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ENVELOPING ACTIONS FOR PARTIAL HOPF ACTIONS
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Motivated by partial group actions on unital algebras, in this article we extend many
results obtained by Exel and Dokuchaev to the context of partial actions of Hopf
algebras, according to Caenepeel and Jansen. First, we generalize the theorem about
the existence of an enveloping action, also known as the globalization theorem. Second,
we construct a Morita context between the partial smash product and the smash
product related to the enveloping action. Third, we dualize the globalization theorem
to partial coactions and finally, we define partial representations of Hopf algebras and
show some results relating partial actions and partial representations.

Key Words: Partial coactions; Partial group actions; Partial Hopf actions; Partial representations;
Smash products.
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1. INTRODUCTION

Partial group actions were first defined by Exel in the context of operator
algebras and they turned out to be a powerful tool in the study of C∗-algebras
generated by partial isometries on a Hilbert space [9]. The developments originated
by the definition of partial group actions include crossed products [13], partial
representations [6, 10] and soon this theme became an independent topic of interest
in ring theory [7, 11]. Now, the results are formulated in a purely algebraic way,
independent of the C∗ algebraic techniques which originated them.

A partial action � of a group G on a (possibly non-unital) k-algebra A is a
pair of families of sets and maps indexed by G, � = ���g�g∈G� �Dg�g∈G�, where each
Dg is an ideal of A and each �g is an algebra isomorphism � � Dg−1 → Dg satisfying
the following conditions:

(i) De = A and �e = IA;
(ii) �g�Dg−1 ∩Dh� = Dg ∩Dgh for every g� h ∈ G;
(iii) �g��h�x�� = �gh�x� for every x ∈ Dh−1 ∩D�gh�−1 �
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ENVELOPING ACTIONS FOR PARTIAL HOPF ACTIONS 2873

A first example of partial action is the following: If G acts on a algebra B by
automorphisms and A is an ideal of B, then we have a partial action � on A in the
following manner: letting 	g stand for the automorphism corresponding to g, take
Dg = A ∩ 	g�A�, and define �g � Dg−1 → Dg as the restriction of the automorphism
	g to Dg−1 .

Partial Hopf actions were motivated by an attempt to generalize the notion of
partial Galois extensions of commutative rings, first introduced by Dokuchaev et al.
in [8]. The first ideas towards partial Hopf actions were introduced by Caenepeel
and de Groot in [3], using the concept of Galois coring. Afterwards, Caenepeel and
Janssen defined partial actions and partial coactions of a Hopf algebra H on a
unital algebra A using the notions of partial entwining structures [4]; in particular,
partial actions of G determine partial actions of the group algebra kG in a natural
way. In the same article, the authors also introduced the concept of partial smash
product which, in the case of the group algebra kG, turns out to be the crossed
product by a partial action A�� G. Further developments in the theory of partial
Hopf actions were done by Lomp in [12], where the author pushed forward classical
results of Hopf algebras concerning smash products, like the Blattner–Montgomery
and Cohen–Montgomery theorems [14].

Certainly, the theory of partial actions of Hopf algebras remains as a huge
landscape to be explored, and this present work intends to generalize some results
for partial group actions to the context of partial Hopf actions. We divided this
article as follows.

In Section 2, we prove the theorem of existence of an enveloping action for a
partial Hopf action, i.e., we prove that if H is a Hopf algebra which acts partially
on a unital algebra A, then there exists an H module algebra B such that A is
isomorphic to a right ideal of B, and the restriction of the action of H to this ideal is
equivalent to the partial action of H on A. The uniqueness of the enveloping action is
treated separately; we introduce the concept of minimal enveloping action and prove
the existence and uniqueness of such an action for every partial action. The question
on the existence of enveloping actions for partial group actions arises naturally when
we consider the basic example of partial action, that of the restriction of a global
action of a group G on an algebra B to an ideal A � B. Thus we may ask, which
conditions on a partial action enable us to say that this partial action is a restriction
of a global action? The first result concerning enveloping actions was proved in
the context of C∗ algebras in [1]; to this intent, the author used techniques of Fell
Bundles and Hilbert C∗ modules. A purely algebraic version of this theorem on
enveloping actions only appeared in [7]. Basically, the same ideas for the proof in
the group case are present in the Hopf algebraic case as we shall see later.

In Section 3, we show the existence of a Morita context between the partial
smash product A#H , where H is a Hopf algebra which acts partially on the unital
algebra A, and the smash product B#H , where B is an enveloping action of A. This
result can also be found in [7] for the context of partial group actions.

In Section 4, we discuss the existence of an enveloping coaction of a Hopf
algebra H on a unital algebra A. There, we dualize this partial coaction of H to a
partial action of H∗ (in fact, the finite dual H�), we take an enveloping action and
then check whether the H� module B of the enveloping action is a rational module.
If this occurs, one dualizes again to obtain a structure of H comodule algebra in B;
this is our enveloping coaction.
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2874 ALVES AND BATISTA

In Section 5, we introduce the notion of partial representation of a Hopf
algebra. We show that, under certain conditions on the algebra H , the partial smash
product A#H carries a partial representation of H .

2. ENVELOPING ACTIONS

2.1. Partial Hopf Actions

We recall that a left action of a Hopf algebra H on an algebra A is a linear
mapping � � H ⊗ A → A, which we will denote by ��h⊗ a� = h � a, such that:

(i) h � �ab� =∑
�h�1� � a��h�2� � b�;

(ii) 1 � a = a;
(iii) h � �k � a� = hk � a;
(iv) h � 1A = 
�h�1A�

We also say that A is an H module algebra. Note that (ii) and (iii) say that A is a
left H-module.

In [4], Caenepeel and Jansen defined a weaker version of an action, called a
partial action. A partial action of the Hopf algebra H on the algebra A is a linear
mapping � � H ⊗ A → A, denoted here by ��h⊗ a� = h · a, such that:

(i) h · �ab� =∑
�h�1� · a��h�2� · b�;

(ii) 1 · a = a;
(iii) h · �g · a� =∑

�h�1� · 1A���h�2�g� · a��
We will also call A a partial H module algebra. It is easy to see that every

action is also a partial action.
As a basic example, consider a partial action � of a group G on an unital

algebra A. Suppose that each Dg is also a unital algebra, that is, Dg is of the form
Dg = A1g; then there is a partial action of the group algebra kG on A which is
defined on the basis elements by

g · a = �g�a1g−1�� (1)

and extended linearly to all elements of kG. In order to see that this action satisfies
the relations (i), (ii), and (iii) of the definition of partial action above, let us
remember some facts about the partial action �. First, the elements 1g ∈ Dg are
central idempotents in the algebra A and are given by 1g = g · 1A, second, the unity
of the ideal Dg ∩Dh is the product 1g1h and finally, since �g�Dg−1 ∩Dh� = Dg ∩Dgh

and each �g is an isomorphism, we have �g�1g−11h� = 1g1gh. Then, the action (1)
satisfies:

g · �ab� = �g�ab1g−1��g�a1g−1b1g−1�

= �g�a1g−1��g�b1g−1� = �g · a��g · b��
e · a = �e�a1e−1� = IA�a1A� = a�

h · �g · a� = �h��g�a1g−1�1h−1�

= �h��g�a1g−1�1g1h−1�
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ENVELOPING ACTIONS FOR PARTIAL HOPF ACTIONS 2875

= �h��g�a1g−1��g�1g−11g−1h−1��

= �h��g�a1g−11g−1h−1��

= �hg�a1g−11g−1h−1�

= �hg�a1g−1h−1��hg�1g−11g−1h−1�

= �hg�a1g−1h−1�1hg1h = 1h�hg�a1g−1h−1�

= �h�1A1h−1��hg�a1g−1h−1� = �h · 1A��hg · a��

Note that we have also proved that h · �g · a� = �hg · a�1h = �hg · a��h · 1A�.
In general, it is not true that a partial action of kG induces automatically a
partial group action of G. We mention that in [4] the authors consider a slight
generalization of partial group actions, where the idempotents 1g are not necessarily
central and Dg is the right ideal Dg = 1gA; in this case, it can be proven that there
is a bijective correspondence between partial group actions and partial kG-actions
on A.

2.2. Induced Partial Actions

There is an important class of examples of partial Hopf actions induced by
total actions. This idea is motivated by the construction of a partial group action
induced by a global action of a group G on an algebra B by automorphisms.

Let 	 � G× B → B be an action of the group G on the algebra B by
automorphisms, and let A be an ideal of B generated by a central idempotent 1A.
Define Dg = A ∩ 	g�A�; then Dg is the ideal generated by the central idempotent
1g = 1A	g�1A�.

The partial action � = ���g�� �Dg�� induced by 	 on A is

�g�a� = 	g�a� for g ∈ G and a ∈ Dg−1 �

This corresponds to a partial action of kG on A, given by

g · a = �g�a1g−1��

Since

�g�a1g−1� = 	g�1g−1a� = 	g�1A	g−1�1A��	g�a� = 	g�1A�1A	g�a� = 1A	g�a��

one could also define the partial action by g · a = 1A	g�a� (or g · a = 	g�a�1A). This
provides the idea for constructing induced partial actions in the Hopf case.

Proposition 1. Let H be a Hopf algebra which acts on the algebra B, and let A be a
right ideal of B with unity 1A. Then H acts partially on A by

h · a = 1A�h � a�
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2876 ALVES AND BATISTA

Proof. The first property is immediate. For the third, given h� k ∈ H and a ∈ A,

h · �k · a� = 1A�h � �1A�k � a���

= 1A
[∑

�h�1� � 1A��h�2� � �k � a��
]

= ∑
1A�h�1� � 1A���h�2�k� � a�� = �∗�

and since 1A�h�1� � 1A� ∈ A, it follows that 1A�h�1� � 1A� = 1A�h�1� � 1A�1A;
therefore,

�∗� =∑
1A�h�1� � 1A�1A��h�2�k� � a�� =∑

�h�1� · 1A���h�2�k� · a���

The second property is proved in an analogous manner. �

We say that the partial action h · a = 1A�h � a� is the partial action induced
by B. We mention again that in [4] the authors introduce a slightly more general
concept of partial group action where the domains Dg are already taken as right
ideals.

Although this proposition provides a method for constructing examples,
it comes as a surprise that, in some cases, the induced partial action is total.
As we have seen, every partial group action induces a partial kG action, and it
is easy to define partial group actions that are not total actions; on the other
hand, every induced partial action by an universal enveloping algebra ���� of a Lie
algebra � it total: there are no properly partial actions of Lie algebras. This result
was discovered independently by us, in a previous version of this work (see [2]), and
by an anonymous referee of [4].

Proposition 2 ([4]). Let � be a Lie algebra over k and let A be a k-algebra. Every
partial action of the universal enveloping algebra ���� is a total action.

As another example of an induced partial action, let H4 be the Sweedler
4-dimensional Hopf algebra, with 	 = �1� g� x� xg� as basis over the field k, where
char�k� �= 2. The algebra structure is determined by the relations

g2 = 1� x2 = 0 and xg = −gx�

The coalgebra structure is given by the coproducts

��g� = g ⊗ g� ��x� = x⊗ 1+ g ⊗ x�

and counit 
�g� = 1, 
�x� = 0. The antipode S in H4 reads

S�g� = g� and S�x� = xg�

A more suitable basis for the study of ideals of H4 consists of the vectors e1 =
�1+ g�/2, e2 = �1− g�/2, h1 = xe1, h2 = xe2. The multiplication table of H4 in this
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ENVELOPING ACTIONS FOR PARTIAL HOPF ACTIONS 2877

new basis elements reads

e1 e2 h1 h2

e1 e1 0 0 h2

e2 0 e2 h1 0
h1 h1 0 0 0
h2 0 h2 0 0

The expressions for the coproducts of this new basis, are

��e1� = e1 ⊗ e1 + e2 ⊗ e2�

��e2� = e1 ⊗ e2 + e2 ⊗ e1�

��h1� = e1 ⊗ h1 − e2 ⊗ h2 + h1 ⊗ e1 + h2 ⊗ e2�

��h2� = e1 ⊗ h2 − e2 ⊗ h1 + h1 ⊗ e2 + h2 ⊗ e1�

The counit calculated in the elements of this new basis takes the values 
�e1� = 1
and 
�e2� = 
�h1� = 
�h2� = 0. Finally, the antipode is given by

S�e1� = e1� S�e2� = e2� S�h1� = −h2� S�h2� = h1�

The Hopf algebra H4 acts on itself in the canonical way by the left adjoint
action, i.e., h � k =∑

�h� h�1�kS�h�2��. Its action is summed up in the table below.

� e1 e2 h1 h2

e1 e1 e2 0 0
e2 0 0 h1 h2

h1 h1 − h2 h2 − h1 0 0
h2 0 0 0 0

If X ⊂ H4, denote by 	X
 the k-subspace generated by X. As one sees directly
from the multiplication table, e1H4 = 	e1� h2
 and, since e1 and h2 do not commute,
we have to kill the latter in order to get a right ideal with unity. But 	h2
 is an
ideal of H4 which, given the nature of the action, is also a H4-submodule. Hence
B = H4/	h2
 is a H4-module algebra. In what follows, we denote x + 	h2
 ∈ B by x̄.

The map

ae1 + be2 + ch1 �→
[
a 0
c b

]
is an algebra isomorphism. Now, the action of H4 on B is as follows:

� e1 e2 h1

e1 e1 e2 0
e2 0 0 h1

h1 h1 −h1 0
h2 0 0 0
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2878 ALVES AND BATISTA

The subspace A = 	e1
 is a right ideal with unity in B. Hence, we have a partial
action on A induced by the action on B. This partial action is given by

e1 · e1 = e1� e2 · e1 = h1 · e1 = h2 · e1 = 0�

Once again, it is easy to see that this partial action is in fact total. This
happens because the subspace J = 	e2� h1� h2
 is an ideal of H4, and hence an
H4-submodule of H4 by the left adjoint action; therefore, H4/J is an H4-module
algebra. Since H4 =	e1
 ⊕ J as a vector space, the projection of H4 onto H4/J
induces an isomorphism of H-module algebras A  H4/J . If one looks at the action
of H4 on A, one gets the same table as for the partial action of H4 on H4/J (via the
natural identification of e1 + J with e1 + 	h2
).

A truly partial action is obtained from the left action of �kG�∗ on kG.
We recall that H∗ is a Hopf algebra when dimH is finite, and H∗ acts on H on the
left by h∗ ⇀ h =∑

h∗�h�2��h�1�. Let G be a finite group, kG the group algebra, and
let �kG�∗ act on kG in this manner. If N is a normal subgroup of G, then

eN = 1
�N �

∑
n∈N

n

is a central idempotent of kG. Let A be the ideal eNkG (which is a unital algebra
with 1A = eN ), and let 	∗ = �pg g ∈ G� ⊂ �kG�∗ be the dual basis of the canonical
basis of kG. Given x ∈ G and pg ∈ 	∗,

pg ⇀ �eNx� =
∑
h∈G

�pgh−1 ⇀ eN��ph ⇀ x�

= ∑
h∈G

�pgh−1 ⇀ eN�ph�x�x

= �pgx−1 ⇀ eN�x

= 1
�N �

∑
n∈N

pgx−1�n�nx�

which is equal to �1/�N ��g if gx−1 ∈ N , and is zero otherwise. Hence, if gx−1 ∈ N ,

pg · �eNx� = eN �pg ⇀ eNx� = �1/�N ��eNg = �1/�N ��eNx

and pg · �eNx� = 0 otherwise. Therefore, if x1� � � � � xm is a complete set of
representatives modulo N , then the matrix �aij� of pg with respect to the basis
	N = �eNx1� � � � � eNxm� of A is a diagonal matrix with all entries but one equal to
zero, and this nonzero entry is aii = 1/�N �, where gx−1

i ∈ N . In particular, pg · eN �=

�pg�eN when g ∈ N , and this is a properly partial action.

We shall prove now that every partial action is induced.

2.3. Enveloping Actions

In the context of partial group actions, a natural question arises: under which
conditions can a partial action of a group G on an algebra A be obtained, up to
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ENVELOPING ACTIONS FOR PARTIAL HOPF ACTIONS 2879

equivalence, from a suitable restriction of a group action of G on an algebra B?
In other words, given a partial action � = ���g�g∈G�Dg�g∈G� of G on A, we want
to extend the isomorphisms �g � Dg−1 → Dg to automorphisms 	g � B → B of an
algebra B, such that A is a subalgebra of B (in fact, an ideal) and such that this
extension is the smallest possible (more precisely, we impose that B = ∪g∈G	g�A�).
In this case, the partial action is said to be an admissible restriction. We say that an
action 	 of G on B is an enveloping action of a partial action � of G on A if � is
equivalent to an admissible restriction of 	 to an ideal of B.

In the context of partial group actions, it is proved that a partial action � of a
group G on a unital algebra A admits an enveloping action if, and only if, each of
the ideals Dg � A is a unital algebra. Moreover, if it exists, this enveloping algebra
is unique up to equivalence (see [7, Theorem 4.5]). This is the result we generalize
here in the context of partial actions of Hopf algebras.

Definition 1. Let A and B be two partial H-module algebras. We will say that
a morphism of algebras � � A → B is a morphism of partial H-module algebras if
��h · a� = h · ��a� for all h ∈ H and all a ∈ A. If � is an isomorphism, we say that
the partial actions are equivalent.

Definition 2. Let B be an H-module algebra, and let A be a right ideal of B with
unity 1A. We will say that the induced partial action on A is admissible if B=H � A.

Definition 3. Let A be a partial H-module algebra. An enveloping action for A is
a pair �B� ��, where

(1) B is a (not necessarily unital) H-module algebra;
(2) The map � � A → B is a monomorphism of algebras;
(3) The sub-algebra ��A� is a right ideal in B;
(4) The partial action on A is equivalent to the induced partial action on ��A�;
(5) The induced partial action on ��A� is admissible.

We will show now that every partial H-action has an enveloping action. In [7],
the authors consider the algebra � �G�A� of functions from G to A. Since there is a
canonical algebra isomorphism from � �G�A� into Homk�kG�A�, it is reasonable to
consider, in the Hopf case, the algebra Homk�H�A� in place of � �G�A�. We remind
the reader that the product in Homk�H�A� is the convolution product �f ∗ g��h� =∑

f�h�1��g�h�2��, and that H acts on this algebra on the left by

�h � f��k� = f�kh��

where h� k ∈ H and f ∈ Homk�H�A�.

Lemma 1. Let � � A → Homk�H�A� be the map given by ��a��k� = k · a.
(i) � is a linear injective map and an algebra morphism.
(ii) If h ∈ H and a ∈ A then ��1A� ∗ �h � ��a�� = ��h · a��.
(iii) If h ∈ H and a� b ∈ A then ��b� ∗ �h � ��a�� = ��b�h · a��.
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2880 ALVES AND BATISTA

Proof. It is easy to see that � is linear, because the partial action is bilinear; since
��a��1H� = 1H · a = a, it follows that it is also injective. Take a� b ∈ A and h ∈ H ,
then we have

��ab��h� = h · �ab� =∑
�h�1� · a��h�2� · b�

= ∑
��a��h�1����b��h�2�� = ��a� ∗ ��b��h��

for all h ∈ H . Therefore � is multiplicative.
For the third claim, let h� k ∈ H and a� b ∈ A; then

��b�h · a���k� = k · �b�h · a�� =∑
�k�1� · b��k�2� · �h · a��

= ∑
�k�1� · b��k�2� · 1A��k�3�h · a�

= ∑
�k�1� · b��k�2�h · a�

= ∑
��b��k�1����a��k�2�h�

= ∑
��b��k�1���h � ��a���k�2��

= ��b� ∗ �h � ��a���k��

∀k ∈ H . Therefore, ��h · a� = ��1A��h � ��a��. The second item follows from this
one, if we put b = 1A. �

This result suggests that the partial action on A is equivalent to an induced
action on ��A�, but ��A� must also be a right ideal of an H-module algebra; while
this may not hold in Homk�H�A�, it will be true in a certain subalgebra.

Lemma 2. Let B be an H-module algebra, x� y ∈ B and h� k ∈ H . Then:

(i) �h � x�y =∑
h�1� � �x�S�h�2�� � y��;

(ii) �h � x��k � y� =∑
h�1� � �x�S�h�2��k� � y��.

A proof of (i) can be found in [5, Lemma 6.1.3] and (ii) is a straightforward
consequence of (i).

Proposition 3. Let � � A → Homk�H�A� be as above and consider the H-submodule
B = H � ��A�.

(i) B is an H-module subalgebra of Homk�H�A�.
(ii) ��A� is a right ideal in B with unity ��1A�.

Proof. (i) Clearly, B is a H-submodule of Homk�H�A�. Now, given h � ��a� and
k � ��b� ∈ H � ��A�, we have

�h � ��a���k � ��b�� = ∑
h�1� � ���a��S�h�2��k� � ��b��

= ∑
h�1� � ��a�S�h�2��k� · b��

and this shows that B is also a subalgebra.
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(ii) This follows by Lemma 1, since ��b� ∗ �h � ��a�� = ��b�h · a��. �

Lemmas 1, 2 and Proposition 3 prove the existence of enveloping actions.

Theorem 1. Let A be a partial H-module algebra and let � � A → Homk�H�A� be
the map given by ��a��h� = h · a, and let B = H � ��A�; then �B� �� is an enveloping
action of A.

We will call �B� �� the standard enveloping action of A.
A special case which will be useful for further results is the case when ��A� is

a bilateral ideal of B. When this occurs, the element ��1A� becomes automatically a
central idempotent in B, and we have also the following result.

Proposition 4. Let A be a partial H module algebra, and let � � A → Homk�H�A�
and B = H � ��A� be as before. Then ��A� � B if and only if

h · �k · a� =∑
�h�1�k · a��h�2� · 1A�� ∀a ∈ A� ∀h� k ∈ H�

Proof. Suppose that ��A� is an ideal of B. We already know that ∀k ∈ H and
∀a∈A, we have

��k · a� = ��1A� ∗ �k � ��a�� = �k � ��a�� ∗ ��1A��

Then, these two functions coincide for all h ∈ H

��k · a��h� = �k � ��a�� ∗ ��1A��h��

The left-hand side of the previous equality leads to

��k · a��h� = h · �k · a�� (2)

While the right-hand side gives

�k � ��a�� ∗ ��1A��h� =
∑

�k � ��a���h�1�� ∗ ��1A��h�2��

= ∑
��a��h�1�k���1A��h�2��

= ∑
�h�1�k · a��h�2� · 1A�� (3)

Combining the expressions (2) with (3), we have the result.
Conversely, suppose that h · �k · a� =∑

�h�1�k · a��h�2� · 1A� holds for all a ∈ A
and h� k ∈ H . Equations (2) and (3) show that

��1A��k � ��a�� = �k � ��a����1A�

for every a ∈ A and k ∈ H , i.e., ��1A� is a central idempotent in B; therefore, ��A� =
��1A�B is an ideal in B. �
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In [7] the authors proved the uniqueness of the enveloping action for a partial
action of a group on a unital algebra A. In this case, we have seen that the existence
of an enveloping action depends on the fact that every ideal Dg is endowed with an
unity 1g. The idea to prove the uniqueness is to suppose that there exist two algebras
B and B′ with actions 	 and 	′ of the group G, respectively, and embeddings � �

A → B and �′ � A → B′ such that the partial action of G on A is equivalent to
an admissible restriction of both 	 and 	′. Then one defines a map � � B′ → B by
��	′

g��
′�a��� = 	g���a��. The main difficulty in this theorem is to prove that this

map � is well defined as a linear map. This is achieved by two results: first, for each
g ∈ G the subspace 	g���A�� is an ideal with unity in B (the same occuring in B′),
and second, the sum of a finite number of ideals with unity is also an ideal with
unity.

In the Hopf algebra context, the situation is a bit different. Consider a Hopf
algebra H acting partially on a unital algebra A, and let �B� �� be an enveloping
action. By definition of enveloping action, ��A� must be a right ideal of B but, unless
h ∈ H is a grouplike element, it is no longer true that the subspaces h � ��A� are
right ideals of B; neither is it true that the elements h � ��1A� behave as some kind
of unity.

In fact, a simple example shows that one does not have uniqueness of the
enveloping action unless stronger conditions have been assumed. Let us recall the
partial action obtained from the adjoint action of the Sweedler Hopf algebra H4

on itself. The partial action is constructed when we reduce to the quotient algebra
B = H4/	h2
 and take the residual action restricted to the right ideal A = 	e1
.
One enveloping action is given by �B� i�, where B = H4 � A and i � A → B is the
inclusion. Note that H4 � A = 	e1� h1
, which is isomorphic to the algebra[

k 0
k 0

]
�

Hence, B = 	e1� h1
 is an enveloping algebra of A. Nevertheless, the induced action
on A is total, as we have seen, and hence �A� IdA� is a “smaller” enveloping action.

In order to clarify these matters we are going to relate each enveloping action
of A with the standard enveloping action �B� �� given in Theorem 1. Suppose that
�B′� �� is an enveloping action for A. Define the map � � B′ → Homk�H�A� by

�

( n∑
i=1

hi � ��ai�

)
=

n∑
i=1

hi � ��ai��

where � � H → A and the H-action on Homk�H�A� are the same as before.

Theorem 2. If �B′� �� is an enveloping action of A, then the map � is an H-module
algebra morphism onto B = H � ��A�.

Proof. First we have to check that � is well defined as linear map. In order to
do this, it is enough to prove that if

∑n
i=1 hi � ��ai� = 0, then

∑n
i=1 hi � ��ai� = 0.
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So, suppose that x =∑n
i=1 hi � ��ai� = 0; then, for all k ∈ H ,

0 = ��1A��k � x� = ��1A�
n∑

i=1

khi � ��ai� =
n∑

i=1

khi · ��ai� = �

( n∑
i=1

khi · ai

)
and, since � is injective, it follows that

n∑
i=1

khi · ai = 0

for all k ∈ H . Hence

��x��k� =
n∑

i=1

hi � ��ai��k� =
n∑

i=1

��ai��khi� =
n∑

i=1

khi · ai = 0

for all k ∈ H , which means that ��x� = 0 and that � is well defined.
� is linear by construction; we have to show that it is an algebra morphism.

Given h� k ∈ H and a� b ∈ A,

���h � ��a���k � ��b��� = �
(∑

h�1� � ���a��S�h�2��k � ��b���
)

= �
(∑

h�1� � ��a�S�h�2��k · b��
)

= ∑
h�1� � ��a�S�h�2��k · b��

= ∑
h�1� � ���a� ∗ �S�h�2��k � ��b���

= ∑
�h�1� � ��a�� ∗ �h�2� � �S�h�3��k � ��b���

= ∑
�h�1� � ��a�� ∗ �h�2�S�h�3��k � ��b��

= �h � ��a�� ∗ �k � ��b��

= ��h � ��a�� ∗��k � ��b���

The fact that � is a morphism of left H modules is easily obtained by the
definition of this map. And since

n∑
i=1

hi � ��ai� = �

( n∑
i=1

hi � ��ai�

)
�

� is a surjective map from B′ onto B = H � ��A�. �

Now, injectivity of � will follow only if whenever
∑n

i=1 khi · ai = 0 for all k ∈
H , then

∑n
i=1 hi � ��ai�. This motivates the following definition.

Definition 4. Let A be a partial H-module algebra. An enveloping action �B� �� of
A is minimal if, for every H-submodule M of B, ��1A�M = 0 implies M = 0.

This concept does not appear in the theory of partial group actions because, in
this case, every enveloping action is minimal. In fact, consider H = kG, B a H-module
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algebra, A a right ideal with unity in B such that B = kG � A. Suppose that
∑

i gi �
ai ∈ B satisfies

h �

(∑
i

gi � ai

)
=∑

i

hgi � ai = 0� ∀h ∈ G�

Let �h � b� ∈ B, with h ∈ G. Then, by Lemma 2

�h � b�

(∑
i

gi � ai

)
= h �

(
b

(∑
i

�h−1gi · ai�

))
= 0�

By the results of Exel and Dokuchaev [7], the ideal J = �g1 � A�+ · · · + �gn �
A� has a unity; since B�

∑
i gi � ai� = 0, we conclude that

∑
i gi � ai = 0.

On the other hand, in the case of the action of H4 on B = H4/	h2
, we had
A=	e1
, B = H4 � A = 	e1� h1
, and h1 = h1 � e1; then ��B� = ��A�, because
��h1� = h1 � ��e1� is the zero function. This shows that an enveloping action does
not need to be minimal. However, regardless of A or H , the standard enveloping
action is always minimal.

Lemma 3. Let � � A → Homk�H�A� be as above and consider the H-submodule
B=H � ��A�. Then, �B� �� is a minimal enveloping action of A.

Proof. It is enough to check that the minimality condition holds for cyclic
submodules. Let M = H � �

∑n
i=1 hi � ��ai��, and suppose that ��1A� ∗M = 0.

This means that

0 = ��1A� ∗
( n∑

i=1

khi � ��ai�

)
=

n∑
i=1

��khi · ai� = �

( n∑
i=1

khi · ai

)
for each k ∈ H . Since � is injective,

∑n
i=1 khi · ai = 0 for every k ∈ H . But then

n∑
i=1

hi � ��ai��k� =
n∑

i=1

��ai��khi� =
n∑

i=1

��khi · ai� = 0

for each k ∈ H , and we conclude that
∑n

i=1 hi � ��ai� = 0. �

By Theorem 2 and Lemma 3, we conclude with the following theorem.

Theorem 3. Every partial H-module algebra has a minimal enveloping action, and
any two minimal enveloping actions of A are isomorphic as H-module algebras.
Moreover, if �B′� �� is an enveloping action, then there is a morphism of H-module
algebras of B′ onto a minimal enveloping action.

Proof. Since the standard enveloping action �B� �� is a minimal action and � �
B′ → Homk�H�A� is a H-module algebra isomorphism onto B, we just have to prove
that it is injective if �B′� �� is minimal. If ��

∑n
i=1 hi � ��ai�� = 0, then

n∑
i=1

hi � ��ai��k� =
n∑

i=1

khi · ai = 0
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for each k ∈ H , and hence 0 = ��
∑n

i=1 khi · ai� = ��1A��k � �
∑n

i=1 hi � ��ai��� for
every k ∈ H ; hence, ��1A�M = 0 for M = H � �

∑n
i=1 hi � ��ai�� = 0, implying that

M = 0 and hence that
∑n

i=1 hi � ��ai� = 0. �

3. A MORITA CONTEXT

In the reference [7], the authors showed that if a partial group action � of G on
a unital algebra A admits an enveloping action 	 of the same group on an algebra B,
then the partial crossed product A�� G is Morita equivalent to the crossed product
B �	 G. They proved this result by constructing a Morita context between these two
crossed products.

We recall that a Morita context is a six-tuple �R� S�M�N� �� �� where:

a) R and S are rings;
b) M is an R− S bimodule;
c) N is an S − R bimodule;
d) � � M ⊗S N → R is a bimodule morphism;
e) � � N ⊗R M → S is a bimodule morphism,

such that

��m1 ⊗ n�m2 = m1��n⊗m2�� ∀m1�m2 ∈ M� ∀n ∈ N� (4)

and

��n1 ⊗m�n2 = n1��m⊗ n2�� ∀m ∈ M� ∀n1� n2 ∈ N� (5)

It is well-known that if the morphisms � and � are surjective, then the
categories RMod and SMod are equivalent (in this case, one says that R and S are
Morita equivalent).

In the Hopf algebra case, we shall see that when a Hopf algebra H acts
partially on a unital algebra A and the enveloping action �B� �� is such that ��A�
is an ideal of B, then the partial smash product A#H is Morita equivalent to the
smash product B#H . Just remembering [4], the partial smash product is defined as
follows: A⊗H is a (possibly nonunital) algebra with the product

�a⊗ h��b ⊗ k� =∑
a�h�1� · b�⊗ h�2�k�

and the partial smash product is the unital subalgebra of A⊗H given by

A#H = �1A ⊗ 1H��A⊗H��1A ⊗ 1H�

= �A⊗H��1A ⊗ 1H��

that is, the subalgebra generated by elements of the form

x =∑
a�h�1� · 1A�⊗ h�2�� ∀a ∈ A� ∀h ∈ H�

Although the definition is quite different from that of the partial crossed product
A�� G, it can be proved that A�� G is isomorphic to A#kG.
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Our aim in this section is to construct a Morita context between the partial
smash product A#H and the smash product B#H , where B is an enveloping action
for the partial left action · � H ⊗ A → A. For this purpose, we will embed the partial
smash product into the smash product.

Lemma 4. If a Hopf algebra H acts partially on a unital algebra A and �B� �� is
an enveloping action, then there is an algebra monomorphism from the partial smash
product A#H into the smash product B#H .

Proof. Define first a map

�̃ � A×H → B#H�

�a� h� �→ ��a�#h

It is easy to see that �̃ is a bilinear map and then, by the universal property of the
tensor product A⊗H , �̃ induces the k-linear map

� � A⊗H → B#H�

a⊗ h �→ ��a�#h

Now, let us check that � is a morphism of algebras:

���a⊗ h��b ⊗ k� = �
(∑

a�h�1� · b�⊗ h�2�k
)

= ∑
��a�h�1� · b��#h�2�k

= ∑
��a��h�1� � ��b��#h�2�k

= ���a�#h����b�#k� = ��a⊗ h���b ⊗ k��

Next, we must verify that � is injective. For this, take

x =
n∑

i=1

ai ⊗ hi ∈ ker��

and, without loss of generality, choose �ai�
n
i=1 to be linearly independent. As � is

injective, we conclude that the elements ��ai� ∈ B are linearly independent. For each
f ∈ H∗, we have

n∑
i=1

��ai�f�hi� = 0�

and then, by the linear independence of ���ai��, we get f�hi� = 0, ∀f ∈ H∗.
Therefore, hi = 0 for i = 1� � � � � n, which implies that x = 0 and that � is injective.

As the partial smash product A#H is a subalgebra of A⊗H , then, it is
injectively mapped into B#H by �. A typical element of the image of the partial
smash product is

���a⊗ h��1A ⊗ 1H�� = ��a⊗ h���1A ⊗ 1H�
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= ���a�#h����1A�#1H�

= ∑
��a��h�1� � ��1A��#h�2�� �

Take M = ��A⊗H� = �
∑n

i=1 ��ai�#hi ai ∈ A� n ∈ ��, and take N as the
subspace of B#H generated by the elements

∑
�h�1� � ��a��#h�2�, with h ∈ H and

a ∈ A, i.e., N = �1A ⊗H���A⊗ 1�. We will take H as a Hopf algebra with invertible
antipode (which means that H is Co-Frobenius as a coalgebra, see for example [5,
Section 5.4]).

Proposition 5. Let H be a Hopf algebra with invertible antipode, A a partial
H-module algebra, and suppose that ��A� is an ideal of B; then M is a right B#H
module and N is a left B#H module.

Proof. In order to see that M is a right B#H module, let ��a�#h ∈ M and b#k ∈
B#H . Then

���a�#h��b#k� =∑
��a��h�1� � b�#h�2�k�

which lies in ��A⊗H� because ��A� is a right ideal in B.
Now, to prove that N is a left B#H module, let

∑
�h1 � ��a��#h2 be a

generator of N :

�b#k�
(∑

�h�1� � ��a��#h�2�

)
=∑

b�k�1�h�1� � ��a��#k�2�h�2�

=∑
b�
�k�1�h�1��k�2�h�2� � ��a��#k�3�h�3�

=∑
�
�k�1�h�1��1H � b��k�2�h�2� � ��a��#k�3�h�3�

=∑
��k�2�h�2�S

−1�k�1�h�1��� � b��k�3�h�3� � ��a��#k�4�h�4�

=∑
�k�2�h�2� � �S−1�k�1�h�1�� � b���k�3�h�3� � ��a��#k�4�h�4�

=∑
�k�2�h�2� � ��S−1�k�1�h�1�� � b���a���#k�3�h�3��

Each term �S−1�k�1�h�1�� � b���a� is in ��A� because ��A� is an ideal of B. It follows
that N is a left B#H ideal. �

We can define a left A#H module structure on M and a right A#H module
structure on N induced by the monomorphism �, that is,(∑

a�h�1� · 1A�⊗ h�2�

)
� ���b�#k� =

(∑
��a��h�1� � ��1A��#h�2�

)
���b�#k��

and (∑
k�1� � ��b�#k�2�

)
�

(∑
a�h�1� · 1A�⊗ h�2�

)
=
(∑

k�1� � ��b�#k�2�
)(∑

��a��h�1� � ��1A��#h�2�

)
�
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Proposition 6. Under the same hypotheses of the previous proposition, M is indeed a
left A#H module with the map �, and N is indeed a right A#H module with the map �.

Proof. Let us first verify that A#H � M ⊆ M .(∑
a�h�1� · 1A�⊗ h�2�

)
� ���b�#k� =

(∑
��a��h�1� � ��1A��#h�2�

)
���b�#k�

= ∑
��a��h�1� · ��1A���h�2� � ��b��#h�3�k

= ∑
��a��h�1� · ��1A���h�2� · ��b��#h�3�k

= ∑
��a��h�1� · ��1A���b��#h�2�k

= ∑
��a��h�1� · ��b��#h�2�k�

which lies inside M because ��A� is a right ideal of B.
Now, we have to verify that N � A#H ⊆ N :(∑

k�1� � ��b�#k�2�
)
�

(∑
a�h�1� · 1A�⊗ h�2�

)
=
(∑

k�1� � ��b�#k�2�
)(∑

��a��h�1� � ��1A��#h�2�

)
=∑

�k�1� � ��b���k�2� � ���a��h�1� � ��1A���#k�3�h�2�

=∑
�k�1� � ��b���k�2� � ��a���k�3� � �h�1� � ��1A���#k�4�h�2�

=∑
�k�1� � ��ba���k�2�h�1� � ��1A��#k�3�h�2�

=∑
�k�1�
�h�1�� � ��ba���k�2�h�2� � ��1A��#k�3�h�3�

=∑
�k�1�h�2�S

−1�h�1�� � ��ba���k�2�h�3� � ��1A��#k�3�h�4�

=∑
�k�1�h�2� � �S−1�h�1�� � ��ba����k�2�h�3� � ��1A��#k�3�h�4�

=∑
k�1�h�2� � ��S−1�h�1�� � ��ba����1A��#k�2�h�3�

=∑
k�1�h�2� � ��S−1�h�1�� · �ba��#k�2�h�3�

=∑
�kh�2���1� � ��S−1�h�1�� · �ba��#�kh�2���2��

where in the last two lines we used the fact that

��t · x� = ��1A��t � ��x�� = �t � ��x����1A��

which holds because ��1A� is a central idempotent. �

The last ingredient for a Morita context is the definition of two bimodule
morphisms

� � M ⊗B#H N → A#H  ��A#H� ⊆ B#H
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ENVELOPING ACTIONS FOR PARTIAL HOPF ACTIONS 2889

and

� � N ⊗A#H M → B#H�

As M , N , and A#H are viewed as subalgebras of B#H , these two maps can be taken
as the usual multiplication on B#H . The associativity of the product assures us
that these maps are bimodule morphisms and satisfy the associativity conditions (4)
and (5). The following theorem shows us that the maps � and � are indeed well
defined, and furthermore, that they are surjective, proving the Morita equivalence
between these two smash products.

Theorem 4. Let H be a Hopf algebra with invertible antipode, A a partial H-module
algebra, �B� �� a unital enveloping action, and suppose that ��A� is an ideal of B; let M
and N be the bimodules defined above. Then �A#H�B#H�M�N� �� �� is a strict Morita
context.

Proof. We have already shown that �A#H�B#H�M�N� �� �� is a Morita context.
We still have to show that � and � are surjective, or, equivalently, MN = ��A#H�
and NM = B#H . Let us see first that MN ⊆ ��A#H�:

���a�#h�
(∑

�k�1� � ��b��#k�2�
)

=∑
��a�h�1� � �k�1� � ��b��#h�2�k�2�

=∑
��a��h�1�k�1� � ��b��#h�2�k�2�

=∑
��a��h�1�k�1� � ��b���h�2�k�2� � ��1A��#h�3�k�3�

=∑
��a�h�1�k�1� · b����h�2�k�2���1� � ��1A��#�h�2�k�2���2��

which is an element of ��A#H�.
Since ∑

��a��h�1� � ��1A��#h�2� = ���a�#h����1A�#1H�

and ��1A�#1H ∈ N , it follows that MN = ��A#H�.
In order to prove NM = B#H , we just have to show that every element of the

form �h � ��a��#k is in NM , because this is a generating set for B#H as a vector
space. We claim that

�h � ��a��#k =∑
��h�1� � ��a��#h�2�����1A�#S�h�3��k��

This can be easily seen as follows:∑
��h�1� � ��a��#h�2�����1A�#S�h�3��k

=∑
��h�1� � ��a���h�2� � ��1A��#h�3�S�h�4��k

=∑
��h�1� � ��a���1A��#
�h�2��k
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2890 ALVES AND BATISTA

=
((∑

h�1�
�h�2��
)
� ��a�

)
#k

= �h � ��a��#k�

Therefore, NM = B#H . �

In conclusion, we have constructed a Morita context for the two smash
products and proved that this Morita context gives us a Morita equivalence between
these two algebras.

4. ENVELOPING COACTIONS

Following [4], we define a partial right coaction of a Hopf algebra H on a
algebra A to be a linear map �̄ � A → A⊗H such that

1) �̄�ab� = �̄�a��̄�b�� ∀a� b ∈ A�

2) �I ⊗ 
��̄�a� = a� ∀a ∈ A�

3) ��̄⊗ I��̄�a� = ��̄�1A�⊗ 1H���I ⊗ ���̄�a��� ∀a ∈ A� (6)

We will denote

�̄�a� =∑
a�0� ⊗ a�1��

Note that, in this notation, we can rewrite the items 1), 2), and 3) of (6) as

1)
∑

�ab��0� ⊗ �ab��1� = a�0�b�0� ⊗ a�1�b�1�,

2)
∑

a�0�
�a�1�� = a,

3)
∑

a�0��0� ⊗ a�0��1� ⊗ a�1� =∑
1�0�A a�0� ⊗ 1�1�A a�1�

�1� ⊗ a�1�
�2�.

The simplest example of a partial coaction can be given as a restriction of a
coaction of H on a right H comodule algebra B.

Proposition 7. Let B be a right H-comodule algebra with coaction � � B → B ⊗H .
If A is a right ideal of B with a unity 1A, then the map

�̄�a� = �1A ⊗ 1H���a� =
∑

1Aa
�0� ⊗ a�1�

defines a partial right coaction of H on A.

Proof. For the first item of (6) we have, for all a ∈ A,

�̄�ab� = �1A ⊗ 1H����ab�� = �1A ⊗ 1H����a���b��

=
(∑

1Aa
�0� ⊗ a�1�

)(∑
b�0� ⊗ b�1�

)
= ∑

1Aa
�0�b�0� ⊗ a�1�b�1�
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ENVELOPING ACTIONS FOR PARTIAL HOPF ACTIONS 2891

= ∑
1Aa

�0�1Ab
�0� ⊗ a�1�b�1�

=
(∑

1Aa
�0� ⊗ a�1�

)(∑
1Ab

�0� ⊗ b�1�
)

= �̄�a��̄�b��

where we used 1Ab = 1Ab1A ∈ A in the fourth line.
Item 2) is easily established for every a ∈ A,

�I ⊗ 
��̄�a� =∑
1Aa

�0�
�a�1�� = 1Aa = a�

Finally, checking item 3), we have

��̄⊗ I��̄�a� = ∑
�1A ⊗ 1H ⊗ I���⊗ I��1A ⊗ 1H��a

�0� ⊗ a�1��

= ∑
�1A ⊗ 1H ⊗ 1H���1Aa�

�0� ⊗ �1Aa�
�1� ⊗ a�2��

= ∑
�1A ⊗ 1H ⊗ 1H��1

�0�
A a�0��0� ⊗ 1�1�A a�0��1� ⊗ a�1��

= �1A ⊗ 1H ⊗ 1H����1A�⊗ 1H����⊗ I�
(∑

a�0� ⊗ a�1��
)

= �1A1
�0�
A 1A ⊗ 1�1�A 1H ⊗ 1H���I ⊗ ��

(∑
a�0� ⊗ a�1��

)
= �1A ⊗ 1H ⊗ 1H����1A�⊗ 1H���I ⊗ ����1A ⊗ 1H���a���

= ��̄�1A�⊗ I��I ⊗ ���̄�a��

Therefore, �̄ is a partial coaction. �

In [12] the author proved that if a finite dimensional Hopf algebra H acts
partially on a unital algebra A, then there exists a partial coaction of the dual Hopf
algebra H∗ on A by the coaction

�̄�a� =
n∑

i=1

�bi · a�⊗ pi�

where �bi�i=1�����n is a basis for H and �pi�i=1�����n is its dual basis in H∗. In fact, one
can push forward this result to a more general context. We recall the definition of
a pairing of Hopf algebras.

Definition 5. A pairing between two Hopf algebras H1 and H2 is a linear map

	� 
 � H1 ⊗H2 → k

h⊗ f �→ 	h� f

such that:

(i) 	hk� f
 = 	h⊗ k���f�
;
(ii) 	h� fg
 = 	��h�� f ⊗ g
;
(iii) 	h� 1H2


 = 
�h�;
(iv) 	1H1

� f
 = 
�f�.
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2892 ALVES AND BATISTA

A pairing is said to be nondegenerate if the following conditions hold:

(1) If 	h� f
 = 0, ∀f ∈ H2 then h = 0;
(2) If 	h� f
 = 0, ∀h ∈ H1 then f = 0.

Let H1 and H2 be two Hopf algebras dually paired with a nondegenerate
pairing, and suppose also that H1 acts partially on an algebra A in such a way that
for all a ∈ A the subspace H1 · a has finite dimension (this is a requirement that is
analogous to the case of rational modules). Then we have the following result.

Theorem 5. Let H1 and H2 be two Hopf algebras dually paired with a nondegenerate
pairing, and suppose that H1 acts partially on an algebra A in such a manner that
dim�H1 · a� < � for all a ∈ A. Then H2 coacts partially on A with a coaction �̄ � A →
A⊗H2 defined by

�I ⊗ h��̄�a� = h · a� ∀h ∈ H1�

where I ⊗ h � A⊗H2 → A is given by

�I ⊗ h�

( n∑
i=1

ai ⊗ fi

)
=

n∑
i=1

ai	h� fi
�

Proof. The condition that dim�H1 · a� < �, ∀a ∈ A, implies that given a ∈ A, there
exist elements a1� � � � � an ∈ A and �1� � � � � �n ∈ H∗

1 such that

h · a =
n∑

i=1

�i�h�ai�

where we may choose the elements ai linearly independent. The map Ta � H → A,
given by Ta�h� = h · a, has a kernel of codimension n, and there is an n-dimensional
subspace Va of H1 such that H1 = Va ⊕ ker�Ta�. Choose a basis �h1� � � � � hn� of
Va such that Ta�hi� = ai for each i; since the pairing is nondegenerate, there are
f1� � � � � fn ∈ H2 such that 	hi� fj
 = �i�j . It follows that for all h ∈ H1, we have

h · a =
n∑

i=1

	h� fi
ai�

Define then �̄ � A → A⊗H2 as

�̄�a� =
n∑

i=1

ai ⊗ fi�

For each h ∈ H1,

�I ⊗ h��̄�a� =
n∑

i=1

ai	h� fi
 = h · a�
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We have to verify itens 1), 2), and 3) of (6). For the first item, let a� b ∈ A
such that

�̄�a� =
n∑

i=1

ai ⊗ fi� �̄�b� =
m∑
j=1

bj ⊗ gj�

Then, for every h ∈ H1, we have

�I ⊗ h��̄�ab� = h · �ab� =∑
�h�1� · a��h�2� · b�

= ∑
�h�

( n∑
i=1

ai	h�1�� fi

)( m∑

j=1

bj	h�2�� gj

)

= ∑
�h�

n∑
i=1

m∑
j=1

aibj	h�1�� fi
	h�2�� gj


=
n∑

i=1

m∑
j=1

aibj	h� figj


= �I ⊗ h�
n∑

i=1

m∑
j=1

aibj ⊗ figj

= �I ⊗ h��̄�a��̄�b��

As this equality is true for all h ∈ H1 and the pairing is nondegenerate, then we can
conclude that

�̄�ab� = �̄�a��̄�b��

For the second item, we use the equality involving the pairing


�f� = 	1H1
� f
�

then, ∀a ∈ A,

�I ⊗ 
��̄�a� =
n∑

i=1

ai	1H1
� fi
 = 1H1

· a = a�

Finally, for item 3), given any h� k ∈ H1, we have

�I ⊗ h⊗ k���̄⊗ I��̄�a� = �I ⊗ h⊗ k�
n∑

i=1

�̄�ai�⊗ fi

=
n∑

i=1

�I ⊗ h��̄�ai�	k� fi


=
n∑

i=1

�h · ai�	k� fi
 = h ·
( n∑

i=1

ai	k� fi

)
= h · �k · a�
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= ∑
�h�1� · 1A��h�2�k · a�

= ∑
��I ⊗ h�1���̄�1A����I ⊗ h�2�k��̄�a��

= ∑
��I ⊗ h�1���̄�1A��

(
n∑

i=1

ai	h�2�k� fi

)

= ∑
��I ⊗ h�1���̄�1A��

(
n∑

i=1

ai

(∑	h�2�� fi�1�
	k� fi�2�

))

= �I ⊗ k�
(∑

��I ⊗ h�1� ⊗ I���̄�1A�⊗ 1H1
��
)

×
(

n∑
i=1

ai

(∑	h�2�� fi�1�
 ⊗ fi�2�

))
� (7)

If we write �̄�1A� =
∑p

j=1 ej ⊗ �j , then the last equality in (7) reads

�I ⊗ k�
(∑

��I ⊗ h�1� ⊗ I���̄�1A�⊗ 1H1
��
)( n∑

i=1

ai

(∑	h�2�� fi�1�
 ⊗ fi�2�

))

= �I ⊗ k�

(∑
�I ⊗ h�1� ⊗ I�

( p∑
j=1

ej ⊗ �j ⊗ 1H1

))( n∑
i=1

ai

(∑	h�2�� fi�1�
 ⊗ fi�2�

))

= �I ⊗ k�

(∑( p∑
j=1

ej	h�1�� �j
 ⊗ 1H1

))( n∑
i=1

ai

(∑	h�2�� fi�1�
 ⊗ fi�2�

))

= �I ⊗ k�

(
p∑

j=1

n∑
i=1

ejai

∑	h�1�� �j
	h�2�� fi�1�
 ⊗ fi�2�

)

= �I ⊗ k�

(
p∑

j=1

n∑
i=1

ejai

∑	h� �jfi�1�
 ⊗ fi�2�

)

= �I ⊗ k��I ⊗ h⊗ I�

(
p∑

j=1

n∑
i=1

ejai ⊗
(∑

�jfi�1� ⊗ fi�2�

))

= �I ⊗ h⊗ k�

( p∑
j=1

ej ⊗ �j ⊗ 1H1

)( n∑
i=1

ai ⊗ ��fi�

)
= �I ⊗ h⊗ k���̄�1A�⊗ 1H1

���I ⊗ ���̄�a���

As this equality is valid for every h� k ∈ H1, and because of the nondegeneracy of
the pairing, we conclude that

��̄⊗ I��̄�a� = ��̄�1A�⊗ 1H1
���I ⊗ ���̄�a���

∀a ∈ A.
Therefore, the map �̄ is indeed a partial coaction. �
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A special case is when we consider the finite dual of a Hopf algebra H ,

H� = �f ∈ H∗�∃I � H� f�I� = 0� dimH/I < ���

We say that H� separates points in H if the following condition holds:

f�h� = 0� ∀h ∈ H ⇒ f = 0�

In a similar manner, we say that H� is dense in H∗ if the following condition holds:

f�h� = 0� ∀f ∈ H� ⇒ h = 0�

These two conditions allow us to define a nondegenerate pairing between H and H�,
and therefore, by the previous theorem, we have the following result.

Corollary 1. Let H be a Hopf algebra which acts partially on a unital algebra A such
that for each a ∈ A the subspace H · a ⊆ A is finite dimensional. If the finite dual H� of
H separates points in H and is dense in H∗, then there is a partial coaction of H� on
A given by

�I ⊗ h��̄�a� = h · a� ∀a ∈ A� ∀h ∈ H�

Conversely, suppose that a Hopf algebra H1 coacts partially on a unital
algebra A. Suppose also that there exists a pairing (not necessarilly nondegenerate)
between the Hopf algebras H1 and H2. Then we define a map

· � H2 × A → A

�f� a� �→ ∑
a�0�	a�1�� f
�

where �̄�a� =∑
a�0� ⊗ a�0� is the expression of the partial coaction of H1 on A. It is

easy to see that this map is bilinear; by the universal property of the tensor product,
we can define a linear map

· � H2 ⊗ A → A

f ⊗ a �→ ∑
a�0�	a�1�� f
�

Proposition 8. The map · defined above is indeed a partial action of H2 on A.

Proof. Let f ∈ H2 and a� b ∈ A, then

f · �ab� = ∑
�ab��0�	�ab��1�� f


= ∑
a�0�b�0�	a�1�b�1�� f


=
(∑

a�0�	a�1�� f�1�

)(∑

b�0�	b�1�� f�2�

)

= ∑
�f�1� · a��f�2� · b��
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Now, let a ∈ A, we have

1H2
· a = ∑

a�0�	a�1�� 1H2



= ∑
a�0�
�a�1�� = a�

Finally, for each f� g ∈ H2 and a ∈ A, and writing �̄�1A� =
∑

1�0� ⊗ 1�1�,
we have

f · �g · a� = f ·
(∑

a�0�	a�1�� g

)

= ∑
a�0��0�	a�0��1�� f
	a�1�� g


= ∑
1�0�a�0�	1�1�a�1�

�1�� f
	a�1�
�2�� g


= ∑
1�0�a�0�	1�1�� f�1�
	a�1�

�1�� f�2�
	a�1�
�2�� g


=
(∑

1�0�	1�1�� f�1�

)(∑

a�0�	a�1�� f�2�g

)

= ∑
�f�1� · 1A���f�2�g� · a��

These three properties show that · is in fact a partial action of H2 on A. �

A natural question is whether it is possible or not to define an enveloping
coaction for a partial coaction of a Hopf algebra H on a unital algebra A. The basic
idea is to use the previous proposition to define a partial action of the finite dual H�

of the Hopf algebra H on A, then take an enveloping action �B� �� of this action,
and finally, considering the case when H� separates points, to analyse if dim�H� �
��a�� < �, ∀a ∈ A (i.e., if B is a rational left H� module); if this holds, one defines
back a coaction � � B → B ⊗H by the equation

�I ⊗ f���b� = f � b� ∀f ∈ H� ∀b ∈ B�

Proposition 9. Let H be a Hopf algebra such that its finite dual H� is dense and
separates points. Suppose that H coacts partially on a unital algebra A with coaction
�̄ and an enveloping action, �B� ��, of the partial action of H� on A is a rational left
H� module. Then the map � � A → B intertwins the partial coaction of H on A and the
induced partial coaction of H on B given by

�̃�b� = ���1A�⊗ 1H���b�� ∀b ∈ B�

Proof. We have to show that ��⊗ I� � �̄ = �̃ � �. Take a ∈ A and f ∈ H�, then

�I ⊗ f���⊗ I��̄�a� = �I ⊗ f�
(∑

��a�0��⊗ a�1�
)

= ∑
��a�0��	a�1�� f


= �
(∑

a�0�	a�1�� f

)

= ��f · a� = f · ��a�
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= ��1A��f � ��a�� = ��1A���I ⊗ f�����a���

= �I ⊗ f�����1A�⊗ 1H�����a���

= �I ⊗ f�̃����a���

As this identity holds for every f ∈ H� and H� separates points in H , then
��⊗ I��̄�a� = �̃���a��, ∀a ∈ A. Therefore, the map � intertwins these two partial
coactions. �

Certainly, the conditions on the existence of enveloping coactions are quite
restrictive but, at least, one class of examples can be given where this occurs, namely,
the finite dimensional Hopf algebras.

Proposition 10. A partial coaction of a finite dimensional Hopf algebra H on a unital
algebra A always admits an enveloping coaction.

Proof. Let �̄ � A → A⊗H be the coaction. As H is finite dimensional, its finite
dual H� is simply the dual vector space H∗. The condition that the finite dual
separate points is also automatically satisfied in finite dimension. Define the partial
action of H∗ on A by

f · a = �I ⊗ f��̄�a��

As it came from a partial coaction, it is easy to see that dim�H∗ · a� < �, ∀a ∈ A.
Choose a basis �ai�

n
i=1 for the subspace H∗ · a. Then we can prove that there are

elements hi ∈ H for i = 1� � � � � n such that

f · a =
n∑

i=1

	hi� f
ai�

Let �B� �� be the standard enveloping action for this partial action on A
(remember that B ⊆ Homk�H

∗� A�). Now, we have to verify whether the subspace
H∗ � ��a� ⊆ B is finite dimensional. Take f� g ∈ H∗, then

�f � ��a���g� = ��a��gf� = gf · a

=
n∑

i=1

	hi� gf
ai

=
n∑

i=1

	f ⇀ hi� g
ai�

Then, for each f ∈ H∗, we can see that

f � ��a� ∈ Homk�H
∗� span�ai � i = 1� � � � � n�� 

n⊕
i=1

H�

As the space
⊕n

i=1 H is finite dimensional, then H � ��a� is also finite dimensional.
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Therefore, B is a rational left H∗ module, which allows to define a coaction of
H on B. �

5. PARTIAL REPRESENTATIONS

Partial representations of groups were first introduced by Exel in [10] and
became a powerful tool to investigate the action of semigroups on algebras.
A partial representation of a group G is a map � � G → A on a unital algebra A
such that

1) ��e� = 1A�

2) ��g���h���h−1� = ��gh���h−1�� ∀g� h ∈ G�

3) ��g−1���g���h� = ��g−1���gh�� ∀g� h ∈ G� (8)

In the reference [7], the authors showed that partial actions and partial
representations of a group are intimately related. By one hand, if we have a partial
action of G on a unital algebra A such that each ideal Dg has unit 1g, then there
is a partial representation of the group G on the partial crossed product A�� G
given by

��g� = 1g�g�

On the other hand, if there is a partial representation � � G → A, it is possible to
show that A is isomorphic to a partial crossed product �A�� G, where �A is an abelian
subalgebra of A generated by the elements of the form �g = ��g���g−1�, ∀g ∈ G and
the partial action is given as follows: the ideals Dg are Dg = �g

�A and �g � Dg−1 → Dg

given by �g�x� = ��g�x��g−1�, ∀x ∈ Dg−1 .

Proposition 11. Let � be a partial action of G on A such that every idempotent 1g is
central. Then the map � � G → Endk�A� given by

��g��a� = g · a = �g�a1g−1�

defines a partial representation of G.

Proof. It is easy to see that the first item of (8) holds, because for each a ∈ A

��e��a� = 1 · a = a�

Therefore, ��g� = I = 1Endk�A�. As we have shown in the beginning, if the
idempotents 1g = g · 1A are central, then k · �l · a� = �k · 1A��kl · a� = �kl · a��k · 1A�.
Hence,

��g−1���gh��a� = g−1 · �gh · a�
= �g−1 · 1A��h · a�
= �g−1 · 1A��g−1g · 1A��h · a�
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= �g−1 · �g · �h · a���
= ��g−1���g���h��a��

Since this occurs ∀a ∈ A, we conclude that ��g���h���h−1� = ��gh���h−1�.
In a similar manner,

��gh���h−1��a� = gh · �h−1 · a�
= �g · a��gh · 1A�
= �g · 1Aa��gh · 1A�
= �g · 1A��g · a��gh · 1A�
= �g · 1A��ghh−1 · a��gh · 1A�
= �g · 1A��gh · �h−1 · a��
= g · �h · �h−1a��

= ��g���h���h−1��a��

As this equality holds ∀a ∈ A then ��g−1���g���h��a� = ��g−1���gh��a�. Therefore,
� is a partial representation of G. �

Inspired in this previous example, let us try to define a partial representation
of a Hopf algebra H . In what follows, we assume that H is a Hopf algebra with
invertible antipode.

Proposition 12. Let H be a Hopf algebra, with invertible antipode, which acts
partially on a unital algebra A. Then the map

� � H → Endk�A��

h �→ ��h�

given by ��h��a� = h · a, satisfies:

��1H� = I�∑
��S−1�h�2�����h�1����k� =

∑
��S−1�h�2�����h�1�k��

Proof. The first identity is quite obvious. In order to prove the second equality,
take any element a ∈ A, then∑

��S−1�h�2�����h�1����k��a� =
∑

S−1�h�2�� · �h�1� · �k · a��
= ∑

�S−1�h�3�� · 1A��S−1�h�2��h�1� · �k · a��
= �S−1�h� · 1A��1H · �k · a��
= �S−1�h� · 1A��k · a��
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On the other hand, we have∑
��S−1�h�2�����h�1�k��a� =

∑
S−1�h�2�� · �h�1�k · a�

= ∑
�S−1�h�3�� · 1A��S−1�h�2��h�1�k · a�

= �S−1�h� · 1A��k · a�� �

With this result we can propose the following definition.

Definition 6. Let H be a Hopf algebra with invertible antipode. A partial
representation of H on a unital algebra B is a linear map

� � H → B�

h �→ ��h�

such that

1) ��1H� = 1B� (9)

2)
∑

��S−1�h�2�����h�1����k� =
∑

��S−1�h�2�����h�1�k��∀h� k ∈ H�

Unlike the group case, partial representations of Hopf algebras are not
symmetrical with relation to the left and right side. This is not totally unexpected,
since we are working with right ideals; we mention, however, that the situation does
not seem to improve much if one imposes that ��A� is an ideal in the enveloping
action �B� ��.

In the group case, it is known that if G acts partially on a unital algebra A
such that every Dg is unital, then there is a partial representation of G on the partial
crossed product. The same occurs with the partial smash product, that is, if H acts
partially on A, then there is a partial representation of H on A#H .

Theorem 6. Let H be a Hopf algebra with invertible antipode which acts partially on
a unital algebra A. Then the linear map

� � H → A#H�

h �→ ∑
�h�1� · 1A�⊗ h�2�

is a partial representation of H .

Proof. The first item in (9) can be easily derived, since

��1H� = �1H · 1A�⊗ 1H = 1A ⊗ 1H�

which is the unit in A#H .
For the second item in the definition, take h� k ∈ H , then∑

��S−1�h�2�����h�1����k�

=
(∑

�S−1�h�4�� · 1A�⊗ S−1�h�3��
)(∑

�h�1� · 1A�⊗ h�2�

)(∑
�k�1� · 1A�⊗ k�2�

)
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=
(∑

�S−1�h�5�� · 1A��S−1�h�4�� · �h�1� · 1A��⊗ S−1�h�3��h�2�

)(∑
�k�1� · 1A�⊗ k�2�

)
=
(∑

�S−1�h�3�� · 1A��S−1�h�2�� · �h�1� · 1A��⊗ 1H
)(∑

�k�1� · 1A�⊗ k�2�

)
=
(∑

�S−1�h�4�� · 1A��S−1�h�3�� · 1A��S−1�h�2��h�1� · 1A�⊗ 1H
)(∑

�k�1� · 1A�⊗ k�2�

)
= ��S−1�h� · 1A�⊗ 1H�

(∑
�k�1� · 1A�⊗ k�2�

)
=∑

�S−1�h� · 1A��k�1� · 1A�⊗ k�2��

On the other hand, we have∑
��S−1�h�2�����h�1�k�

=
(∑

�S−1�h�4�� · 1A�⊗ S−1�h�3��
)(∑

�h�1�k�1� · 1A�⊗ h�2�k�2�

)
=∑

�S−1�h�5�� · 1A��S−1�h�4�� · �h�1�k�1� · 1A��⊗ S−1�h�3��h�2�k�2�

=∑
�S−1�h�3�� · 1A��S−1�h�2�� · �h�1�k�1� · 1A��⊗ k�2�

=∑
�S−1�h�4�� · 1A���S−1�h�3�� · 1A��S−1�h�2��h�1�k�1� · 1A��⊗ k�2�

=∑
�S−1�h� · 1A��k�1� · 1A�⊗ k�2�� �
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