Lista 2

- 1. Dê um exemplo para ilustrar que se $\nabla f(x)^T d = 0$, então não podemos afirmar que d é uma direção de descida(ou de subida) para f a partir de x.
- 2. Seja \bar{x} tal que $\nabla f(\bar{x}) = 0$, mas $\nabla^2 f(\bar{x})$ não é semidefinida positiva. Prove que existe uma direção de descida d em \bar{x} .
- 3. Considere uma quadrática $q(x) = (1/2)x^T A x + b^T x + c$, com $A \in \mathbb{R}^{n \times n}$ (apenas)simétrica. Seja \bar{x} minimizador local de f. Prove que \bar{x} é minimizador global.
- 4. Seja f uma quadrática positiva definida e considere a parábola $\phi(t) = f(x+td)$. Prove que \bar{t} minimizador dessa parábola é tal que $x + \bar{t}d$ satisfaz Armijo com $\sigma \in (0, 1/2)$.
- 5. Na iteração de um algoritmo de busca direcional, x_k é obtido a partir de x_{k-1} através de uma busca linear na direção de descida d_{k-1} . Se $\nabla f(x_k)$ não é múltiplo de d_{k-1} , determine uma direção d_k que seja de descida (em x_k) e ortogonal a d_{k-1} , através de uma combinação linear de $\nabla f(x_k)$ e d_{k-1} .
- 6. Mostre através de um contra-exemplo que um algoritmo de busca direcional, com iteração $x_{k+1} = x_k + t_k d_k$, que satisfaça, para todo k, as condições de proporcionalidade e Armijo, pode ter pontos de acumulação não estacionários.
- 7. Mostre que o Algoritmo 1 visto em aula (com proporcinalidade, Armijo e condição do ângulo) está bem-definido. Supondo que $f \in \mathcal{C}^2$, mostre que se o número de condição da matriz $\nabla^2 f(x_k)$ é uniformemente limitado por $c \geq 1$, então 1/c é um valor adequado para θ (condição do ângulo) quando $d_k = -\nabla^2 f(x_k)^{-1} \nabla f(x_k)$.
- 8. Suponha que no Algoritmo 1 aplicado a um certo problema, temos que existe uma constante C > 0 tal que $||d_k|| \le C||\nabla f(x_k)||$, para todo k.
 - a) Provar que se x_* é ponto limite da sequência e, além disso, não há nenhum outro ponto estacionário numa vizinhança de x_* , então a sequência $\{x_k\}$ converge para x_* .
 - b) Além do suposto em (a), assuma ainda que x_* é minimizador local. Mostre que existe $\varepsilon > 0$ tal que $x_k \to x_*$ para todo x_0 tal que $||x_0 x_*|| < \varepsilon$. Esta afirmação continua válida se x_* é ponto de sela?
- 9. Considere o método do gradiente, com busca linear exata, aplicado a uma quadrática com Hessiana A definida positiva. Seja \bar{x} o minimizador dessa quadrática. Prove que se $x_0 \in \mathbb{R}^n$ é tal que $\bar{x} x_0$ é autovetor de A, então $x_1 = \bar{x}$.
- 10. Mostre que o método de Newton aplicado a uma quadrática com Hessiana positiva definida converge em uma iteração.
- 11. Considere $f: \mathbb{R}^n \to \mathbb{R}$, $f \in \mathcal{C}^1$, $x_0 \in \mathbb{R}^n$, e a sequência de iterações definida por $x_{k+1} = x_k B_k^{-1} \nabla f(x_k)$, para $k \in \mathbb{N}$. Se as matrizes B_k são não-singulares e existe $\alpha > 0$ tal que $\|B_k\|_2 \le \alpha$ para todo $k \in \mathbb{N}$, mostre que se $x_k \to x_*$, então $\nabla f(x_*) = 0$.
- 12. Prove que convergência quadrática implica convergência superlinear, e convergência superlinear implica convergência linear.
- 13. Seja $\{x_k\} \subset \mathbb{R}^n$. Mostre que $\{x_k\}$ pode convergir linearmente em uma norma mas não em outra. Mostre também que a convergência superlinear independe da norma.