € R
N(zy—1)=N(yz—1)

is called a finite rank ring. Observe that clearly a finite rank ring is a directly
finite ring. Moreover the class of finite rank rings is axiomatizable by the formula

supsup |N (zy — 1) — N (yz — 1)|.
z oy
It follows that an ultraproduct of finite rank rings is a finite rank ring and in
paricular a directly finite ring.
Exercise 3 Suppose that R is a finite rank ring. Define
l(z)=N(x—-1)

for x € R. Show that £ is a length funtion on the multiplicative group R* of
invertible elements of R.

Suppose in the following that K is a field.

Exercise 4 Denote by M, (K) the ring of n X n matrices with coefficients in
K. If v € M,, (K) define p (z) to be the dimension of the range of x regarded as
an operator on K™. This is the usual notion of rank of an n x n matriz. Define

No(2) = Sp(e).

Prove that N,, is a rank function on M, (K) as in Definition 1. Show that
M, (K) endowed with the rank N, is a finite rank ring.

More generally a von Neumann algebra enowed with a faithful normalized
trace 7 can be regarded as a finite rank ring with respect to the rank

N (z) =sup {7 (p)| p is a projection and xp =x }.

If U is an ultrafilter over N, then [],, M,, (K) denotes the ultraproduct with
respect to U of the matrix rings M, (K) regarded as rank rings. By Exercise
4 and Los theorem on ultraproducts [],, M, (K) is a finite rank ring (and in
particular a directly finite ring).

Exercise 5 If 0 € S,, denote as in by P, € M, (K) the permutation matriz
associated with o. Prove that

N, (P, — 1) < g, (o)

where Ug, is the Hamming length function.



Hint. Define ¢ (o) the number of cycles of o (including fixed points). Show that
[

c(o)

n

N, (P,—I)=1-

by induction on the number of cycles.
Exercise 6 Suppose that og,...,01-1 € S, and Ao, ..., N\—1 € K\ {0}. Define
e=min{l —d(oa,1s, )| €l}.

Prove that

N, (ZAQPUQ> > ll_fl.

a€l

Hint. Define X to be a maximal subset of n such that for ¢,j € X and «,5 €1
such that (i, «) # (j,5) one has

0a (i) # 05 (J) -

Denote by {e; | i € n } the canonical basis of K™. Observe that if x € span {e; |i € X }

then
> AP, (z) #0.
a€l
Infer that
RY
N, —
0 (Z AQPM> >
a€l
By maximality of X for every i € n there is j € X and «, 8 € [ such that
i=0,"05(j)

When «, 8 vary in [ and j varies in X the expression
-1 .
00 03 (J)
attains at most enl + [? | X| values. Infer that

@>1—sl
m 12

Exercise 7 Define using Exercise 5 a ring morphism ¥ : K ([, Sn) — [1; M»n (K).
Prove using Ezercise 6 that if x1,...,2; € Hu Sy are such that d (z;,1) =1 for
1=1,2,...,0  and \1,...,\; € K then

N Mz + -+ Nxy) >

o~ =



One can now easily prove that a sofic group I' satisfies Kaplanski’s finiteness
conjecture. In fact if I' is sofic then I' embeds into [],, S, in such a way that
the distance of any element in the range of I'\ {1} from the identity is 1. This
induces a ring morphism from KT into K ([];,S»). Compositing with the ring
morphism described in Exercise 7 one obtains a ring morphis from KT' into
11, M;, (K) that is one to one by the second statement in Exercise 7. This shows
that KT is isomorphic to a subring of a directly finite ring and, in particular,
directly finite.
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