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Abstract

It is well known that in spite of sharing some properties with conventional particles,
topological geons in general violate the spin-statistics theorem. On the other hand, it is generally
believed that in quantum gravity theories alowing for topology change, using pair creation and
annihilation of geons, one should be able to recover this theorem. In this paper, we take an
aternative route, and use an algebraic formalism developed in previous work. We give a
description of topological geons where an algebra of ‘‘observables’ is identified and quantized.
Different irreducible representations of this algebra correspond to different kinds of geons, and are
labeled by a non-abelian “‘charge’” and ‘* magnetic flux’’. We then find that the usual spin-statis-
tics theorem is indeed violated, but a new spin-statistics relation arises, when we assume that the
fluxes are superselected. This assumption can be proved if al observables are local, asis generaly
the case in physical theories. Finaly, we also discuss how our approach fits into conventional
formulations of quantum gravity. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The spin-statistics theorem is one of the most fundamental relations in the theories
describing the particles of nature. As far as experimental tests are concerned, no
elementary particles were ever found which violate it. It was therefore a surprise when it
was discovered [1,2] in the middle 80’ s that topological geons did violate this relation in
general, at least in the case when the spatia topology is not allowed to change.
Topological geons are soliton-like excitations of the spatial manifold 3 [1,3,4]. They
can be thought of as lumps of non-trivial topology. For example, in (2 + 1)d, the
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topology of an orientable, closed surface 3 is determined by the number of connected
components of 3 and by the number of handles on each connected component. Each
handle corresponds to a topological geon, i.e. alocalized lump of non-trivial topology. It
iswell known that these solitons have particle-like properties such as spin and statistics.
However, as we observed before, unlike ordinary particles they can violate the spin-sta-
tistics relation. It has been suggested [1,2,5,6] that the standard spin-statistics relation
can be recovered if one considers processes where geons are (possibly pairwise) created
and annihilated, but this necessarily implies a change of the topology of 3. In other
words, one may have to consider topology change in order to have a spin-statistics
theorem for geons [5,6].

To appreciate the importance of having (or not having) a spin-statistics connection for
geons, one must recall that in ordinary quantum field theories in Minkowski space, the
particles which arise when we second quantize, for instance, have this connection
naturally. Now, in a hypothetic quantum theory of topology, one could think of geons as
a kind of *‘ particle’’, representing excitations of the topology itself. It seems therefore
natural to ask about whether they share this connection with ‘‘true’’ particles. As we
have mentioned, they do not, but still we find that in the formalism we develop here a
different, weaker version of the spin-statistics connection arises.

In the absence of a full-fledged quantum gravity theory, it has become a current
practice to consider simple models which retain some of its aspects while being more
tractable in the formal aspects. Accordingly, our intention in this work is to use a very
simple model, a gauge theory with a finite gauge group in (2+ 1)d space-time
dimensions, to understand the spin-statistics theorem in quantum gravity. This model has
the advantage of ‘*isolating’’ the topological degrees of freedom, which are in a certain
sense canonically quantized independently from degrees of freedom coming from metric
and other fields. The same model has been considered in a companion paper [7], and
there we show that we may consider topology change as a quantum phenomenon
depending on the scale of observations. Therefore this model features spatial topology
change in some sense. Actually, in spite of the fact that topology change has been
inspired by quantum gravity, it has been demonstrated in [8] that it can happen in
ordinary quantum mechanics. In this approach, metric is not dynamical, but degrees of
freedom related to topology are quantized. The notion of a space with a well-defined
topology appears only as a classical limit. (See also Ref. [9] for related ideas).

Let us consider amanifold M and some generic field theory (possibly with gauge and
Higgs fields) interacting with gravity. It is reasonable to expect that if we could quantize
such a complex theory, its observables would give us information on the geometry and
topology of M. The main point is that one does not need to consider the full theory to
get some topological information. It is possible that, in a certain low energy (large
distance) limit, there would be a certain set of observables encoding the topological data.
We know examples where this is precisely the case. In general, the low energy (large
distance) limit of afield theory is not able to probe details of the short distance physics,
but it can isolate degrees of freedom related to topology. We may give as an example
the low energy limit of N = 2 super Yang—Mills, known as the Seiberg—Witten theory
[10]. We also have examples of more drastic reduction where a field theory in the
vacuum state becomes purely topological [11]. Inspired by these facts we will identify
the degrees of freedom, or the algebra ./(™ of *‘ observables’, capable of describing n
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topological geonsin (2 + 1)d. Actually, we will argue later in this paper that not al the
operators in this algebra are observables in the strict sense. Rather, this algebra is a sort
of field algebra (see, for instance, Ref. [12] and references therein for more information
on field algebras). We say that .V describes a single geon in the same way that the
algebra of angular momentum describes a single spinning particle. In this framework
what we mean by quantizing the system is nothing but finding irreducible representa-
tions of .. Asin the case of the algebra of angular momentum, different irreducible
representations have to be thought of as different particles. For the moment, we will not
be concerned with dynamical aspects. We would like to concentrate on the quantization
itself and leave the dynamics to be fixed by the particular model one wants to consider.

An intuitive way of understanding the algebra .#® for a topological geon comes
from considering a gauge theory with gauge group G in two space dimensions
spontaneously broken to a discrete group H. For simplicity we will assume that H is
finite. As an immediate consequence it follows that the gauge connection (at far
distances) is locally flat. In other words, homotopic (based) loops y and ' produce the
same parallel transport (holonomy). The set of independent holonomies are therefore
parametrized by elements[y] in the fundamenta group #,( 3). It is quite clear that such
guantities are enough to detect the presence of a handle. The phase space we are
interested in contains only topological degrees of freedom. Therefore such holonomies
can be thought of as playing the role of position variables. We also have to take into
account the diffeomorphisms (diffeos) that are able to change [y]. They will be
somewhat the analogues of translations. It is clear that the connected component of the
group of diffeomorphisms preserving the basepoint and a frame there at, the so-called
small diffeos, cannot change the homotopy class of y. To change the homotopy class of
a curve y one needs to act with the so-called large diffeomorphisms. Therefore the
analogues of trangdations have to be parametrized by the large diffeos modulo the small
diffeos. This is exactly the mapping class group My. Also, since we must fix a base
point P to define 7,(3), we must take into account the fact that the discrete group H
can change the holonomies by a conjugation. These three sets of quantities will comprise
our algebra V. Contrary to what happens in field theory or even in quantum
mechanics, we find that .&® is finite dimensional. This will be important to avoid
technical problems of various kinds. The algebra .7 contains the analogue of positions
and trandations and can be thought of as a discrete Weyl agebra. There seems to be no
great obstacle to generalize our results also to the case where H is a Lie group [13,14].

Our algebraic description of geons is analogous to what has been developed for 2d
non-abelian vortices by the Amsterdam group [15,16]. These ideas have been further
developed by some of us and coworkers and applied to rings in (3 + 1)d. Their results
will not be discussed here since a complete account will be reported in [17].

The algebra encountered by Refs. [15,16] was a special type of Hopf algebra, namely
the Drin'feld double of a discrete group [18]. In our case, however, the algebra .oV is
not Hopf, but it has a Drin’feld double as a subalgebra. For a pair of geons we find that
the corresponding algebra 7@ is closely related to the tensor product .« ® .oV of
single geon algebras. This fact allows us to determine the appropriate algebra (™ for
an arbitrary number n of geons. Among the elements of .® we find the elements
corresponding to the operations of exchanging the positions of two geons and rotating
one of them by 27. These are the two operations we need in order to answer whether
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there is a spin-statistics relation. The usual theorem states that the exchange of two
identical components (statistics) is equivalent to the rotation by 27 of one of its
components. It turns out that this is no longer true. However, spin and statistics are not
independent but fulfill a well-defined relation.

We would like to point out some differences with respect to the approaches of [2] for
the spin-statistics connection. To show their results, the authors of [2] have used
anti-particles together with rules for pair creation and annihilation. In our approach the
spin-statistics relation follows entirely from the properties of the field algebras. It is true
that we can also have creation and annihilation of geons, but these processes are not
directly linked to the spin-statistics relation. For other approaches to the spin-statistics
theorem see Refs. [21-24].

One advantage of the algebraic approach is that we can do this analysis without going
into the details of the *‘complete’” underlying field theory. We can determine the
spectrum D of the geons, i.e. the set of possible irreducible representations of &™),
but a particular field theory may restrict the available possibilities in &®. The
determination of these possibilities requires the study of particular examples of the
underlying field theories. That may be a very difficult task. In this paper our intention is
to use the simplified algebraic ‘‘field’’ theory and see what it can teach us. It is
remarkable that such a simple framework can reveal important features of quantum
geons such as a constraint involving spin and statistics. Rules for quantum topology
change are discussed in the companion paper [7].

There is a systematic way to incorporate our algebraic methods in conventional
approaches to quantum gravity. When that is done, we end up selecting a particular class
of vector bundles, the sections of which are state vectors of quantum gravity (they
specify domains of operators like the Hamiltonian). We shall discuss these issues in
detail elsewhere, limiting ourselves to a concise discussion in Section 6 in this paper.
The present paper therefore can be interpreted as sponsoring the use of these bundles in
quantizing gravity. We think that there are powerful reasons supporting this point of
view. Indeed our work here shows that these bundles nicely incorporate information on
classical spatial topology and imply a (generalized) spin-statistics theorem, whereas if
this selection of bundles is abandoned, there are many possible choices of bundles in the
presence of geons, and most do not imply any sort of spin-statistics connection.

This paper is organized as follows. The field algebras .(™ are described in Section
2. In particular, the representations of .7 will play an important role when we discuss
the spin-statistics connection. Quantization of the system is given in Section 3. In this
section we are able to classify the irreducible representations for a class of algebras &
that includes our algebra of interest as a particular example. It is important to note that
these sections are shortened copies of sections in the companion paper [7], which we
reproduce here for the benefit of the reader, rendering this paper basically self-con-
tained. The original part is in the following sections. The existence of a novel
spin-statistics connection for 2d orientable geons is established in Section 4, under
certain assumptions which become clear in Section 5, with the introduction of the
property of clustering for a system of N geons, and superselection of the global fluxes
of geons. Section 6 explores how one can use the representations of the algebra of
observables for geons to obtain geon states in quantum gravity. The paper ends with
some genera remarks and an outlook on future work.
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2. The algebras for (2 + 1)d topological geons

Throughout this work our setting is a space-time of the form 3 X R. Here, the spatial
manifold ¥ is two dimensional, and will be typically assumed to be a plane with one or
several handles. Topological geons in this (2 + 1)d context are simply (for orientable
space-times) these handles on the spatial manifold (for a more detailed account and a
more genera definition of geons see, for instance, Refs. [1,7,25,26]). Our aim in this
section is to define some ‘‘ observables’ which describe the topological character of a
geon. As we will see later, the algebras we aobtain contain some operators which are not
really observables, since they represent non-local operators which are in a certain sense
‘‘gauged away'’ whenever we perform physical measurements for geons. Thus we will
refer to the kind of algebra we will encounter as a field algebra [12].

The presentation of the field algebra of geons given here will not be detailed. The
reader is referred to [7] for a more comprehensive discussion.

We will follow an approach inspired by the work of the Amsterdam group, which is
reported in Refs. [15,16]. In those works, the group investigates the properties of vortex
solutions of a (2 + 1)d gauge field theory in Minkowski space-time where the gauge
symmetry of a Lie group G is spontaneously broken to a finite group H by a
non-vanishing expectation value of a Higgs field @. See Refs. [15,16] for details. The
Lagrangian is given by

L= %Fﬂ-av Fa” + TI’[(DM(D)* ( DMQD)] —V(®), (2.1)

where u,v=0,1,2, and a is a Lie agebra index. For simplicity, we assume that G is
connected and simply connected. The fields F7, are the components of the field strength
of the Yang—Mills potential A7 and D, denotes the covariant derivative determined by
this potential. The Higgs field @ isin the adjoint representation and can be expanded in
terms of generators T2 of the Lie algebraof G, and V(@) is a G-invariant potential. In
this paper we shall be concerned with the low energy, or equivaently, the long range
behavior of this theory, in the tempora gauge A5 = 0. This is obtained by minimizing
the three terms in the energy density separately. Minimizing the term corresponding to
the energy density of the Yang—-Millsfield, we obtain the condition F7, = 0, from which
we conclude that we are dealing only with flat connections. The minimum of the
potential restricts the values of the Higgs field to the vacuum manifold, which is
invariant by H. Finally, the condition D® =0, required for minimizing the energy
density from the second term, tells us that the holonomies

7(y)=Pexp{fA?Tadsi}, i e{1,2) (2.2)
Y
take values in the finite group H.

Here and in what follows we will fix a base point P for loops, so that all loops will
begin and end at P.

This gauge theory may have topologically non-trivial, static solutions such as
vortices. It is very well known that the core radii of these vortices are inversely
proportional to the mass of the Higgs boson, and therefore they may be viewed as
point-like in the low-energy regime of the theory. Hence, according to a standard
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argument, to describe the N-vortex solutions we may consider solutions for the vortex
equations

F2=0, D®=0, V(®)=0, (2.3)

on a space-time of the form 3 X R, where 3 is the plane with N punctures, playing the
role of the vortices.

One way to explain our approach is based on a field theory like (2.1). Addition of
gravitational terms to (2.1) would not affect our arguments. The difference in our
approach is that we shall work in the zero vortex number sector of this theory, but on a
plane with geons. Hence, instead of punctures, the non-trivial topology is characterized
by handles. Now, take a solution (A,®) for the vortex Egs. (2.3). By fixing a point
P € 3, the holonomy of A around any path y based at P depends only on its homotopy
class, since Aisflat. It takes valuesin a subgroup H of G, which preserves the vacuum
manifold, in view of the equations for ¢ [15,16]. Therefore, any solution of the vortex
equations determines a homomorphism 7,

T:my(3) —H, (2.4)

of the fundamental group 7,(3) to the group H. Conversely, given such a homomor-
phism 7 we can define a solution for Egs. (2.3) in the following way. Take the universal
covering space 3 of 3. It isthe total space of a principal bundle over 3 with structure
group 7,(3). Via the homomorphism 7 we can construct an associated principal
H-bundle over 3, which is a subbundle of the original G-bundle. Since H is finite, this
bundle has a unique flat connection A2, which can be viewed as a reducible connection
on the G-bundle. We now find a @. After fixing some @, in the vacuum manifold, we
define @(P) = &,. Then, since @ must be covariantly constant, its value can be
obtained for each x & 3 by pardlel transporting @, aong some path from P to x in
3

B(x) = Pexp{ fPXA?Tads‘} b, (2.5)

The pair (A%, @) thus constructed is obviously a solution of the vortex equations.
Therefore the space of solutions for the vortex equations (2.3) is essentially parametrized
by homomorphisms 7:77,(3) — H. Each such homomorphism is then a vortex configu-
ration when we have punctures. In our context, we will call one such homomorphism a
geon configuration. In general, it gives non-zero ‘* magnetic fluxes’ around non-trivial
elements of 7,(3).

The finite group H acts on the space of solutions. In terms of homomorphisms we
have that, under these H-transformations, a flux o transforms as

o - haoh™t. (2.6)

In other words, we have an action of H by conjugation of the fluxes. We shall simply
refer to this action as the H-transformations. The group elements heH will be
regarded as operators when we quantize the theory, also denoted by h. The multiplica
tion of two H-transformations is the same as the group multiplication. Therefore the
algebra of such operators turns out to be the group algebra C(H).

As for the physical interpretation of the H-transformations we note that the mathe-
matical action depicted in (2.6) is entirely equivalent, from a physica standpoint, to
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what occurs when one makes aflux o encircle a source of flux h at infinity. Since such
an operation is non-local, one must conclude that the H-transformations cannot be
considered locd in the theory, i.e. cannot be implemented by local operators.

The total algebra in the case of vortices (punctures) is the semi-direct product
D(H) = C(H) X.#(H), where #(H) is the algebra of complex-valued functions on H
with product given by pointwise multiplication: it describes the ‘* position observables’’
for a vortex. The reason for this denomination will become clear when we discuss
geons. The algebra D(H) is the so-caled Drin'feld double [15,16]. It has the structure
of a quasi-triangular Hopf algebra. The Hopf structure [18] means in particular the
existence of a co-product, i.e. a map

A:D(H) - D(H)®D(H),

which is a homomorphism of algebras. In [15,16] the fluxes are seen as particles in
(2 + Dd and are then first quantized: the (internal) Hilbert space /7 is constructed, and
the elements of the algebra D(H ) act as operators on this Hilbert space. .# decomposes
into irreducible representations of D(H ), corresponding to the different particle sectors
of the quantum theory. The existence of a co-product allows one to understand fusing
processes between particles. The quasi-triangularity implies the existence of the R-ma-
trix, ReD(H)® D(H), responsible for al braiding processes between particles.
Again, for further details see Refs. [15,16].

How is the topology of 3 taken into account in this approach? First of al, we have
seen that the physically distinct (for vortices and/or geons) configurations are in
one-to-one correspondence with conjugacy classes of homomorphisms of 7,(%) into H.
Moreover, it is well known that for a finite group H the elements in the latter space are
in one-to-one correspondence with equivalence classes of principal H-bundles over 3.
Therefore, the only degree of freedom in this theory is the topology of these bundles
[19,20]. Second, a configuration for which the holonomy is trivial around some puncture
or handle is indistinguishable, from the standpoint of the low-energy theory, to another
in which that particular puncture or handle is absent. Therefore the low-energy theory
somehow actually allows for ‘‘ topology fluctuations'’ of 3 aslong as we stay within its
limits. Such away of viewing topology change is explored in [7]. It is very much akin to
the views pursued in non-commutative geometry, where one uses an algebra to encode
space-time geometry and topology. In this approach the usua ‘‘classical’ view of a
background manifold is secondary, and the topology is actually viewed as a consequence
of the algebraic setting one uses.

In order to determine the field algebra for a topological geon, we will first try to find
the analogues of the ‘‘ position observables’ for a geon. Now, 3 is the plane with one
or more handles, and for simplicity we shall assume throughout that there are no
vortices, i.e. we work in the zero vortex number sector of the low-energy limit of the
theory given by the Lagrangian in (2.1). In this case, all non-trivial configurations will
be related solely to holonomies around and through the handles.

Let us start by taking 3 to be the plane with a handle. On all figures, a geon will be
thought of as a sguare hole on the plane, with the opposite sides identified. One can
show that 7,(3) has two generators [y,] and [y,], shown by Fig. 1. It can be shown
that

[va] = [vallva1lv:] [v2]
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P

Fig.1. The figure shows the loops y; (1<i<3). The homotopy classes [y,] and [y,] generate the
fundamental group. The class [y,] is not independent of [y,] and [y, ].

Actually, 7,(3) is freely generated by [y,] and [y,]. Let g=W(y,1[y,D) € 7(3),
be a word in [y,][v,] and their inverses. Then = maps g to W(a,b) e H where
a=7(y,) and b= 7(y,). Therefore the map 7:7,(3) — H is completely characterized
by the fluxes 7(y,) = a and 7(vy,) = b. Since there is no relation between a and b, the
set T of al mapsislabeled by H X H.

We now define more precisely what we mean by a geon configuration. Let H be a
finite group and 3 the plane with one geon, i.e. a two-dimensional manifold given by

M=R?#T2.

Let v, and y, denote representative loops whose classes generate 7,( Y). We define a
classical configuration 7, ,) € T of a geon as the homomorphism defined by

1'(a,b)( Y1) =8, T(a,b)(yz) =b. (2.7)

It isimportant to bear in mind that T = H X H and therefore that it is a finite discrete
set. For simplicity of notation, a geon configuration will be denoted simply by a pair
(a,b) of fluxes. Note that we are not explicitly identifying those configurations which
differ by an H-transformation. This is because wave functions need only be *‘ covariant’’
under the symmetries of the problem, and only its modulus squared and other observable
quantities, like Aharonov—Bohm phases, must be invariant. In our approach, this will
happen naturally, just asin [15,16].

With T=H X H being the configuration space for a geon, the corresponding algebra
of *‘ position observables’ is .7 (T), the algebra of complex-valued functions on T with
product given by pointwise multiplication. Instead of working with the abstract algebra,
we specify a representation. Let V be the (finite-dimensional) complex vector space
generated by the vectors | a,b),a,b € H. We will cal the representation on V, to be
defined below, the defining representation. The algebra .7 (T) is generated by projectors
on V denoted by Q,,,- They are defined by

Qan! c,d)=4,.6pq4lcd). (2.8)

The operator Q,, ,, represents a ** delta function™” supported at (a,b), i.e. it gives 1 when
evaluated on (a,b), and zero everywhere else. Indeed, from (2.8) one finds that

Q(a,b)Q(c,d) = 8a,c‘sb,dQ(c,d) . (2'9)
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Besides the projectors Q, ), Which play the role of position operators in ordinary
guantum mechanics, we have also some operators capable of changing (a,b). They are
somewhat analogous to momentum operators. For example, like in the case of vortices,
H-transformations act on the configurations. It turns out that for a geon there are
additional operators besides H-transformations. They correspond to the action of the
group Diff*(3) of diffeomorphisms of 3 that keeps infinity invariant.

We will start by first examining the H-transformations.

The group H acts on T simply by conjugating both fluxes in (a,b). This will induce
an operator o, for each g € H, acting on the defining representation V' by

3,1a,b) =lgag™*,gbg ). (2.10)
From (2.10) one sees that the multiplication of operators 59 is given by

The corresponding algebra generated by &, is the group algebra C(H). The relation
between F(H X H) and C(H) can be derived from (2.8) and (2.10). One sees
immediately that

6gQ(a,b)‘Sg;l = Qgag *,gbg b - (212)

In other words, the algebra C(H) acts on F(H X H).

Besides H-transformations, fluxes (a,b) can change under the action of the group
Diff*(3). It is clear that elements belonging to the subgroup Diff5(3), the component
connected to identity, act trivially on 7,(3)* and hence on (a,b). Therefore what
matters is the action of the so-called mapping class group My [27,28], defined as

Diff*( )
*Diffg(X) (213)

For the present case, 3 is the plane with a single geon and the mapping class group
is isomorphic to the central extension of the group S.(2,2), denoted by S(2,7) and
called the Steinberg group. Thisis the same as the mapping class group of a torus minus
one point [25,26]. We denote generators of My = S(2,Z) by A and B. They correspond
to (isotopy classes of) diffeomorphisms? called Dehn twists. A Dehn twist is realized as
follows. Take a loop in 3. Then draw an annulus enclosing the loop and introduce
radial coordinates r € [0,1], with r = 0 and r = 1 corresponding to the boundaries of the
annulus, see Fig. 2. Then rotate the points of the annulus in such a way that the angle of
rotation 6(r) is zero for r =0 and gradually increases, becoming 27 at r = 1. Fig. 2
shows how to produce Dehn twists, and in Fig. 3, we show how the Dehn twist B
deforms the loop +y,. There is also the Dehn twist along a loop enclosing the geon,
which can be interpreted as the 2n-rotation of the geon [1,3,4,25,26]. It will be

* For simplicity, we take the basepoint P to be at infinity.
2 One can see from (2.13) that the mapping class group consists of isotopy classes of diffeomorphisms.
Throughout this paper we shall loosely use a representative in a class as the class itself.
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Fig.2. Dehn twists corresponding to diffeomorphisms of the mapping class group. The annuli enclose loops,
which we have omitted in the figure. Rotations are counterclockwise by convention.

important when we discuss spin of the geon. The corresponding diffeo is denoted by
C,.. inFig. 2. However, C,_ is not independent of A and B. One can show that [25,26]

C,, = (AB A)". (2.14)
The group My is generated by A and B, with the relation that C,, commutes with A

and B. It is useful to think of the elements of My as words W(A,B) in A, B and their
inverses.

P

Fig.3. Dehn twist B and its action on ;.
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The action of A and B _on [y;]€ 7,(3) induces an action on (a,b)€T, and
therefore induces operators A and B in the defining representation acting on V. Let us
take as an example the action of B on vy,, as given by Fig. 3. One sees that
[y,]1 = [v,]lv,], and therefore a — ab. On the other hand, B keeps[y,] invariant. One
can verify that A and B induce the following operators:

Ala,b)=|abay, Blab)=ab,b). (2.15)

For an arbitrary word W( A, B), the corresponding operator is W( A,B), i.e. the same
word but with A and B replaced by A and B. For example, the Dehn twist C, . of Fig.
2 is written as (AB~!A)* and the corresponding operator C,, can be immediately
computed to be

C,.la,b) =|c tac,c 'hc), (2.16)

where c = aba 'b 1. ) )

The algebra generated by the operators A and B is the group algebra C(.#) where
A is the ‘‘effective’”’, or reduced mapping class group, introduced in [7]. Together with
C(H) and #(H x H) it gives us the total algebra .#¥ for a single topological geon.
From the definitions (2.8), (2.10) and (2.15) one sees that

A

ag,&=,&§ 8,8 =B,

) Q% = Qugagt.gbg1):

C,, A= AACZW ,  C,,B=BC,,,

AAQ(a b) A= Qeabay: I§Q(a b) Bl= Qeab,by- (2.17)

Therefore, both algebras C(H) and C(.#) act on % (H X H). The action of a generic
word W( A, B) on Q(a,p) Will be denoted by

W( A,B)Qa.p) = Quuo worW( A, B), (2.18)

where (W® w®) is a pair of words in a and b and their inverses, representing the
action of W(A,B) on (a,b).

There are two equivalent ways of presenting /Y. One is by using the defining
representation of (2.8), (2.10) and (2.15). Another way is to define ™ as the algebra
generated by Q.. 1), 85, A and B with the relations (2.17). In any case, we have that

SV =C(HX2Z)XF(HXH). (2.19)

We may introduce the algebra for two topological geons following exactly the same
ideas as for a single topological geon. We will briefly outline here the main construc-
tions. For details, see Ref. [7]. We recall that for a single geon, .V consists of three
sub-algebras, generated by the ‘‘ position observables” .7 (T), the H-transformations
C(H), and the “‘trandations’’, i.e. aredization .# of the mapping class group M. The
algebra @ for two geons will consist of the same three distinct parts, with T=H X H
X HXH=H*and 3 replaced by a plane with two handles.

It is natural to work with the defining representation on V ® V spanned by vectors of
the form

|a-]_1b]_> ® |a2,b2>y
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where the subscripts denote the respective geons. The ‘‘position observables” are
generated by projectors Q, ) ® Qa,,) acting on V@ V in the obvious way, i.e.

Q(al,bl) ® Q(az,bz) | a’lvb,1> ® | a,2 vb’2> = 8a1,a’18bl,b’18a2,a’2sz,b/z | al’bl> ® | ) !b2> '
(2.20)

Therefore, the ** position’” operators belong to .v® & 7@,
The action of an H-transformation g € H on the fluxes (a,b,,a,,b,) is by a global
conjugation. This induces the action

la,,b,) ® la,,b,) = lga, g7, gb,g7 ) ® Iga, g7, gb, g™ Y (2.21)

on V® V. The corresponding operator is obviously identified with 59 ® 59 eC(H)®
C(H), since

8,® 5,1a,,b,) ® |a,,b,) =1ga, 07, 0b,g7 ") ® Iga, g Lab, g7ty . (2.22)

Hence, H-transformation operators also belong to /P ® .o/,

We now start to consider the action of the mapping class group M. For two or more
geons, My is much more complicated than for a single geon [27]. The mapping class
group is generated by Dehn twists of the type A and B (see Fig. 2) for each individual
geon together with diffeomorphisms involving pairs of geons.

Let A;,B;, i =1,2 be the generators of the ‘‘internal diffeos’ for each individual
geon. The corresponding operators acting on V ® V are clearly given by

A =Acl, A,=I0A

B,=B®l, B,=IeB (2.23)
where [ is the identity operator on V.

There are two additional classes of transformations besides the internal diffeos. The
first one, called exchange, is the analogue of the elementary braiding of two particles.
The second, called handle slide, has no analogue for particles, since it makes use of the
internal structure of the geon.

So far, all operators in the algebra for .« were of the form x® y e o™ ® o, It
turns out that this is not the case for exchanges and handle dlides. They correspond
somewhat to interactions and cannot be written strictly in terms of operators in
D @ oD, In order to describe interactions between geons, we need to define a pair of
flip automorphisms of V ® V. They are necessary in the construction of the exchange
and handle slide operators.

Definition 1. Given a two geon state
la;,b) ® la,,b,)eVeV,
the flip automorphisms ¢ and y are defined by
ola;,b;)®la,,b):=1a,,b,)®la,b), vla,b) ® la,,by):
= la;,b,) ® la,,b;). (2.24)

Both are not given geometrically as morphisms of the mapping class group, but
unless one introduces these operators, the algebra of two geons cannot be related directly
to the algebras for a single geon. We will show that the algebra . can be obtained
from the tensor product .#® ® &7 when we add ¢ and 1.
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Fig.4. Geon exchange.

In the exchange process, two geons permute their positions. In our convention, the
geon on the right (Ieft) moves counterclockwise to the position of the left(right) (see Fig.
4). The effect of a geon exchange on the states is of the form

Fla,b) ® la,,b,) =lcita,cy,citb,e) ®la,b,), (2.25)

where ¢, = a,b,a; *b; . This operator is equivalent to braiding operators for particles
and also satisfies the Yang—Baxter equation,

(zo)(lox)(Zol)=(1e2) (%) (I8%). (2.26)
One can verify that the exchange operator (2.25) may be written as the product
Z=0R, (2.27)

where Re v @ .w® is the analogue of the universal R-matrix for a quasi-triangular
Hopf algebra. In our case R is given by

R=Y Qam ® Szba-ip-t- (2.28)
a,b

The handle slide %2 is shown in Fig. 5. In Fig. 5a the geon is viewed as a
rectangular box on the plane. In Fig. 5b, we have identified two edges of the rectangle
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Fig.5. The handle slide is interpreted geometrically as the full monodromy of two handles followed by a
rotation of 27 of each handle. The figure shows two equivalent representations for the handle slide: In (a), the
geon is viewed as a rectangular box on the plane. In (b), we have identified two edges of the rectangle and the
geon is represented as two circles on the plane.
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and the geon is represented as two circles on the plane connected by dotted lines. The
action of .7 on the states and its presentation in terms of the other operatorsis given in
[7].

This completes the description of .. The algebra for two geons is generated by the
elements of .V ® oV, # and the handle dide .7.

These constructions can be easily generalized to write down the algebra .&(™ for n
geons [7].

3. Quantization

The algebra .M describes the topological degrees of freedom for a single geon on
the plane. To quantize the system we need to find an irreducible representation of .oV
on a Hilbert space /#. However, this Hilbert space will branch into irreducible
representations of the field algebra:

=0 %, (3.1)

where /7, denotes a particular irreducible representation describing a certain geon type.
The algebra is finite dimensional, and therefore there will be a finite number of
irreducible representations of .o/Y. Furthermore, the Hilbert spaces .#, are al finite
dimensional. Each representation gives us a possible one-geon sector of the theory.

In the case of quantum doubles, the irreducible representations are fully classified.
See for instance Ref. [29]. For the case of geons, the agebra is more complicated
because of the existence of internal structure. Nevertheless, the representations of .o/
are quite similar to the ones of the quantum double of a finite group. This is not totally
surprising, since in a certain limit, as discussed in the previous section, we recover the
quantum double 2® = D(H). Actualy, we can define a class of algebras .«, called
transformation group algebras, that can have its representations classified and that are
generic enough to contain the quantum double and the algebra .V as particular cases.
In the spirit of [29], one can then get all representations of ..

Definition 2. Let X be afinite set and G a finite group acting on X. In other words,
thereisamap ay: X — X for each g € G. As usual, we denote by .7 ( X) the algebra of
functions on X and by C(G) the group algebra of G. We define the algebra .« as the
vector space

& =7 (X)®C(G)
with basis elements denoted by (Q,,9), Q, €. 7(X) and g € C(G), and the multiplica-
tion

(Qx.9) '(anh):=(Qang(y)igh)- (3.2)

Here, Q, is the characteristic function supported at x € X. Let x, be an element of
X. We denote by K, <G the stability subgroup with respect to x,, i.e.

Ky, ={9€Glay(x,) =X} (3.3)

The stability subgroup K, = divides the group G into equivalence classes of left
cosets. Let N be the number of equivalence classes and let us choose a representative
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&€G, i=1...N for each class, with the convention that ¢, = e. We can write the
following partition of G into left cosets:
G=§ K, UEK UL UEK, . (34)

We can now state the following result.

Theorem 3. Let |]),, j=1...n beabasis of asubspaceV, of C(G) carryingan IRR p
of K,. Then, for (a fixed) x,€ X, elements §€G, i=1...N and [j), € C(G),
j=1...n as stated above, the vectors

§i|xo> ® |j>p::|a§i(xo)>® |J> y
form a basis for an IRR of the algebra &7, given by

(Qur@) Tag (X)) ® 1101 = 8y o, (x| 2, (X%0)) ® ()l k,,
where &, and B are uniquely determined by the equation

9§ =¢& B,

and I"(P) s the matrix for the representation p.

This result follows from a standard construction in induced representation theory (cf.
discussion of the Poincaré group in [30]).

The quantum double D(H) and the algebra .7V are particular cases of transforma-
tion group algebras. The quantum double is obtained by taking X = H, G = H, with the
action ay(h) = ghg 1. Asfor the algebra of a single geon, one takes

X=HXH
and for the group G the product H X.#. The actions of Sg € H and We.# commute
and are given by

ag(a,b)=(gag t,gbg™"), geH
and

ay(a,b) = (W@ w®), wewz,
where we have used the notation of (2.18). The IRR’s for the algebra (2.19) can be
constructed given an element (a,b) € H X H. The stability subgroup Kiap CHXH is
defined by

Kian = {(9W) EH XAl agay(ab):= (gw® g, gw™ g ) = (a,b)}.

(3.5)

Then, after choosing representatives ¢,,. .., &, for the left cosets, the partition of H X.#
can be written as

HXA =& Kap Y EKapn Y. UKL - (3.6)
Let 11),...,In) € C(H X.#) be a basis of an IRR of K, . Then, according to the
theorem, the vectors

la, (a,b)) ® 1)), (3.7)

withi=1...N, j=1...n, form abasis of an IRR of the agebra ..
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Let us express the representations of .7 in a more compact notation. The action of
H X.# on X =H X H divides X into orbits. We denote by [ a,b] the orhit containing the
element (a,b) € H X H. We will collectively call p the quantum numbers labeling the
IRR's of K. One can see from (3.7) that an IRR r is characterized by a pair
r=(a,bl,p). A basis for an IRR r of «® will therefore be written as vectors
i, i =1,...,N; j=1,...,n defined by

1L, =& lab)® 1)), (3.8)

where |a,b) is a state in the defining representation, & are the same as in (3.6) and
|j), are base elements in the irreducible representations p of K(an) Of course, the set
of vectors thus defined depend on the pair (a,b) we choose. We fix an a and a b, and
henceforth omit the superscript.

The action of Q. is given by

Q|+ = Q) E12D ®11%, = Q|85 ®11), = 8y By i, )r-
(3.9)

Let 5gW be a generic element of H X.Z. The equation
O WE = & B (3.10)

defines uniquely a new class &, together with an element of the stability group
B € K ap)- The action of 5,We .Y on |i,j), is determined by (3.10) and it reads

S Wi, i =¢&laby®Bli),=2 I'P(B)li Kk, (3.11)
k

where I'? is the matrix representation of K.

Each IRR r = ([a,b], p) describes a distinct quantum geon. The corresponding vector
spaces 7, generated by states |i,j),, are al finite dimensional. Therefore we can easily
make it into a Hilbert space by introducing the scalar product

<i’,j’|i1j>r=5ii'8”'- (312)

Since the algebras .« are not the same for different choices of the discrete group
H, we cannot say in general what is the spectrum of a geon. First, we need to fix a group
H and then compute the spectrum for the corresponding .7®.

Consider now two geons described by representations r, and r,. The associated
Hilbert space of states is simply

7P =7, 0%, (3.13)

As explained in Section 2, the field algebra consists of .« ® .7V together with % and
. The dements of .Y ® oD act naturally on (3.13). It remains to be said what is the
action of % and . on states in .7, ® 7, .

The action of % is completely determined by the formula (2.27),

— S—1
F = O'Z Q(a,b) ® aaba—lb—l.
a,b
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In other words,

10000 ® 1K, = X 83k 151 K, Dr, ® Quay 140 )r,- (3.14)
a,b

The generalization for n geons is straightforward.

We may think of % and . as scattering matrices for a pair of geons. The %Z-matrix
represents an ‘‘éastic’’ interaction in the sense that two incoming geons of quantum
numbers r, and r, are scattered into two objects carrying the same quantum numbers r,
and r,. The handle slide .% on the contrary is a non-trivial scattering, each one of the
two outgoing geons being a superposition of many geons in the spectrum.

4. The spin-statistics connection for (2 + 1)d topological geons

The spin-statistics theorem is a well-established law of physics, and it holds true for
most of the quantum particles in nature. In considering quantum topology change and,
more generally, quantum gravity, one is naturally led to inquire whether a sort of field
theory exists which gives geons as quantum excitations on a topologicaly trivial
classical background. Such a theory remains hitherto utterly elusive, but one may try to
investigate some of its aspects. For instance, in such a theory the quanta would be geons,
so one fundamental research work would be a thorough analysis of the spin and statistics
of geons and in particular whether the geons enjoy the canonical spin-statistics connec-
tion.

In order to pose the problem properly, we start with some general comments. Spin
and statistics are two properties which can be defined independently of each other. They
refer not only to particles, but in general to localized sub-systems that may consist of
several particles or even extended objects like solitons. The tensorial or spinorial nature
of spin is determined by the behavior of the wave function when the sub-system
undergoes a 27 rotation. Statistics determines what happens when two identical
sub-systems are exchanged. The canonical spin-statistics connection asserts the identity
of the operators implementing 2#-rotation and exchange. It is thus clear that our first
task is to define the quantum operators responsible for 27 rotation and exchange. In the
case of (2 + 1)d orientable geons, we can easily find these operators among the algebra
described in Section 2. In doing so, we will be led to a definite spin-statistics relation
differing from the canonical one by a phase.

In the usua spin-statistics theorem, we prepare a two-particle state which is a tensor
product of two copies of the same (arbitrary) one-particle state with the same spin, in
order to probe the relation between the exchange and 27-rotation operators. However,
here we meet a problem: we have only been able to prove the existence of such a
relation in the special case when the total fluxes of each geon not only belong to the
same conjugation class, but are the same. This is rather unexpected at first sight,
because in the definition of the IRR’s of the one-geon algebra, Eqg. (3.8), we can see that
each vector of the basis of a representation space has an associated and possibly distinct
flux ¢, = &c& !, where c=aba 'b~*. The geon state is in general a superposition of
such vectors, and therefore the flux of a geon state is not well defined for most states in
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a given representation. To overcome this problem we advance the claim that the total
flux should be a superselected quantity in the same sense that electric charge is
superselected. We shall explain how this superselection occurs in Section 5. Here we
simply note that as a consequence, the only physical states are superpositions of basis
vectors with the same total flux. If we assume this, then the spin-statistics connection
holds for all physical states.

We start by considering a pair of geons on the plane. The algebra .« is fixed as
soon as we choose a finite group H. In Section 2 we saw that the exchange of two geons
is realized by the operator % defined in (2.27). Similarly, the 27 rotation of one of the
geons can be written as C,, ® | or | ® C,_. We would like to know if the algebra &/
implies any kind of relation between exchange and 27 rotations.

Let us start by fixing arepresentation r = ([a,b], p) of .#®. State vectors |i,j), € 7,
given by (3.8) do not have a well-defined spin, or in other words, they are not
eigenstates of C,, . In order to establish the spin-statistics relation we need first to know
what are the eigenstates of C,_. We recall that C, €.# and that .# is a finite group.
Therefore there exists a least non-negative integer N such that

CN =1 (4.1)

and the eigenvalues of C,_ are €273, where the spin s=0,1/N,2/N,...,(N—1)/N.
One can see that the operator

P,= e in27sCy (4.2)

projects into states with spin s. The front factor is just a normalization constant to
ensure that P2 = P,, and we assume of course that N > 2, so that we have a non-trivial
behavior under a 27-rotation. Furthermore, any state of %, with spin s can be obtained
by linear combinations of |s;ij) given by

Is;i,j)=Pslij). (4.3)

Consider a pair of geons both carrying the same representation r = ([a,b], p) and the
same spin s. In addition, let us consider both geons to have the same total flux
c, = &cét, where c=aba *b™?, i.e. we assume that each geon is in a state which is
the superposition of basis vectors having the same flux. This will have the following
consequence. The &'s in (3.7) act on |a,b) in such a way that the flux ¢ becomes
conjugated by &. In other words, the flux of each vector in the basis {|i,j )/} will be
equal to c;. Hence c; becomes a quantity characterizing the particular superselection
sector within r. We are going to show that the statistics of the system is completely
determined by the spin s and the representation r. It does not depend on c;. More
precisely,

R ® 1) =eC™ )y | ¢, (4.4)

where the states | ) and | ¢) transform according to the same representation r and
have both the same spin s and the same total flux c;. Also, 6, is an angle that depends
only on the representation r. The usual spin-statistics connection is true only for
representations r such that 6, = 0.
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It is enough to show that (4.4) is true for states | ) and | ¢ in the basis (4.3):

1N-T ~
L) =Pglij) = N Y, e 'nmsCy {&1aby ® 1))}, ) =PIk
n=0
LN
= N in ﬂ-SCZnﬂ.{ §k| a,b> ® | |>P}' CI = Ck' (4.5)
Using (3.14) one can show after some algebra that
Z{Plij) @ PIK)} =1 D) ®P,lij) (4.6)
with
|¢>__Ze_ln2ﬂSC2ﬂ C‘ {lak,bk>® ||>} (4.7)

In the last formula, we used the notation

with c;, the total flux of |a;,b;), being given by ¢, = a;b,a*b % The result (4.6) isa
tensor product where only the first factor is not yet in the desirable form of (a
phase) X | ).

Let us take a closer look at | @ ). First let us define

E = 5.C,, (4.9)

and write | @) as
| D) = |2775 Ze |n2773cn {§k|a,b> ® ||>p}. (4.10)

To proceed, we will show that
Ei & = &E,, (4.11)
where E, = 5,C,. with ¢ =aba b~ . Indeed, first note that
E &lab) =5,C,, &lab) =5,Cy,la b =la.b) = £la,b), (4.12)
where we have used the fact that ¢, = c,. Therefore

Eiéi=¢ B, (4.13)

where 8 belongs to the stability group K(a b Of [a,b).

All we have to do is to show that in fact B=E;: =3 .C,.. We recdl that by
definition ¢, =e.

From (4.13) it follows that

B= fElEi &y (4-14)
If we take a generic &, to be of the form Sgkwk for some g, € H and o, €4, we see
that

B =085} 8,Css ) 8g,06 = 853( 8, Carr ) B, = 8526, Con (4.15)
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since w, commutes with H-transformations. We will show presently that
€ = Cy = G0 (4.16)

which alows us to conclude, from (4.15), that B =E;, and hence (4.11) follows. In
order to show (4.16) we write

la.b) = &la,b): = 8 wla,b) = vl geag, gybg . (4.17)

Remembering that the elements of .# do not change the total flux [7], we can compare
the total fluxes of the first and last expressions. That gives us

€= 0y CY - (4.18)
Now, from (4.11) we have
Eéc=&E (4.19)

It is a simple exercise to show that E, is in the center of the stability group K, of
| a,b). Therefore, from (3.11), we can write

E'{&labye i} =¢glab) @B, (4.20)

Since the states |1), form a basis for an (unitary) IRR of K, ,, from Schur’s lemma
we conclude that the operator E, gives a phase €'’ in (4.20) depending on the IRR
r =([a,b], p). Putting the results together we have

. 1 , ~ .
| D) = e'(Z’TS*"r’N Y e nmsCh (g a,by @ |1),} =€e@m" P k). (4.21)
n

This concludes the demonstration of Eq. (4.4). Since the phase 6, comes from general
considerations, it is indeterminate in our formalism.

5. The role of H: superselection and clustering

In this short section we are interested in emphasizing how the hypothesis of
superselection of total fluxes and the possibility of clustering of geon subsystems arise
naturaly if we confine ourselves to local operators as the only ones with physical
significance.

We therefore start off by noting that the H-transformations in our one-geon algebra
are actually non-local operations, since they are effectively equivalent, from the stand-
point of the one geon, to move ‘‘distant geons’’, or aternatively, ‘‘distant fluxes”’ in a
circle at infinity around the geon. This apparently innocent observation entails a striking
conclusion: since all elements of the algebra other than the H-transformations (which
elements are also ‘‘local operators’), commute with the total flux, we have that the
total flux must be a superselected quantity. As we saw in the previous section, this is
enough to ensure the spin-statistics connection for geons. This may appear to be strange
at first: we have seen that the total flux can be changed by the action of H. However,
since H-transformations are non-local, they cannot affect local observablesin a sensible,
local theory. The only local operators would therefore be the elements of the mapping
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class group, and these clearly do not change the total flux. This can be generalized for N
geons:. the total flux of the entire N-geon system is then superselected, the flux of each
geon being however subject to changes, much as it occurs in QED charged sectors.
However, in this case one must have a suitable notion of clustering, i.e. if we consider
N — 1 geons to be ‘‘distant’’ in a suitable sense, the remaining ‘* solitary’’ geon can be
seen as really isolated, and it must be in a state belonging to a one-geon algebra IRR.
We will explain the necessity of these concepts in what follows.

First of all we must make precise what our notion of ‘‘distant’’ is. We should recall
that we are actually studying the low-energy limit of a field theory, and in spite of the
fact that the theory in this limit is effectively independent of the metric, we have started
off with a metric in order to define our theory. Therefore it makes sense to use this
metric to measure distances and assume ‘‘distant’’ geons or fluxes to be those which are
much further than the characteristic size of the geon under consideration. We hereafter
take this to be the meaning of ‘“‘distant’’. ‘‘Local’’ will then mean within distances
comparable to the characteristic size of the geon.

With these definitions we can now proceed to clarify how the notions of clustering
and superselection should arise to ensure the spin-statistics connection for geons. To
establish this connection in the previous section we considered states of the form
l)® ), where | ) and | ¢) were states transforming in the same IRR r and
having the same spin s. We made, in the course of our demonstration, two basic
assumptions:

- The states | ) and | ¢) were considered to have definite, well-defined total fluxes
¢; and ¢, i.e. they were each superpositions of basis vectors having the same total
flux;

- The fluxes ¢; and c, are the same.

The second asumption is very natural and easily implemented, since as pointed out in
[31] in asimilar context, the fluxes ‘‘ being equal’’ is a well-defined, H-invariant notion.
One only has to prepare two one-geon states with same total flux. The first asumption,
however, looks quite artificial at first sight, without some extra input. After all, each
IRR vector space is generated by vectors having different total fluxes, although in the
same conjugacy class. To impose that only superpositions of vectors having the same
flux should be considered apparently threatens generality. This is not so however, if we
assume that the notions of clustering of geon subsystems and superselection of total flux
should play a role in our physical description. First, let us consider the clustering
property. Consider a system of N geons on the plane. It is redly rather natural to
assume that geon subsystems can be isolated as long as we consider only local operators.
This means that, if we fix one geon and take the other N — 1 geons to infinity, this
remaining geon should be described by the one-geon algebra .Y, and its state should
belong to an IRR of .®. On the other hand, the total flux of the N-geon system is
superselected, but the total fluxes of individual geons are not uniquely defined by the
N-geon total flux, and in particular a geon can even be in a superposition of various flux
states. It is to preclude this possibility that the clustering property appears. since the
geon can be isolated, it is effectively equivalent to a one-geon system, and in particular
all operations which change its flux are indistinguishable from H-transformations on a
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one-geon system. Therefore the isolated geon in a pure state must have a definite total
flux as well. (Mixed one-geon states with a probability distribution of total fluxes are of
course permitted).

The consequence of the previous discussion for a two-geon system is as follows. For
a one-geon system, superselection of the total flux means that the IRR’s r must further
split into superselected subspaces, and the physical states belong to these subspaces.
Now, for a two-geon system in a state | ) ® | ¢), only the total flux must be
superselected, but the clustering property ensures that each geon must have a definite
flux. Therefore for physical states, | ) and | ¢) must separately be superpositions of
states with definite flux. The conclusion is that the two assumptions we made to check
the spin-statistics connections become most natural if we include superselection of the
total flux and the clustering property as physical requirements of the theory.

6. Geons in quantum gravity

In this section our aim is to describe what are the consequences of our results to
guantum gravity. In the canonical metric formalism of gravity on a space-time manifold
4 of the form 3 X R, we may perform a space versus time splitting and define the
classical configuration space Q as follows. Let us specializeto (2 + 1)d. Let R°(3) be
the space of all Riemannian metrics on the space manifold 3 which are equal to some
conical metric in a neighborhood .# of infinity.® We quotient this space by the group
Diff*(3) of diffeomorphisms of the spatial 2-manifold 3 to obtain Q [28]. Therefore
we may denote the Q as

_ R(2)
 Diff*(3)

Now, Q is not simply connected in general, and in this case one may have many
distinct quantizations, a phenomenon which is seen for example in the **6 vacua’ of
QCD.* To see this we resort to the so-called covering space quantization, which we
briefly review here (for a more complete account, see Ref. [28]). In this approach, wave
functions (defining domains of operators like the Hamiltonian) are taken to be functions
on the universal covering space Q of Q with certain specific properties. It can be shown
that in our case

R(2)
Diff5(Y) '’
where Diff5(3) is the component connected to the identity, and hence a normal

subgroup, of Diff*(3). In what follows it will always be understood that these diffeos
are of 3, and hence we will omit the argument.

(6.1)

(5 _ (6.2)

® These boundary conditions for the metric substitute the usual (3+1)d ‘‘asymptotically Minkowskian'’
scenario for the (2+ 1)d case. See Ref. [32] and references therein for a more complete discussion.

* In this section, the word ‘‘guantization’” will have a meaning dlightly different from the rest of the paper.
It will mean simply an appropriate assignment of a Hilbert space of wave functionsto a classical configuration
space.
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It is well known that the universal covering X of any topological space X is a
principal bundle over X with structure group 7 ,( X), and the projection p: X — X given
by the covering map. The structure group has afree right action y: X — Xy on X and the
quotient X/7r,(X) by this action is again X. This action is fiber-preserving, i.e. for
every y € m,( X),X € X we have p(Xy) = p(X). Therefore Q is a principal bundle over
Q with structure group 7 ,(Q), which can inferred from (6.1) and (6.2) to be isomorphic
to the mapping class group M.

Wave functions ¥ need not be single-valued on Q if Q contains non-contractible
loops. Actually the transformation of the wave function when such loops are traversed
gives a representation of 7,(Q). This can be seen in the following way. All that must be
single-valued are observables like ¥ *¥. On the other hand, since the universal covering
space is by definition simply connected, functions on it can aways be taken to be
single-valued. Therefore, if we could define wave functions as functions on Q such that
v ¥ is gtill afunction on Q, we would circumvent the multi-valuedness of the wave
functions while leaving the probability interpretation unharmed. This task is easily
accomplished in the following way. Let .7, be a complex vector space with a hermitian
inner product {,) carrying a unitary representation p of 7,(Q) = M;. We say that a
function ¥:Q — %7, is equivariant if for every y € 7,(Q),§ € Q we have

Y (Gy) =p(y )P (0). (6.3)

Hence, since 6/771(Q) = Q, we have that (¥,¥ ) can indeed be viewed as a function
on Q, as we wanted. Therefore our quantum Hilbert space V, may be taken to be (the
norm completion of) the space of equivariant functions ¥:Q— %, such that the
function (¥, ¥ ), seen as a function on Q, gives a finite number when properly
integrated on the whole of Q (the latter process defines the inner product). This recipe
obviously depends on which representation p we take. Actualy, it can be shown [28]
that there are at least as many inequivalent quantizations as there are unitary irreducible
representations of M.

As we have mentioned, wave functions on Q pick an ‘‘ Aharonov—Bohm phase’’
whenever they traverse a non-contractible path in Q, i.e. they transform according to
some representation of ,(Q). Since this group is non-abelian in general, the wave
function may transform via a non-abelian representation. This is akin to the behaviour of
sections of a vector bundle with a flat connection. Actualy this is the case: it is well
known (see e.g., Ref. [33]) that the set of equivariant functions on a principal bundle
taking values in some vector space V isin hijective correspondence to the set of sections
of the associated vector bundle with fiber V. Since the structure group is discrete, the
bundle is always flat.

We therefore arrive at the conclusion that any unitary representation of the mapping
class group provides a vector bundle over Q whose space of square-integrable sections
forms a possible Hilbert space for geons in quantum gravity as far as kinematics is
concerned. These spaces must have further imposed dynamical constraints, i.e. they
must be a suitable arena for dynamics before they really can be claimed to be authentic
quantum gravity Hilbert spaces for geons. In this (2 + 1)d context we can actually do
more than this. It is possible to impose all the dynamical constraints of general relativity
to obtain the reduced configuration space, thereby taking into account dynamical aspects
as well. Our space Q will then be the moduli space of the surface 3, and its universal
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covering Q will be the Teichmiller space [34]. Again, 7,(Q) will be the mapping class
group and our discussion will go mostly along the same lines.® This state of affairs is
somewhat reminiscent of quantization of matter particles in Minkowski space-time, in
the context of usual quantum mechanics. One can have many representations of the
Lorentz group, but on the one hand only some of them seem to be realized in nature, and
on the other hand the dynamics selects which representation survives in each physical
situation, e.g., the tensoria representations for the Klein—Gordon field or the spinorial
and tensorial representations for the Dirac field.

Thus, we are led to the questions of whether, and how, the Hilbert spaces we have
presented in the previous sections fit into this scheme, and in particular whether the
spin-statistics connection we have found extends to these quantum gravity geon states.
First of all, we note that some of the Hilbert spaces /#,, carrying representations
r=(ab],p) of our field agebra .« (in the notation defined in Section 5) carry
naturally a representation of the mapping class group: we recall that the elements of this
group were naturaly included in o/, and hence we may say that r contains a
representation (possibly reducible) of the mapping class group. We will again denote
this representation by r. Therefore the vector bundle associated to Q with fiber 7,
where the r’s are just as stated, gives another Hilbert space for geons in quantum
gravity, via its square-integrable sections. In this new scenario the fibers are internal
state spaces.

However, we are now faced with another problem: do these sections carry a
representation of the mapping class group? In other words, is it possible to extend the
action on each fiber to an action on the space of sections? The answer is known to be
negative in general [25,26,36—38]. One can nevertheless implement operators corre-
sponding to elements of My on states localized at a point g € Q. In particular, we may
extend the operators % and C, ., related to statistics and spin respectively, to operators
R and C,_ acting on such localized states. We will show at the end of this section that
such states obey a spin-statistics connection inherited from the fibers. Here we presently
give a smple geometrical discussion to bring out the reasoning behind these remarks.

A very useful construction of the universal covering space Q is as follows [28]. Let
us assume that the space Q is connected (if this is not so we can aways choose a
connected component). Let g, be a point of Q which once chosen is not to be changed.
Let «, be apath on Q from ¢, to another point g € Q.5 The path space #Q of Q is
the space {«} of these paths. Let us next say that two paths «, and «;, are equivalent
and write a, ~ a4 if one of them can be deformed to the other holding g, and q fixed.
One can then show that the space Q is the same as the space of equivalence classes aq]
of such paths, the projection map p:Q — Q being given by [«,] — g. For a fixed g,
these equivalence classes form the fiber over the point g.

The group 7,(Q) can be identified with the set of equivalence classes of loops
starting and ending a ¢, i.e. [ag], with the compositions of loops [ag e, 1=

[ag, © ag,], where wefirst trace [ e ], and then trace [ ag . This group acts on Q on the

5 Strictly speaking, this discussion is valid for genus g > 2. For genus 1, things are a bit more complicated.
For details see, for instance, Ref. [35].

® In this discussion all parametrized curves {a:[0,1] - Q|a(0) = g,; (1) = g} with different parametriza-
tions but with same image in Q are to be regarded as the same path.
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right via the composition of paths: [agllag ]1=[agy° a4 1. This corresponds to the free,
fiberwise action of 7,(Q) on Q that we mentioned before. Note moreover that we have
chosen a fiducial point and put 7,(Q) = 7,(Q;q,), the latter denoting the homotopy
group of paths based at q,, to be our **model’* for the structure group. Now, we might
consider 7,(Q;q), the homotopy group of paths based at another point g€ Q. This
group is isomorphic to 7,(Q;q,), but the isomorphism is not canonical, and we will see
that this fact prevents the extension of the action of 7,(Q) when this group is
non-abelian. We point out that 7,(Q;q) acts on the space {[«,]} on the Ieft, and
therefore does not interfere with the action of 7,(Q;q,); if we denote an element of
7(Q;a) by [,], we have that [yl erg] = [y el

We now show that exchange and 27-rotation correspond to actions like that of
(Q;q), and not to the globally defined right action of 7,(Q). If_d denotes a diffeo and
h a metric, let hd denote the pull-back metric d*h. Then Q consists of elements
hDiff;, Q of elements hDiff*, and 7,(Q) = Diff* /Diff;; acts on Q on the right:’
hDiff; — (hDiff5)(dDiffy) = hdDiffj, with d € Diff”. This action is globally defined.
The association of a 27-rotation or exchange however is not to this action of Diff” /Diff .
Instead, it is obtained as follows. Let g = hDiff* € Q correspond to two well-separated
geons and let {q(t):0<t< 1} bealoopin Q based at q(0) = q(1) = g. We can write
g(t) = h(t) Diff*, and there exists an element d € Diff* such that h(1) = h(0)d, since
g(0) = g(1). Now it is shown elsewhere [25,26] that the physical process of exchange
say is associated with an element #Diff; of Diff”/Diff; (% < Diff*) and a loop
based at q(0) € Q. But this correspondence is not unique, being deduced from the

7,(Q;q) action on Q. Thus according to [25,26], the exchange process gives a curve
{h(t)} with h(1) =h(0)#. It becomes the curve {h(t)Diff;} in Q and the loop
{h(t)Diff*} in Q. Now to find the diffeo and the loop for exchange based at ¢(0), the
starting metric can be h(0) or h(0) = h(0)d, for any d € Diff” as both give rise to the
same q(0). Then for the two curves {h(t)} and {h(1)}, we have h(1) = h(0)# and
h(1) = h(0).. They give the curves {h(t)Diff} and {h(t)Diff3} in Q and the loops
{h(1)Diff*} and {h(t)Diff*} in Q. But the homotopy classes of these loops are not in
general the same, being related by the action of m,(Q;0). They do not therefore always
define an unambiguous element of Q. To see this first note that {h(t)d~ 1Diff5} also
projects to the loop {h(t)Diff*} while at the same time it has the same starting point
h(0)Diffg as {h(t)Diffg}. It follows that the lifts of the loops {h(t)Diff*} and {h(t)Diff*}
to Q with the same starting point h(0)Diff; are {h(t)Diff3} and {h(t)d~Diff%}. But
their endpoints in general are different, being h(0).%Diff; and h(0)d.%d~ llef°°
respectively, showing that the two loops may not be homotopic. Further the diffeos
associated to the exchange can be % or d.%2d~* and their images in Diff* /Diff{ can be
different.

Suppose then that we want to consider a global action of 7,(Q) on the quantum
states. The two-geon configuration hDiff* = g€ Q is described in quantum theory by
an equivariant function ¥ on Q taking values in some vector space #- which carries a
representation I" of Diff” /Diffg. We assume that ¥ is localized at a point [«,] € Q in

" Let G be any group and X a space on which G acts on the right. We may take the quotient X /G of
equivalence classes by the action. Let also x € X. We denote by xG the equivalence class of x in X/G.
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the fiber over g. The exchange process will then correspond to a loop class [vy,] €
7(Q;q). This will act on the wave function by

(vl ®)([aad) = ¥([a] "[aa)). (6.4)

Since [y ] Hagl =y, ° a,l is in the fiber over q as well, there exists a unique
[og]1€ 7(Q) such that [y * ° a,]=[ayllog]. Therefore

V([vg] Tagl) =T ([0d] ") ¥ (L ag)). (65)

However, this association of an element of the fundamental group of Q based at q to
an element of 7,(Q) is canonical only for ¥ localized at apoint § in the fiber over q as
stated, otherwise we may pick another [a;] € p~*(q) which is related to [«,] by the
relation [aq] =[a,]t], for some [t] € 7,(Q). Then we have

([%]¥)([g]) = ¥ (1] Leg]) = ¥([va] [agllt]) = ¥([agl[og]1[t])
= ([t] "[og] Tt ¥ ([ag]). (6.6)

Thus we have problems with continuity of the action for non-abelian I" if we try to
extend the action of 7,(Q) to non-localized states.

We are now ready to consider the content of the spin-statistics theorem in this context
of localized states. Let 7}- be a Hilbert space carrying a representation 1" of the algebra
for one geon. Consider the space of equivariant functions ¥:Q — #., which is the
space of states of the geon in quantum gravity, and denote it by V.. We have seen that
the mapping class group will not act on all of V., but will have an action on localized
states. Technically speaking these are ‘‘delta functions” concentrated at some point
G € Q. This means distributions, i.e. linear functionals §; on the ¥’s such that, for each
Ve V., we have

54(¥) = ¥(8). (6.7)

Let d € Diff”/Diffy, and § = hDiff;, where as before h denotes some metric on 3.
Then Diff* /Diff{ acts on the localized space as follows:

A

d5q= Sﬁd_l’ (68)

and given any state V' € V-, 854 «(¥) = W(§d 1) = I'(d)55(¥), from the equivariance
property. Hence we may simply put, with a slight abuse of notation,

dé;=I(d) ;. (6.9)

We are actually interested in the action of % and C,,.. Like in the case of vectors in
-, we can construct localized states with definite spin s, namely by applying the spin
projector P, in (4.2) to any generic state. Note, nevertheless that the definition given in
(6.8) does not apply directly in this case, since P, is not an element of the mapping class
group as it has been defined. This need not bother us, though, since the definition of
(6.9) extends by linearity to the algebra generated by the mapping class group, so we
may define a localized state of spin s, denoted by 5° through the equation

849 = I'(P,) 8. (6.10)
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Now pick two equal states 55 localized at the same point § & Q and with the same
spin s. These are eigenvectors of the operator C,. with eigenvalue expi2#s, and we
may write, for any two states @ and ¥ in V;.:

R 89 @ 89(D,W) =2 {I'(P)P(§) ® I'(P) W (8)}. (6.11)

But since the vectors in the parenthesis are both vectors in 7}, the spin-statistics
relation is valid for them. Since @ and ¥ are arbitrary, we may conclude from (4.4) that

(%356%5) ® 56%5) = @l@7s—6,) Sés) ® Sés), (6.12)

which is the expression for the spin-statistics connection for the localized geon states in
guantum gravity.

7. Final remarks

In this paper, we have shown how to explicitly encode information on non-trivial
spatial topology in the quantum theory of topological geons. We have described its
classical degrees of freedom by using the low-energy limit of a Yang—Mills theory
coupled to a Higgs field in the Higgs phase, where the symmetry is spontaneously
broken down to a finite gauge group. It has been argued that this is enough to capture
aspects of the topology of the underlying space manifold, and it has been shown how
such a theory can be quantized. The field algebra for one or many geons has been
derived, and its representations, corresponding to the various geonic sectors of the
theory, have been worked out in detail.

Our discussion borrowed heavily from the theory of quantization of vortices [15,16].
It led to a striking consequence: we have been able to derive a new spin-statistics
relation obeyed by the geonic states. In this relation, there is still a parameter 6, to be
fixed for each representation of the geon algebra .oV, but to obtain it explicitly one has
to fix afinite group H and use the formalism to work out the representations of the geon
algebra. We will attempt this elsewhere. We have also shown how the geonic states we
describe here correspond to quantum gravity states of geons.

One is naturaly led to inquire whether the framework developed in this paper can be
extended to cover the more general case when the gauge group is a Lie group. In
particular it is known that general relativity in (2 + 1)d can be viewed as a Chern—Simons
theory with gauge group 1S0(2,1) [39,40], and therefore one may investigate the
spin-statistics connection when H in this paper is replaced by 1S0(2,1). Such general-
izations will be the issues of a forthcoming paper.
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