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We study the standard angular momentum algebra@xi ,xj #5ıle i jkxk as a noncom-
mutative manifoldRl

3 . We show that there is a natural 4D differential calculus and
obtain its cohomology and Hodge* operator. We solve the spin 0 wave equation
and some aspects of the Maxwell or electromagnetic theory including solutions for
a uniform electric current density, and we find a natural Dirac operator]” . We
embedRl

3 inside a 4D noncommutative space–time which is the limitq→1 of
q-Minkowski space and show thatRl

3 has a natural quantum isometry group given
by the quantum doubleC(SU(2))’U(su(2)) which is a singular limit of the
q-Lorentz group. We viewRl

3 as a collection of all fuzzy spheres taken together.
We also analyze the semiclassical limit via minimum uncertainty statesu j ,u,f&
approximating classical positions in polar coordinates. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1517395#

I. INTRODUCTION

There has been much interest in recent years in the possibility that classical space or
time itself ~not only phase space! is in fact noncommutative and not a classical manifold. O
simple model where

@xi ,t#5ılxi ~1!

has already been shown3 to have physically measurable effects even ifl;10244 s ~the Planck
time!. So such a conjecture is not out of reach of experimenteven ifthe noncommutativity is due
to quantum gravity effects. Such noncommutativity of space–time, if verified, would amoun
new physical effect which could be called ‘‘cogravity’’ because it corresponds under non Ab
Fourier transform to curvature in momentum space.17 We are usually familiar with this correspon
dence the other way around, i.e., on a curved space such as a sphere the canonical m
~angular momentum! form a noncommutative algebra

@Ja ,Jb#5ıeabcJc , a,b,c51,2,3, ~2!

whereeabc denotes the totally antisymmetric tensor; if one believes in Born reciprocity, then
should also allow the theoretical possibility of a sphere in momentum space, which would
spond to the algebra

@xa ,xb#5ıleabcxc . ~3!

a!Electronic mail: s.majid@qmul.ac.uk
1070022-2488/2003/44(1)/107/31/$20.00 © 2003 American Institute of Physics
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This is the algebraRl
3 which we study in this article from the point of view of thexi as coordinates

of a noncommutative position space. We insert here a parameterl of length dimension. The
physical relevance of this algebra hardly needs to be justified, but we note some specific a
tions in string theory and quantum gravity in the discussion below. There are also possible
contexts where a noncommutative space–time might be a good effective model, not nece
connected with gravity and indeed this is an entirely independent~dual! effect.

Also from a mathematical point of view, the algebra~3! is a standard example of a forma
deformation quantization, namely of the Kirillov–Kostant Poisson bracket onsu2* in the coadjoint
orbit method.12 We identify su(2)* as the vector spaceR3 with basisJa* , say, dual to theJa .
Then among the algebra of suitable~polynomial! functionsC(R3) on it we identify theJa them-
selves with the ‘‘coordinate functions’’Ja(v)5va for any vPsu(2)* with componentva in the
Ja* direction. These generate the whole coordinate algebra and their Poisson bracket is defi

$Ja ,Jb%~v !5v~@Ja ,Jb# !, ;vPsu~2!* .

Hence when viewed as functions onR3, the Lie algebra generators have a Poisson bracket g
by the Lie bracket. Their standard ‘‘quantization’’ is evidently provided by~3! with deformation
parameterl.

Our goal in the present work is to use modern quantum group methods to take this furt
developing the noncommutative differential geometry of this quantum space at the level of
fields, forms, and spinors, i.e., classical field theory. We will solve wave equations, etc.
generally show that physics is fully possible onRl

3 . Note that the earlier example~1! above was
also of ‘‘dual Lie’’ type but there the Lie algebra was solvable whereas thesu~2! case that we
address here is at the other extreme and very much harder to work with. We expect our m
to extend also to U(g) for other simpleg.

The article begins in Sec. II with some mathematical preliminaries on quantum group me
and noncommutative geometry. As a quantum group,Rl

3>U(su(2)) ~the enveloping Hopf alge-
bra! which means that at the end of the day all computations can be reduced to the level osu~2!
and Pauli matrices. One of the first things implied by quantum group theory is thatRl

3 has an
isometry quantum group given by the Drinfeld quantum doubleD(U(su(2))) and wedescribe
this first, in Sec. III. A suitable Casimir of this induces a scalar wave operatorh and we also
describe spherical harmonicsYl

m dictated by action of rotations. This theory could be called
‘‘level 0’’ noncommutative geometry where we think of the space through its symmetries r
than its differential structure.

In Sec. IV we start the noncommutative differential geometry, introducing a natural diffe
tial calculus onRl

3 . The cotangent directions or basic forms are given literally by Pauli matr
plus an additional generatoru:

dxa5 1
2 sa , u5s0 , ~4!

wheres05 id ~the identity matrix!. There are also noncommutation relations between funct
and one-forms:

xadxb5~dxb!xa1
ıl

2
eabcdxc1

l

4
dabu, xau5uxa1ldxa . ~5!

Some other calculi are mentioned in the Appendix for comparison, but in fact this
dimensional one appears to be the most reasonable one. The extrau direction turns out to generat
the cohomology, i.e., is not d of anything inRl

3 . We interpret it as a local time direction in th
same spirit as in a different model.9

In Sec. V we introduce a Hodge* operator and solve the resulting wave equations for sp
and spin 1~the Maxwell equations!. We also find a natural Dirac operator for spin1

2. Among the
solutions of interest are plane waves obeying
011 to 200.130.19.174. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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heık•x52
1

l2 H 4 sin2S luku
2 D1S cosS luku

2 D21D 2J eık•x,

for momentumkPR3. Among spin 1 solutions is a uniform electric current density in so
direction and magnetic field increasing with normal distance. This is computationally the e
case; we expect that the theory should similarly allow more conventional decaying solutio
Sec. VI we briefly consider quantum spheresSl

2 insideRl
3 by setting( ixi

251. These are then the
usual quantization of coadjoint orbits insu(2)* @as opposed to all ofsu(2)* as described above#
and we show that they inherit a three-dimensional differential geometry. This case cou
viewed as a slightly different approach to fuzzy spheres14,5,11,20,21that is more adapted to the
classical limitl→0. Fuzzy spheres also arise as world volume algebras in string theory,2 hence it
would be interesting to develop this point of contact further. In our case we obtain a 3D d
ential calculus onSl

2 .
In Sec. VII we explain the origin of theu direction as the remnant of the time direction dt of

a standard four-dimensional noncommutative space–timeRq
1,3 in a certain scaling limit asq→1. In

the qÞ1 setting the theory is much more nonsingular and there is a fullq-Lorentz symmetry
already covered in theq-deformation literature.6,16,15On the other hand, asq→1 we obtain either
usual commutative Minkowski space or we can make a scaling limit and obtain the algebr

@xa ,xb#5ıct eabcxc , @xa ,t#50, ~6!

where the parameterc has dimensions of velocity. Mathematically this is homogenized U(su(2))̃
and we see that it projects onto our above algebra~3! by sendingct→l. This algebra~6! is not
itself a good noncommutative Minkowski space because theq-Lorentz group action become
singular asq→1 and degenerates into an action of the above quantum double isometry grou
the other hand, it is the boundary pointq51 of a good and well-studied noncommutativ
Minkowski space.

The article concludes in Sec. VIII with a proposal for the interpretation which is nee
before the noncommutative geometry can be compared with experiment. In addition to a n
ordering postulate@i.e., noncommutativef (x) are compared with classical ones only when norm
ordered# along the lines of Ref. 3, we also propose a simple quantum mechanical point of
inspired by Penrose’s spin network theorem.19 In our case we construct minimum uncertain
statesu j ,u,f& for each spinj in which expectationŝ f (x)& behave approximately like classica
functions in polar coordinatesr ,u,f with r 5l j . In effect we viewRl

3 as a collection of fuzzy
spheres for all spinsj taken together. There are some similarities also with the star produc
coherent states discussed recently in Ref. 11.

Finally, whereas the above includes electromagnetic theory onRl
3 , we explain now that

exactly this noncommutative space is needed for a geometric picture underlying the appro
211 quantum gravity of Refs. 4 and 22. When a Euclidean signature and vanishing cosmo
constant are assumed, the gauge group of the classical gravitational action~as a Chern–Simons
field theory! is the group ISO~3!.23 Considering the three-dimensional space as the direct pro
S3R, where S is Riemann surface of genusg, one can find the space of solutions of th
gravitational field in terms of the topology ofS.1,8 The simplest case is to considerS as a sphere
with a puncture, which represents the topological theory of one particle coupled to gravity
known that the quantum states of this kind of theory correspond to irreducible representati
the quantum doubleD(U(su(2))).4 A more detailed explanation, based on representation the
of how the quantum double is a deformation ‘‘quantization’’ of the Euclidean group in t
dimensions can be found in Ref. 22. However, the direct geometrical role of the quantum d
has been missing except as an ‘approximate’ isometry ofR3. Our present results therefore provid
a new point of view, namely of the quantum double symmetry as anexactsymmetry but of the
noncommutative spaceRl

3 on which we should build a noncommutative Chern–Simons act
etc. This fits with the discussion above that noncommutative space–time could be used as
011 to 200.130.19.174. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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effective description of corrections to geometry coming out of quantum gravity. Details o
required noncommutative Chern–Simons theory as well as gravity in the frame bundle app
of Ref. 18 will be presented in a sequel.

II. MATHEMATICAL PRELIMINARIES

Here we outline some notions from quantum group theory into which our example fits
Hopf algebras~i.e., quantum groups! we use the conventions of Ref. 15. It means an algebrH
equipped with a coproductD:H→H ^ H, counite:H→C and antipodeS:H→H. We will some-
times use the formal sum notationD(h)5(h(1)^ h(2) , for anyhPH. The usual universal envel
oping algebra algebra U(su(2)) has astructure of cocommutative Hopf algebra generated b
andJa , a51,2,3 with relations~2! and

D~Ja!5Ja^ 111^ Ja , e~Ja!50, S~Ja!52Ja . ~7!

We also recall that as for Abelian groups, for each Hopf algebra there is a dual one whe
product of one is adjoint to the coproduct of the other. U(su(2)) is dually paired with the
commutative Hopf algebraC~SU~2!! generated by coordinate functionst i

j , for i , j 51,2 on SU~2!
satisfying the determinant relationt1

1t2
22t1

2t2
151 and with

D~ t i
j !5 (

k51

2

t i
k^ tk

j , e~ t i
j !5d i

j , Sti j5t21i
j , ~8!

where inversion is as an algebra-valued matrix. The pairing between the algebras U(su(2)) and
C~SU~2!! is defined by

^j, f &5
d

dt
f ~etj!u t50 ,

wherejPsu(2) and f PC(SU(2)) which results in particular in

^Ja ,t i
j&5 1

2 sa
i
j , ~9!

wheresa
i
j are thei , j entries of the Pauli matrices fora51,...,3. We omit here a discussion o

unitarity, but this is implicit and achieved by making the above into Hopf* -algebras~see Ref. 15
for further details!.

We also need standard notions of actions and coactions. A left coaction of a Hopf algeH
on a spaceV means a mapV→H ^ V obeying axioms like those of an action but reversing
maps. So a coaction ofC~SU~2!! essentially corresponds to an action of U(su(2)) via thepairing.
Examples are

AdL~h!~g!5hxg5( h(1)gS~h(2)!, ~10!

the left adjoint action AdL :H ^ H→H. Its arrow-reversal is the left adjoint coaction AdL:H→H
^ H,

AdL~h!5( h(1)S~h(3)! ^ h(2) . ~11!

There are also the regular action~given by the product!, regular coaction~given by D:H→H
^ H), and coadjoint actions and coregular actions of the dual, given via the pairing from
adjoint and regular coactions, etc.15 We will need the left coadjoint action ofH on a dual quantum
groupA:
011 to 200.130.19.174. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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AdL* ~h!~f!5hxf5( f (2)^~Sf (1)!f (3) ,h&, ;hPH, fPA, ~12!

and the right coregular action ofA on H which we will view as a left action of the opposit
algebraAop:

fxh5( ^f,h(1)&h(2) , ;hPH, fPA. ~13!

Given a quantum groupH dual to a quantum groupA, there is a quantum double writte
loosely asD(H) and containingH, A as sub-Hopf algebras. More precisely it is a double cr
productAop

qH where there are cross relations given by mutual coadjoint actions.15 Also, D(H)
is formally quasitriangular in the sense of a formal ‘‘universal R matrix’’R with terms in
D(H) ^ D(H). The detailed structure ofD(U(su(2))) is covered in Sec. III and in this case
more simply a semidirect productC(SU(2))’U(su(2)) by thecoadjoint action.

We will also need the quantum doubleD(H) whenH is some other quasitriangular quantu
group such as Uq(su(2)). This is a standard deformation of~2! and the coproduct, etc., with
parameter q. In this case there is a second ‘‘braided’’ or covariantized version
A5Cq(SU(2)) which we denote by BSUq(2). Then

D~Uq~su~2!!!>BSUq~2!’Uq~su~2!!, ~14!

where the product is a semidirect one by the adjoint action of Uq(su(2)) and thecoproduct is also
a semidirect one. We will use this nonstandard ‘‘bosonization’’ version ofD(H) when H is
quasitriangular. Also whenH is quasitriangular withR21R nondegenerate, there is a third ‘‘twis
ing’’ version of the quantum double:

D~Uq~su~2!!!>Uq~su~2!!pRUq~su~2!!, ~15!

where the algebra is a tensor product and the coproduct is

D~h^ g!5R23
21DH ^ H~h^ g!R23.

We will use both versions in Sec. VII. Note that both isomorphisms are formal but the right
sides are well defined and we take them as definitions. Especially, the isomorphism~15! is highly
singular asq→1. In that limit the twisted version tends to U~so~1,3!! while the bosonization
version tends to U~iso~3!!.

Finally, we will need the notion of differential calculus on an algebraH. This is common to
several approaches to noncommutative geometry including that of Connes.7 A first order calculus
means to specify (V1,d), whereV1 is anH2H-bimodule, d:H→V1 obeys the Leibniz rule,

d~hg!5~dh!g1h~dg!, ~16!

andV1 is spanned by elements of the form (dh)g. A bimodule just means that one can multip
‘‘one-forms’’ in V1 by ‘‘functions’’ in H from the left or the right without caring about bracke

When we have a Hopf algebraH, a differential calculus can be asked to be ‘‘bicovariant,’’25

which means that there are left and right coactions ofH in V1 ~a bicomodule! which are them-
selves bimodule homomorphisms, and d intertwines the coactions with the regular coactionH
on itself. Given a bicovariant calculus one can find invariant forms

v~h!5( ~dh(1)!Sh(2) ~17!

for anyhPH. The span of such invariant forms is a spaceL1 and all ofV1 can be reconstructed
from them via
011 to 200.130.19.174. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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dh5( v~h(1)!h(2) . ~18!

As a result, the construction of a differential structure on a quantum group rests on that oL1,
with V15L1.H. They in turn can be constructed in the form

L15ker e/I,

whereI,ker e is some left ideal inH that is AdL-stable.25 We will use this method in Sec. IV to
introduce a reasonable calculus on U(su(2)). Some general remarks~but not our calculus, which
seems to be new! appeared in Ref. 18.

Any bicovariant calculus has a ‘‘minimal’’ extension to an entire exterior algebra.25 One uses
the universal R-matrix of the quantum double to define a braiding operator onL1

^ L1 and uses it
to ‘‘antisymmetrize’’ the formal algebra generated by the invariant forms. These and eleme
H defineV in each degree. In our case of U(su(2)), because it is cocommutative, the braiding
the usual flip. Hence we have the usual anticommutation relations among invariant forms. W
extend d:Vk→Vk11 as a~right-handed! super-derivation by

d~v∧h!5v∧dh1~21!deghdv∧h.

A differential calculus is said to be inner if the exterior differentiation inV1 ~and hence in all
degrees! is given by the~graded! commutator with an invariant one-formuPL1, that is,

dv5v∧u2~21!degvu∧v.

Almost all noncommutative geometries that one encounters are inner, which is the funda
reason that they are in many ways better behaved than the classical case.

III. THE QUANTUM DOUBLE AS EXACT ISOMETRIES OF Rl
3

In this section we first of all recall the structure of the quantum doubleD(U(su(2))) in the
context of Hopf algebra theory. We will then explain its canonical action on a second copRl

3

>U(su(2)) arising from the general Hopf algebra theory, thereby presenting it explicitly a
exact quantum symmetry group of that. Herexa5lJa is the isomorphism valid forlÞ0. By an
exact quantum symmetry we mean that the quantum group acts onRl

3 with the product ofRl
3 an

intertwiner ~i.e. the algebra is covariant!.
Because U(su(2)) is cocommutative, its quantum doubleD(U(su(2))) is a usual crossed

product15

D~U~su~2!!!5C~SU~2!!Ad
L*
’U~su~2!!,

where the action is induced by the adjoint action@it is the coadjoint action onC~SU~2!!#. This
crossed product is isomorphic as a vector space withC(SU(2))^ U(su(2)) but with algebra
structure given by

~a^ h!~b^ g!5( aAdL* h~1!
~b! ^ h(2)g,

for a,bPC(SU(2)) andh,gPU(su(2)). In terms of the generators, the left coadjoint action~12!
takes the form

AdL* Ja
~ t i

j !5( tk
l^Ja ,S~ t i

k!t
l
j&5

1

2
~ t i

ksa
k

j2sa
j
kt

k
j !. ~19!

As a result we find thatD(U(su(2))) is generated by U(su(2)) andC~SU~2!! with cross relations
011 to 200.130.19.174. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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@Ja ,t i
j #5 1

2 ~ t i
ksa

k
j2sa

j
kt

k
j !. ~20!

Meanwhile the coproducts are the same as those of U(su(2)) andC(SU(2)).
Next, a general feature of any quantum double is a canonical or ‘‘Schro¨dinger’’ representation,

where U(su(2)),D(U(su(2))) acts on U(su(2)) by the left adjoint action ~10! and
C(SU(2)),D(U(su(2))) acts by the coregular one~13!, see Ref. 15. We denote the acted-up
copy byRl

3 . ThenJa simply act by

Jax f ~x!5l21( xa(1)f ~x!S~xa~2!!5l21@xa , f ~x!#, ; f ~x!PRl
3, ~21!

e.g.,

Jaxxb5ıeabcxc ,

while the co-regular action reads

t i
jx f ~x!5^t i

j , f ~x!(1)& f ~x!(2) , e.g., t i
jxxa5

l

2
sa

i
j11d i

j xa .

The general expression is given by a shuffle product~see Sec. IV!. With this action, Rl
3 turns into

a left D(U(su(2)))-covariant algebra.
In order to analyze the classical limit of this action, let us consider the role of the nume

parameterl used to define the algebraRl
3 . Considering the relations~3!, we have already ex-

plained thatRl
3 becomes the usual algebra of functions onR3 asl→0. The same parameterl can

be introduced into the quantum double by means of a redefinition of the generators ofC~SU~2!! to

Mi
j5

1

l
~ t i

j2d i
j !, ~22!

so thatt i
j5d i

j1lMi
j . We stress that we are dealing with the same Hopf AlgebraD(U(su(2))),

but written in terms of new generators, it is only a change of variables. The homomorp
property ofD gives

DMi
j5 (

k51

2

~d i
k^ Mk

j1Mi
k^ dk

j1lMi
k^ Mk

j !,

while the condition on the determinant,t1
1t2

22t1
2t2

151, implies that

Tr~M !5M1
11M2

252l det~M !.

This means that in the limitl→0, the elementsMi
j have to obeyM1

152M2
2 and C~SU~2!!

becomes the commutative Hopf algebra U(R3). To make this explicit, we can define the mome
tum generators

P152ı~M1
21M2

1!, P25M1
22M2

1 , P352ı~M1
12M2

2!, ~23!

or

Pa52ısa
i
jM

j
i , a51,2,3 ~24!

~sum overi , j ). The inverse of this relationship is

Mi
j5

ı

2
sa

i
j Pa1d i

j P0 , P05
1

2
Tr~M !52

1

l S 12A12
l2

4
P2D . ~25!
011 to 200.130.19.174. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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The other square root is also allowed, but thenP0 is not O~l!, i.e., this is not the ‘‘patch’’ of
C~SU~2!! that concerns us. Note also that there are unitarity conditions that we do not exp
discuss~if we put them in then thePa are Hermitian!. In these terms we have

DPa5Pa^ 111^ Pa1O~l!,

so that we have the usual additive coproduct in thel→0 limit. Meanwhile, the left coadjoint
action ~19! and the resulting cross relations in the double become

AdL* Ja
~Pb!5ıeabcPc , @Ja ,Pb#5ıeabcPc ,

i.e., D(U(su(2))) in thelimit l→0 with these generators becomes the usual U~iso~3!!. This part
is essentially known.4,22

Moreover, our action of these scaled generators onRl
3 is

Mi
jx f ~x!5] i

j~ f ~x!!, e.g., Mi
jxxa5^Ja ,t i

j&15 1
2 sa

i
j1, ~26!

where the operators] i
j are the same as those in the next section. We can also write the act

Pa as partial derivatives defined there@in ~35!# by

Pax f ~x!52ı]af ~x!, P0x f ~x!5
1

c
]0f ~x!,

where the constantc is put in order to make the equations have the same form as the cla
ones, interpreting roughly the zero-direction as a ‘‘time’’ direction. This relation will beco
clearer in Sec. VII.

In the limit l→0, the action ofJa becomes usual rotations in three-dimensional Euclid
space while the action ofPa becomes the action of translation operators of the algebra U(R3), so
we indeed recover the classical action of U~iso~3!! on R3. In three-dimensional gravity, conside
ing the dimension of the gravitational constantG3 and the speed of light to be equal to 1, we ha
that l must be proportional to the Planck constant.22

Next, there are several applications of the action of the double based on the above p
view. First and foremost, we could look for a wave operator from a Fourier transform poi
view as in Ref. 3~we give a different point of view later!. Namely we look for a Casimir of
D(U(su(2))) lying in momentum spaceC~SU~2!!, and define the wave operator as its action. T
possible such Casimirs are the U(su(2))-invariant functions, which means basically the cla
functions on SU~2!. In our case this just means any function of the trace functiont5t1

11t2
2 . The

one suggested by the noncommutative geometry in the next sections is

E[2P22
4

l2 S 12A12
l2

4
P2D 2

5
4

l2 ~t22! ~27!

and its action onRl
3 is then the wave operatorh on degree zero in Sec. V, but with metric24 in

the time direction. Note thatSt5t for C~SU~2!! so any such wave operator is invariant und
group inversion, which appears as the antipodeSPa52Pa .

A different question we can also ask is about the noncommutative analogs of spherica
monics as functions inRl

3 in the sense of irreducible representationsYl
m under the above action

~21! of the rotation group. We find the~unnormalized! lowest ones forl PZ1 and m52 l ,2 l
11,...,l as

Y0
051,

Y1
6157

1

&
~x16ıx2!, Y1

05x3 ,
011 to 200.130.19.174. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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Y2
625~x16ıx2!2, Y2

6157~~x16ıx2!x31x3~x16ıx2!!,

Y2
05

1

A6
~4x3

22~x11ıx2!~x12ıx2!2~x12ıx2!~x11ıx2!!.

Let us note that such spherical harmonics can have many applications beyond their usual
physics. For example, they classify the possible noncommutative differential calculi on the
sical coordinate algebraC~SU~2!! which is dual to the space we study here.

IV. THE FOUR-DIMENSIONAL CALCULUS ON Rl
3

The purpose of this section is to construct a bicovariant calculus on the algebraRl
3 following

the steps outlined in Sec. II, the calculus we obtain being that on the algebra U(su(2)) onsetting
l51. We writeRl

3 as generated byx1 , x2 andh, say, and with the Hopf algebra structure giv
explicitly in terms of the generators as

@h,x6#562lx6 ; @x1 ,x2#5lh, ~28!

and the additive coproduct as before. The particular form of the coproduct, the relations an~17!
show that dj5v(j) for all jPsu(2). Because of the cocommutativity, all ideals inRl

3 are
invariant under adjoint coactions~11! so that first order differential calculiV1 on Rl

3 are classified
simply by the idealsI,ker e. In order to construct an ideal of kere, consider a two-dimensiona
representationr:Rl

3→EndC2, which in the basis$e1 ,e2% of C2 is given by

r~x1!e150, r~x1!e25le1 ,

r~x2!e15le2 , r~x2!e250,

r~h!e15le1 , r~h!e252le2 .

The representationr is a surjective map ontoM2(C), even when restricted to kere. The kernel of
ruker e is a two-sided ideal in kere. Then we have

M2~C![ker e/ker r. ~29!

This isomorphism allows us to identify the basic one-forms with 232 matrices,$ei j %, for i , j
51,2, whereei j is the matrix with 1 in the (i , j ) entry and 0 otherwise. Then the first ord
differential calculus is

V1~Rl
3!5M2~C! ^ Rl

3 .

The exterior derivative operator is

df ~x!5l21( r~ f ~x!(1)2e~ f ~x!(1)!1! f ~x!(2)5ei j ]
i
j~ f !,

where the last equality is a definition of the partial derivatives] i
j :Rl

3→Rl
3 . In particular, we have

dj5l21r~j!, ;jPsu~2!,

which, along with id, span the whole space M2(C) of invariant one-forms. For a general monomi
j1•••jn , the expression of the derivative is

d~j1•••jn!5l21(
k51

n

(
sPS(n,k)

r~js(1)•••js(k)!js(k11)•••js(n) ,
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wheres is a permutation of 1,...,n, such thats(1),¯,s(k) and s(k11),¯,s(n). This
kind of permutation is called a (n,k)-shuffle. And finally, for a~formal power series! grouplike
elementg ~whereDg5g^ g), the derivative is

dg5l21~r~g!2u!g.

On our basis we have

dx15e12, dx25e21, dh5e112e22, u5e111e22.

The compatibility conditions of this definition of the derivative with the Leibniz rule is due to
following commutation relations between the generators of the algebra and the basic one-

x6dx65~dx6!x6 ,

x6dx75~dx7!x61
l

2
~u6dh!,

x6dh5~dh!x67ldx6 ,

hdx65~dx6!h6ldx6 , ~30!

hdh5~dh!h1lu,

x6u5ux61ldx6 ,

hu5uh1ldh.

From these commutation relations, we can see that this calculus is inner, that is, the d
tives of any element of the algebra can be basically obtained by the commutator with the on
u. In the classical limit, this calculus turns out to be the commutative calculus on usual t
dimensional Euclidean space. The explicit expression for the derivative of a general mon
x2

a hbx1
c is given by

d~x2
a hbx1

c !5dhS (
i 50

@~b21!/2# S b
2i 11Dl2ix2

a hb22i 21x1
c D 1uS (

i 51

@b/2# S b
2i Dl2i 21x2

a hb22ix1
c D

1dx1S (
i 50

b S b
i Dl icx2

a hb2 ix1
c21D 1dx2S (

i 50

b S b
i Dl iax2

a21hb2 ix1
c D 1

1

2
~u2dh!

3S (
i 50

b S b
i Dl i 11acx2

a21hb2 ix1
c21D , ~31!

where the symbol@z# denotes the greatest integer less thanz and only terms with>0 powers of
the generators are included. Note that this expression becomes in the limitl→0 the usual expres
sion for the derivative of a monomial in three commuting coordinates.

In terms of the generatorsxa , a51,2,3, which are related to the previous generators by

x15
1

2
~x11x2!, x25

ı

2
~x22x1!, x35

1

2
h,

we have

dxa5 1
2 sa , u5s0 , ~32!
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i.e., the Pauli matrices are nothing other than three of our basic one-forms, and togethe
s05 id form a basis of the invariant one-forms. The commutation relations~30! have a simple
expression:

xadxb5~dxb!xa1
ıl

2
eabcdxc1

l

4
dabu,

~33!

xau5uxa1ldxa .

In this basis the partial derivatives defined by

df ~x!5~dxa!]af ~x!1u
1

c
]0f ~x! ~34!

are related to the previous ones by

] i
j5

1

2
sa

i
j]

a1
1

c
s0

i
j]

0 ~35!

as in ~25!. The exterior derivative of a general monomialx1
ax2

bx3
c is quite complicated to write

down explicitly, but we find it as

d~x1
ax2

bx3
c!5 (

i 50

@a/2#

(
j 50

@b/2#

(
k50

@c/2#

u
l2(i 1 j 1k)21

22(i 1 j 1k) S a
2i D S b

2 j D S c
2kD x1

a22ix2
b22 j x3

c22k

1 (
i 50

@a/2#

(
j 50

@b/2#

(
k50

@~c21!/2#

dx3

l2(i 1 j 1k)

22(i 1 j 1k) S a
2i D S b

2 j D S c
2k11D x1

a22ix2
b22 j x3

c22k21

1 (
i 50

@a/2#

(
j 50

@~b21!/2#

(
k50

@c/2#

dx2

l2(i 1 j 1k)

22(i 1 j 1k) S a
2i D S b

2 j 11D S c
2kD x1

a22ix2
b22 j 21x3

c22k

1 (
i 50

@a/2#

(
j 50

@~b21!/2#

(
k50

@~c21!/2#

ıdx1

l2(i 1 j 1k)11

22(i 1 j 1k)11 S a
2i D S b

2 j 11D
3S c

2k11D x1
a22ix2

b22 j 21x3
c22k211 (

i 50

@~a21!/2#

(
j 50

@b/2#

(
k50

@c/2#

dx1

l2(i 1 j 1k)

22(i 1 j 1k) S a
2i 11D S b

2 j D
3S c

2kD x1
a22i 21x2

b22 j x3
c22k2 (

i 50

@~a21!/2#

(
j 50

@b/2#

(
k50

@~c21!/2#

ıdx2

l2(i 1 j 1k)11

22(i 1 j 1k)11 S a
2i 11D S b

2 j D
3S c

2k11D x1
a22i 21x2

b22 j x3
c22k211 (

i 50

@~a21!/2#

(
j 50

@~b21!/2#

(
k50

@c/2#

ıdx3

l2(i 1 j 1k)11

22(i 1 j 1k)11 S a
2i 11D

3S b
2 j 11D S c

2kD x1
a22i 21x2

b22 j 21x3
c22k

1 (
i 50

@~a21!/2#

(
j 50

@~b21!/2#

(
k50

@~c21!/2#

u
l2(i 1 j 1k)12

22(i 1 j 1k)13 S a
2i 11D S b

2 j 11D
3S c

2k11D x1
a22i 21x2

b22 j 21x3
c22k212

u

l
x1

ax2
bx3

c . ~36!
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In both cases the expression for the derivatives of plane waves is very simple. In ter
generatorsxa , the derivative of the plane waveeı(akaxa5eik•x is given by

deık•x5H u

l S cosS luku
2 D21D1

2ı sin~luku/2!

luku
k•dxJ eık•x. ~37!

One can see that the limitl→0 gives the correct formula for the derivative of plane waves, t
is,

lim
l→0

deık•x5S (
a51

3

ıkadx̄aD eık• x̄5ık•~dx̄!eık• x̄,

where atl50 on the right hand side we have the classical coordinates and the classical one
in usual three-dimensional commutative calculus. In terms of the generatorsx6 , h, the plane
waveeı(k1x11k2x21k0h)5eık•x is given by

deık•x5H u

l
~cos~lAk0

21k1k2!21!1
ı~k1dx11k2dx21k0dh!

lAk0
21k1k2

sin~lAk0
21k1k2!J eik•x.

~38!

This calculus is four-dimensional, in the sense that one has four basic one-forms, but
dimensions are entangled in a nontrivial way. For example, note that they satisfy the relati

eabcxa~dxb!xc50.

We can see that in the classical limitl→0, the calculus turns out to be commutative and the e
dimension, namely the one-dimensional subspace generated by the one-formu, decouples totally
from the calculus generated by the other three one-forms. The relation between this extra
sion and quantization can also be perceived by considering the derivative of the Casimir op

C5 (
a51

3

~xa!2,

which implies

dC52(
a51

3

~dxa!xa1
3l

4
u.

The coefficient of the term inu is exactly the eigenvalue of the Casimir in the spin1
2 representa-

tion, the same used to construct the differential calculus, and also vanishes whenl→0. We shall
see later that this extra dimension can also be seen as a remnant of the time coordinate
q-Minkowski spaceRq

1,3 when the limitq→1 is taken. A semi-classical analysis on this calcu
can also be made in order to recover an interpretation of time in the three-dimensional no
mutative space.

We can also construct the full exterior algebraV•(Rl
3)5 % n50

` Vn(Rl
3). In our case the genera

braiding25 becomes the trivial flip homomorphism because the right invariant basic one-form
also left invariant. Hence our basic one-forms in M2(C) are totally anticommutative and the
usual antisymmetric wedge product generates the usual exterior algebra on the vector
M2(C). The full V•(Rl

3) is generated by these and elements ofRl
3 with the relations~30!. The

exterior differentiation inV•(Rl
3) is given by the graded commutator with the basic one-formu,

that is,

dv5v∧u2~21!degvu∧v.
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In particular, the basic one-forms M2(C) are all closed, among whichu is not exact. The co-
homologies of this calculus were also calculated giving the following results:

Theorem 4.1:The noncommutative de Rham cohomology ofRl
3 is

H05C.1, H15C.u, H25H35H45$0%.

Proof: This is by direct~and rather long! computation of the closed forms and the exact on
in each degree using the explicit formula~31! on general monomials. To give an example of t
procedure, we will do it in some detail for the case of one-forms of the particular type

v5a~dx1!x2
a hbx1

c 1b~dx2!x2
mhnx1

p 1g~dh!x2
r hsx1

t 1dux2
u hvx1

w ,

and impose dv50. We start analyzing the simplest cases, and then going to more complex
Taking b5g5d50, then

v5a~dx1!x2
a hbx1

c .

The term indx2∧dx1 leads to the conclusion thatc50. Similarly, the term in dh∧dx1 leads to
b50 so that

v5a~dx1!x1
c 5dS 1

c11
x1

c11D ,

which is an exact form, hence belonging to the null cohomology class. The casesa5g5d50 and
a5b5d50 also lead to exact forms. The casea5b5g50 leads to the one-form

v5dux2
u hvx1

w .

The vanishing of the term in dx1∧u implies thatw50, the term in dx2∧u vanishes if and only if
u50 and the term in dh∧u has its vanishing subject to the conditionv50. Hence we have only
the closed, nonexact formu from this case.

Let us now analyze the case with two nonzero terms:

v5a~dx1!x2
a hbx1

c 1b~dx2!x2
mhnx1

p .

The vanishing condition in the term on dx2∧dx1 reads

a(
i 50

b S b
i Dl iax2

a21hb2 ix1
c 5b(

i 50

n S n
i Dl i px2

mhn2 ix1
p21 .

Then we conclude thatb5n, a215m, c5p21 andaa5b(c11). The vanishing of the term in
dh∧dx1 reads

(
i 50

@~b21!/2# S b
2i 11Dl2ix2

a hb22i 21x1
c 5

1

2 (
i 50

b S b
i Dl i 11acx2

a21hb2 ix1
c21 .

The terms in odd powers ofl vanish if and only ifac50. Then the left hand side vanishes if an
only if b50. The casea50 implies thatb50, which reduces to the previous case alrea
mentioned. For the casec50 we haveb5aa so that

v5a~~dx1!x2
a 1a~dx2!x2

a21x1!.

It is easy to see thatv is closed if and only ifa51. But
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~dx1!x21~dx2!x15dS x2x11
l

2
hD2

l

2
u,

which is a form homologous tou. It is a long, but straightforward, calculation to prove that all t
other cases of closed one-forms of the type above rely on these cases. The general cas
more complicated.

The proof that all higher cohomologies are trivial is also an exhaustive analysis of a
possible cases and inductions on powers ofh, as exemplified here for the four-forms: It is cle
that all four-forms

v5dx2∧dh∧dx1∧ux2
mhnx1

p

are closed. We use induction onn to prove that there exists a three-formh such thatv5dh. For
n50, we have

dx2∧dh∧dx1∧ux2
mx1

p 5dS 2
1

m11
dh∧dx1∧ux2

m11x1
p D .

Suppose that there exist three-formshk , for 0<k,n, such that

dx2∧dh∧dx1∧ux2
mhkx1

p 5dhk .

Then

dx2∧dh∧dx1∧ux2
mhnx1

p 5dS 2
1

m11
dh∧dx1∧ux2

m11hnx1
p D

2dx2∧dh∧dx1∧u(
i 51

n S n
i Dl ix2

mhn2 ix1
p

5dS 2
1

m11
dh∧dx1∧ux2

m11hnx1
p 2(

i 51

n S n
i Dl ihn2 i D .

Hence all four-forms are exact. The same procedure is used to show the triviality of the
cohomologies. L

For Rl
3 we should expect the cohomology to be trivial, since this corresponds to S

theorem and many other aspects taken for granted in physics. We find almost this except
generatoru which generates the calculus and which has no three-dimensional classical an
We will see in Sec. VII thatu is a remnant of a time direction even though from the point of vi
of Rl

3 there is no time coordinate. The cohomology result says exactly thatu is an allowed
direction but not d of anything.

V. HODGE * -OPERATOR AND ELECTROMAGNETIC THEORY

The above geometry also admits a metric structure. It is known that any nondege
bilinear formhPL1

^ L1 defines an invariant metric on the Hopf algebraH.18 For the case ofRl
3

we can define the metric

h5dx1^ dx11dx2^ dx21dx3^ dx31mu ^ u ~39!

for a parameterm. This bilinear form is nondegenerate, invariant by left and right coactions
symmetric in the sense that∧(h)50. With this metric structure, it is possible to define a Hod
*-operator and then explore the properties of the Laplacian and find some physical conseq
Our picture is similar to Ref. 9 where the manifold is similarly three-dimensional but there
extra time directionu in the local cotangent space.
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The Hodge*-operator on ann-dimensional calculus~for which the top form is of ordern),
over a Hopf algebraH with metric h is a map* :Vk→Vn2k given by the expression

* ~v i 1
¯v i k

!5
1

~n2k!!
e i 1 ...i ki k11 ...i n

h i k11 j 1
¯h i nj n¯kv j 1

¯v j n2k
.

In the case of the algebraRl
3 , we have a four-dimensional calculus withv15dx1 , v25dx2 ,

v35dx3 , v45u. The components of the metric inverse, as we can see from~39!, areh115h22

5h3351, andh4451/m. The arbitrary factorm in the metric can be set by imposing conditions
the map* 2. Then we have two possible choices for the constantm: The first ism51 making a
four-dimensional Euclidean geometry; then for ak-form v we have the constraint** (v)
5(21)k(42k)v. The second possibility ism521; then the metric is Minkowskian and th
constraint on ak-form v is ** (v)5(21)11k(42k)v. In what follows, we will be using the
Minkowskian convention on the grounds that this geometry onRl

3 is a remnant of a noncommu
tative geometry on aq-deformed version of the Minkowski space, as we shall explain in Sec.
The expressions for the Hodge*-operator are summarized as follows:

* 152dx1∧dx2∧dx3∧u,

* dx152dx2∧dx3∧u,

* dx25dx1∧dx3∧u,

* dx352dx1∧dx2∧u,

* u52dx1∧dx2∧dx3 ,

* ~dx1∧dx2!52dx3∧u,

* ~dx1∧dx3!5dx2∧u,

* ~dx1∧u!5dx2∧dx3 ,
~40!

* ~dx2∧dx3!52dx1∧u,

* ~dx2∧u!52dx1∧dx3 ,

* ~dx3∧u!5dx1∧dx2 ,

* ~dx1∧dx2∧dx3!52u,

* ~dx1∧dx2∧u!52dx3 ,

* ~dx1∧dx3∧u!5dx2 ,

* ~dx2∧dx3∧u!52dx1 ,

* ~dx1∧dx2∧dx3∧u!51.

Given the Hodge*-operator, one can write, for example, the coderivatived5* d* and the
Laplacian operatorD5dd1dd. Note that the Laplacian maps to forms of the same degree.
prefer to work actually with the ‘‘Maxwell-type’’ wave operator

h5dd5* d* d, ~41!
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which is just the same in degree 0 and the same in degree 1 if we work in a gauge whered50. In
the rest of this section, we are going to describe some features of the electromagnetic
arising in this noncommutative context. The electromagnetic theory is the analysis of sol
APV1(Rl

3) of the equationhA5J where J is a one-form which can be interpreted as a ‘‘ph
cal’’ source. We demonstrate the theory on two natural choices of sources, namely an elect
and a magnetic one. We start with spin 0 and we limit ourselves to algebraic plus plane
solutions.

A. Spin 0 modes

The wave operator onV0(Rl
3)5Rl

3 is computed from the definitions above as

h5* d* d5~]a!22
1

c2 ~]0!2,

where the partials are defined by~34!. The algebraic massless modes kerh are given by

~i! polynomials of degree one:f (x)5a1baxa ,
~ii ! linear combinations of polynomials of the typef (x)5xa

22xb
2,

~iii ! linear combinations of quadratic monomials of the type,f (x)5aabxaxb , with aÞb, and
~iv! The three particular combinationsf (x)5x1x2x32(ıl/4) xa

2, for a51,2,3.

General eigenfunctions ofh in degree 0 are the plane waves; the expression for their de
tives can be seen in~37!. Hence

heık•x52
1

l2 H 4 sin2S luku
2 D1S cosS luku

2 D21D 2J eık•x.

It is easy to see that this eigenvalue goes in the limitl→1 to the usual eigenvalue of the Laplacia
in three-dimensional commutative space acting on plane waves.

B. Spin 1 electromagnetic modes

On V1(Rl
3), the Maxwell operatorh15* d* d can likewise be computed explicitly. If we

write A5(dxa)Aa1uA0 for functionsAm , then

F5dA5dxa∧dxb]bAa1dxa∧u
1

c
]0Aa1u∧dxa]aA0.

If we break this up into electric and magnetic parts in the usual way, then

Ba5eabc]
bAc, Ea5

1

c
]0Aa2]aA0.

These computations have just the same form as for usual space–time. The algebraic zero
ker h1 are given by

~i! forms of the typeA5dxa(a1baxa1gaxa
2) with curvature

F5
l

4
gadxa∧u,

~ii ! forms of the typeA5bab(dxa)xb , with aÞb and curvature

F5babdxa∧dxb ,
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~iii ! forms of the typeA5u f with f Pker h. The curvatures for the latter threef (x) shown
above are

F522~dxa∧uxa2dxb∧uxb!,

F5aabS u∧~dxa!xb1u∧~dxb!xa1
ıl

2
eabcu∧dxcD

F52dx1∧uS x2x31
ıl

2
x1D2dx2∧uS x1x32

ıl

2
x2D2dx3∧uS x1x21

ıl

2
x3D2

ıl

2
dxa∧uxa .

These are ‘‘self-propagating’’ electromagnetic modes or solutions of the sourceless Maxwell
tions for a one-form or ‘‘gauge potential’’A.

C. Electrostatic solution

Here we take a uniform source in the ‘‘purely time’’ direction J5u. In this case the solution
of the gauge potential is

A5 1
6 uC,

whereC5(axa
2 is the Casimir operator. The curvature operator, which in this case can be

preted as an electric field, is given by

F5dA5 1
3 ~u∧~dx1!x11u∧~dx2!x21u∧~dx3!x3!.

If u is viewed as a time direction, then this curvature is a radial electric field. It has field stre
increasing with the radius, which is a kind of solution exhibiting a confinement behavior. Th
the correct physical solution for a uniform electric charge density throughout all space pro
this is understood with the correct boundary conditions; if one builds the uniform charge de
by a series of concentric shells about the origin, then, at radiusr , all shells of greater radius
produce no electric field and all shells of smaller radius total a charge proportional tor 3 and hence
a radial electric field of strength proportional tor .

D. Magnetic solution

Here we take a uniform electric current density along a direction vectorkPR3, i.e., J5k
•dx5(akadxa . In this case, the gauge potential can be written as

A5
1

4 H S (
a51

3

kadxaDC1
u

2 S (
a51

3

kaxaD 2 (
a51

3

ka~dxa!xa
2J .

The field strength is

F5dA5 1
2 $dx1∧dx2~k1x22k2x1!1dx1∧dx3~k1x32k3x1!1dx2∧dx3~k2x32k3x2!%. ~42!

If we decompose the curvature in the usual way, then this is a magnetic field in a direck
3x ~the vector cross product!. This is a ‘‘confining’’ ~in the sense of increasing with norm
distance! version of the field due to a uniform current density in directionk, taken with cylindrical
boundary conditions at infinity.

We have considered for the electromagnetic solutions only uniform sourcesJ; we can clearly
put in a functional dependence for the coefficients of the source to similarly obtain other sol
of both the electric and magnetic types. Solutions more similar to the usual decaying
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however, will not be polynomial~one would need the inverse of(axa
2) and are therefore wel

outside our present scope; even at a formal level the problem of computing d((axa
2)21 in a closed

form appears to be formidable. On the other hand, these matters could probably be addre
completing toC* -algebras and using the functional calculus for such algebras.

E. Spin 1
2 equation

For completeness, let us mention here also a natural spin1
2 wave operator, namely the Dira

operator. We consider the simplest~Weyl! spinors as two componentsc iPRl
3 . In view of the fact

that the partial derivatives] i
j already form a matrix, and following the similar phenomenon as

quantum groups,18 we are led to define

~]”c! i5] i
jc

j . ~43!

According to~35! this could also be written as

]”5
1

2
sa]a1

1

c
]0,

where the second term is suggested by the geometry over and above what we might also
This term is optional in the same way as (]0)2 in h is not forced by covariance, and isO(l) for
bounded spatial derivatives.

Here]” is covariant under the quantum double action in Sec. III as follows~the same applies
without the]0 term!. The action ofJa on Rl

3 is that of orbital angular momentum and we ha
checked already thath on degree 0 is covariant. For spin1

2 the total spin should be

Sa5 1
2 sa1Ja , ~44!

and we check that this commutes with]” :

~Sa]”c! i5 1
2 sa

i
j]

j
kc

k1JaMi
jxc j5 1

2 sa
i
jM

j
kxck1@Ja ,Mi

j #xc j1Mi
jJaxc j

5 1
2 Mi

jxsa
j
kc

k1Mi
jJaxc j5Mi

jx~Sac! j5~]”Sac! i ,

where we used the relations~20! ~those withMi
j have the same form! and the action~26!. The

operator]” is clearly also translation invariant underC(SU(2)) since the] i
j mutually commute.

The operatorssa and] i
j also commute since one acts on the spinor indices and the other onRl

3 ,
so Sa in place ofJa still gives a representation ofD(U(su(2))) on spinors, under which]” is
covariant.

F. Yang–Mills U „1… fields

Finally, also for completeness, we mention that there is a different U~1! theory which behaves
more like Yang–Mills. Namely instead ofF5dA as in the Maxwell theory, we defineF5dA
1A∧A for a one-formA. This transforms by conjugation asA°gAg211gdg21 and is a non-
linear version of the above, wheregPRl

3 is any invertible element, e.g., a plane wave. In th
context one would expect to be able to solve for zero-curvature, i.e.,A such thatF(A)50 and
thereby demonstrate the Bohm–Aharanov effect, etc. This is part of the nonlinear theory, ho
and beyond our present scope.

VI. DIFFERENTIAL CALCULUS ON THE QUANTUM SPHERE

In this section we briefly analyze what happens if we try to set the ‘‘length’’ function given
the CasimirC of Rl

3 to a fixed number, i.e., a sphere. We take this at unit radius, i.e., we definSl
2

as the algebraRl
3 with the additional relation
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C[ (
a51

3

~xa!251. ~45!

This immediately gives a ‘‘quantization condition’’ for the constantl if the algebra is to have an
irreducible representation, namelyl5 1/Aj ( j 11) for somej P 1

2Z1 . The image ofSl
2 in such a

spin j representation is a (2j 11)3(2 j 11)-matrix algebra which can be identified with the cla
of noncommutative spaces known as ‘‘fuzzy spheres.’’14,2,5,20,21In these works one does elemen
of noncommutative differential geometry directly on matrix algebras motivated by thinking a
them as a projection of U(su(2)) in thespin j representation, and the greater the spinj→`, the
greater the resemblance with a classical sphere. The role of this in our case is played byl→0
according to the above formula. On the other hand, note that we are working directly onSl

2 and
are not required to look in one or any irreducible representation, i.e., this is a slightly
geometrical approach to ‘‘fuzzy spheres’’ where we deform the conventional geometry ofS2 by a
parameterl and do not work with matrix algebras.

Specifically, when we make the constraint~45!, the four-dimensional calculus given by rela
tions ~33! is reduced to a three-dimensional calculus on the sphere because

dC5 (
a51

3

2~dxa!xa1
3l

4
u50,

which means thatu can be written as an expression on dxa . The remaining relations are given b

xadxb5~dxb!xa1
i

2
leabcdxc2

2

3
dab(

d51

3

~dxd!xd ,

~46!

l2dxa5
4i

3
leabc~dxb!xc2

16

9 (
d51

3

~dxd!xdxa .

In the limit l→0 we recover the ordinary two-dimensional calculus on the sphere, given in t
of the classical variablesx̄a5 liml→0xa . This can be seen by the relation

(
a51

3

~dx̄a!x̄a50,

allowing us to write one of the three one-forms in terms of the other two. For example, i
region wherex̄35A12 x̄1

22 x̄2
2 is invertible, one can write

dx̄352
x̄1

A12 x̄1
22 x̄2

2
dx̄12

x̄2

A12 x̄1
22 x̄2

2
dx̄2 .

VII. THE SPACE Rl
3 AS A LIMIT OF q-MINKOWSKI SPACE

In this section, we will express the noncommutative spaceRl
3 as a spacelike surface o

constant time in a certain scaling limit of the standardq-deformed Minkowski spaceRq
1,3 in Refs.

6, 16, and 15. This is defined in Ref. 15 as the algebra of 232 braided~Hermitian! matrices
BMq(2) generated by 1 and

u5S a b

c dD ,

with the commutation relations
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ba5q2ab,

ca5q22ac,

da5ad,
~47!

bc5cb1~12q22!a~d2a!,

db5bd1~12q22!ab,

cd5dc1~12q22!ca.

If we choose a suitable set of generators, namely,

t̃ 5
qd1q21a

2
, x̃5

b1c

2
, ỹ5

b2c

2i
, z̃5

d2a

2
,

then the braided determinant

det~u!5ad2q2cb ~48!

can be written as

det~u!5
4q2

~q211!2 t̃22q2x̃22q2ỹ22
2~q411!q2

~q211!2 z̃212qS q221

q211D 2

t̃ z̃.

This expression, in the limitq→1, becomes the usual Minkowskian metric onR1,3. Here we will
consider a different scaled limit related to the role of this algebra as braided enveloping alge
a braided Lie algebrasuq(2)̃ ~see Ref. 10 for a recent treatment!. This is such that we can stil
have a noncommutative space even whenq→1. Defining new generators

x15
c

~q2q21!
, x25

b

~q2q21!
, h5

a2d

~q2q21!
, t5

qd1q21a

c~q1q21!
, ~49!

and considering the commutation relations~47!, we have

@x1 ,x2#5q21cth1q21
~q2q21!

~q1q21!
h2,

q22hx15x1h1q22~q1q21!cx1t,

q2hx25x2h2~q1q21!cx2t, ~50!

tx65x6t,

th5ht.

In the limit q→1, we obtain the commutation relations

@xa ,xb#5ıcteabcxc , @xa ,t#50, ~51!

of the so-called homogenized universal enveloping algebra U(su(2))̃, which we will denote by
Rc

1,3. Here c is a parameter required by dimensional analysis~of dimensionms21). When ct
5l we recover exactly the relations~28! of Rl

3 . So the noncommutative space that we ha
studied in previous sections is the ‘‘slice’’ at a certain time ofRc

1,3, which in turn is a contraction
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of Rq
1,3. The possibility of these twoq→1 limits where one gives a classical coordinate alge

and the other gives essentially its dual~an enveloping algebra! is called a ‘‘quantum-geometry
duality transformation.’’

We now go further and also obtain the differential structure onRl
3 via this scaling limit. Thus,

the algebraRq
1,35BMq(2) has a standard Uq(su(2))-covariant noncommutative differential ca

culus whose commutation relations between basic one-forms and the generators of the alge
given by15

ada5q2~da!a,

adb5~db!a,

adc5q2~dc!a1~q221!~da!c,

add5~dd!a1~q221!~db!c1~q2q21!2~da!a,

bda5q2~da!b1~q221!~db!a,

bdb5q2~db!b,

bdc5~dc!b1~12q22!~~dd!a1~da!d!1~q2q21!2~db!c2~223q221q24!~da!a,

bdd5~dd!b1~q221!~db!d1~q2221!~db!a1~q2q21!2~da!b,
~52!

cda5~da!c,

cdb5~db!c1~12q22!~da!a,

cdc5q2~dc!c,

cdd5q2~dd!c1~q221!~dc!a,

dda5~da!d1~q221!~db!c1~q2q21!2~da!a,

ddb5q2~db!d1~q221!~da!b,

ddc5~dc!d1~q221!~dd!c1~q2q21!2~dc!a1~q2221!~da!c,

ddd5q2~dd!d1~q221!~dc!b1~q2221!~db!c2~12q22!2~da!a.

This is designed in theq→1 limit to give the usual commutative calculus on classicalR1,3. In
order to obtain a noncommutative calculus in our noncommutative scaled limitq→1, we have to
also redefine the derivative operator by a scale factor

d5~q2q21!d.

This scaled derivative gives the following expressions for the basic one-forms:

dx15dc5~q2q21!dx1 ,

dx25db5~q2q21!dx2 ,

dh5da2dd5~q2q21!dh.

Define also the basic one-form
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u5qdd1q21da,

which allows us to write

dt5
~q2q21!

c~q1q21!
u. ~53!

This new set of generators and basic one-forms satisfy the following relations:

x1dx15q2~dx1!x1 ,

x1dx25~dx2!x11
q21

~q1q21!
uct1

1

~q1q21!
~dh!ct1O~q2q21!,

x1dh5~dh!x12qdx11O~q2q21!,

x2dx15~dx1!x21
q23

~q1q21!
uct2

~22q22!

~q1q21!
~dh!ct1O~q2q21!,

x2dx25q2~dx2!x2 ,

x2dh5q2~dh!x21q21~dx2!ct1O~q2q21!,

hdx15~dx1!h1q~dx1!ct1O~q2q21!,

hdx25~dx2h!2q~dx2!ct1O~q2q21!,
~54!

hdh5~dh!h1
2q

~q1q21!
uct1O~q2q21!,

x1u5ux11q2~dx1!ct1O~q2q21!,

x2u5ux21q2~dx2!ct1O~q2q21!,

hu5uh1
2q

~q1q21!
~dh!ct1O~q2q21!,

tdx15~dx1!t1O~q2q21!,

tdx25~dx2!t1O~q2q21!,

tdh5~dh!t1O~q2q21!,

tu5ut1O~q2q21!.

In the limit q→1 we recover the relations~30! by settingct5l. Then the calculus onRl
3 can be

seen as the pull-back to the time slice of the scaled limit of the calculus onq-deformed Minkowski
space. Unlike for usualR3, the dt direction in our noncommutative case does not ‘‘decouple’’ a
has remnantu. In other words,the geometry ofRl

3 remembers that it is the pull-back of
relativistic theory.

Finally, let us recall the action of theq-Lorentz group on theRq
1,3 and analyze its scaled limi

when q→1. The appropriateq-Lorentz group can be written as the double cross coprod
Uq(su(2))pUq(su(2)). TheHopf algebra Uq(su(2)) is thestandardq-deformed Hopf algebra
which we write explicitly as generated by 1,X1 , X2 andq6H/2 with
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q6H/2X6q
7H/25q61X6 , @X1 ,X2#5

qH2q2H

q2q21 ,

D~X6!5X6 ^ qH/21q2 H/2
^ X6 , D~q6H/2!5q6H/2

^ q6H/2,

e~X6!50, e~q6H/2!51,

S~X6!52q61X6 , S~q6H/2!5q7H/2. ~55!

It is well known that one may also work with these generators in an R-matrix form

l15S qH/2 0

q2 1/2~q2q21!X1 q2 H/2D , l25S q2 H/2 q1/2~q212q!X2

0 qH/2 D , ~56!

and most formulas are usually expressed in terms of these matrices of generators. In particu
q-Lorentz group has two mutually commuting copies of Uq(su(2)), so let usdenote the genera
tors of the first copy bym6 or Y6 ,G @related as forl6 andX6 ,H in ~56!# and the generators o
the second copy of Uq(su(2)) by n6 or Z6 ,T ~similarly related!. The actions onRq

1,3 are given in
Ref. 15 in an R-matrix form

n6k
lxui

j5^n6k
l ,tm

j&u
i
m , m6k

lxui
j5^Sm6k

l ,t i
m&um

j . ~57!

Here^Sm6k
l ,t i

j& and^n6k
l ,t i

j& are thei , j matrix entries of the relevant functions ofY6 ,G and
Z6 ,T, respectively, in the Pauli matrix representation@as in~9! in other generators#. We need the
resulting actions more explicitly, and compute them as

qG2q2G

q2q21 xS h x2

x1 t D 5S 2
2ct

q2q21 2
q2q21

q1q21 h 2x2

x1

q2q21

q1q21 t2
q2q21

c~q1q21!2 h
D ,

Y1xS h x2

x1 t D 5S 2qx1 2
qct

q2q21 1
h

q1q21

0 2
q2q21

c~q1q21!
x1

D , ~58!

Y2xS h x2

x1 t D 5S q21x2 0

2
q21ct

q2q21 2
h

q1q21 2
q2q21

c~q1q21!
x2
D ,

qT2q2T

q2q21 xS h x2

x1 t D 5S 2ct

q2q21 1
q2q21

q1q21 h 2x2

x1 2
q2q21

q1q21 t1
q2q21

c~q1q21!2 h
D ,

Z1xS h x2

x1 t D 5S 2x1

ct

q2q21 1
qh

q1q21

0
q~q2q21!

c~q1q21!
x1

D , ~59!
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Z2xS h x2

x1 t D 5S x2 0

ct

q2q21 2
q21h

q1q21

q21~q2q21!

c~q1q21!
x2
D .

We are now able to see that these actions~58! and~59! blow up in the limitq→1 because of some
singular terms appearing in their expressions. Hence the scaling limitRc

1,3 is no longer Lorentz
invariant.

On the other hand, we also have the same quantum group symmetry in an isomorphi
BSUq(2)’Uq(su(2)) for qÞ1, and this version survives. The braided algebra BSUq(2) here is
simply the braided matrices BMq(2) with the additional conditiondet(u)51 ~i.e., geometrically,
it is the mass-hyperboloid inq-Minkowski space!. To be clear, the generators of BSUq(2) in this
crossed product will be denoted byū and the generators of Uq(su(2)) in this cross product will be
denoted byl6 or X6 ,H as before. The isomorphism with theq-Lorentz group in the form above
is given by the assignments15

ū^ 1°m1S~m2! ^ 1, 1^ l6°m6
^ n6. ~60!

Under the isomorphism~60!, the expressions~58! and ~59! become the action o
BSUq(2)’Uq(su(2)) on BMq(2) given by

ūxu5m1S~m2!xu, l6xu5m6x~n6xu!.

On the generators~49! the action of BSUq(2) reads

ū1
1xh52ct1qh2

q~q2q21!

q1q21 h,

ū1
1xx15qx1 ,

ū1
1xx25q21x2 ,

ū1
1xt5

q21q22

q1q21 t2
~q2q21!2

c~q1q21!2 h,

~61!
ū2

1xh5q22~q2q21!x2

ū2
1xx152q22ct2

q21~q2q21!

q1q21 h,

ū2
1xx250,

ū2
1xt52

q2q21

q1q21 t1
q21~q2q21!2

c~q1q21!2 h,

ū1
2xh52~q2q21!x1 ,

ū1
2xx150,

ū1
2xx252ct1

q~q2q21!

q1q21 h,
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ū1
2xt52

q~q2q21!

q1q21 t1
~q2q21!2

c~q1q21!2 h,

~62!

ū2
2xh5ct1qh2q21~q2q21!ct2

q21~q2q21!2q22~q2q21!2

q1q21 h,

ū2
2xx15q21x11q21~q2q21!2x1 ,

ū2
2xx25qx2 ,

ū2
2xt5

2t

q1q21 1
~q2q21!2

q1q21 t
~q2q21!22q21~q2q21!3

c~q1q21!2 h.

The action of Uq(su(2)) is given by

qH2q2H

q2q21 xS h x2

x1 t D 5S 0 2~q1q21!x2

~q1q21!x1 0 D ,

X1xS h x2

x1 t D 5S 2q~q1/21q21/2!x1 q1/2h

0 0 D , ~63!

X2xS h x2

x1 t D 5S q21/2~q1q21!x2 0

2q21/2h 0D .

In the limit q→1, the crossed product BSUq(2)’Uq(su(2)) becomes the doubleD(U(su(2))
5C(SU(2))’U(su(2)) asstudied in Sec. III. The elementsūj

i become in the limit thet j
i , andX6

andH become the usualsu(2) generators equivalent to theJa there.~More precisely, we should
mapū j

i to Stj
i for the action to become the right coregular one which we viewed in Sec. III as a

coaction.! Finally, this action of the double on BMq(2) thus becomes in the scaling limitq→1 an
action ofD(U(su(2)) on Rc

1,3 in the form

@x1 ,x2#52cth, @h,x6#56ctx6 ,

with the same change of variables toxa as in Sec. IV. The result is

Mi
jxt50, Mi

jxxa5
ct

2l
sa

i
j , Jaxt50, Jaxxa5ıeabcxc .

This is consistent with the time slicect5l and gives the action of the quantum double in Sec.
as in fact the nonsingular version of scaled limit of theq-Lorentz symmetry on theq-Minkowski
space.

One can also analyze a different time slice ofRq
1,3, namely, the quotient obtained by imposin

the conditionct5q21q2221. This algebra is the reduced braided algebra BMq(2)red, see Ref.
10, with commutation relations

x1x25x2x11q21~q21q2221!h1
~q2q21!

~q1q21!
h2,

q22hx15x1h1q22~q21q2221!~q1q21!x1 ,

q2hx25x2h2~q21q2221!~q1q21!x2 .
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This is also known in the literature as the ‘‘Witten algebra’’13,23 and in a scaled limitq→1 it
likewise turns into the universal enveloping algebra U(su(2)). A calculus on this reduced algebr
however, is not obtained from the calculus given by relations~52!; consistency conditions result i
the vanishing of all derivatives da, db and dc ~note that the constraint ont allows one to writed
in terms of the other generators!.

VIII. QUANTUM MECHANICAL INTERPRETATION AND SEMICLASSICAL LIMIT OF Rl
3

Finally, we turn to the important question of how to relate expressions in the above non
mutative geometry to ordinary numbers in order to compare with experiment. We will first ex
why a normal ordering postulate as proposed in Ref. 3 is not fully satisfactory and then tur
quantum mechanical approach. Thus, one idea is to write elements ofRl

3 as: f (x): where
f (x1 ,x2 ,x3) is a classical function defined by a powerseries and : : denotes normal ordering
we use noncommutative variablesxi . If one sticks to this normal ordering, one can use it
compare classical with quantum expressions and express the latter as a strict deformation
former controlled by the parameterl governing the noncommutativity in~28!. This will extend to
the rest of the geometry and allows an order-by-order analysis. For example, the noncomm
partial derivatives]a defined in~34! have the expressions to lowest order

]1 : f ~x!: 5 : ]̄1f ~x!:1
ıl

2
]̄2]̄3f ~x!,

]2 : f ~x!: 5 : ]̄2f ~x!:2
ıl

2
]̄1]̄3f ~x!,

~64!

]3 : f ~x!: 5 : ]̄3f ~x!:1
ıl

2
]̄2]̄2f ~x!,

1

c
]0 : f ~x!: 5

l

4
~~ ]̄1!2f ~x!1~ ]̄2!2f ~x!1~ ]̄3!2f ~x!!,

where ]̄a are the usual partial derivatives in classical variables and we do not write the no
ordering on expressions alreadyO(l) since the error is higher order. Note that the expression
(1/c) ]0 is one order ofl higher than the other partial derivatives, which is another way to see
this direction is an anomalous dimension originating in the quantization process. The ph
problem here is that the normal ordering is somewhat arbitrary; for algebras such as~1! or for
usual phase space, putting allt to one side makes a degree of sense physically, as we
mathematically because the algebra is solvable. But in the simple case such asRl

3 , each of thex1 ,
x2 , x3 should be treated equally. Or one could use other coordinates such asx2 , h, x1 in keeping
with the Lie algebra structure, etc.; all different ordering schemes giving a different form o
lowest order corrections and hence different predictions. Choosing a natural ordering is ce
possible but evidently would require further input into the model.

On the other hand, we can take a more quantum mechanical line and consider our algeRl
3

as, after all, a spin system. The main result of this section is to introduce ‘‘approximately c
cal’’ states’u j ,u,f& for this system inspired in part by the theorem of Penrose19 for spin networks,
although not directly related to that. Penrose considered networks labeled by spins and s
how to assign probabilities to them and conditions for when the network corresponds ap
mately to spin measurements oriented with relative anglesu,f. In a similar spirit we consider the
problem of reconstructing classical angles from the noncommutative geometry.

We let V( j ) be the vector space which carries a unitary irreducible representation of sj
P 1

2Z1 , generated by statesu j ,m&, with m52 j ,...,j such that

x6u j ,m&5lA~ j 7m!~ j 6m11!u j ,m61&,
011 to 200.130.19.174. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions
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hu j ,m&52lmu j ,m&.

The projection ofRl
3 to an irreducible representation of spinj is geometrically equivalent to a

restriction to a fuzzy sphere,5,14 because the value of the Casimirx•x is l2 j ( j 11) in this repre-
sentation. We have discussed this in Sec. VI, where we setx•x51 and considered the algebr
geometrically as such a fuzzy sphere under a quantization condition forl. By contrast in this
section we leavex•x unconstrained and consider the geometry of our noncommutative th
dimensional spaceRl

3 as the sum of geometries on all fuzzy spheres with theV( j ) representation
picking out the one of radius;l j . Thus we use the Peter–Weyl decomposition ofC(SU2) into
matrix elements of irreducible representations regarded as functions on SU2, which gives~up to
some technical issues about completions! a similar decomposition for its dual asRl

3

5 % jEnd(V( j )). This also underlies the spherical harmonics in Sec. III.
Next, for each fixed spinj representation we look for normalized statesu j ,u,f& parametrized

by 0<u<p and 0<w<2p, such that

^ j ,u,wux1u j ,u,w&5r sinu cosw,

^ j ,u,wux2u j ,u,w&5r sinu sinw, ~65!

^ j ,u,wux3u j ,u,w&5r cosu,

wherer is some constant~independent ofu,f! which we do not fix. Rather, in the space of su
states and possibler>0, we seek to minimize the normalized variance

d5
^x•x&2^x&•^x&

^x&•^x&
, ~66!

where^ &5^ j ,u,fu u j ,u,f& is the expectation value in our state and we regard^xa& as a classical
vector in the dot product. Thus we seek states which are ‘‘closest to classical.’’ This is a
strained problem and leads us to the following states:

u j ,u,w&5 (
k51

2 j 11

22 jAS 2 j
k21D ~11cosu!~ j 2k11!/2~12cosu!~k21!/2eı(k21)wu j , j 2k11&. ~67!

These obeŷ j ,u,fu j ,u,f&51 and~65!–~66! with

r 5A^x&•^x&5l j , d5
1

j
. ~68!

We see that in these states the ‘‘true radius’’u^x&u is l j . The square root of the Casimir does n
give this true radius since it contains also the uncertainty expressed in the variance of the p
operators, but the errord vanishes asj→`. Thus the larger the representation, the more
geometry resembles to the classical.

We can therefore use these statesu j ,u,f& to convert noncommutative geometric functio
f (x) into classical ones in spherical polar coordinates defined by

^ f &~r ,u,f![^ j ,u,fu f ~x!u j ,u,f&, ~69!

wherer 5l j is the effective radius. If we start with a classical functionf and insert noncommu
tative variables in some order, then^ f (x)& ~which depends on the ordering! looks more and more
like f (^x&) as j→` and l→0 with the product fixed to an arbitraryr . As an example, the
noncommutative spherical harmonicsYl

m in Sec. III are already ordered in such a way th
replacing the noncommutative variables by the expectation values^xa& gives something propor
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tional to the classical spherical harmonics. On the other hand,^Yl
m& vanish for l .2 j and only

approximate the classical ones for lowerl . Moreover, in view of the above, we expect

^] i f &5 ]̄ i^ f &1OS l,
1

j D , ~70!

wherer 5 j l and ]̄ i are the classical derivatives in the polar form

]̄15sinu cosw
]

]r
1

1

r
cosu cosw

]

]u
2

1

r
sinu sinw

]

]w
,

]̄25sinu sinw
]

]r
1

1

r
cosu sinw

]

]u
1

1

r
sinu cosw

]

]w
,

]̄35cosu
]

]r
2

1

r
sinu

]

]u
,

where we understand]/]r 5 (1/l)(]/] j ) on expectation values computed as functions ofj . More
precisely, one should speak in terms of the joint limit as explained above withl j 5r a continuous
variable in the limit. We note finally that the star product forRl

3 as in Ref. 11 suggests that
should be possible to extend such a semiclassical analysis to all orders.
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APPENDIX: 2-D AND 3-D CALCULI ON Rl
3

It might be asked why we need to take a four-dimensional calculus onRl
3 and not a smaller

one. In fact, bicovariant differential calculi on enveloping algebras U(g) such asRl
3>U(su(2))

have been essentially classified18 and in this appendix we look at some of the other possibilities
our model. In general the co-irreducible calculi~i.e., having no proper quotients! are labeled by
pairs (Vr ,L), with r:U(g)→EndVr an irreducible representation of U(g) andL a ray in Vr . In
order to construct an ideal in kere, take the map

rL :U~g!→Vr , h°r~h!•L.

It is easy to see that kerrL is a left ideal in kere. Then, ifrL is surjective, the space of one-form
can be identified withVr5ker e/ker rL . The general commutation relations are

av5va1r~a!•v, ~A1!

and the derivative for a general monomialj1¯jn is given by the expression

d~j1¯jn!5 (
k51

n

(
sPS(n,k)

rL~js(1)¯js(k)!js(k11)¯js(n) ,

the sum being over all (n,k) shuffles.
We explore some examples of co-irreducible calculi for the universal enveloping algebrRl

3 ,
generated byx6 andh satisfying the commutation relations~28!. First, let us analyze the three
dimensional, co-irreducible calculus onRl

3 by takingVr5C3, with basis

e15S 1
0
0
D , e05S 0

1
0
D , e25S 0

0
1
D .
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In this basis, the representationr takes the form

r~x1!5lS 0 2 0

0 0 1

0 0 0
D , r~x2!5lS 0 0 0

1 0 0

0 2 0
D , r~h!5lS 2 0 0

0 0 0

0 0 22
D .

We choose, for example,L5e0 . The space of one-forms will be generated by the vectorse1 , e2

ande0 . The derivatives of the generators of the algebra are given by

dx15l21r~x1!•e052e1 , dx25l21r~x2!•e052e2 , dh5l21r~h!•e050.

The commutation relations between the basic one-forms and the generators can be deduc
~A1! giving

x1e15e1x1 ,

x1e05e0x112le1 ,

x1e25e2x11le0 ,

x2e15e1x21le0 ,

x2e05e0x212le2 , ~A2!

x2e25e2x2 ,

he15e1h12le1 ,

he05e0h,

he25e2h22le2 .

The expression for the derivative of a general monomialx1
a x2

b hc is

d~x1
a x2

b hc!52ae1x1
a21x2

b hc12be2x1
a x2

b21hc12labe0x1
a21x2

b21hc

14l2a~a21!be1x1
a22x2

b21hc. ~A3!

We define the exterior algebra by skew-symmetrizing and, using similar methods as in Sec.
compute the cohomologies as

H05C@h#, H15e0C@h#, H25H35$0%.

This calculus is a three-dimensional calculus but we have introduced an isotropy by choosL,
and related to this all functions ofh are killed by d, which is why the cohomology is large. Th
is why we do not take this calculus even though it has the ‘‘obvious’’ dimension. There is the
problem if we choose any other directionL.

We can also have a two-dimensional coirreducible calculus on U(su(2)) using thenVr

5C2, with basis

e15S 1
0D , e25S 0

1D .

In this basis, the representationr takes the form
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r~x1!5lS 0 1

0 0D , r~x2!5lS 0 0

1 0D , r~h!5lS 1 0

0 21D .

ChoosingL5e1 , the space of one-forms will be generated bye1 ande2 and the derivatives of the
generators of the algebra are given by

dx15l21r~x1!•e150, dx25l21r~x2!•e15e2 , dh5l21r~h!•e15e1 .

The commutation relations between the basic one-forms and the generators are then

x1e15e1x1 ,

x1e25e2x11le1 ,

x2e15e1x21le2 ,
~A4!

x2e25e2x2 ,

he15e1h1le1 ,

he25e2h2le2 .

And the derivative of a monomialx2
a hbx1

c is given by

d~x2
a hbx1

c !5e1S (
i 50

b S b
i Dl i 21x2

a hb2 ix1
c D 1e2S (

i 50

b

~21! i S b
i Dl iax2

a21hb2 ix1
c D . ~A5!

The cohomology of this calculus comes out as

H05C@x1#, H15H25$0%.

Here again d vanishes on all functions ofx1 , which is related to our choice ofL. On the other
hand, this calculus motivates us similarly to take forr the tensor product of the spin12 represen-
tations and its dual. In this tensor product representation there is a canonical choice ofL, namely
the 232 identity matrix. This solves the anisotropy and kernel problems and this is the cal
that we have used onRl

3 as the natural choice in our situation. The above spinorial ones
coirreducible quotients of it.
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