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Abstract. In this paper we employ the construction of the Dirac bracket for the remaining
current of sl(2)q deformed Kac–Moody algebra when constraints similar to those connecting
the sl(2)-Wess–Zumino–Witten model and the Liouville theory are imposed to show that it
satisfies theq-Virasoro algebra proposed by Frenkel and Reshetikhin. The crucial assumption
considered in our calculation is the existence of a classical Poisson bracket algebra induced
in a consistent manner by the correspondence principle, mapping the quantum generators into
commuting objects of classical nature preserving their algebra.

The Virasoro algebra and its extensions have been understood to provide the algebraic
structure underlying conformally invariant models which includes string theory and two-
dimensional (2D) statistical models on the lattice. On the other hand, quantum groups also
play an important role in the integrability properties of those models (see for instance [1–4]).
It thus seems natural to connect these two important subjects by constructing aq-deformed
version of the Virasoro algebra and its extensions. This may prove useful in establishing a
q-deformed string model in the line of [6, 7].

The construction ofq-deformed Virasoro algebra have been proposed using both
bosons and fermions [8]. However, a connection with the classical canonical structure
is still unclear. Frenkel and Reshetikhin [5] proposed aq-Virasoro algebra based on
the q-deformation of a Miura transformation involving classical Poisson brackets. The
Hamiltonian reduction provides a systematic procedure in constructing extensions of the
Virasoro algebra by adding to the spin 2, generators of higher spin. A typical example
of such a procedure connects the Wess–Zumino–Witten (WZW) model to the 2D Toda
field theories. The latter arises when a consistent set of constraints are implemented to the
Kac–Moody currents describing the WZW model associated to a Lie groupG [9] or to an
infinite-dimensional Kac–Moody group̂G [10].

A redefinition of the canonical Poisson brackets into Dirac brackets is required in order
for the equations of motion of the reduced model to be consistent with those obtained from
the remaining current algebra. Under the Dirac bracket the spin 1 generators corresponding
to the remaining currents become theWn generators of higher spin defined according to an
improved energy momentum tensor (see [9] for a review).
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For the q-deformed Kac–Moody algebras, although a canonical structure is still
unknown, their algebra is well established [13, 14] and can be constructed in terms of
non commuting objects (quantum fields) [11, 15].

In this paper we employ the construction of Dirac bracket for the remaining current of
sl(2)q deformed Kac–Moody algebra when constraints similar to those connecting thesl(2)
WZW model and the Liouville theory are imposed. The crucial assumption considered in
our calculation is the existence of a classical Poisson bracket algebra induced, in a consistent
manner by the correspondence principle, mapping the quantum generators into commuting
objects of classical nature preserving their algebra. We show that the remaining algebra
coincide with theq-Virasoro algebra proposed by Frenkel [5].

For q = 1, the classicalsl(2) Poisson bracket algebra derived from the WZW model
[12] is given in terms of formal power series by

{H(z),H(w)} = −ik
∑
n∈Z

n

(
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z

)n
(1)
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√
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∑
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(
w

z

)n
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wherek characterizes the central term. The corresponding conformal Toda model associated
to G = sl(2) (Liouville model) is obtained by constraining [9]

χ1 = H(z) ≈ 0 χ2 = E+(z)− 1≈ 0. (4)

The Dirac bracket is defined by

{A(z), B(w)}D = {A(z), B(w)}P −
∮ ∮

du

2π iu

dv

2π iv
{A(z), χi(u)}1−1

ij (u, v){χj (v), B(w)}
(5)

where1−1(x, y) is the inverse of the Dirac matrix1ij (x, y) = {χi(x), χj (y)} in the sense
that ∮

du

2π iu
1ij (z, u)1

−1
jk (u,w) = δik
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( z
w

)n
= δikδ

( z
w

)
. (6)

Under the Dirac bracket, the remaining currentE−(z) with k = 1 leads to the Virasoro
algebra

{E−(z), E−(w)}D = −i(E−(z)+ E−(w))
∑
n∈Z
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. (7)

We now consider theq-deformed Kac–Moody algebra forsl(2)q of level k defined by
[14, 13]

[Hn,Hm] = [2n][kn]
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E±n+1E
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±
n+1 = q±2E±n E
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±
n (13)

where
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and [x] = qx−q−x
q−q−1 , leading to the operator product relations
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∑
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E±(z)E±(w)(z− wq±2) = E±(w)E±(z)(zq±2− w) (19)

for |z| > |w| and we are consideringq to be a pure phase. It is clear from (19) thatE± are
not self-commuting objects, however this structure can be constructed using the Wakimoto
construction [11]. In particular, fork = 1, it can be constructed in terms of a single Fubini
Veneziano field [15] as follows

E±(z) =: e±i
√

2Q±(z) : H(z) =
∑
n∈Z

αnz
−n (20)

where

Q±(z) = q̃ − ip̃ ln z+ i
∑
n<0

αn

[n]
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1
2 )−n + i
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[n]
(zq±

1
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and

[αn, αm] = [2n][n]

2n
δm+n,0 [q̃, p̃] = i. (22)

We should point out that forq = 1, the vertex operator construction (20)–(22) satisfies
(1)–(3) with k = 1. Our Hamiltonian reduction procedure consists of implementing the
following constraints

χ
q

1 =
9(z)−8(z)√

2(q − q−1)
≈ 0 (23)

χ
q

2 = E+(z) ≈ 1 (24)

for 9(z) and8(z) defined in (14) and (15) respectively. Notice thatχ
q

1 = H(z)+O(q −
q−1), and reduce consistently to the knownq = 1 case.

For q 6= 1, theq-deformed Dirac matrix is constructed out of the following relations
obtained by direct calculation using the vertex operators (20)–(22)

9(z)8(w) = (z− wq3)(z− wq−3)

(z− wq)(z− wq−1)
8(w)9(z) (25)

9(z)E±(w) = q±2 (z− wq∓
5
2 )

(z− wq± 3
2 )
E±(w)9(z) (26)

E±(z)8(w) = q±2 (z− wq∓
5
2 )

(z− wq± 3
2 )
8(w)E±(z) (27)
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(for |z| > |w|) together with (18) and (19) fork = 1.
From equations (25)–(27) we evaluate[
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[E±(z), E±(w)] = ±1

2
(q − q−1)E±(w)E±(z)

(
[2]
∑
n>0

(
wq±2

z

)n
− q∓1

)

∓1

2
(q − q−1)E±(z)E±(w)

(
[2]
∑
n>0

(
zq±2

w

)n
− q∓1

)
. (31)

Notice that the rhs of (28) and (29) is normal ordered and all brackets display explicit
antisymmetry underz↔ w.

Let us now discuss the classical counterpart of the quantum brackets (28)–(31). The
usual canonical quantization procedure associates the classical Poisson bracket structure to
quantum commutators as

{ , } → −i[ , ]. (32)

The new feature compared with theq = 1 case is the non-vanishing of equationn (31).
Moreover, equation (31) presents a quadratic structure which suggests an exponential
realization (vertex operator fork = 1 or the generalized Wakimoto construction for generic
k (see [11])) and the commutators are evaluated using the Baker–Haussdorff formula. The
latter has no classical analogue but we still expect a classical counterpart for the quantum
algebra (28)–(31) to preserve their structure of algebraic nature.

We propose a classical Poisson bracket algebra by mapping quantum operatorsÂ, B̂

into classical objectsA,B such that

{A(z), B(w)}PB →∓i[ Â(z), B̂(w)] (33)

where the plus sign is only taken forA = B = E±. All other brackets follow the usual
correspondence principle (32). Under this prescription and constraints (23) and (24), we
construct the Dirac matrix1ij (z, w) = {χi(z), χj (w)}PB to be
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and121(z, w) = −112(w, z).
Its inverse is defined by equation (6) yielding
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and the Dirac bracket (5) for the remaining currentE−(z) can be evaluated using the
modified correspondence principle (33) in equations (28)–(31) yielding, after redefining

Ẽ− = (q − q−1)2
√

[2]
2 E
− + 4√

2[2]

{Ẽ−(z), Ẽ−(w)}D = i[2]

2
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The algebra given in (41) coincide, apart from the factorq−2|n| to theq-Virasoro algebra
proposed by Frenkel and Reshetikhin (see [5]) withq = eih. This undesirable factor may
be absorbed by redefining the classical brackets (34)–(36) of the form

{A(z), B(w)} =
∑
n∈Z

Cn

( z
w

)n
into

{A(z), B(w)} =
∑
n∈Z

Cn

( z
w

)n
q2|n|.

Under this modification of the correspondence principle (33) the Dirac bracket for the
remaining currentẼ−(z) coincided precisely with the algebra given in [5], namely,

{Ẽ−(z), Ẽ−(w)}D = i[2]

2
(q − q−1)2Ẽ−(z)Ẽ−(w)

∑
n∈Z

[n]2

[2n]
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w

)n
−i(q − q−1)2

∑
n∈Z

[2n]
( z
w

)n
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The differing factorq2|n| is viewed of quantum origin. It is known, for instance, in
quantizing theSU(2) WZW model, that the coupling constant of the diagonal fields is
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shifted by a factor of 2 (Coxeter number ofSU(2) (see [2, 3]). In general we expect the
quantum correction associated to aq-deformed Kac–Moody algebrâg to be given as

{A(z), B(w)} =
∑
n∈Z

Cn

( z
w

)n
qh|n|

whereh is the Coxeter element ofg. For the generalq-deformed Kac–Moody algebrâg,
if we follow the usual constraints connecting theg invariant WZW and the conformal
Toda models [9] we obtain theq-deformedWn-algebra by adding to theq-Virasoro
(42), generators of higher spin. The construction of a classical action invariant under
transformations generated by operators satisfying the proposed classical Poisson algebra is
also an interesting problem that is under investigation and shall be reported in a future
publication.

We thank Professor A H Zimerman for many helpful discussions. EB was supported by
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