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It has been known for some time that topological geons in quantum gravity may lead to a
complete violation of the canonical spin-statistics relation: There may be no connection
between spin and statistics for a pair of geons. We present an algebraic description of
quantum gravity in a (2 + 1)D manifold of the form Σ × R, based on the first-order
canonical formalism of general relativity. We identify a certain algebra describing the
system, and obtain its irreducible representations. We then show that although the usual
spin-statistics theorem is not valid, statistics is completely determined by spin for each
of these irreducible representations, provided one of the labels of these representations,
which we call flux, is superselected. We argue that this is indeed the case. Hence, a new
spin-statistics theorem can be formulated.

1. Introduction

In general relativity, although the metric of space–time is a dynamical entity
determined by Einstein’s field equations, the underlying topology is not a pri-
ori determined. On a closer inspection, however, one actually finds that once one
imposes that space–time should possess some physically reasonable geometrical con-
ditions, the presence of nontrivial topology is constrained. Simple examples are the
well-known constraints on the space–time topology in Robertson–Walker models.
Also, in classical general relativity, when some standard types of energy condi-
tions are valid, nontrivial spatial topology may lead to singularities in space–time:
Gannon’s theorem1 (see also Ref. 2) implies that, in a space–time satisfying the
weak energy condition, if one attempts to develop Cauchy initial data on a spatial
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three-manifolda with a non-simply connected topology, the corresponding Cauchy
development will be geodesically incomplete to the past or to the future. The so-
called active topological censorship theorem3 formulated more recently states that
in a globally hyperbolic, asymptotically flat space–time obeying an averaged null
energy condition (ANEC), every causal curve beginning and ending at the boundary
at infinity can be homotopically deformed to that boundary. Therefore, an external
observer near that boundary would not be able to probe the non-simply connect-
edness of space–time. This result has been extended to more general contexts than
the asymptotically flat case, such as asymptotically anti-de Sitter space–times (see
Ref. 4 and references therein).

In spite of such results, there is still much room left for investigation of the
physical consequences of having a nontrivial spatial topology, especially in quan-
tum theory. On the one hand, even in the classical case one can have nontrivial
compact spatial topologies, which evade the conditions of the above cited theorems
and also have physical interest, and on the other hand, in quantum theory, the
energy conditions to prove these theorems are often violated: for example Wald
and Yurtsever5 show that ANEC is violated by the renormalized stress–tensor of
free fields in generic curved space–times. Indeed, it is the existence of this so-called
quantum “exotic” matter that permits the violation of the classical area theorem by
evaporating black holes,6 and the existence of “traversable” wormholes, despite the
above-mentioned theorems (see, e.g., Ref. 7 for an extensive account). Moreover, it
is widely believed that quantum gravity effects will alter the topology of space–time
at Planck scales (“space–time foam”). Indeed, some semiclassical calculations in-
dicate that a configuration with the presence of wormholes is energetically favored
over the Euclidean one.8

Topological geons, which are the subject of this letter, are topological struc-
tures with some remarkable properties. They were first studied by Friedmann and
Sorkin,9 as “localized excitations of spatial topology”, or “lumps” of nontrivial
topology in an otherwise Euclidean spatial background. The idea was to view such
entities as particles much in the same way as solitons in a field theory. The presence
of geons can give rise to half-integer spin states and fermionic or even fractional
statistics, in pure (i.e. without matter) quantum gravity.9,10 It is common in the
literature to refer to such solitonic states as geon states. We follow this usage
here.

Geons being soliton-like objects, we can talk about their spin and statistics.
In Refs. 11 and 12, it was shown that such states could violate the usual spin-
statistics theorem, in (3 + 1)D and (2 + 1)D, if the spatial topology is assumed not
to change in time, or more precisely if the topology of the space–time M is of the
form M = Σ×R. On a space–time of the form M = Σ×R, the topology of a spatial
slice is well-captured by the geons on Σ. For example, in the (2 + 1)D context that

aMore precisely, a partial Cauchy surface regular near infinity — see Ref. 1 for the appropriate
definitions.
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we are interested in this letter, the topology of an orientable, connected surface Σ
representing space, with at most one asymptotic region, is completely specified by
the number of handles. Each handle corresponds to a geon in this simple context.
Accordingly, topology changes are always associated with creation and annihilation
of geons. It has been suggested13 that the standard spin-statistics relation can be
recovered if geons can be created and annihilated, in other words, topology change
may be required in order to establish the full spin-statistics theorem for geons. In
this letter we seek instead a relation between spin and statistics assuming a fixed
spatial topology.

To appreciate the importance of having or not having a spin-statistics connection
for geons, one must recall that in ordinary quantum field theories in Minkowski
space–time, the particles which arise when we second quantize, for example, have
this connection naturally. Now, in a hypothetical quantum theory of gravity, one
could think of geons as a “particle”, representing the excitations of the topology
itself. It seems therefore natural to ask whether they share this connection with
normal particles. We find that in the formalism we develop here a different, weaker
version of the spin-statistics connection arises, instead of the normal one.

Before we describe our approach to this situation, we examine more carefully
what is meant by spin and statistics. Let us assume that we have a configuration
space Q describing a pair of identical geons. One such configuration can be visual-
ized as two handles on the plane. Now, the quantization of two geons on the plane
is not unique. One has to choose some Hermitian vector bundle Bk over Q whose
square-integrable sections (with a suitable measure) serve to define the domains of
appropriate observables,9,11,12 and are the “wave functions” in the quantum the-
ory. The index k labels inequivalent quantizations. The space of these sections is
the quantum Hilbert space Hk of the two-geon system. Physical operations can
be implemented as operators on Hk. If we perform a 2π-rotation of one of the
geons, described by an operator C2π , then its eigenstate will change by a phase
ei2πS , where S is the spin. Just like particles in (2 + 1)D, geons can carry fractional
spin, i.e. S can be any real number.10,12 Similarly, if we exchange the position of
the two geons, the wave function will change by the action of an operator R that
we call the statistics operator. The standard spin-statistics relation would tell us
that the action of R on a two-geon system should be equivalent to acting with the
operator C2π on one of the geons. Note that there is no a priori reason for this
relation to hold since C2π and R correspond to two independent diffeomorphisms
of Σ. Now one can ask if such a relation is true for each quantization procedure
parametrized by k. The results of Refs. 10–13 shed some light on the problem. The
authors show that some quantizations violate the spin-statistics theorem, but leave
open the question of which are the ones that do not. Furthermore, as emphasized
in Ref. 10, the list of quantum theories derived in Ref. 12 is completely based on
kinematic considerations. In other words, only the diffeomorphism constraint is im-
posed, whereas the Hamiltonian constraint, which gives the dynamical features of
gravity, is not considered at the quantum level. Imposing the latter would further
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restrict the states, and in this sense some of the values of k may not be dynamically
allowed.

In this letter we show that, at least for (2+1)D gravity in the first-order formal-
ism, there is a generalization of the standard spin-statistics connection relating R
and C2π, even for a fixed spatial topology, i.e. for space–time manifolds of the form
Σ × R. We shall consider Σ to be a one-point compactified two-manifold, i.e. we
compactify the spatial manifold with one asymptotic region by adding a “point at
infinity”. In the quantization scheme given in Ref. 12, one considers the mapping
class group MΣ (the group of “large” spatial diffeomorphisms, not connected to
the identity of Diff(Σ)) and finds a vector bundle Bk for each unitary irreducible
representation of MΣ. Then, one sees no relation between R and C2π for a generic
k. The physical significance of this procedure is as follows. Physical states in quan-
tum gravity obey the diffeomorphism constraint, meaning that they are invariant
under “small” diffeomorphisms, i.e. the diffeomorphisms connected to the identity
of Diff(Σ), which are the ones generated by this constraint. The diffeomorphism
constraint means that “small” diffeos should be regarded as gauge, but leaves one
free to consider the states either as invariant under the “large” diffeos (those not
connected to the identity of Diff(Σ)), in which case the “large” diffeomorphisms are
also viewed as gauge, or just “covariant”, i.e. transforming by a unitary represen-
tation of the mapping class group. In this approach, “large” diffeos are regarded as
a symmetry of the theory. We adopt the latter view in this work, the former being
a special case of this view.

We will look at MΣ as part of a larger algebra A of operators describing the
quantum theory of geons. It contains the group algebra of MΣ. Let us give an
intuitive account of A. We start by considering the classical (reduced) configura-
tion space Q̃ of (2 + 1)D gravity in the first-order formalism which is based on
the SO(2, 1) gauge group. It is well known that this is the space of flat SO(2, 1)
bundles over the space manifold Σ. As we will discuss in more detail in the body of
the letter, this space admits a natural measure. The wave functions are then taken
to be square-integrable functions with respect to this measure. We now describe
the algebra A used for quantization. In building this algebra, we consider only the
minimum needed to investigate the spin-statistics connection. First, we comment
on its general structure. Its first component consists of the operators of “position”
type on the space Q̃ and corresponds to the commutative algebra F(Q̃) of con-
tinuous functions of compact support f : Q̃ → C. Next we consider the operators
corresponding to the symmetries of the theory. The gauge group SO(2, 1) acting on
Q̃ induces an action on the functions. Again, instead of SO(2, 1), we take its group
algebra G. Finally, we also include the algebra U of (suitable) remaining operators
acting on F(Q̃). In other words, A has the structure

A = (U ⊗ G)n F(Q̃) . (1.1)

We then choose the algebra U to be the group algebra of MΣ. It contains all the
operations necessary to investigate the spin-statistics connection.
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Another important feature is that the first-order formalism naturally takes into
account the dynamical constraints. The possible quantizations are given by irre-
ducible ∗-representations Πr of A, where the index r parametrizes inequivalent
quantizations. We show that there is a large class of quantizations Πr such that
statistics is totally determined by spin according to the formula

Πr(R) = ei(2πS−θ[r])I , (1.2)

on state vectors of spin S. Here the extra phase θ[r] is completely fixed by the
choice of the representation Πr.

The rest of the letter is organized as follows. In Sec. 2 we briefly review the
first-order formalism of general relativity and deduce the classical configuration
space and the group actions thereon. We then proceed to the construction of the
algebra. The geon algebra can be viewed as an example of a transformation group
algebra, first studied by Glimm,14 and the representation theory of this algebra is
known. In Sec. 3 we analyze more closely the structure of the algebra and classify
the irreducible ∗-representations. We then show how a class of states in these rep-
resentations possesses a spin-statistics connection, namely those states which are
eigenstates of a certain charge operator. These states are then argued to be the
true physical states, due to a superselection rule. We end the letter with some final
remarks.

2. The Connection Formalism

In the first-order formalism, one takes as fundamental variables a triad
e(3)a = e

(3)a
µ dxµ, possibly degenerate and an SO(2, 1) connection one-form A(3)a =

1
2ε
abcω

(3)
µbc dx

µ, where ω
(3)a
bc is the spin connection.b The Einstein–Hilbert action

takes the form

S =
∫
M

e(3)a ∧ F (3)
a + boundary terms , (2.1)

where F (3)
a = dMA

(3)
a + 1

2εabcA
(3)b ∧ A(3)c is the usual curvature for the connec-

tion A(3). In our convention, Lorentz space–time indices are represented by Greek
letters, and spatial indices by Latin letters i, j = 1, 2. Internal SO(2, 1) indices are
represented by Latin letters a, b = 0, 1, 2. Boundary terms arise15,16 in the cases in
which the spatial manifold Σ is non-compact, or compact with boundary, and are
of course zero for closed Σ.

Upon variation of the action (2.1) with respect to A(3) and e(3), we find the
equations of motion

F (3)a = 0 ,

DMe
(3)a = 0 ,

(2.2)

bIn our notation, the superscript (3) on the upper right denote fields on the three-dimensional
space–time M , of the form Σ × R and fields without superscript correspond to their pullbacks
to Σ.
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where DM denotes covariant differentiation with respect to the connection A(3).
Let us consider the equations of motion (2.2) in coordinates. Since M is taken to
be of the form Σ × R, we can use a “space + time” splitting. We then obtain the
following set of equations for the spatial components:

F aij = 0 ,

D[ie
a
j] = 0 ,

(2.3)

which are nothing but the pullback of Eq. (2.2) to Σ by the natural inclusion
Σ ↪→ Σ × R: x 7→ (x, 0). The covariant differentiation is now with respect to
the pullback A of the connection A(3). Note that Eqs. (2.3) do not involve time
derivatives of the basic fields: they are just constraints on the fields ea and Aa on
Σ at any given time, and initial data are a set of basic fields on Σ satisfying these
constraints. The remaining equations are the time evolution equations for ea and
Aa. Since we shall not make explicit use of the latter, we omit them here.

Aaj and εijeai , i = 1, 2 are canonically conjugate variables defined on Σ. The
pairs (ea, Aa) obeying the constraints span the (reduced) phase space P of the
theory, which is just the cotangent bundle of the space of SO(2, 1) connections on
Σ. The canonical symplectic structure is given by the Poisson brackets coming from
(2.1). The only nonvanishing ones are:

{Aai (x), ebj(y)} =
1
2
δabεijδ

(2)(x− y) , (2.4)

where x, y ∈ Σ.
The quantum theory in the “position representation” would be described by

wave functionals ψ[A]. The constraints can be easily imposed before quantiza-
tion, and one then quantizes only the physical degrees of freedom. When Σ is
a closed (i.e. compact and boundaryless) two-surface, the constraints imply10,17

that the physical configuration space Q is given by the moduli space of flat con-
nections, i.e. the set of equivalence classes of flat connections on Σ under gauge
transformations. When Σ is non-compact, however, one has to specify how fields
behave asymptotically. This choice gives rise to boundary terms in (2.1),15,16 and
the physical configuration space is the space of those flat connections which have
the appropriate asymptotic behavior, modulo those gauge transformations which
preserve this behavior.

The full analysis becomes considerably more complicated in the non-compact
case because of the asymptotic considerations involved. To simplify matters we just
perform a one-point-compactification of Σ, by adding a point p∞, the “point at
infinity”, since the boundary terms in (2.1) will play no role here. “Rotations” of
geons will be considered to be about this point, and we also fix a frame there. Thus,
Σ is topologically taken to be a closed surface with a marked point and a frame
attached there.

Again, just like in the usual closed case, the configuration space is the space
of all flat connections. However, gauge transformations which are not trivial at



July 6, 2001 19:33 WSPC/146-MPLA 00448

A Novel Spin-Statistics Theorem in (2 + 1)D Chern–Simons Gravity 1341

infinity are not a symmetry of the theory. Therefore, in our case, configurations
which differ by a gauge transformation which is not trivial at p∞ should not be
viewed as equivalent. The reduced configuration space in this case is therefore the
moduli space space of flat connections modulo gauge transformations which are
trivial at p∞.

Note also that we only need regular flat initial data on Σ to define the configura-
tion space Q and to quantize. We make no assumption as to geodesic completeness,
and in particular, the formalism can accommodate geodesically incomplete classi-
cal solutions. This is important, because in classical general relativity, Gannon’s
theorems1 imply that singularities must arise due to the multiple connectivity of
Σ, at least when Σ is non-compact, under certain mild physical assumptions. Even
if the formation of singularities occurs in our case, this seems not to interfere with
the quantization procedure, at least formally. On the other hand, precisely because
of this independence, it is not clear at this point what are the implications, if any,
of such singularities in the quantum theory.

A connection A on Σ is determined by its holonomies. For each closed curve γ
based at p∞ compute the holonomy W ([γ]) = Pe

∫
γ
A. This quantity is invariant

under gauge transformations that are identity at p∞. Since A is flat, W ([γ]) is
invariant under small deformations of γ preserving p0. In other words, it depends
only on the homotopy class [γ] of loop γ. In fact, W gives a homomorphism π1(Σ)→
SO(2, 1).

Let Q̃ be the set of all such maps. We recall that W ([γ]) changes to gW ([γ])g−1,
g ∈ SO(2, 1), under gauge transformations that are not identity (and equal g) at
p∞. For closed surfaces with no marked point, one must make an identification
W ∼ gWg−1 to get the moduli space of flat connections. In other words, Q =
Q̃/SO(2, 1).

In our case, Σ is a two-dimensional surface with a marked point p∞, which is
chosen to be our base point. Gauge transformations which are not trivial at p∞,
taking a value g (say) at p∞, change W to gWg−1 as before, but, as explained, these
are no longer equivalent. We call this action of SO(2, 1) by conjugation the gauge
action. It corresponds to a Lorentz transformation of our chosen, fixed frame at
p∞. The group Diff∞(Σ) of orientation-preserving spatial diffeomorphisms (diffeos)
which are trivial at p∞ (and leave a frame there fixed) acts on the holonomies W by
changing the curve γ. Its subgroup Diff∞0 (Σ) ⊂ Diff∞(Σ), connected to the identity
(the group of small diffeos) cannot change the homotopy class of γ. Therefore the
formulation is already invariant by small diffeos, and the physical configuration
space is Q̃. Large diffeos, on the other hand, act nontrivially on the holonomies.
So, we can work with the quotient group MΣ = Diff∞(Σ)/Diff∞0 (Σ), known as the
mapping class group. In particular, the elements C2π and R are large diffeos.9,11,12

For the sake of simplicity, we will denote the elements of Diff∞(Σ) and its classes in
MΣ by the same letters. An important fact is that elements of MΣ commute with
the gauge action.
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3. The Geon Algebra

The algebra A used for quantization has the structure

A = (U ⊗ G)n F(Q̃) , (3.1)

where G is the group algebra of SO(2, 1) and F(Q̃) is the space of complex-valued,
continuous functions with compact support on Q̃. We choose the algebra U to be
the group algebra of MΣ. A contains all the operations necessary to investigate the
spin-statistics connection.

Let us give an explicit presentation of A(1), the algebra A for a single geon.
We choose the generators of π1(Σ) to be the homotopy classes of the loops γ1 and
γ2 of Fig. 1. Each flat connection provides us with a pair of holonomies (a, b) =
(W (γ1),W (γ2)). Since there are no relations among the generators of π1(Σ), any
pair of values (a, b) can occur. Therefore Q̃ is SO(2, 1)× SO(2, 1).

p∞
∗

γ1

γ2

γ3

Fig. 1. The figure shows Σ for a single geon (opposite sides of the rectangle are to be identified)
and loops γi (1 ≤ i ≤ 3). The homotopy classes [γ1] and [γ2] generate the fundamental group,
while [γ3] is not independent of [γ1] and [γ2].

Instead of working with F(Q̃) directly, we work with one of its representations.
Note that the Haar measure on SO(2, 1) induces a measure on Q̃. Using this mea-
sure we may define an inner product on F(Q̃) in the obvious way. The completion
of F(Q̃) in this norm is a Hilbert space H0, which is the space of square-integrable
functions (with this measure) on Q̃, carrying what we call the defining representa-
tion of F(Q̃). A function f ∈ F(Q̃) acts on ϕ ∈ H0 as a multiplication operator:

(fϕ)(a, b) = f(a, b)ϕ(a, b) . (3.2)

With g ∈ SO(2, 1), let δ̂g denote the generators of the group algebra G. These
δ̂g’s are gauge transformations, and act by conjugating holonomies:

(δ̂gϕ)(a, b) = ϕ(g−1ag, g−1bg) . (3.3)

The mapping class group of Σ has two generators A and B, which correspond
to Dehn twists along the loops. Their effect on loops γ1 and γ2 is given by

(Aϕ)(a, b) = ϕ(a, ba−1) ,

(Bϕ)(a, b) = ϕ(ab−1, b) .
(3.4)



July 6, 2001 19:33 WSPC/146-MPLA 00448

A Novel Spin-Statistics Theorem in (2 + 1)D Chern–Simons Gravity 1343

The generators of A(1) are functions f ∈ F(Q̃), diffeos A, B of the mapping
class group and gauge transformations δg.

The mapping class group includes C2π .9,11,12,18 Its action on the defining rep-
resentation is

(C2πϕ)(a, b) = ϕ(cac−1, cbc−1) , (3.5)

where c := aba−1b−1. One can verify that C2π = (AB−1A)4.
These operators can be encoded in what is called a transformation group

algebra.14 Let G be a group with a left-invariant measure acting on a space X .
The transformation group algebra is just the set of continuous functions F(G×X),
with compact support and with the product

(F1F2)(g, x) =
∫
G

F1(z, x)F2(z−1g, z−1x)dz . (3.6)

Here x → z−1x is the group action on X , z−1g is the group product of z−1 and
g, and dz is the left-invariant measure on G. The irreducible representations of a
transformation group algebra have been worked out in Ref. 14. In our case, X = Q̃

and G = SO(2, 1)×MΣ, where G can be made into a topological group by giving
MΣ the discrete topology. The measure on SO(2, 1) is the Haar measure and the
measure on MΣ is given by ∑

m∈MΣ

f(m)

for any function f on MΣ with appropriate convergence properties. The measure
on G is then the product measure. Finally, A(1) = F(SO(2, 1) ×MΣ × Q̃), where
we use the bijection

C(G)⊗F(X)⇔ F(G×X) (3.7)

by interpreting δg ⊗ f as the distribution

δg ⊗ f : (h, x) 7→ δg(h)f(x)

≡ δ(g, h)f(x) (3.8)

on G×X , δg being the δ-function supported at g.
Let Y = Q̃/G be the set of orbits of G in Q̃, one such orbit being Oω. Let

us choose one representative (aω , bω) ∈ Q̃ for each orbit Oω, and write Oω =
[(aω, bω)]. We define the stabilizer group Nω ⊂ G as the set of elements (g, λ) of
G such that (g, λ) · (aω , bω) = (aω , bω), where the G action has been denoted by
a dot. Let α be a unitary irreducible representation of Nω on some Hilbert space
Vα. Now consider the space of square-integrable functions φ: G → Vα such that
φ(hg, ξλ) = α(g−1, λ−1)φ(h, ξ) for all (g, λ) ∈ Nω and (h, ξ) ∈ G. They are called
equivariant functions. The set of these functions can be completed into a Hilbert
space L2(G, Vα).14 The irreducible unitary ∗-representations Π(ω,α) of F(G×Q̃) can
be realized on the Hilbert spacesH(ω,α) = L2(G, Vα) and, up to unitary equivalence,
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labeled by r = (ω, α). This label is a quantum number characterizing a single geon.
The action of the operators F̂ = Πr(F ), F ∈ A(1) on a vector φr ∈ Hr is given by

(F̂ φr)(h, ξ) =
∫

SO(2,1)×MΣ

F ((h, ξ) · (aω , bω), (g, λ)) × φr(g−1h, λ−1ξ)dz , (3.9)

for any h ∈ SO(2, 1) and ξ ∈MΣ. We find, in particular, that

(δ̂h′φr)(h, ξ) = φr(h′−1h, ξ) ,

(Âφr)(h, ξ) = φr(h,A−1ξ) ,

(B̂φr)(h, ξ) = φr(h,B−1ξ) ,

(f̂φr)(h, ξ) = f(hξq̃y)φr(h, ξ) .

(3.10)

Now, let Σ be an orientable surface of genus two with a marked point p∞.
It supports a system of two geons. Their algebra A(2) can be presented in the
defining representation space H0 ⊗ H0 of A(1) ⊗A(1). It is generated by elements
of A(1)⊗A(1) plus the elements of the mapping class group that mix up the geons,
with the proviso that we retain only “diagonal” elements of the form δg⊗δg from the
gauge transformations. There are only two independent generators of MΣ involving
both geons. One of them, the diffeo R that exchanges the position of the geons, has
already been discussed in connection with the spin-statistics relation. The other one
is the so-called handle slide H . Unlike the exchange R, the handle slide H has no
analogue for particles. Its existence comes from the fact that a geon is an extended
object. As the name indicates, it corresponds to the operation of sliding an end of
one of the handles through the other handle.

Our description of a pair of geons should be given by an algebra A(2) which also
includes H . But since H does not enter directly in the spin-statistics relation, we
will not include it in A(2).

Although A(1) is not a Hopf algebra, there is an element R ∈ A(1) ⊗ A(1)

that plays the role of an R-matrix. In other words, we can write R = σR where
σ : H0⊗H0 → H0⊗H0 is the flip automorphism σ(f1⊗f2) = f2⊗f1. The R-matrix
turns out to be

R =
∫∫

da db P(a,b) ⊗ δ−1
aba−1b−1 , (3.11)

where P(a,b)(q̃, h, ξ) = δ(q̃, (a, b))δ(h, e)δ(ξ, e), the δ’s being δ-functions. The ex-
istence of the R-matrix is essential to establish the connection between spin and
statistics. It relates a diffeo performed on a pair of objects with operators acting
on each object individually.

Each geon carries a representation Hr labeled by quantum numbers r = (ω, α).
However, we only need to consider eigenstates of Ĉ2π := Πr(C2π) with spin S. Let
{φr,Si } be a basis for the eigenspace of spin S in Hr for some fixed r. Two geons are
said to be identical if they carry the same quantum numbers r and S. We consider
identical geons, fix an element (aω, bω) in the corresponding class ω and denote the
net flux aωbωa−1

ω b−1
ω by cω. Consider the characteristic function Pc which at (a, b)
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is 1 if aba−1b−1 = c and zero otherwise. It is clear that a generic vector φr,Si is not
an eigenstate of P̂c. A simple computation shows that φr,Si is an eigenstate of P̂c if
and only if it has support only on points (h, ξ) such that hcωh−1 = cω.

The quantum state for two identical geons is a linear combination of vectors of
the form φr,Si ⊗ φr,Sj . It is enough to show the spin-statistics connection (1.2) for
such decomposable vectors. We must act with the operator R̂ = (Πr ⊗ Πr)(R) on
these vectors. By using Eq. (3.9), we easily see that

P̂(a,b)φ
r,S
i (h, ξ) = δ((a, b), (h, ξ) · (aω, bω))φr,Si (h, ξ) (3.12)

for every (h, ξ) ∈ SO(2, 1)×MΣ. Also,

δ̂c−1φr,Sj (h, ξ) = φr,Sj (ch, ξ) , (3.13)

where we have put c = aba−1b−1. Using (3.11) and the flip automorphism we
conclude that

R̂φr,Si (h1, ξ1)⊗ φr,Sj (h2, ξ2) = δ̂h2c
−1
ω h−1

2
φr,Sj (h1, ξ1)⊗ φr,Si (h2, ξ2) . (3.14)

At this point we make the assumption that φr,Si,j are eigenstates of the net flux
P̂c, explaining its physical meaning later. So we can set h2cωh

−1
2 = cω. But we have

δ̂c−1
ω
φr,Sj (h1, ξ1) = ei2πS δ̂c−1

ω
Ĉ−1

2π φ
r,S
j (h1, ξ1) = ei2πSφr,Sj (cωh1, C2πξ) . (3.15)

Note that φr,Sj (cωh1, C2πξ) = φr,Sj (h1cω, ξC2π) because of the above assumption,
and because cω commutes with h1 and C2π commutes with every element of MΣ.
On the other hand, (cω, C2π) ∈ Nω and hence we can use the equivariance property
of φr,Sj to rewrite the R.H.S. of the last equality in (3.15) as

φr,Sj (cωh1, C2πξ) = α(c−1
ω , C−1

2π )φr,Sj (h1, ξ) .

Now, every δg commuting with aω and bω also commutes with cω, while C2π is
in the center of MΣ. Therefore, (cω, C2π) is in the center of Nω, and by Schur’s
lemma we conclude that δ̂c−1

ω
Ĉ−1

2π is equal to a phase, say e−iθ(r). Equation (1.2)
then follows:

R̂φr,Si ⊗ φr,Sj = ei[2πS−θ(r)]φr,Sj ⊗ φr,Si . (3.16)

We were able to establish a connection between spin and statistics for all eigen-
states of the net flux P̂c. In other words, a spin-statistics exists for states with a
definite net flux. Now why are these states special? The answer is that other vectors
in the representation space of r are not physically allowed as a consequence of a
superselection rule, which we will discuss below. As a consequence, only vectors
which are in the eigenspace, say Hc, of P̂c are to be viewed as pure quantum states.
Linear combinations of vectors in different Hc’s are not pure, much in the same
way as one cannot have pure states of different charges in QED, for example.

This superselection is actually very natural. First, note that the net flux of a
geon commutes with all elements of the algebra except the gauge transformations
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at p∞. Now, the gauge action cannot be viewed as having a local effect from the
standpoint of the geons, their effect being limited to performing a transformation on
the frame at infinity. The other operators, like those corresponding to the mapping
class group operators are “local”, in the sense that they correspond to operations on
the geons themselves, i.e. operations which can be taken to leave the region outside
some ball surrounding the geons invariant (no other, stronger notion of locality is
possible here, since we have no fixed background metric). This is mathematically
reflected in the fact that all elements of the geon algebra other than the gauge
transformations (which are “local” in the above sense) themselves commute with
the gauge action.

Therefore, given some eigenspace Hc of a net flux operator P̂c, all operators
other than gauge transformations preserve Hc. Only the gauge transformation, say
corresponding to an element g ∈ SO(2, 1), takes vectors inHc into vectors inHgcg−1 .
That is, gauge transformations do change the net flux, but this change does not
correspond to a physical, local operation in the theory; rather it is merely a rela-
beling of the fluxes. Once one fixes the frame, and considers only local operations,
one concludes that the net flux can be regarded as a charge which commutes with
all the local operators, and hence is superselected.

4. Final Remarks

In this letter, we have shown a relation between the actions of the diffeomorphisms
Ĉ2π and R on a class of geon states in (2 + 1)D quantum gravity. An algebra
describing the system was identified and its representations were explained in detail.

Our discussion can be viewed as a generalization of previous work,18,19 where a
spin-statistics relation was derived for geonic states arising in a Yang–Mills theory
coupled to a Higgs field in the Higgs phase, where the symmetry is spontaneously
broken down to a finite gauge group H . In Ref. 19 we showed the existence of
a class of “localized” states in quantum gravity arising indirectly from the Yang–
Mills theory which did obey the spin-statistics relation derived here. However, those
states form a very restricted class. The present letter greatly expands the scope of
the original version to a much larger class of geonic states in quantum gravity.

In our version of the spin-statistics relation, there appears an extra phase θr for
each representation, and a natural question is what is its meaning. It turns out to
be a somewhat involved problem, which we are presently tackling.20
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