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We study the standard angular momentum algékrax; | = I\ € X, as a noncom-
mutative manifoldR? . We show that there is a natural 4D differential calculus and
obtain its conomology and Hodge operator. We solve the spin 0 wave equation
and some aspects of the Maxwell or electromagnetic theory including solutions for
a uniform electric current density, and we find a natural Dirac oper&toie
embedR? inside a 4D noncommutative space—time which is the ligpit 1 of
g-Minkowski space and show thRﬁ’ has a natural quantum isometry group given
by the quantum doublé€(SU(2))xU(su(2)) which is a singular limit of the
g-Lorentz group. We vieV\Ri as a collection of all fuzzy spheres taken together.
We also analyze the semiclassical limit via minimum uncertainty sfgt@#s¢)
approximating classical positions in polar coordinates2@3 American Institute
of Physics. [DOI: 10.1063/1.1517395

I. INTRODUCTION

There has been much interest in recent years in the possibility that classical space or space—
time itself (not only phase spateés in fact noncommutative and not a classical manifold. One
simple model where

[X,t]=1\X; 1)

has already been showto have physically measurable effects even if 104 s (the Planck

time). So such a conjecture is not out of reach of experinesen ifthe noncommutativity is due

to quantum gravity effects. Such noncommutativity of space—time, if verified, would amount to a
new physical effect which could be called “cogravity” because it corresponds under non Abelian
Fourier transform to curvature in momentum sp&céle are usually familiar with this correspon-

dence the other way around, i.e., on a curved space such as a sphere the canonical momenta
(angular momentuiform a noncommutative algebra

[‘]au\]b]zlfabc\]cn a1b1C:1;2131 (2)

wheree,,, . denotes the totally antisymmetric tensor; if one believes in Born reciprocity, then one
should also allow the theoretical possibility of a sphere in momentum space, which would corre-
spond to the algebra

[Xa , Xp] = I\ €apXc - ©)
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This is the algebr&2 which we study in this article from the point of view of theas coordinates
of a noncommutative position space. We insert here a parametérlength dimension. The
physical relevance of this algebra hardly needs to be justified, but we note some specific applica-
tions in string theory and quantum gravity in the discussion below. There are also possible other
contexts where a noncommutative space—time might be a good effective model, not necessarily
connected with gravity and indeed this is an entirely indepen@gra) effect.

Also from a mathematical point of view, the algelf® is a standard example of a formal
deformation quantization, namely of the Kirillov—Kostant Poisson bracketgrin the coadjoint
orbit method:? We identify su(2)* as the vector spack® with basisJ* , say, dual to the,.
Then among the algebra of suitalifelynomia) functionsC(R3) on it we identify theJ, them-
selves with the “coordinate functions,(v)=v, for anyv e su(2)* with componenw, in the
J% direction. These generate the whole coordinate algebra and their Poisson bracket is defined by

{Ja,Jb}(v)=v([Ja,Jb]), Yvu EﬁU(Z)*.

Hence when viewed as functions 8, the Lie algebra generators have a Poisson bracket given
by the Lie bracket. Their standard “quantization” is evidently provided(8ywith deformation
parameten.

Our goal in the present work is to use modern quantum group methods to take this further by
developing the noncommutative differential geometry of this quantum space at the level of scaler
fields, forms, and spinors, i.e., classical field theory. We will solve wave equations, etc., and
generally show that physics is fully possible Bi. Note that the earlier exampié) above was
also of “dual Lie” type but there the Lie algebra was solvable whereasstii2) case that we
address here is at the other extreme and very much harder to work with. We expect our methods
to extend also to W) for other simpleg.

The article begins in Sec. Il with some mathematical preliminaries on quantum group methods
and noncommutative geometry. As a quantum grd’lﬁs,z U(su(2)) (the enveloping Hopf alge-
bra) which means that at the end of the day all computations can be reduced to the lewe)of
and Pauli matrices. One of the first things implied by quantum group theory iﬂ%ﬁnhas an
isometry quantum group given by the Drinfeld quantum doub(&J(su(2))) and wedescribe
this first, in Sec. lll. A suitable Casimir of this induces a scalar wave opefatand we also
describe spherical harmonid§” dictated by action of rotations. This theory could be called the
“level 0” noncommutative geometry where we think of the space through its symmetries rather
than its differential structure.

In Sec. IV we start the noncommutative differential geometry, introducing a natural differen-
tial calculus on]Rf. The cotangent directions or basic forms are given literally by Pauli matrices
plus an additional generat@x

dx,=30,, 6=o09, 4)

where oy=id (the identity matriy. There are also noncommutation relations between functions
and one-forms:

IN A
Xa0Xp= (dXp) X5+ > €apcdXct 2 Oapl,  Xa0= OXa+NdX,. (5

Some other calculi are mentioned in the Appendix for comparison, but in fact this four-
dimensional one appears to be the most reasonable one. The& ekteation turns out to generate
the cohomology, i.e., is not d of anything Rﬁ We interpret it as a local time direction in the
same spirit as in a different mod&l.

In Sec. V we introduce a Hodgé operator and solve the resulting wave equations for spin 0
and spin 1(the Maxwell equations We also find a natural Dirac operator for sginAmong the
solutions of interest are plane waves obeying
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for momentumk e R®. Among spin 1 solutions is a uniform electric current density in some
direction and magnetic field increasing with normal distance. This is computationally the easiest
case; we expect that the theory should similarly allow more conventional decaying solutions. In
Sec. VI we briefly consider quantum sphe&gsinside R? by settingS;x?=1. These are then the
usual quantization of coadjoint orbits smi(2)* [as opposed to all ofu(2)* as described aboye
and we show that they inherit a three-dimensional differential geometry. This case could be
viewed as a slightly different approach to fuzzy sph¥tes?°?lthat is more adapted to their
classical limit\ — 0. Fuzzy spheres also arise as world volume algebras in string theenge it
would be interesting to develop this point of contact further. In our case we obtain a 3D differ-
ential calculus or8? .

In Sec. VIl we explain the origin of thé direction as the remnant of the time directionad
a standard four-dimensional noncommutative space—]lﬁiﬁén a certain scaling limit ag— 1. In
the g#1 setting the theory is much more nonsingular and there is agfllbrentz symmetry
already covered in thg-deformation literatur&%°0n the other hand, ag— 1 we obtain either
usual commutative Minkowski space or we can make a scaling limit and obtain the algebra

[Xaixb]=|Ct €abcXc [Xavt]zov (6)

where the parameterhas dimensions of velocity. Mathematically this is homogenEedJ\(L()/)

and we see that it projects onto our above algéBydy sendingct— \. This algebra6) is not

itself a good noncommutative Minkowski space becausegti®rentz group action becomes
singular agy— 1 and degenerates into an action of the above quantum double isometry group. On
the other hand, it is the boundary poige=1 of a good and well-studied noncommutative
Minkowski space.

The article concludes in Sec. VIII with a proposal for the interpretation which is needed
before the noncommutative geometry can be compared with experiment. In addition to a normal
ordering postulatéi.e., noncommutativé(x) are compared with classical ones only when normal
ordered along the lines of Ref. 3, we also propose a simple quantum mechanical point of view
inspired by Penrose’s spin network theorEhin our case we construct minimum uncertainty
states|j, 6, ¢) for each spinj in which expectationgf(x)) behave approximately like classical
functions in polar coordinates 6, ¢ with r=\j. In effect we viewa as a collection of fuzzy
spheres for all sping taken together. There are some similarities also with the star product and
coherent states discussed recently in Ref. 11.

Finally, whereas the above includes electromagnetic theorﬁ%ib,nwe explain now that
exactly this noncommutative space is needed for a geometric picture underlying the approach to
2+1 quantum gravity of Refs. 4 and 22. When a Euclidean signature and vanishing cosmological
constant are assumed, the gauge group of the classical gravitational @stianChern—Simons
field theory is the group 1S@).2% Considering the three-dimensional space as the direct product
3 XR, where is Riemann surface of genup one can find the space of solutions of the
gravitational field in terms of the topology &f.>® The simplest case is to consideras a sphere
with a puncture, which represents the topological theory of one particle coupled to gravity. It is
known that the quantum states of this kind of theory correspond to irreducible representations of
the quantum doubl®(U(su(2))).* A more detailed explanation, based on representation theory,
of how the quantum double is a deformation “quantization” of the Euclidean group in three
dimensions can be found in Ref. 22. However, the direct geometrical role of the quantum double
has been missing except as an ‘approximate’ isometiy?oOur present results therefore provide
a new point of view, namely of the quantum double symmetry asxattsymmetry but of the
noncommutative spacké® on which we should build a noncommutative Chern—Simons action,
etc. This fits with the discussion above that noncommutative space—time could be used as a better
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effective description of corrections to geometry coming out of quantum gravity. Details of the
required noncommutative Chern—Simons theory as well as gravity in the frame bundle approach
of Ref. 18 will be presented in a sequel.

II. MATHEMATICAL PRELIMINARIES

Here we outline some notions from quantum group theory into which our example fits. For
Hopf algebragi.e., quantum groupswe use the conventions of Ref. 15. It means an algébra
equipped with a coprodu&t:H—H®H, counite:H—C and antipodes:H—H. We will some-
times use the formal sum notatidr(h) =>h(;y®h(,), for anyh e H. The usual universal envel-
oping algebra algebra W@(2)) has astructure of cocommutative Hopf algebra generated by 1
andJ,, a=1,2,3 with relationg2) and

A(J)=J01+1RJ,, €Ja)=0, S(J)=-J,. (7)

We also recall that as for Abelian groups, for each Hopf algebra there is a dual one where the
product of one is adjoint to the coproduct of the othersi{@)) is dually paired with the
commutative Hopf algebré(SU(2)) generated by coordinate functiots, fori,j=1,2 on SU2)
satisfying the determinant relatiam; t?,—t,t2,=1 and with

2
A(tij):gj_ tik®tkj, €(tij):5ij, Sfj:t_lij, (8)

where inversion is as an algebra-valued matrix. The pairing between the algebrg2))(and
C(SU(2)) is defined by

d
(&)= af(et'g)h:o,
whereé e su(2) andf e C(SU(2)) which results in particular in
(Ja.t'j)= 304, (9)

whereaa‘j are thei, j entries of the Pauli matrices far=1,...,3. We omit here a discussion of
unitarity, but this is implicit and achieved by making the above into Hopfgebragsee Ref. 15
for further details.

We also need standard notions of actions and coactions. A left coaction of a Hopf atyebra
on a space/ means a mapy —H®V obeying axioms like those of an action but reversing all
maps. So a coaction 6f{SU(2)) essentially corresponds to an action osU(2)) via thepairing.
Examples are

Adi(h)(g)=h>g= 2 hgS(hez)), (10

the left adjoint action Ad:H® H—H. Its arrow-reversal is the left adjoint coaction ‘Al — H
®H,

There are also the regular actiégiven by the produgt regular coaction(given by A:H—H

®H), and coadjoint actions and coregular actions of the dual, given via the pairing from the
adjoint and regular coactions, éftWe will need the left coadjoint action ¢f on a dual quantum
groupA:
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Adf () () =hD>¢=2" d2((S1) b(z).h), VheH, peA, (12)

and the right coregular action & on H which we will view as a left action of the opposite
algebraA°:

d>h=2 (p.haphp, VheH, oeA. (13

Given a quantum groupl dual to a quantum group, there is a quantum double written
loosely asD(H) and containingH, A as sub-Hopf algebras. More precisely it is a double cross
productA°P<iH where there are cross relations given by mutual coadjoint acttoliso, D (H)
is formally quasitriangular in the sense of a formal “universal R matriR” with terms in
D(H)®D(H). The detailed structure dd(U(su(2))) is covered in Sec. lll and in this case is
more simply a semidirect produ€{SU(2))XU(su(2)) by thecoadjoint action.

We will also need the quantum douldlg§H) whenH is some other quasitriangular quantum
group such as l{su(2)). This is a standard deformation (2) and the coproduct, etc., with a
parameter . In this case there is a second “braided” or covariantized version of
A=(y(SU(2)) which we denote by BS|{2). Then

D(Uq(sU(2)))=BSUy(2) X Uq(su(2)), (14)

where the product is a semidirect one by the adjoint action@§l(2)) and thecoproduct is also
a semidirect one. We will use this nonstandard “bosonization” versiorD0fl) when H is
quasitriangular. Also wheH is quasitriangular wittR,,R nondegenerate, there is a third “twist-
ing” version of the quantum double:

D(Uq(su(2)))=Uq(su(2))»4rUq(su(2)), (15
where the algebra is a tensor product and the coproduct is
A(h®g)=Ry5 Anen(h®g)Ras.

We will use both versions in Sec. VII. Note that both isomorphisms are formal but the right hand
sides are well defined and we take them as definitions. Especially, the isomorfiBisis highly
singular asq— 1. In that limit the twisted version tends to(4d(1,3)) while the bosonization
version tends to Uso(3)).

Finally, we will need the notion of differential calculus on an algeHraThis is common to
several approaches to noncommutative geometry including that of CoArst order calculus
means to specify@?,d), whereQ?! is anH—H-bimodule, dH—Q? obeys the Leibniz rule,

d(hg)=(dh)g+h(dg), (16)

andQ! is spanned by elements of the formhjd. A bimodule just means that one can multiply
“one-forms” in Q! by “functions” in H from the left or the right without caring about brackets.

When we have a Hopf algebts, a differential calculus can be asked to be “bicovariaft,”
which means that there are left and right coactionsigh Q! (a bicomodul¢ which are them-
selves bimodule homomorphisms, and d intertwines the coactions with the regular coactibns of
on itself. Given a bicovariant calculus one can find invariant forms

w(h)=2, (dh))Sha (17)

for anyhe H. The span of such invariant forms is a spaceand all ofQ)* can be reconstructed
from them via
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As a result, the construction of a differential structure on a quantum group rests on that of
with Q*=A™.H. They in turn can be constructed in the form

Al=ker €lT,

whereZCker € is some left ideal irH that is Ad--stable?® We will use this method in Sec. IV to
introduce a reasonable calculus onsU(2)). Some general remarkbut not our calculus, which
seems to be nemappeared in Ref. 18.

Any bicovariant calculus has a “minimal” extension to an entire exterior algéb&ne uses
the universal R-matrix of the quantum double to define a braiding operatatem ® and uses it
to “antisymmetrize” the formal algebra generated by the invariant forms. These and elements of
H define() in each degree. In our case ofdu(2)), because it is cocommutative, the braiding is
the usual flip. Hence we have the usual anticommutation relations among invariant forms. We also
extend dQ¥— Q" as a(right-handed super-derivation by

d(wdn)=wldy+(—1)%*%dw 0.

A differential calculus is said to be inner if the exterior differentiatiorf3f (and hence in all
degreesis given by the(graded commutator with an invariant one-forhe A?, that is,

do=w06—(—1)%®0w.

Almost all noncommutative geometries that one encounters are inner, which is the fundamental
reason that they are in many ways better behaved than the classical case.

lll. THE QUANTUM DOUBLE AS EXACT ISOMETRIES OF R?

In this section we first of all recall the structure of the quantum doit{Eg(su(2))) in the
context of Hopf algebra theory. We will then explain its canonical action on a secondR;?opy
=U(su(2)) arising from the general Hopf algebra theory, thereby presenting it explicitly as an
exact quantum symmetry group of that. Hetg=\J, is the isomorphism valid fok #0. By an
exact quantum symmetry we mean that the quantum group adR§ avith the product oﬂRf an
intertwiner (i.e. the algebra is covarignt

Be(i?use Ufu(2)) is cocommutative, its quantum doubl®(U(su(2))) is ausual crossed
produc

D(U(su(2)))=C(SU2)) agr X U(su(2)),

where the action is induced by the adjoint act[@nis the coadjoint action of.(SU(2))]. This
crossed product is isomorphic as a vector space W{thU(2))® U(su(2)) but with algebra
structure given by

(a®h)(b@g)=>, aAd! ha (D) @20,

for a,be C(SU(2)) andh,ge U(su(2)). Interms of the generators, the left coadjoint actibg)
takes the form

) ) 1 . )
Adea(t'j)Iz tkl<\]aas(tlk)tlj>:E(tlko'akj_o'ajktkj)- (19

As a result we find thad (U(su(2))) is generated by W{u(2)) andC(SU(2)) with cross relations
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[Ja.t]= 3 (oo — o t¥). (20)

Meanwhile the coproducts are the same as those ofi(2() andC(SU(2)).

Next, a general feature of any quantum double is a canonical or “8iiger” representation,
where UEu(2))CD(U(su(2))) acts on Ufu(2)) by the left adjoint action (10) and
C(SU(2))CD(U(su(2))) acts by the coregular on@3), see Ref. 15. We denote the acted-upon
copy bny. ThenJ, simply act by

I F0=N 12 Xayf (0S(Xa2) =N [Xa, f(0)], V() eRY, (21

e.g.
JPXp=1€apXe,

while the co-regular action reads

. . . N '
tlj[>f(X):<tlj ,f(X)(n)f(X)(z), e.g., tlj[>Xa:§0'alj1+ 5Ian.

The general expression is given by a shuffle prodseée Sec. Y. With this action Rf turns into
a left D(U(su(2)))-covariant algebra

In order to analyze the classical limit of this action, let us consider the role of the numerical
parametein used to define the algebﬂ@. Considering the relation&3), we have already ex-
plained thaﬂRi becomes the usual algebra of functionsitnas\—0. The same parametircan
be introduced into the quantum double by means of a redefinition of the generati®&g2)) to

1. .
Mlj:X(tlj_ﬁlj)r (22

S0 thattij = 5ij +)\M‘j . We stress that we are dealing with the same Hopf Alg&€iid(su(2))),
but written in terms of new generators, it is only a change of variables. The homomorphism
property ofA gives

2
AMij:kzl (5ik®Mkj+ Mik®5kj+)\Mik®Mkj),
while the condition on the determinant;t?,—t',t?,=1, implies that
Tr(M)=M1 +M2,= -\ de(M).

This means that in the limik—0, the elementd!’; have to obeyM*; = —M?2, and C(SU(2))
becomes the commutative Hopf algebralk). To make this explicit, we can define the momen-
tum generators

Pi=—1(ML+M2), Pp=M1L=M?, Py=—1(M}—M?), 23
or
Pa: - Io-ai]Mji ’ a= 112!3 (24)

(sum overi,j). The inverse of this relationship is

M=t ol Pat 8P leT M S 1-J1-Xp2 25
i=59ajPat 3Py, Po=5Tr(M)=—+ 7P (25)
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The other square root is also allowed, but tHenis not O(N), i.e., this is not the “patch” of
C(SU(2)) that concerns us. Note also that there are unitarity conditions that we do not explicitly
discuss(if we put them in then thé>, are Hermitian. In these terms we have

AP,=P,®1+1&P,+O(\),

so that we have the usual additive coproduct in xheO limit. Meanwhile, the left coadjoint
action (19) and the resulting cross relations in the double become

Adt Ja( Pp)=1€apcPc, [Ja:Pol=1€apcPe,

i.e.,D(U(su(2))) in thelimit A—0 with these generators becomes the usu@dB)). This part
is essentially knowf:??
Moreover, our action of these scaled generator&piis

MiD>f(x)=d'(f(x), e.g. M >x,=(J,t')1=30,"1, (26)

where the operatorg j are the same as those in the next section. We can also write the action of
P, as partial derivatives defined thdjia (35)] by

P.>f(x)=—102f(x), Po>f(x)= %aof(x),

where the constart is put in order to make the equations have the same form as the classical
ones, interpreting roughly the zero-direction as a “time” direction. This relation will become
clearer in Sec. VII.

In the limit A—0, the action ofJ, becomes usual rotations in three-dimensional Euclidean
space while the action &?, becomes the action of translation operators of the algebF2))JGo
we indeed recover the classical action dfdd(3)) on R3. In three-dimensional gravity, consider-
ing the dimension of the gravitational const&@y and the speed of light to be equal to 1, we have
that A must be proportional to the Planck constént.

Next, there are several applications of the action of the double based on the above point of
view. First and foremost, we could look for a wave operator from a Fourier transform point of
view as in Ref. 3(we give a different point of view latgér Namely we look for a Casimir of
D(U(su(2))) lying in momentum spac€(SU(2)), and define the wave operator as its action. The
possible such Casimirs are the du(2))-invariant functions, which means basically the class
functions on S®). In our case this just means any function of the trace functiot®; +t2,. The
one suggested by the noncommutative geometry in the next sections is

, 4 N\ 4

and its action or’Rf is then the wave operatar on degree zero in Sec. V, but with metrict in
the time direction. Note tha®r= 7 for C(SU(2)) so any such wave operator is invariant under
group inversion, which appears as the antip8dg=—-P,.

A different question we can also ask is about the noncommutative analogs of spherical har-
monics as functions iﬂﬁkf in the sense of irreducible representatiodh® under the above action
(21) of the rotation group. We find th@&unnormalized lowest ones fol e Z, and m=—1,—|
+1,...] as
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Yo 2= (X E1X0) %, Yo t= F((Xg £ 1X) g+ X3(Xy £ 1Xp)),

1
Y2°=—6<4x§—<x1+|x2><x1—|x2>—<x1—|x2)<x1+|x2>>.

G

Let us note that such spherical harmonics can have many applications beyond their usual role in
physics. For example, they classify the possible noncommutative differential calculi on the clas-
sical coordinate algebra(SU(2)) which is dual to the space we study here.

IV. THE FOUR-DIMENSIONAL CALCULUS ON R}

The purpose of this section is to construct a bicovariant calculus on the aI@%lﬁwowing
the steps outlined in Sec. Il, the calculus we obtain being that on the algebué2)) on setting
A=1.We WriteRf as generated by, , x_ andh, say, and with the Hopf algebra structure given
explicitly in terms of the generators as

[h,X:]=*£2AX+; [X4,X_]=A\h, (28

and the additive coproduct as before. The particular form of the coproduct, the relatioffs7and
show that d=w(&) for all éesu(2). Because of the cocommutativity, all ideals Hf are
invariant under adjoint coactiori$1) so that first order differential calcuf2* on Rf are classified
simply by the idealg¥Cker €. In order to construct an ideal of key consider a two-dimensional
representatiom:IR3—EndC?, which in the basige; ,e,} of (? is given by

p(Xy)e1=0, p(x,)e;=N\eq,
p(X_)e;=Ae,, p(x_)e,=0,
p(h)e;=Ne;, p(h)e,=—Me;.

The representatiop is a surjective map ont,(C), even when restricted to ker The kernel of
plier e IS @ two-sided ideal in kee. Then we have

M,(C)=ker e/ker p. (29

This isomorphism allows us to identify the basic one-forms with2 matrices,{e;;}, for i,j
=1,2, whereg;; is the matrix with 1 in the i(j) entry and O otherwise. Then the first order
differential calculus is

QYR =M,(0)®R3.

The exterior derivative operator is
df(x)=A"1> p(F(X)(1)— €(F(X) 1)) D F(x) 2y =&;';(F),
where the last equality is a definition of the partial derivatiﬁ"@s]l%fe]ﬁf . In particular, we have

dé=N"1p(§), Véesu(2),

which, along with id, span the whole spacg (M) of invariant one-forms. For a general monomial
&q1-+- &, the expression of the derivative is

d(ép--€)=A"1Y X Py €ok) Eakr1) " Ea(ny »

k=1 O'ES(n’k)
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where o is a permutation of 1,.n, such thato(1)<---<o(k) and o(k+1)<---<o(n). This
kind of permutation is called an(k)-shuffle. And finally, for a(formal power seriesgrouplike
elementg (whereAg=g®q), the derivative is

dg=\""(p(9)- 0)g.
On our basis we have
dx,=epp, dXx_=eyn, dh=e;—ey, 6O=e;texn.

The compatibility conditions of this definition of the derivative with the Leibniz rule is due to the
following commutation relations between the generators of the algebra and the basic one-forms:

X+ OX. = (dXx )X,
N
XX =(dX5 )X« + E(ai dh),

X.dh=(dh)x.FNdx.,
hdx. = (dx.)h*Adx. , (30
hdh=(dh)h+\9,
X4 0= 0X. +NdX. ,
ho= 6h+ \dh.
From these commutation relations, we can see that this calculus is inner, that is, the deriva-
tives of any element of the algebra can be basically obtained by the commutator with the one-form
6. In the classical limit, this calculus turns out to be the commutative calculus on usual three-

dimensional Euclidean space. The explicit expression for the derivative of a general monomial
x> hPx¢ is given by

[(b-1)/2] _ _ [b2) _
d(Xa_hbXS_):dh( ;0 (2i+1 )\2|X§hb72lflxi +0 Izl (Zi))\lexa_thlxi)
° (b . ° b . 1
+ax. i=20(i Nex@ hP~ixSt | +dx_ i;)(i Nax@ thb=ixe + 5 (6—dh)
° (b} .
X ;O : N Tlac@ thb=ixS 1], (32

where the symbdlz] denotes the greatest integer less thand only terms with=0 powers of
the generators are included. Note that this expression becomes in the-if@ithe usual expres-
sion for the derivative of a monomial in three commuting coordinates.

In terms of the generators,, a=1,2,3,which are related to the previous generators by

1 I 1
X1:§(X++X7), X2:§(X7_X+), stih'

we have

dX,=30,, 60=0y, (32
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i.e., the Pauli matrices are nothing other than three of our basic one-forms, and together with
oo=1id form a basis of the invariant one-forms. The commutation relat{80s have a simple
expression:

I\ A
Xade: (de)Xa+ - Eabcdxc+ — 53[)0!

2 4
(33
Xa0= 0Xa+ NdX,.
In this basis the partial derivatives defined by
1
df (x) = (dx,) d*f (x) + BEaOf(x) (39
are related to the previous ones by
i 1 i -a 1 i 10
07]':50'61]'(9 +EO’0jﬁ (35)

as in(25). The exterior derivative of a general monom@kgxg is quite complicated to write
down explicitly, but we find it as

[2/2] [6/2] (2] 3 2641401/ 5\ (b |/ c -
d(XngXg):iZo J_ZO kZO ‘9_22(|+J+R) 2i /1 2j (2k PO D Ca
[a/2] [b/2] [(c—1)/2] 2(i+j+k)
+i§0 120 k=0 dxs)Z\_z(m; ;)(Zkil)ximx?axg%l
[a/2] [(b—1)/2] [c/2] N20+i+K) [ 5 b c . _
+;O ]ZO godxzw 2 2j+1)(2k)xi‘_2'xg_21—1xg_2k
[a/2] [(b—1)/2] [(c—1)/2] N20+i+R+1 ) o b
+i20 jzo k=0 Idxlw 2i Zj+1)
c a2 1o 2kt [(a=1)/2] [b/2] [c/2] A2(+i+k) a b
X(2k+1 X X3 - Zo j§=:0 godxlm 2i+1 2])
| € |ya-2i-1,b-2] c—zk_[(ailm e N2OFIHTL g b
(Zk X1 o X T 2 ,Zo 1oL g4 1 Zj)
c a1 b-2jue- 2kt [(a=1)2] [(b—1)/2] [c/2] N20+i+R+1 0 4
X(2k+1 AT 2 JZO 2, 'V i 41
X(ZJELl)(ZCk X TG T
[(@=1/2) [(b-DI2] [~ 12\ 24j+K42 ) b
A A & e 2j+1>
X( c 3~ 2=1yb=2j—1,c—2k—1_ fxaxbxc (36)
2k+1/)%1 2 3 N X1X2X3-
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In both cases the expression for the derivatives of plane waves is very simple. In terms of
generator,, the derivative of the plane wawa>a*a= ek % js given by

6 A K 21 sin(\|k|/2
de'k'x=[x(co{% 21sinA|Kl/2) )kodx}e'k'x.

N[N
One can see that the limit— 0 gives the correct formula for the derivative of plane waves, that
is,

(37)

3
lim de'k'xz( E Ikad)Ta) e|k~7:|k'(d§)e|k.7'

A—0 a=1

where at\ =0 on the right hand side we have the classical coordinates and the classical one-forms

in usual three-dimensional commutative calculus. In terms of the generatqr$, the plane

wave e' (ks X+ Tk-X_Fkoh) = gtk i5 given by

1(k, dx, +k_dx_+kydh)
MK+ Kk

0 .
de'*=} ~(cog\ko+k ko )—1)+ sin(\ Vko+ k+k_)} e,

(38)

This calculus is four-dimensional, in the sense that one has four basic one-forms, but these
dimensions are entangled in a nontrivial way. For example, note that they satisfy the relation

€apXa(OXp)X=0.

We can see that in the classical limit— 0, the calculus turns out to be commutative and the extra
dimension, namely the one-dimensional subspace generated by the oné-fiecouples totally

from the calculus generated by the other three one-forms. The relation between this extra dimen-
sion and quantization can also be perceived by considering the derivative of the Casimir operator

which implies

3\
dC=2> (dxy)Xa+ — 6.
a=1 4

The coefficient of the term i is exactly the eigenvalue of the Casimir in the spirepresenta-

tion, the same used to construct the differential calculus, and also vanishes\wh@nwe shall

see later that this extra dimension can also be seen as a remnant of the time coordinate in the
g-Minkowski spacdRé'?’ when the limitg—1 is taken. A semi-classical analysis on this calculus

can also be made in order to recover an interpretation of time in the three-dimensional honcom-
mutative space.

We can also construct the full exterior aIgelﬁ)e(]Rf) = @‘,’fZOQ”(Rf). In our case the general
braiding® becomes the trivial flip homomorphism because the right invariant basic one-forms are
also left invariant. Hence our basic one-forms in(M) are totally anticommutative and their
usual antisymmetric wedge product generates the usual exterior algebra on the vector space
M,(C). The full Q‘(Rf) is generated by these and elementﬂ%éfwith the relations(30). The
exterior differentiation in2*(R3) is given by the graded commutator with the basic one-fgrm
that is,

do=wl6—(—1)%%§0w.
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In particular, the basic one-forms i) are all closed, among which is not exact. The co-
homologies of this calculus were also calculated giving the following results:
Theorem 4.1: The noncommutative de Rham cohomologﬁ)fs

H=C.1, H'=C.9, H?=H’=H*={0}.
Proof: This is by direct(and rather longcomputation of the closed forms and the exact ones
in each degree using the explicit formy@l) on general monomials. To give an example of the
procedure, we will do it in some detail for the case of one-forms of the particular type

o=a(dx,)x*hPXxS + B(dx_)x"h"xP. + y(dh)x"hsx', + §6x“ h*x¥

and impose @=0. We start analyzing the simplest cases, and then going to more complex ones.
Taking 8= vy=6=0, then

0= a(dx,)x* hPxS

The term indx_Odx, leads to the conclusion that=0. Similarly, the term in H0dx, leads to
b=0 so that

c+1

o=a(dx,)x5=d PR )

which is an exact form, hence belonging to the null cohomology class. The easgs 6=0 and
a=pB=6=0 also lead to exact forms. The case B=y=0 leads to the one-form

o= 50X h'x¥ .

The vanishing of the term inxd. 0# implies thatw=0, the term in &_# vanishes if and only if
u=0 and the term in k@ has its vanishing subject to the conditios- 0. Hence we have only
the closed, nonexact form from this case.

Let us now analyze the case with two nonzero terms:

o= a(dx;)x*h°xS + B(dx_)x"h"x" .

The vanishing condition in the term oxdCdx, reads

b

a2,

ny . )
| )\IpXThn*IXg*l

b\ .. . :
;N P :,BZ,O

Then we conclude thdt=n, a—1=m, c=p—1 andaea= B(c+1). The vanishing of the term in
dhOdx . reads

[(b—-1)/2]

S [ans

The terms in odd powers af vanish if and only ifac=0. Then the left hand side vanishes if and
only if b=0. The casea=0 implies that3=0, which reduces to the previous case already
mentioned. For the cage=0 we haveB= aa so that

b
N2ix@ pb-2i-1 +_%Z ( ))\'“acxa Ipb—i c 1

= a((dx,)x? +a(dx_)x* x,).

It is easy to see thab is closed if and only ifa=1. But
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N

~ 50,

A
(dx+)x+(dx)x+=d(xx++ Eh

which is a form homologous té. It is a long, but straightforward, calculation to prove that all the
other cases of closed one-forms of the type above rely on these cases. The general case is still
more complicated.

The proof that all higher cohomologies are trivial is also an exhaustive analysis of all the
possible cases and inductions on poweré ofs exemplified here for the four-forms: It is clear
that all four-forms

o=dx_OdhOdx, O06x™h"x?,

are closed. We use induction onto prove that there exists a three-fompsuch thatw=d». For
n=0, we have

1
dx_ OdhCdx , 06x™xP. =d —mthdX+D0xT+1xﬂ .

Suppose that there exist three-formg, for 0<k<n, such that
dx_OdhOdx, 06x™h*xP =d7,.

Then

1
dx_ OdhOdx . 06x™h"x?. =d( - mthde&x’“”h”xﬁ)

iyMpn—iyp
N XTh"IxE

n
n
—dx_OdhOdx.,. 06, ( i
i=1

n

1
_ _ m+1pn p_
d( —m+1thdx+D0x, h"x% 2’1

?)x‘nni).

Hence all four-forms are exact. The same procedure is used to show the triviality of the other
cohomologies. &

For Ri we should expect the cohomology to be trivial, since this corresponds to Stokes
theorem and many other aspects taken for granted in physics. We find almost this except for the
generatord which generates the calculus and which has no three-dimensional classical analogs.
We will see in Sec. VII tha¥ is a remnant of a time direction even though from the point of view
of Rf there is no time coordinate. The cohomology result says exactly &@hatan allowed
direction but not d of anything.

V. HODGE *-OPERATOR AND ELECTROMAGNETIC THEORY

The above geometry also admits a metric structure. It is known that any nondegenerate
bilinear formn e A*® A* defines an invariant metric on the Hopf algebtd® For the case oﬂf
we can define the metric

7]:dX1®dX1+dX2®dX2+dX3®dX3+/.L0®9 (39)

for a parametej. This bilinear form is nondegenerate, invariant by left and right coactions and
symmetric in the sense thal( ) =0. With this metric structure, it is possible to define a Hodge
*-operator and then explore the properties of the Laplacian and find some physical consequences.
Our picture is similar to Ref. 9 where the manifold is similarly three-dimensional but there is an
extra time directiory in the local cotangent space.
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The Hodgex-operator on am-dimensional calculugfor which the top form is of orden),
over a Hopf algebrad with metric 7 is a map* :QX— Q" ¥ given by the expression

(i " w )= —— ikt pininekg: e
(wll w'k) (n—k)!e'l""k'k+l""n77 7 Wy O

In the case of the algebrd, we have a four-dimensional calculus with=dx;, w,=dx,,
w3=0dx3, ws=6. The components of the metric inverse, as we can see (88 are 5*'= %

= %3=1, and»**=1/u. The arbitrary factog in the metric can be set by imposing conditions on
the map*2. Then we have two possible choices for the constarithe first isu=1 making a
four-dimensional Euclidean geometry; then forkaform « we have the constraint* ()
=(—1)“4"K. The second possibility igs=—1; then the metric is Minkowskian and the
constraint on ak-form o is ** (w)=(—1)"**"Ky_ In what follows, we will be using the
Minkowskian convention on the grounds that this geometr;Rf}ris a remnant of a honcommu-
tative geometry on g-deformed version of the Minkowski space, as we shall explain in Sec. VII.
The expressions for the Hodgeoperator are summarized as follows:

* 1= — dx, Odx,Odx3 08,
* dx, = — dx,0dx308,
* dx, = dx, Odx;06,
* dx5= —dx,dx, 6,
* 9= — dx, Odx, dx 3,
* (dx40dx,) = — dx3086,
* (dx, Odx3) = dx,08,
* (dx,06) = dx,dxs,
(40
* (dx,0dx3) = —dx, 06,
* (dx,[160) = — dx; Odxs,
* (dx300) = dx, Odx,,
* (dx,Odx,0dx3) = — 6,
* (dx,Odx,060) = —dxs,
* (dx, Odx306) = dx,,
* (dx,0dx3060) = —dx,,
* (dx, Odx,0dx;06) = 1.
Given the Hodger-operator, one can write, for example, the coderivatbre*xd* and the

Laplacian operatoA = 6d+dé§. Note that the Laplacian maps to forms of the same degree. We
prefer to work actually with the “Maxwell-type” wave operator

O=éd==d*d, (41
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which is just the same in degree 0 and the same in degree 1 if we work in a gaugedetern

the rest of this section, we are going to describe some features of the electromagnetic theory
arising in this noncommutative context. The electromagnetic theory is the analysis of solutions
Ae QY(R3) of the equatioi]A=J where J is a one-form which can be interpreted as a “physi-
cal” source. We demonstrate the theory on two natural choices of sources, namely an electrostatic
and a magnetic one. We start with spin 0 and we limit ourselves to algebraic plus plane wave
solutions.

A. Spin 0 modes

The wave operator omo(Rf)zRf is computed from the definitions above as
1
O=xdvd=(6%)°— Ez(ao)z,

where the partials are defined 84). The algebraic massless modes kéare given by

(i) polynomials of degree oné(X)=a+ BXa,

(i)  linear combinations of polynomials of the tyféx) =x2—x3,

(i) linear combinations of quadratic monomials of the tyf) = a,pXaXp, With a#b, and
(iv) The three particular combinatiorigx) =x;x,x3— (1A/4) X3, for a=1,2,3.

General eigenfunctions afl in degree 0 are the plane waves; the expression for their deriva-

tives can be seen i(87). Hence
Ak +{ co MK -1 i elkx
2 2 '

It is easy to see that this eigenvalue goes in the INrit1 to the usual eigenvalue of the Laplacian
in three-dimensional commutative space acting on plane waves.

1
Oe'k*=— F[4 sir?

B. Spin 1 electromagnetic modes

on QY(R?), the Maxwell operatof1,=*d+d can likewise be computed explicitly. If we
write A= (dx,) A%+ #A° for functionsA*, then

1
F = dA=dx,Odx, A%+ dxa 006 A2+ 90dx,52A0.
If we break this up into electric and magnetic parts in the usual way, then
1
Ba= €apcd”AS, Ea=g OA3— AC,

These computations have just the same form as for usual space—time. The algebraic zero modes
ker (1, are given by
(i) forms of the typeA=dx,(a+ BaXa+ yaX2) With curvature

A
F= Z ’yaanDG,

(i) forms of the typeA= B,,(dx,)X,, with a#b and curvature

F= ﬁabanDde s
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(iii ) forms of the typeA= 6f with f eker 0. The curvatures for the latter thrééx) shown
above are

F=—2(dx,06x,— dxp[06xy,),

I\
F= aab( O0(dx,) X+ O0(dXp) Xq+ > eabCGDdXC)

2 2

I\ I\ I\ IA
F=- dxlﬂe( XoX3+ —xl) —dx, 06| X1X3— 7x2) — deDH( X1Xp+ —x3) - ?dxamaxa.
These are “self-propagating” electromagnetic modes or solutions of the sourceless Maxwell equa-
tions for a one-form or “gauge potentialA.

C. Electrostatic solution

Here we take a uniform source in the “purely time” directios 4. In this case the solution
of the gauge potential is

A= $6C,

whereC=Eaxf1 is the Casimir operator. The curvature operator, which in this case can be inter-
preted as an electric field, is given by

If 6is viewed as a time direction, then this curvature is a radial electric field. It has field strength
increasing with the radius, which is a kind of solution exhibiting a confinement behavior. This is
the correct physical solution for a uniform electric charge density throughout all space provided
this is understood with the correct boundary conditions; if one builds the uniform charge density
by a series of concentric shells about the origin, then, at radiwal shells of greater radius
produce no electric field and all shells of smaller radius total a charge proportiarisatm hence

a radial electric field of strength proportional ito

D. Magnetic solution

Here we take a uniform electric current density along a direction vdctaR®, i.e., =k
-dx=Z3_k%dx,. In this case, the gauge potential can be written as

N
T4

3
2 kaxa) - 2 ka(dxa)xgj .
a=1

a=1

C+6
2

3
( > kaOX,
a=1

The field strength is
F=dA= %{dxldeZ( k1X2_ kle) + dX]_DdX3( k1X3_ k3X1) + dX2DdX3( kng_ k3X2)} . (42)

If we decompose the curvature in the usual way, then this is a magnetic field in a dirkection
Xx (the vector cross productThis is a “confining” (in the sense of increasing with normal
distance version of the field due to a uniform current density in direckosaken with cylindrical
boundary conditions at infinity.

We have considered for the electromagnetic solutions only uniform sodiyaes can clearly
put in a functional dependence for the coefficients of the source to similarly obtain other solutions
of both the electric and magnetic types. Solutions more similar to the usual decaying ones,
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however, will not be polynomialone would need the inverse é)‘axi) and are therefore well
outside our present scope; even at a formal level the problem of compuﬁgggd(l in a closed

form appears to be formidable. On the other hand, these matters could probably be addressed by
completing toC* -algebras and using the functional calculus for such algebras.

E. Spin % equation

For completeness, let us mention here also a natural Spiave operator, namely the Dirac
operator. We consider the simplé¥eyl) spinors as two componenis e ]R3 In view of the fact
that the partial derlvatlvas' already form a matrix, and following the S|m|Iar phenomenon as for
quantum group&® we are led to define

(byp)' =3 ). (43

According to(35) this could also be written as

b= ! P+ 1&"
2% T
where the second term is suggested by the geometry over and above what we might also guess.
This term is optional in the same way a#®)? in I is not forced by covariance, and@¥\) for
bounded spatial derivatives.

Here 4 is covariant under the quantum double action in Sec. Il as folltitrs same applies
without the° term). The action ofJ, on R? is that of orbital angular momentum and we have
checked already thafl on degree 0 is covariant. For spjrthe total spin should be

S.=30,+J,, (44)
and we check that this commutes with

(S; ﬂlﬁ) ZO'ajﬁj l,b +J, M Dlﬁj Za'aJM]k|>1,b +[Ja,M ]Dlﬂ]-l—l\/l J Dlﬁj
=3 M' D> o ML P =M D> (S = (4S.9)',

where we used the relatiof20) (those W|thM' have the same forjrand the actior(26). The
operatord is clearly also translation invariant und@(SU(Z)) since thea' mutually commute.
The operatorsr, anda also commute since one acts on the spinor |nd|ces and the otﬁﬁr on
S0 S, in place ofJ, st|II gives a representation d(U(su(2))) on spinors, under whicl is
covariant.

F. Yang—Mills U (1) fields

Finally, also for completeness, we mention that there is a differ¢ht tHeory which behaves
more like Yang—Mills. Namely instead df=dA as in the Maxwell theory, we define=dA
+ AOA for a one-formA. This transforms by conjugation #s—>gAg '+gdg ! and is a non-
linear version of the above, whegp= ]Rf is any invertible element, e.g., a plane wave. In this
context one would expect to be able to solve for zero-curvature Ai.eych thatF(A)=0 and
thereby demonstrate the Bohm—Aharanov effect, etc. This is part of the nonlinear theory, however,
and beyond our present scope.

VI. DIFFERENTIAL CALCULUS ON THE QUANTUM SPHERE

In this section we briefly analyze what happens if we try to set the “length” function given by
the CasimirC of R? to a fixed number, i.e., a sphere. We take this at unit radius, i.e., we &fine
as the algebr&? with the additional relation
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3
C= Zl (X)2=1. (45)

This immediately gives a “quantization condition” for the constanf the algebra is to have an
irreducible representation, namely= 1//j(j+ 1) for somej e 37 . The image ofS? in such a
spinj representation is a (2~ 1)X (2] + 1)-matrix algebra which can be identified with the class
of noncommutative spaces known as “fuzzy spher&$?*20-2Yin these works one does elements
of noncommutative differential geometry directly on matrix algebras motivated by thinking about
them as a projection of W((2)) in thespinj representation, and the greater the gpise, the
greater the resemblance with a classical sphere. The role of this in our case is playedOby
according to the above formula. On the other hand, note that we are working direcﬁ,zyamd
are not required to look in one or any irreducible representation, i.e., this is a slightly more
geometrical approach to “fuzzy spheres” where we deform the conventional geomeSfybgfa
parametei and do not work with matrix algebras.

Specifically, when we make the constra{#b), the four-dimensional calculus given by rela-
tions (33) is reduced to a three-dimensional calculus on the sphere because

3

3\
dC= >, 2(dxy)X,+ — 6=0,
a=1 4

which means tha# can be written as an expression ot d The remaining relations are given by

i 2 <
XaXy = (@Xe)Xa+ 5\ €anclc— 3 dan 2, (@Xa)Xq,
(46)

. 3
) 4i 16
N dxa=§)\eabc(dxb)xc— gdzl (dXg)XgX3 -

In the limit A — 0 we recover the ordinary two-dimensional calculus on the sphere, given in terms
of the classical variables,=1im,_ yx,. This can be seen by the relation

3
> (dX)%=0,
a=1

allowing us to write one of the three one-forms in terms of the other two. For example, in the
region wheréx;=\/1—X:—xa is invertible, one can write

X1 Xo
dxz=— dx; — dXs.
1-X0—%5 1-X0—X%5
1 2 1 2

VII. THE SPACE ]Rf’\ AS A LIMIT OF q-MINKOWSKI SPACE

In this section, we will express the noncommutative spﬁéeas a spacelike surface of
constant time in a certain scaling limit of the standgrdeformed Minkowski spacBé*3 in Refs.
6, 16, and 15. This is defined in Ref. 15 as the algebra R 2braided(Hermitian matrices
BMg(2) generated by 1 and

a b
c d’

u=

with the commutation relations

Downloaded 24 Mar 2011 to 200.130.19.174. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



126 J. Math. Phys., Vol. 44, No. 1, January 2003 E. Batista and S. Majid

ba=gq?ab,
ca=q 2ac,
da=ad,
. (47)
bc=cb+(1—q 9)a(d—a),
db=bd+(1—q ?)ab,
cd=dc+(1—q ?)ca.
If we choose a suitable set of generators, namely,
~ qd+qta _ btc _ b-c _ d-a
=T X Ve
then the braided determinant
de{u)=ad—qg%ch (48)

can be written as

4q2 <2 2~2 22 2(q4+1)q2~2 q2_ 2“',...
d_G(U)—Wt —g°xX*—q°y _(—qu)rZ +2q az_l_—l tz.

This expression, in the limij— 1, becomes the usual Minkowskian metric léh® Here we will
consider a different scaled limit related to the role of this algebra as braided enveloping algebra of
a braided Lie algebré—uq\/(Z) (see Ref. 10 for a recent treatmenthis is such that we can still

have a noncommutative space even whenl. Defining new generators

c b a—d qd+q'a
g *Taan "aay Teqia “9
and considering the commutation relatigds), we have
[X, ,x_]=q‘1cth+q‘1% 2,
q *hx,=x.h+q %(q+qg Hex.t,
g’hx_=x_h—(g+q Hex_t, (50)
XL =Xat,
th=ht.
In the limit g— 1, we obtain the commutation relations
[Xa.Xp]=1CteapcXe, [Xa,t]=0, (51)

of the so-called homogenized universal enveloping aIgéW@;l()), which we will denote by
Ri‘s. Herec is a parameter required by dimensional analysisdimensionms 1). When ct

=\ we recover exactly the relatiorn8) of Rf. So the noncommutative space that we have
studied in previous sections is the “slice” at a certain timeR@f, which in turn is a contraction
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of Ré’s. The possibility of these twg—1 limits where one gives a classical coordinate algebra
and the other gives essentially its dah enveloping algebyds called a “quantum-geometry
duality transformation.”

We now go further and also obtain the differential structuréﬁiﬁ)wia this scaling limit. Thus,
the algebrd]%é*sz BMy(2) has a standard Jgsu(2))-covariant noncommutative differential cal-
culus whose commutation relations between basic one-forms and the generators of the algebra are
given by*®

ada=q?%(da)a,
adb=(db)a,
adc=gq?(dc)a+(g®—1)(da)c,
add=(dd)a+(g®—1)(db)c+(q—q 1)%(da)a,
bda=q?(da)b+(g%>—1)(db)a,
bdb=qg?(db)b,
bdc=(dc)b+(1—q~?)((dd)a+ (da)d)+(g—q 1)2(db)c—(2—3q 2+q *)(da)a,
bdd=(dd)b+ (q?—1)(db)d+(q 2—1)(db)a+(q—q 1)2(da)b,
(52)
cda=(da)c,
cdb=(db)c+(1—q ?)(da)a,
cdc=qg?(dc)c,
cdd=g?(dd)c+(g®—1)(dc)a,
dda=(da)d+(g*>—1)(db)c+(q—q 1)?(da)a,
ddb=q?(db)d+ (g®>—1)(da)b,
ddc=(dc)d+(g?—1)(dd)c+(g—q 1)3(dc)a+(q 2—1)(da)c,
ddd=g?(dd)d+(g?—1)(dc)b+(q 2—1)(db)c—(1—q ?)?(da)a.

This is designed in thg— 1 limit to give the usual commutative calculus on classitaf. In
order to obtain a noncommutative calculus in our noncommutative scaledglimit, we have to
also redefine the derivative operator by a scale factor

d=(q—q ")d.

This scaled derivative gives the following expressions for the basic one-forms:
dx,=dc=(g—q H)dx,,
dx_=db=(q—q Hdx_,

dh=da—dd=(q—q 1)dh.

Define also the basic one-form
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f#=qdd+q ‘da,
which allows us to write
-1
This new set of generators and basic one-forms satisfy the following relations:
X dx, =0(dx; )X, ,
q* 1
X, dX_ = (dX_)X, + m0ct+ m(olh)ct+(9(q—q‘1),
x,dh=(dh)x, —qdx, +O(q—q 1Y),
X_dx, = (dx,)X_+ %%t— %(dh)cﬁ@(q—q_l%
x_dx_=q?(dx_)x_,
x_dh=g?(dh)x_+q Y(dx_)ct+O(q—q b,
hdx, = (dx_,)h+q(dx,)ct+O(q—q~ 1),
hdx_ = (dx_h)—q(dx_)ct+O(q—q~1),
(54)
hdh=(dh)h+ 2_q_10CH o(q—q b,
(a+gq~7)

X4 0= 0x, +g?(dx,)ct+O(q—q ),
X_0=6x_+qg%(dx_)ct+O(q—q~ 1),

ho=6h+ 2—q(dh)ct+ 0(q-q~ b
(g+qh '

tdx, = (dx)t+O0(q—q b,
tdx_ = (dx_)t+O(q—q~b),
tdh=(dh)t+O(q—q~Y),
to=6t+O(q—q1).

In the limit g— 1 we recover the relation80) by settingct=\. Then the calculus oﬁf can be
seen as the pull-back to the time slice of the scaled limit of the calculgsd@formed Minkowski
space. Unlike for usudt®, the d direction in our noncommutative case does not “decouple” and
has remnantd. In other words,the geometry oﬂ%i‘ remembers that it is the pull-back of a
relativistic theory

Finally, let us recall the action of thg-Lorentz group on thé?ig]'3 and analyze its scaled limit
when g—1. The appropriatey-Lorentz group can be written as the double cross coproduct
Uq(su(2))»Uqy(su(2)). TheHopf algebra (su(2)) is thestandardg-deformed Hopf algebra
which we write explicitly as generated by X,, , X_ andq™"? with
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H H

qa —-q
-,

*+H/2 FH2_ *1 —
X = X, [Xe X ]=
q +q q + [Xy ] q-q

AX.)=X.0q"2+q "2oX. , A(qH?)=q*"2eqtH?,
€(X:)=0, e(q*"?)=1,
S(Xs)=-q"'X., S(q“"H)=q*"? (55)
It is well known that one may also work with these generators in an R-matrix form

qH/2 0
“la Ma-a X, o ”’2) ’

| +

q "2 q¥q i-q)x_
| o q2 ' (56)
and most formulas are usually expressed in terms of these matrices of generators. In particular, the
g-Lorentz group has two mutually commuting copies Qf4li(2)), so let usdenote the genera-

tors of the first copy byn™ or Y. ,G [related as fot™ andX. ,H in (56)] and the generators of

the second copy of i{su(2)) by n* or Z. ,T (similarly related. The actions oﬂf%(ll'3 are given in

Ref. 15 in an R-matrix form

ntk|[>uij:<nik|,tmj>uim, mtk|>uij=(8mtk| ,tim>umj. (57)
Here(Sm=¥,t';) and(n*¥ ,t';) are thei,j matrix entries of the relevant functions ¥f. ,G and

Z. T, respectively, in the Pauli matrix representatias in(9) in other generatofsWe need the
resulting actions more explicitly, and compute them as

2ct  q—-qt
— — — —h —X_
qG—qGD(h X)_ q-q ' q+q*
g-q 1 Tlx, ot y q—q‘lt_ q-q* h '
i q+q T c(g+q )2
" ax qct h
h  x P T gmg T T grg T
Y+[> = _ _1 ] (58)
Xy ot 0 . 9=9 «
c(g+q H""
-1
h o ox q “x_ 0
vl = q let h qg—-q ! :
— — — — — —— X_
" 9-9 * g+q T c(g+q b
2ct  q—-qt B
qT—qT><h X) gl grg " -
a-q * \x, t/] y q—q‘lt q-q* ’
i q+q I c(g+q )2
Ly ct gh
>( h X) T g-qf g+q’t 59
z = , 59
ket ag—q~h
c(g+q H "
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X_ 0
h x_
Z_D( )= ct g'h g Xg—-qh
e i = — X_
qa-q ' g+g ' c(g+tgh)

We are now able to see that these acti@® and(59) blow up in the limitg— 1 because of some
singular terms appearing in their expressions. Hence the scaling]ﬂﬂrﬁits no longer Lorentz
invariant.

On the other hand, we also have the same quantum group symmetry in an isomorphic form
BSU,(2) X Uq4(su(2)) for g# 1, and this version survives. The braided algebra g2y here is
simply the braided matrices B)2) with the additional conditiomet(u)=1 (i.e., geometrically,
it is the mass-hyperboloid ig-Minkowski spacg To be clear, the generators of BgQ) in this
crossed product will be denoted byand the generators of(su(2)) in this cross product will be
denoted by~ or X.. ,H as before. The isomorphism with tlgeLorentz group in the form above
is given by the assignmerits

u@l-m's(m)el, 18" —m*®n=. (60)

Under the isomorphism(60), the expressions(58) and (59) become the action of
BSU,(2) X Ug(su(2)) on BMy(2) given by

u>u=m*S(m)>u, 1I*>u=m*>(n*>u).
On the generator§49) the action of BSY(2) reads

ag—q~h

ui>h=—ct+gh— ————h,
1 q q+q1

U%DX+:qX+ ;

u>x_=q x_,

9’+q? (-9 Y’
0 oc(atg H?

ui>t=

(61)
ui>h=q"2(q—q Hx_

. aYa-q™

ui>x, =— ct—— 5 —h,
Xy q q+q 1
w>x_=0,
_~-1 1 _ 1\2
w>t= a q_1t+q (@ ?12) ,
g+q c(qg+q ")

ui>x. =0,
ui>x_=—ct+ q(q_(fl)h
e q+q '
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alg—q Y. (g-g 1?2

T2t — —
e R CET R
(62
. ) 9 Mg-q9 H-q %q-qH?
uws>h=ct+gh—q %(q—q Y)ct— ~ h,
2 gh—q “(g—q™ ) q+q °
WX, =q %, +q Hq-q Hx,,
W>x_=qgx_,
_~—1\2 o~ 1\2_ 41 _ ~—1\3
Wt 2t_1 (9 q_l) JLa=a ) q_iq2 a7
q+q q+q c(g+qt)
The action of Y(su(2)) is given by
q“—q‘HD(h X) 0 —(q+q‘1)X)
a-q " " \xy  t) l(grghHx, 0 ’
h X_ _q(ql/2+qfl/2)x+ ql/2h
x+>(x+ t)_( i . ©3
h x|\ [aY4g+g™Hx_ 0
X X, t] —q Y 0/

In the limit g—1, the crossed product B(2) X Uy(su(2)) becomes the doubl®(U(su(2))
=((SU(2))xU(su(2)) asstudied in Sec. lIl. The elemen@ become in the limit the; , andX..
andH become the usualu(2) generators equivalent to tlg there.(More precisely, we should
mapU} to St; for the action to become the right coregular one which we viewed in Sec. Il as a left
coaction) Finally, this action of the double on B)2) thus becomes in the scaling lingjt-1 an
action of D(U(su(2)) on RX2in the form

[x,,x_]=2cth, [h,X+]==*cCtX.,

with the same change of variablesxgas in Sec. IV. The result is

. . ct .
Mlj[>t:O, MIjDXa:ﬁUalj, Ja[>t:O, ‘]aDXazlfachc-
This is consistent with the time sliat=\ and gives the action of the quantum double in Sec. llI
as in fact the nonsingular version of scaled limit of tieorentz symmetry on thg-Minkowski
space.

One can also analyze a different time slicd%éfs, namely, the quotient obtained by imposing
the conditionct=q?+q~?—1. This algebra is the reduced braided algebra,BN®, see Ref.
10, with commutation relations

(a-q Y

L1 he
(g+q b

X X_=X_X;+q Yg?+q ?—1)h+

q*hx, =x,h+q %(g®+q >~ 1)(q+q~Hx, ,

9?hx_=x_h—(g?+q 2-1)(q+q YHx_.
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This is also known in the literature as the “Witten algebta® and in a scaled limig—1 it
likewise turns into the universal enveloping algebraWw@)). A calculus on this reduced algebra,
however, is not obtained from the calculus given by relati@2$, consistency conditions result in
the vanishing of all derivativesagd db and & (note that the constraint dnallows one to writed

in terms of the other generators

VIll. QUANTUM MECHANICAL INTERPRETATION AND SEMICLASSICAL LIMIT OF R?

Finally, we turn to the important question of how to relate expressions in the above noncom-
mutative geometry to ordinary numbers in order to compare with experiment. We will first explain
why a normal ordering postulate as proposed in Ref. 3 is not fully satisfactory and then turn to a
quantum mechanical approach. Thus, one idea is to write eIemen]fﬁ afs: f(x): where
f(X1,X5,X3) is a classical function defined by a powerseries and : : denotes normal ordering when
we use noncommutative variables. If one sticks to this normal ordering, one can use it to
compare classical with quantum expressions and express the latter as a strict deformation of the
former controlled by the parametergoverning the noncommutativity if28). This will extend to
the rest of the geometry and allows an order-by-order analysis. For example, the noncommutative
partial derivatives), defined in(34) have the expressions to lowest order

d1:f(x): = :Elf(x):Jr%Ez;gf(x),
— IN——
dp f(x): = :&zf(x):—?&1a3f(x),
(64)
— IN——
dz3:f(x): = :o73f(x):+7<92(32f(x),

1 N — — —
<% T(%): =Z((ﬁl)zf(x)+(z9z)2f(x)+(z93)2f(x)),

whered, are the usual partial derivatives in classical variables and we do not write the normal
ordering on expressions alrea@\) since the error is higher order. Note that the expression for
(1/c) 4, is one order oh higher than the other partial derivatives, which is another way to see that
this direction is an anomalous dimension originating in the quantization process. The physical
problem here is that the normal ordering is somewhat arbitrary; for algebras suth @sfor

usual phase space, putting &llto one side makes a degree of sense physically, as well as
mathematically because the algebra is solvable. But in the simple case d%@:hmh of thexy,

X, X3 should be treated equally. Or one could use other coordinates swch &s X, in keeping

with the Lie algebra structure, etc.; all different ordering schemes giving a different form of the
lowest order corrections and hence different predictions. Choosing a natural ordering is certainly
possible but evidently would require further input into the model.

On the other hand, we can take a more quantum mechanical line and consider our Bfgebra
as, after all, a spin system. The main result of this section is to introduce “approximately classi-
cal” states’|j, 8, ¢) for this system inspired in part by the theorem of Pentbfee spin networks,
although not directly related to that. Penrose considered networks labeled by spins and showed
how to assign probabilities to them and conditions for when the network corresponds approxi-
mately to spin measurements oriented with relative an@késin a similar spirit we consider the
problem of reconstructing classical angles from the noncommutative geometry.

We let V() be the vector space which carries a unitary irreducible representation of spin
€3/, , generated by statég,m), with m=—j,...,j such that

= [[,m=MJ(jFm)(j=m+1)[j,m=1),
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h|j,m)y=2xm|j,m).

The projection ofJRf to an irreducible representation of sgiris geometrically equivalent to a
restriction to a fuzzy spheret* because the value of the Casimirx is A%j(j+ 1) in this repre-
sentation. We have discussed this in Sec. VI, where wexset 1 and considered the algebra
geometrically as such a fuzzy sphere under a quantization condition. By contrast in this
section we leavex-x unconstrained and consider the geometry of our noncommutative three-
dimensional spacBi as the sum of geometries on all fuzzy spheres with\tHe representation
picking out the one of radius-\j. Thus we use the Peter—Weyl decompositiorCBU,) into
matrix elements of irreducible representations regarded as functions gnv8lich gives(up to
some technical issues about completjors similar decomposition for its dual aﬁf
=@;End(v"). This also underlies the spherical harmonics in Sec. Ill.

Next, for each fixed spif representation we look for normalized stafg®, ¢) parametrized
by 0= 6=<= and O< ¢=<2, such that

(j,0,¢|x4]j,0,p)=r sin6 cose,
(j,0,0|X5j,0,0)=r sinfsing, (65)
(j,0,0|x3lj,0,¢)=r cos,

wherer is some constarindependent of,¢) which we do not fix. Rather, in the space of such
states and possible=0, we seek to minimize the normalized variance

5 (X0 =009
(-
where( )=(j,0,4| |j,0,¢) is the expectation value in our state and we redagll as a classical

vector in the dot product. Thus we seek states which are “closest to classical.” This is a con-
strained problem and leads us to the following states:

(66)

2j+1

li,0,0)= > 27
k=1

2j :
k—Jl> (1+cosf) U~ D21 —cosg) K ViZg! k= De|j i —k+1). (67)
These obey(j,0,4|j,0,4)=1 and(65—(66) with

r=(x)-(xX)=\j, 5=J.E. (68)

We see that in these states the “true radil{st)| is \j. The square root of the Casimir does not
give this true radius since it contains also the uncertainty expressed in the variance of the position
operators, but the errof vanishes ag—o~. Thus the larger the representation, the more the
geometry resembles to the classical.

We can therefore use these statp®, ¢) to convert noncommutative geometric functions
f(x) into classical ones in spherical polar coordinates defined by

(F)(r,0,0)=(j,0,¢|1(x)]j.0,9), (69

wherer =\j is the effective radius. If we start with a classical functioand insert noncommu-
tative variables in some order, théf(x)) (which depends on the orderinlpoks more and more
like f({x)) asj—~ and \—0 with the product fixed to an arbitrany. As an example, the
noncommutative spherical harmonid§" in Sec. Il are already ordered in such a way that
replacing the noncommutative variables by the expectation vdlygsgives something propor-
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tional to the classical spherical harmonics. On the other h@¥id) vanish forl>2j and only
approximate the classical ones for lowermMoreover, in view of the above, we expect

(aif)=a(f)+0

1
A, J_) , (70

wherer=j\ and?i are the classical derivatives in the polar form

. g 1 g 1 . d
r91=SIHGCOS(pE+FCOSGCOS@ﬁ—FSIHGSIn(p%,

T A | 9 1 d
(92=SIn95In<pE+FCOSGSIHQD@‘F;SIHBCOS@@,

- p Jg 1 0 J
3=CO0S E FSIn %,
where we understand or = (1/\)(d/9j) on expectation values computed as functiong. dflore
precisely, one should speak in terms of the joint limit as explained above\wyitlr a continuous
variable in the limit. We note finally that the star product Rﬁ as in Ref. 11 suggests that it
should be possible to extend such a semiclassical analysis to all orders.
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APPENDIX: 2-D AND 3-D CALCULI ON R}

It might be asked why we need to take a four-dimensional calculugfoalnd not a smaller
one. In fact, bicovariant differential calculi on enveloping algebrag)Uuch asR=U(su(2))
have been essentially classifftdnd in this appendix we look at some of the other possibilities for
our model. In general the co-irreducible calc(ile., having no proper quotientare labeled by
pairs (V,,A), with p:U(g)—EnaV, an irreducible representation of g)(andA aray in V,. In
order to construct an ideal in ker take the map

paiU@)—V,, hp(h)-A.

It is easy to see that ker, is a left ideal in kere. Then, ifp, is surjective, the space of one-forms
can be identified withv/,=ker e/ker p, . The general commutation relations are

av=va+p(a)-v, (A1)
and the derivative for a general monoméal-- &, is given by the expression
n
d(éy &)= > Paléory o) a1y Ean)
k=1 (TES(n’k)

the sum being over alln(k) shuffles.

We explore some examples of co-irreducible calculi for the universal enveloping a@%bra
generated by. andh satisfying the commutation relatiori28). First, let us analyze the three-
dimensional, co-irreducible calculus @ﬁ by takingvp=C3, with basis

1 0 0
e.=(0], e=(1], e.=|0
0 0 1
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In this basis, the representatiprtakes the form

0 2 0 0 0 O 2 0 O
0 0 O 0 2 O 0O 0 -2

We choose, for exampléy, =e,. The space of one-forms will be generated by the ve@arse
ande,. The derivatives of the generators of the algebra are given by

dx,=N"1p(x;)-ep=2e,, dx_=N"1p(x_)-ep=2e_, dh=N"1p(h)-g,=0.

The commutation relations between the basic one-forms and the generators can be deduced from
(A1) giving

Xi€y =€ X,
X;€p=6€pX,+2\e,,
X, €_=e_X;+\eg,
X_e,=e;X_+A\eg,
X_€p=€pX_t2\e_, (A2)
X_e_=e_x_,
he,=e,h+2\e,,
hey=egh,
he_=e_h—2\e_.
The expression for the derivative of a general monomiat® he is
d(x®xP h®)=2ae, x3 xP h°+ 2be_x@ xP~ he+ 2nabeyx® 1xP~the
+4N%a(a—1)be, x3 ?x""the, (A3)

We define the exterior algebra by skew-symmetrizing and, using similar methods as in Sec. IV, we
compute the cohomologies as

HO=([h], H'=ey([h], H?=H3={0}.

This calculus is a three-dimensional calculus but we have introduced an isotropy by chapsing
and related to this all functions ¢f are killed by d, which is why the cohomology is large. This
is why we do not take this calculus even though it has the “obvious” dimension. There is the same
problem if we choose any other directidn
We can also have a two-dimensional coirreducible calculus osu(2()) using thenV,
=(2, with basis
2
1/

1

ej_: 0

I e2:

In this basis, the representatiprtakes the form
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0 1 00 1 0
p(X+)=>\(O o)’ p(X)=7\<1 0), p(h)=>\(0 _1)-

ChoosingA =e;, the space of one-forms will be generatedeyyande, and the derivatives of the
generators of the algebra are given by

dx, =N"1p(x;)-,=0, x_=A"1p(x_)-e;=e,, dh=A"1p(h)-e;=e;.
The commutation relations between the basic one-forms and the generators are then
X €1=€1Xy,
X4 €,=€yX, +\eq,
X_€;=eX_+tA\ey,
(A4)
X_€,=€5X_,
he,=e;h+\eq,
he,=e,h—\e,.

And the derivative of a monomia® h°x¢ is given by
° (b
d(xahbxi)zel(E (i))\ilxahbixc+

b

(b
2 (_1)I(i
i=0

+e,

i=0

)Jaxalhbixi). (A5)

The cohomology of this calculus comes out as
H=([x,], H'=H?={0}.

Here again d vanishes on all functions»af , which is related to our choice df. On the other
hand, this calculus motivates us similarly to take fathe tensor product of the spirepresen-
tations and its dual. In this tensor product representation there is a canonical chaiceavhely

the 2x 2 identity matrix. This solves the anisotropy and kernel problems and this is the calculus
that we have used oR? as the natural choice in our situation. The above spinorial ones are
coirreducible quotients of it.
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