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Abstract

It is well known that in spite of sharing some properties with conventional particles,
topological geons in general violate the spin-statistics theorem. On the other hand, it is generally
believed that in quantum gravity theories allowing for topology change, using pair creation and
annihilation of geons, one should be able to recover this theorem. In this paper, we take an
alternative route, and use an algebraic formalism developed in previous work. We give a
description of topological geons where an algebra of ‘‘observables’’ is identified and quantized.
Different irreducible representations of this algebra correspond to different kinds of geons, and are
labeled by a non-abelian ‘‘charge’’ and ‘‘magnetic flux’’. We then find that the usual spin-statis-
tics theorem is indeed violated, but a new spin-statistics relation arises, when we assume that the
fluxes are superselected. This assumption can be proved if all observables are local, as is generally
the case in physical theories. Finally, we also discuss how our approach fits into conventional
formulations of quantum gravity. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The spin-statistics theorem is one of the most fundamental relations in the theories
describing the particles of nature. As far as experimental tests are concerned, no
elementary particles were ever found which violate it. It was therefore a surprise when it

w xwas discovered 1,2 in the middle 80’s that topological geons did violate this relation in
general, at least in the case when the spatial topology is not allowed to change.

w xTopological geons are soliton-like excitations of the spatial manifold S 1,3,4 . They
Ž .can be thought of as lumps of non-trivial topology. For example, in 2q1 d, the
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topology of an orientable, closed surface S is determined by the number of connected
components of S and by the number of handles on each connected component. Each
handle corresponds to a topological geon, i.e. a localized lump of non-trivial topology. It
is well known that these solitons have particle-like properties such as spin and statistics.
However, as we observed before, unlike ordinary particles they can violate the spin-sta-

w xtistics relation. It has been suggested 1,2,5,6 that the standard spin-statistics relation
Ž .can be recovered if one considers processes where geons are possibly pairwise created

and annihilated, but this necessarily implies a change of the topology of S. In other
words, one may have to consider topology change in order to have a spin-statistics

w xtheorem for geons 5,6 .
Ž .To appreciate the importance of having or not having a spin-statistics connection for

geons, one must recall that in ordinary quantum field theories in Minkowski space, the
particles which arise when we second quantize, for instance, have this connection
naturally. Now, in a hypothetic quantum theory of topology, one could think of geons as
a kind of ‘‘particle’’, representing excitations of the topology itself. It seems therefore
natural to ask about whether they share this connection with ‘‘true’’ particles. As we
have mentioned, they do not, but still we find that in the formalism we develop here a
different, weaker version of the spin-statistics connection arises.

In the absence of a full-fledged quantum gravity theory, it has become a current
practice to consider simple models which retain some of its aspects while being more
tractable in the formal aspects. Accordingly, our intention in this work is to use a very

Ž .simple model, a gauge theory with a finite gauge group in 2q1 d space-time
dimensions, to understand the spin-statistics theorem in quantum gravity. This model has
the advantage of ‘‘isolating’’ the topological degrees of freedom, which are in a certain
sense canonically quantized independently from degrees of freedom coming from metric

w xand other fields. The same model has been considered in a companion paper 7 , and
there we show that we may consider topology change as a quantum phenomenon
depending on the scale of observations. Therefore this model features spatial topology
change in some sense. Actually, in spite of the fact that topology change has been

w xinspired by quantum gravity, it has been demonstrated in 8 that it can happen in
ordinary quantum mechanics. In this approach, metric is not dynamical, but degrees of
freedom related to topology are quantized. The notion of a space with a well-defined

Ž w x .topology appears only as a classical limit. See also Ref. 9 for related ideas .
ŽLet us consider a manifold M and some generic field theory possibly with gauge and

.Higgs fields interacting with gravity. It is reasonable to expect that if we could quantize
such a complex theory, its observables would give us information on the geometry and
topology of M. The main point is that one does not need to consider the full theory to

Žget some topological information. It is possible that, in a certain low energy large
.distance limit, there would be a certain set of observables encoding the topological data.

ŽWe know examples where this is precisely the case. In general, the low energy large
.distance limit of a field theory is not able to probe details of the short distance physics,

but it can isolate degrees of freedom related to topology. We may give as an example
the low energy limit of Ns2 super Yang–Mills, known as the Seiberg–Witten theory
w x10 . We also have examples of more drastic reduction where a field theory in the

w xvacuum state becomes purely topological 11 . Inspired by these facts we will identify
the degrees of freedom, or the algebra AA Žn. of ‘‘observables’’, capable of describing n
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Ž .topological geons in 2q1 d. Actually, we will argue later in this paper that not all the
operators in this algebra are observables in the strict sense. Rather, this algebra is a sort

Ž w xof field algebra see, for instance, Ref. 12 and references therein for more information
. Ž1.on field algebras . We say that AA describes a single geon in the same way that the

algebra of angular momentum describes a single spinning particle. In this framework
what we mean by quantizing the system is nothing but finding irreducible representa-
tions of AA Ž1.. As in the case of the algebra of angular momentum, different irreducible
representations have to be thought of as different particles. For the moment, we will not
be concerned with dynamical aspects. We would like to concentrate on the quantization
itself and leave the dynamics to be fixed by the particular model one wants to consider.

An intuitive way of understanding the algebra AA Ž1. for a topological geon comes
from considering a gauge theory with gauge group G in two space dimensions
spontaneously broken to a discrete group H. For simplicity we will assume that H is

Žfinite. As an immediate consequence it follows that the gauge connection at far
. Ž . Xdistances is locally flat. In other words, homotopic based loops g and g produce the

Ž .same parallel transport holonomy . The set of independent holonomies are therefore
w x Ž .parametrized by elements g in the fundamental group p S . It is quite clear that such1

quantities are enough to detect the presence of a handle. The phase space we are
interested in contains only topological degrees of freedom. Therefore such holonomies
can be thought of as playing the role of position variables. We also have to take into

Ž . w xaccount the diffeomorphisms diffeos that are able to change g . They will be
somewhat the analogues of translations. It is clear that the connected component of the
group of diffeomorphisms preserving the basepoint and a frame there at, the so-called
small diffeos, cannot change the homotopy class of g . To change the homotopy class of
a curve g one needs to act with the so-called large diffeomorphisms. Therefore the
analogues of translations have to be parametrized by the large diffeos modulo the small
diffeos. This is exactly the mapping class group M . Also, since we must fix a baseS

Ž .point P to define p S , we must take into account the fact that the discrete group H1

can change the holonomies by a conjugation. These three sets of quantities will comprise
our algebra AA Ž1.. Contrary to what happens in field theory or even in quantum
mechanics, we find that AA Ž1. is finite dimensional. This will be important to avoid
technical problems of various kinds. The algebra AA Ž1. contains the analogue of positions
and translations and can be thought of as a discrete Weyl algebra. There seems to be no

w xgreat obstacle to generalize our results also to the case where H is a Lie group 13,14 .
Our algebraic description of geons is analogous to what has been developed for 2 d

w xnon-abelian vortices by the Amsterdam group 15,16 . These ideas have been further
Ž .developed by some of us and coworkers and applied to rings in 3q1 d. Their results

w xwill not be discussed here since a complete account will be reported in 17 .
w xThe algebra encountered by Refs. 15,16 was a special type of Hopf algebra, namely

w x Ž1.the Drin’feld double of a discrete group 18 . In our case, however, the algebra AA is
not Hopf, but it has a Drin’feld double as a subalgebra. For a pair of geons we find that
the corresponding algebra AA Ž2. is closely related to the tensor product AA Ž1.mAA Ž1. of
single geon algebras. This fact allows us to determine the appropriate algebra AA Žn. for
an arbitrary number n of geons. Among the elements of AA Ž2. we find the elements
corresponding to the operations of exchanging the positions of two geons and rotating
one of them by 2p . These are the two operations we need in order to answer whether
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there is a spin-statistics relation. The usual theorem states that the exchange of two
Ž .identical components statistics is equivalent to the rotation by 2p of one of its

components. It turns out that this is no longer true. However, spin and statistics are not
independent but fulfill a well-defined relation.

w xWe would like to point out some differences with respect to the approaches of 2 for
w xthe spin-statistics connection. To show their results, the authors of 2 have used

anti-particles together with rules for pair creation and annihilation. In our approach the
spin-statistics relation follows entirely from the properties of the field algebras. It is true
that we can also have creation and annihilation of geons, but these processes are not
directly linked to the spin-statistics relation. For other approaches to the spin-statistics

w xtheorem see Refs. 21–24 .
One advantage of the algebraic approach is that we can do this analysis without going

into the details of the ‘‘complete’’ underlying field theory. We can determine the
ˆŽ1. Ž1.spectrum AA of the geons, i.e. the set of possible irreducible representations of AA ,

ˆŽ1.but a particular field theory may restrict the available possibilities in AA . The
determination of these possibilities requires the study of particular examples of the
underlying field theories. That may be a very difficult task. In this paper our intention is
to use the simplified algebraic ‘‘field’’ theory and see what it can teach us. It is
remarkable that such a simple framework can reveal important features of quantum
geons such as a constraint involving spin and statistics. Rules for quantum topology

w xchange are discussed in the companion paper 7 .
There is a systematic way to incorporate our algebraic methods in conventional

approaches to quantum gravity. When that is done, we end up selecting a particular class
Žof vector bundles, the sections of which are state vectors of quantum gravity they

.specify domains of operators like the Hamiltonian . We shall discuss these issues in
detail elsewhere, limiting ourselves to a concise discussion in Section 6 in this paper.
The present paper therefore can be interpreted as sponsoring the use of these bundles in
quantizing gravity. We think that there are powerful reasons supporting this point of
view. Indeed our work here shows that these bundles nicely incorporate information on

Ž .classical spatial topology and imply a generalized spin-statistics theorem, whereas if
this selection of bundles is abandoned, there are many possible choices of bundles in the
presence of geons, and most do not imply any sort of spin-statistics connection.

This paper is organized as follows. The field algebras AA Žn. are described in Section
2. In particular, the representations of AA Ž1. will play an important role when we discuss
the spin-statistics connection. Quantization of the system is given in Section 3. In this

˜section we are able to classify the irreducible representations for a class of algebras AA

that includes our algebra of interest as a particular example. It is important to note that
w xthese sections are shortened copies of sections in the companion paper 7 , which we

reproduce here for the benefit of the reader, rendering this paper basically self-con-
tained. The original part is in the following sections. The existence of a novel
spin-statistics connection for 2 d orientable geons is established in Section 4, under
certain assumptions which become clear in Section 5, with the introduction of the
property of clustering for a system of N geons, and superselection of the global fluxes
of geons. Section 6 explores how one can use the representations of the algebra of
observables for geons to obtain geon states in quantum gravity. The paper ends with
some general remarks and an outlook on future work.
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( )2. The algebras for 2H1 d topological geons

Throughout this work our setting is a space-time of the form S=R. Here, the spatial
manifold S is two dimensional, and will be typically assumed to be a plane with one or

Ž . Žseveral handles. Topological geons in this 2q1 d context are simply for orientable
. Žspace-times these handles on the spatial manifold for a more detailed account and a

w x.more general definition of geons see, for instance, Refs. 1,7,25,26 . Our aim in this
section is to define some ‘‘observables’’ which describe the topological character of a
geon. As we will see later, the algebras we obtain contain some operators which are not
really observables, since they represent non-local operators which are in a certain sense
‘‘gauged away’’ whenever we perform physical measurements for geons. Thus we will

w xrefer to the kind of algebra we will encounter as a field algebra 12 .
The presentation of the field algebra of geons given here will not be detailed. The

w xreader is referred to 7 for a more comprehensive discussion.
We will follow an approach inspired by the work of the Amsterdam group, which is

w xreported in Refs. 15,16 . In those works, the group investigates the properties of vortex
Ž .solutions of a 2q1 d gauge field theory in Minkowski space-time where the gauge

symmetry of a Lie group G is spontaneously broken to a finite group H by a
w xnon-vanishing expectation value of a Higgs field F . See Refs. 15,16 for details. The

Lagrangian is given by

)1 a mn mLLs F F qTr D F P D F yV F , 2.1Ž . Ž . Ž .Ž .mn a m4

where m,ns0,1,2, and a is a Lie algebra index. For simplicity, we assume that G is
connected and simply connected. The fields F a are the components of the field strengthmn

of the Yang–Mills potential Aa and D denotes the covariant derivative determined bym m

this potential. The Higgs field F is in the adjoint representation and can be expanded in
a Ž .terms of generators T of the Lie algebra of G, and V F is a G-invariant potential. In

this paper we shall be concerned with the low energy, or equivalently, the long range
behavior of this theory, in the temporal gauge Aa s0. This is obtained by minimizing0

the three terms in the energy density separately. Minimizing the term corresponding to
the energy density of the Yang–Mills field, we obtain the condition F a s0, from whichmn

we conclude that we are dealing only with flat connections. The minimum of the
potential restricts the values of the Higgs field to the vacuum manifold, which is
invariant by H. Finally, the condition DFs0, required for minimizing the energy
density from the second term, tells us that the holonomies

a i � 4t g sPexp A T ds , ig 1,2 2.2Ž . Ž .H i a½ 5
g

take values in the finite group H.
Here and in what follows we will fix a base point P for loops, so that all loops will

begin and end at P.
This gauge theory may have topologically non-trivial, static solutions such as

vortices. It is very well known that the core radii of these vortices are inversely
proportional to the mass of the Higgs boson, and therefore they may be viewed as
point-like in the low-energy regime of the theory. Hence, according to a standard
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argument, to describe the N-vortex solutions we may consider solutions for the vortex
equations

F a s0, D Fs0, V F s0, 2.3Ž . Ž .i j i

on a space-time of the form S=R, where S is the plane with N punctures, playing the
role of the vortices.

Ž .One way to explain our approach is based on a field theory like 2.1 . Addition of
Ž .gravitational terms to 2.1 would not affect our arguments. The difference in our

approach is that we shall work in the zero vortex number sector of this theory, but on a
plane with geons. Hence, instead of punctures, the non-trivial topology is characterized

Ž . Ž .by handles. Now, take a solution A,F for the vortex Eqs. 2.3 . By fixing a point
PgS, the holonomy of A around any path g based at P depends only on its homotopy
class, since A is flat. It takes values in a subgroup H of G, which preserves the vacuum

w xmanifold, in view of the equations for F 15,16 . Therefore, any solution of the vortex
equations determines a homomorphism t ,

t :p S ™H , 2.4Ž . Ž .1

Ž .of the fundamental group p S to the group H. Conversely, given such a homomor-1
Ž .phism t we can define a solution for Eqs. 2.3 in the following way. Take the universal

˜covering space S of S. It is the total space of a principal bundle over S with structure
Ž .group p S . Via the homomorphism t we can construct an associated principal1

H-bundle over S, which is a subbundle of the original G-bundle. Since H is finite, this
bundle has a unique flat connection Aa, which can be viewed as a reducible connectioni

on the G-bundle. We now find a F . After fixing some F in the vacuum manifold, we0
Ž .define F P sF . Then, since F must be covariantly constant, its value can be0

obtained for each xgS by parallel transporting F along some path from P to x in0

S:

x
a iF x sPexp A T ds F . 2.5Ž . Ž .H i a 0½ 5

P

Ž a .The pair A , F thus constructed is obviously a solution of the vortex equations.i
Ž .Therefore the space of solutions for the vortex equations 2.3 is essentially parametrized

Ž .by homomorphisms t :p S ™H. Each such homomorphism is then a vortex configu-1

ration when we have punctures. In our context, we will call one such homomorphism a
geon configuration. In general, it gives non-zero ‘‘magnetic fluxes’’ around non-trivial

Ž .elements of p S .1

The finite group H acts on the space of solutions. In terms of homomorphisms we
have that, under these H-transformations, a flux s transforms as

s¨ hs hy1 . 2.6Ž .
In other words, we have an action of H by conjugation of the fluxes. We shall simply
refer to this action as the H-transformations. The group elements hgH will be
regarded as operators when we quantize the theory, also denoted by h. The multiplica-
tion of two H-transformations is the same as the group multiplication. Therefore the

Ž .algebra of such operators turns out to be the group algebra C H .
As for the physical interpretation of the H-transformations we note that the mathe-

Ž .matical action depicted in 2.6 is entirely equivalent, from a physical standpoint, to
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what occurs when one makes a flux s encircle a source of flux h at infinity. Since such
an operation is non-local, one must conclude that the H-transformations cannot be
considered local in the theory, i.e. cannot be implemented by local operators.

Ž .The total algebra in the case of vortices punctures is the semi-direct product
Ž . Ž . Ž . Ž .D H sC H hFF H , where FF H is the algebra of complex-valued functions on H

with product given by pointwise multiplication: it describes the ‘‘position observables’’
for a vortex. The reason for this denomination will become clear when we discuss

Ž . w xgeons. The algebra D H is the so-called Drin’feld double 15,16 . It has the structure
w xof a quasi-triangular Hopf algebra. The Hopf structure 18 means in particular the

existence of a co-product, i.e. a map

D : D H ™ D H mD H ,Ž . Ž . Ž .
w xwhich is a homomorphism of algebras. In 15,16 the fluxes are seen as particles in

Ž . Ž .2q1 d and are then first quantized: the internal Hilbert space HH is constructed, and
Ž .the elements of the algebra D H act as operators on this Hilbert space. HH decomposes

Ž .into irreducible representations of D H , corresponding to the different particle sectors
of the quantum theory. The existence of a co-product allows one to understand fusing
processes between particles. The quasi-triangularity implies the existence of the R-ma-

Ž . Ž .trix, RgD H mD H , responsible for all braiding processes between particles.
w xAgain, for further details see Refs. 15,16 .

How is the topology of S taken into account in this approach? First of all, we have
Ž .seen that the physically distinct for vortices andror geons configurations are in

Ž .one-to-one correspondence with conjugacy classes of homomorphisms of p S into H.1

Moreover, it is well known that for a finite group H the elements in the latter space are
in one-to-one correspondence with equivalence classes of principal H-bundles over S.
Therefore, the only degree of freedom in this theory is the topology of these bundles
w x19,20 . Second, a configuration for which the holonomy is trivial around some puncture
or handle is indistinguishable, from the standpoint of the low-energy theory, to another
in which that particular puncture or handle is absent. Therefore the low-energy theory
somehow actually allows for ‘‘topology fluctuations’’ of S as long as we stay within its

w xlimits. Such a way of viewing topology change is explored in 7 . It is very much akin to
the views pursued in non-commutative geometry, where one uses an algebra to encode
space-time geometry and topology. In this approach the usual ‘‘classical’’ view of a
background manifold is secondary, and the topology is actually viewed as a consequence
of the algebraic setting one uses.

In order to determine the field algebra for a topological geon, we will first try to find
the analogues of the ‘‘position observables’’ for a geon. Now, S is the plane with one
or more handles, and for simplicity we shall assume throughout that there are no
vortices, i.e. we work in the zero vortex number sector of the low-energy limit of the

Ž .theory given by the Lagrangian in 2.1 . In this case, all non-trivial configurations will
be related solely to holonomies around and through the handles.

Let us start by taking S to be the plane with a handle. On all figures, a geon will be
thought of as a square hole on the plane, with the opposite sides identified. One can

Ž . w x w xshow that p S has two generators g and g , shown by Fig. 1. It can be shown1 1 2

that
y1 y1w x w x w x w x w xg s g g g g .3 1 2 1 2
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Ž . w x w xFig. 1. The figure shows the loops g 1( i(3 . The homotopy classes g and g generate thei 1 2
w x w x w xfundamental group. The class g is not independent of g and g .3 1 2

Ž . w x w x Žw x w x. Ž .Actually, p S is freely generated by g and g . Let gsW g , g gp S ,1 1 2 1 2 1
w x w x Ž .be a word in g , g and their inverses. Then t maps g to W a,b gH where1 2

Ž . Ž . Ž .ast g and bst g . Therefore the map t :p S ™H is completely characterized1 2 1
Ž . Ž .by the fluxes t g sa and t g sb. Since there is no relation between a and b, the1 2

set T of all maps is labeled by H=H.
We now define more precisely what we mean by a geon configuration. Let H be a

finite group and S the plane with one geon, i.e. a two-dimensional manifold given by

MsR2
a T 2 .

Ž .Let g and g denote representative loops whose classes generate p S . We define a1 2 1

classical configuration t gT of a geon as the homomorphism defined byŽa,b.

t g sa, t g sb. 2.7Ž . Ž . Ž .Ža ,b. 1 Ža ,b. 2

It is important to bear in mind that T(H=H and therefore that it is a finite discrete
set. For simplicity of notation, a geon configuration will be denoted simply by a pair
Ž .a,b of fluxes. Note that we are not explicitly identifying those configurations which
differ by an H-transformation. This is because wave functions need only be ‘‘covariant’’
under the symmetries of the problem, and only its modulus squared and other observable
quantities, like Aharonov–Bohm phases, must be invariant. In our approach, this will

w xhappen naturally, just as in 15,16 .
With T(H=H being the configuration space for a geon, the corresponding algebra

Ž .of ‘‘position observables’’ is FF T , the algebra of complex-valued functions on T with
product given by pointwise multiplication. Instead of working with the abstract algebra,

Ž .we specify a representation. Let V be the finite-dimensional complex vector space
:generated by the vectors Na,b ,a,bgH. We will call the representation on V, to be

Ž .defined below, the defining representation. The algebra FF T is generated by projectors
on V denoted by Q . They are defined byŽa,b.

: :Q Nc,d sd d Nc,d . 2.8Ž .Ža ,b. a ,c b ,d

Ž .The operator Q represents a ‘‘delta function’’ supported at a,b , i.e. it gives 1 whenŽa,b.
Ž . Ž .evaluated on a,b , and zero everywhere else. Indeed, from 2.8 one finds that

Q Q sd d Q . 2.9Ž .Ža ,b. Žc ,d . a ,c b ,d Žc ,d .
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Besides the projectors Q , which play the role of position operators in ordinaryŽa,b.
Ž .quantum mechanics, we have also some operators capable of changing a,b . They are

somewhat analogous to momentum operators. For example, like in the case of vortices,
H-transformations act on the configurations. It turns out that for a geon there are
additional operators besides H-transformations. They correspond to the action of the

`Ž .group Diff S of diffeomorphisms of S that keeps infinity invariant.
We will start by first examining the H-transformations.

Ž .The group H acts on T simply by conjugating both fluxes in a,b . This will induce
ˆan operator d for each ggH, acting on the defining representation V byg

ˆ y1 y1: :d Na,b sNgag , gbg . 2.10Ž .g

ˆŽ .From 2.10 one sees that the multiplication of operators d is given byg

ˆ ˆ ˆd d sd . 2.11Ž .g h g h

Ž .The corresponding algebra generated by d is the group algebra C H . The relationg
Ž . Ž . Ž . Ž .between FF H=H and C H can be derived from 2.8 and 2.10 . One sees

immediately that

ˆ ˆy1
y1 y1d Q d s Q . 2.12Ž .g Ža ,b. g Ž g a g , g b g .

Ž . Ž .In other words, the algebra C H acts on FF H=H .
Ž .Besides H-transformations, fluxes a,b can change under the action of the group

`Ž . `Ž .Diff S . It is clear that elements belonging to the subgroup Diff S , the component0
Ž .1 Ž .connected to identity, act trivially on p S and hence on a,b . Therefore what1

w xmatters is the action of the so-called mapping class group M 27,28 , defined asS

Diff` SŽ .
M s . 2.13Ž .S `Diff SŽ .0

For the present case, S is the plane with a single geon and the mapping class group
Ž . Ž .is isomorphic to the central extension of the group SL 2,Z , denoted by St 2,Z and

called the Steinberg group. This is the same as the mapping class group of a torus minus
w x Ž .one point 25,26 . We denote generators of M sSt 2,Z by A and B. They correspondS

Ž . 2to isotopy classes of diffeomorphisms called Dehn twists. A Dehn twist is realized as
follows. Take a loop in S. Then draw an annulus enclosing the loop and introduce

w xradial coordinates rg 0,1 , with rs0 and rs1 corresponding to the boundaries of the
annulus, see Fig. 2. Then rotate the points of the annulus in such a way that the angle of

Ž .rotation u r is zero for rs0 and gradually increases, becoming 2p at rs1. Fig. 2
shows how to produce Dehn twists, and in Fig. 3, we show how the Dehn twist B
deforms the loop g . There is also the Dehn twist along a loop enclosing the geon,1

w xwhich can be interpreted as the 2p-rotation of the geon 1,3,4,25,26 . It will be

1 For simplicity, we take the basepoint P to be at infinity.
2 Ž .One can see from 2.13 that the mapping class group consists of isotopy classes of diffeomorphisms.

Throughout this paper we shall loosely use a representative in a class as the class itself.
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Fig. 2. Dehn twists corresponding to diffeomorphisms of the mapping class group. The annuli enclose loops,
which we have omitted in the figure. Rotations are counterclockwise by convention.

important when we discuss spin of the geon. The corresponding diffeo is denoted by
w xC in Fig. 2. However, C is not independent of A and B. One can show that 25,262p 2p

4y1C s AB A . 2.14Ž . Ž .2p

The group M is generated by A and B, with the relation that C commutes with AS 2p

Ž .and B. It is useful to think of the elements of M as words W A, B in A, B and theirS

inverses.

Fig. 3. Dehn twist B and its action on g .1
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w x Ž . Ž .The action of A and B on g gp S induces an action on a,b gT , andi 1
ˆ ˆtherefore induces operators A and B in the defining representation acting on V. Let us

take as an example the action of B on g , as given by Fig. 3. One sees that1
w x w xw x w xg ™ g g , and therefore a™ab. On the other hand, B keeps g invariant. One1 1 2 2

can verify that A and B induce the following operators:

ˆ ˆ: : : :ANa,b s Na,ba , BNa,b s Nab ,b . 2.15Ž .
ˆ ˆŽ . Ž .For an arbitrary word W A, B , the corresponding operator is W A, B , i.e. the same

ˆ ˆword but with A and B replaced by A and B. For example, the Dehn twist C of Fig.2p
y1 4 ˆŽ .2 is written as AB A and the corresponding operator C can be immediately2p

computed to be

ˆ y1 y1: :C Na,b sNc ac,c bc , 2.16Ž .2p

where csabay1 by1.
ˆ ˆ Ž .The algebra generated by the operators A and B is the group algebra C MM where

w xMM is the ‘‘effective’’, or reduced mapping class group, introduced in 7 . Together with
Ž . Ž . Ž1.C H and FF H=H it gives us the total algebra AA for a single topological geon.

Ž . Ž . Ž .From the definitions 2.8 , 2.10 and 2.15 one sees that

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆd AsAd , d BsBd ,g g g g

ˆ ˆy1
y1 y1d Q d sQ ,g Ža ,b. g Ž g a g , g b g .

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆC AsAC , C BsBC ,2p 2p 2p 2p

ˆ ŷ1 ˆ ˆy1AQ A sQ , BQ B sQ . 2.17Ž .Ža ,b. Ža ,b a. Ža ,b. Žab ,b.

Ž . Ž . Ž .Therefore, both algebras C H and C MM act on FF H=H . The action of a generic
ˆ ˆŽ .word W A, B on Q will be denoted byŽa,b.

ˆ ˆ ˆ ˆŽa. Žb.W A , B Q sQ W A , B , 2.18Ž .Ž . Ž .Ža ,b. Žw ,w .

Ž Ža. Žb..where w ,w is a pair of words in a and b and their inverses, representing the
Ž . Ž .action of W A, B on a,b .

There are two equivalent ways of presenting AA Ž1.. One is by using the defining
Ž . Ž . Ž . Ž1.representation of 2.8 , 2.10 and 2.15 . Another way is to define AA as the algebra

ˆ ˆ ˆ Ž .generated by Q , d , A and B with the relations 2.17 . In any case, we have thatŽa,b. g

AA Ž1.sC H=MM hFF H=H . 2.19Ž . Ž . Ž .
We may introduce the algebra for two topological geons following exactly the same

ideas as for a single topological geon. We will briefly outline here the main construc-
w x Ž1.tions. For details, see Ref. 7 . We recall that for a single geon, AA consists of three

Ž .sub-algebras, generated by the ‘‘position observables’’ FF T , the H-transformations
Ž .C H , and the ‘‘translations’’, i.e. a realization MM of the mapping class group M . TheS

algebra AA Ž2. for two geons will consist of the same three distinct parts, with TsH=H
=H=H'H 4 and S replaced by a plane with two handles.

It is natural to work with the defining representation on VmV spanned by vectors of
the form

: :Na ,b mNa ,b ,1 1 2 2
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where the subscripts denote the respective geons. The ‘‘position observables’’ are
generated by projectors Q mQ acting on VmV in the obvious way, i.e.Ža ,b . Ža ,b .1 1 2 2

X X : X X : : :X X X XQ mQ Na ,b mNa ,b sd d d d Na ,b mNa ,b .Ža ,b . Ža ,b . 1 1 2 2 a ,a b ,b a ,a b ,b 1 1 2 21 1 2 2 1 1 1 1 2 2 2 2

2.20Ž .
Therefore, the ‘‘position’’ operators belong to AA Ž1.mAA Ž1..

Ž .The action of an H-transformation ggH on the fluxes a ,b ,a ,b is by a global1 1 2 2

conjugation. This induces the action

: : y1 y1: y1 y1:Na ,b mNa ,b ™ Nga g , gb g mNga g , gb g 2.21Ž .1 1 2 2 1 1 2 2

ˆ ˆ Ž .on VmV. The corresponding operator is obviously identified with d md gC H mg g
Ž .C H , since

ˆ ˆ y1 y1 y1 y1: : : :d md Na ,b mNa ,b sNga g , gb g mNga g , gb g . 2.22Ž .g g 1 1 2 2 1 1 2 2

Hence, H-transformation operators also belong to AA Ž1.mAA Ž1..
We now start to consider the action of the mapping class group M . For two or moreS

w xgeons, M is much more complicated than for a single geon 27 . The mapping classS

Ž .group is generated by Dehn twists of the type A and B see Fig. 2 for each individual
geon together with diffeomorphisms involving pairs of geons.

Let A , B , is1,2 be the generators of the ‘‘internal diffeos’’ for each individuali i

geon. The corresponding operators acting on VmV are clearly given by

ˆ ˆ ˆ ˆA sAm I, A s ImA1 2

ˆ ˆ ˆ ˆB sBm I, B s ImB 2.23Ž .1 2

where I is the identity operator on V.
There are two additional classes of transformations besides the internal diffeos. The

first one, called exchange, is the analogue of the elementary braiding of two particles.
The second, called handle slide, has no analogue for particles, since it makes use of the
internal structure of the geon.

So far, all operators in the algebra for AA Ž2. were of the form xmygAA Ž1.mAA Ž1.. It
turns out that this is not the case for exchanges and handle slides. They correspond
somewhat to interactions and cannot be written strictly in terms of operators in
AA Ž1.mAA Ž1.. In order to describe interactions between geons, we need to define a pair of
flip automorphisms of VmV. They are necessary in the construction of the exchange
and handle slide operators.

Definition 1. Given a two geon state
: :Na ,b mNa ,b gVmV ,1 1 2 2

the flip automorphisms s and g are defined by
: : : : : :sNa ,b mNa ,b :s Na ,b mNa ,b , gNa ,b mNa ,b :1 1 2 2 2 2 1 1 1 1 2 2

: :s Na ,b mNa ,b . 2.24Ž .1 2 2 1

Both are not given geometrically as morphisms of the mapping class group, but
unless one introduces these operators, the algebra of two geons cannot be related directly
to the algebras for a single geon. We will show that the algebra AA Ž2. can be obtained
from the tensor product AA Ž1.mAA Ž1. when we add s and g .
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Fig. 4. Geon exchange.

In the exchange process, two geons permute their positions. In our convention, the
Ž . Ž . Žgeon on the right left moves counterclockwise to the position of the left right see Fig.

.4 . The effect of a geon exchange on the states is of the form

: : y1 y1 : :RRNa ,b mNa ,b sNc a c ,c b c mNa ,b , 2.25Ž .1 1 2 2 1 2 1 1 2 1 1 1

where c sa b ay1 by1. This operator is equivalent to braiding operators for particles1 1 1 1 1

and also satisfies the Yang–Baxter equation,

RRm I ImRR RRm I s ImRR RRm I ImRR . 2.26Ž . Ž . Ž . Ž . Ž . Ž . Ž .
Ž .One can verify that the exchange operator 2.25 may be written as the product

RRss R , 2.27Ž .
where RgAA Ž1.mAA Ž1. is the analogue of the universal R-matrix for a quasi-triangular
Hopf algebra. In our case R is given by

ˆy1
y1 y1Rs Q md . 2.28Ž .Ý Ža ,b. ab a b

a,b

The handle slide SS is shown in Fig. 5. In Fig. 5a, the geon is viewed as a
rectangular box on the plane. In Fig. 5b, we have identified two edges of the rectangle

Fig. 5. The handle slide is interpreted geometrically as the full monodromy of two handles followed by a
Ž .rotation of 2p of each handle. The figure shows two equivalent representations for the handle slide: In a , the

Ž .geon is viewed as a rectangular box on the plane. In b , we have identified two edges of the rectangle and the
geon is represented as two circles on the plane.
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and the geon is represented as two circles on the plane connected by dotted lines. The
action of SS on the states and its presentation in terms of the other operators is given in
w x7 .

This completes the description of AA Ž2.. The algebra for two geons is generated by the
elements of AA Ž1.mAA Ž1., RR and the handle slide SS .

These constructions can be easily generalized to write down the algebra AA Žn. for n
w xgeons 7 .

3. Quantization

The algebra AA Ž1. describes the topological degrees of freedom for a single geon on
the plane. To quantize the system we need to find an irreducible representation of AA Ž1.

on a Hilbert space HH. However, this Hilbert space will branch into irreducible
representations of the field algebra:

HHs[ HH , 3.1Ž .r r

where HH denotes a particular irreducible representation describing a certain geon type.r

The algebra is finite dimensional, and therefore there will be a finite number of
irreducible representations of AA Ž1.. Furthermore, the Hilbert spaces HH are all finiter

dimensional. Each representation gives us a possible one-geon sector of the theory.
In the case of quantum doubles, the irreducible representations are fully classified.

w xSee for instance Ref. 29 . For the case of geons, the algebra is more complicated
because of the existence of internal structure. Nevertheless, the representations of AA Ž1.

are quite similar to the ones of the quantum double of a finite group. This is not totally
surprising, since in a certain limit, as discussed in the previous section, we recover the

Ž1. Ž .quantum double DD (D H . Actually, we can define a class of algebras AA, called
transformation group algebras, that can have its representations classified and that are
generic enough to contain the quantum double and the algebra AA Ž1. as particular cases.

w xIn the spirit of 29 , one can then get all representations of AA.

Definition 2. Let X be a finite set and G a finite group acting on X. In other words,
Ž .there is a map a : X™X for each ggG. As usual, we denote by FF X the algebra ofg

Ž .functions on X and by C G the group algebra of G. We define the algebra AA as the
vector space

AA:sFF X mC GŽ . Ž .
Ž . Ž . Ž .with basis elements denoted by Q , g , Q gFF X and ggC G , and the multiplica-x x

tion

Q , g P Q ,h :s Q Q , gh . 3.2Ž . Ž .Ž . Ž .x y x a Ž y.g

Here, Q is the characteristic function supported at xgX. Let x be an element ofx 0

X. We denote by K ;G the stability subgroup with respect to x , i.e.x 00

K s ggGNa x sx . 3.3Ž . Ž .� 4x g 0 00

The stability subgroup K divides the group G into equivalence classes of leftx 0

cosets. Let N be the number of equivalence classes and let us choose a representative
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j gG, is1 . . . N for each class, with the convention that j se. We can write thei 1

following partition of G into left cosets:

Gsj K jj K j . . . jj K . 3.4Ž .1 x 2 x N x0 0 0

We can now state the following result.

: Ž .Theorem 3. Let N j , js1 . . . n be a basis of a subspace V of C G carrying an IRR rr r

Ž . : Ž .of K . Then, for a fixed x gX, elements j gG, is1 . . . N and N j gC G ,rx 0 i0

js1 . . . n as stated above, the vectors

: : : :j Nx mN j :sNa x mN j ,Ž .r ri 0 j 0i

form a basis for an IRR of the algebra AA, given by

: : : Ž r . :Q , g Na x mN j :sd Na x mG b Nk ,Ž . Ž . Ž . Ž . k jr rx j 0 x ,a Ž x . j 0i j 0 i9i9

where j X and b are uniquely determined by the equationi

gj sj X b ,i i

and G Ž r . is the matrix for the representation r.

ŽThis result follows from a standard construction in induced representation theory cf.
w x.discussion of the Poincare group in 30 .´

Ž . Ž1.The quantum double D H and the algebra AA are particular cases of transforma-
tion group algebras. The quantum double is obtained by taking XsH, GsH, with the

Ž . y1action a h sghg . As for the algebra of a single geon, one takesg

XsH=H
ˆand for the group G the product H=MM. The actions of d gH and WgMM commuteg

and are given by

a a,b s gagy1 , gbgy1 , ggHŽ . Ž .g

and

a a,b s wŽa. ,wŽb. , WgMM ,Ž . Ž .W

Ž . Ž .where we have used the notation of 2.18 . The IRR’s for the algebra 2.19 can be
Ž .constructed given an element a,b gH=H. The stability subgroup K ;H=H isŽa,b.

defined by
Ž . Ž .a y1 b y1K s g ,W gH=MMNa a a,b :s gw g , gw g s a,b .Ž . Ž . Ž .Ž .� 4Ža ,b. g W

3.5Ž .
Then, after choosing representatives j , . . . ,j for the left cosets, the partition of H=MM1 N

can be written as

H=MMsj K jj K j . . . jj K . 3.6Ž .1 Ža ,b. 2 Ža ,b. N Ža ,b.

: : Ž .Let N1 , . . . ,Nn gC H=MM be a basis of an IRR of K . Then, according to theŽa,b.
theorem, the vectors

: :Na a,b mN j , 3.7Ž . Ž .rj i

with is1 . . . N, js1 . . . n, form a basis of an IRR of the algebra AA Ž1..
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Let us express the representations of AA Ž1. in a more compact notation. The action of
w xH=MM on XsH=H divides X into orbits. We denote by a,b the orbit containing the

Ž .element a,b gH=H. We will collectively call r the quantum numbers labeling the
Ž .IRR’s of K . One can see from 3.7 that an IRR r is characterized by a pairŽa,b.

Žw x . Ž1.rs a,b ,r . A basis for an IRR r of AA will therefore be written as vectors
:Ža,b.N i, j ,is1, . . . , N; js1, . . . ,n defined byr

:Ža ,b. : :N i , j :sj Na,b mN j , 3.8Ž .r ri

: Ž .where Na,b is a state in the defining representation, j are the same as in 3.6 andi
:N j are base elements in the irreducible representations r of K . Of course, the setr Ža,b.

Ž .of vectors thus defined depend on the pair a,b we choose. We fix an a and a b, and
henceforth omit the superscript.

The action of Q X X is given byŽa ,b .

< : < : < : < : < : < :X X X X X X X XQ i , j sQ j a,b m j sQ a ,b m j sd d i , j .r r r rŽa ,b . Ža ,b . i Ža ,b . i i a ,a b ,bi i

3.9Ž .

ˆLet d W be a generic element of H=MM. The equationg

ˆ Xd Wj sj b 3.10Ž .g i i

defines uniquely a new class j X , together with an element of the stability groupi
ˆ Ž1. : Ž .bgK . The action of d WgAA on N i, j is determined by 3.10 and it readsrŽa,b. g

ˆ Ž r . X: : : :Xd WN i , j sj Na,b mbN j s G b N i ,k , 3.11Ž . Ž .k jÝr r rg i
k

where G Ž r . is the matrix representation of K .Ža,b.
Žw x .Each IRR rs a,b ,r describes a distinct quantum geon. The corresponding vector

:spaces HH generated by states N i, j , are all finite dimensional. Therefore we can easilyrr

make it into a Hilbert space by introducing the scalar product

² X X : X Xi , j N i , j sd d . 3.12Ž .r i i j j

Since the algebras AA Ž1. are not the same for different choices of the discrete group
H, we cannot say in general what is the spectrum of a geon. First, we need to fix a group
H and then compute the spectrum for the corresponding AA Ž1..

Consider now two geons described by representations r and r . The associated1 2

Hilbert space of states is simply

HH Ž12. :sHH mHH . 3.13Ž .r r1 2

As explained in Section 2, the field algebra consists of AA Ž1.mAA Ž1. together with RR and
Ž1. Ž1. Ž .SS . The elements of AA mAA act naturally on 3.13 . It remains to be said what is the

action of RR and SS on states in HH mHH .r r1 2

Ž .The action of RR is completely determined by the formula 2.27 ,

ˆy1
y1 y1RRss Q md .Ý Ža ,b. ab a b

a,b
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In other words,

ˆy1: : : :y1 y1RRN i , j mNk ,l s d Nk ,l mQ N i , j . 3.14Ž .Ýr r r rab a b Ža ,b.1 2 2 1

a,b

The generalization for n geons is straightforward.
We may think of RR and SS as scattering matrices for a pair of geons. The RR-matrix

represents an ‘‘elastic’’ interaction in the sense that two incoming geons of quantum
numbers r and r are scattered into two objects carrying the same quantum numbers r1 2 1

and r . The handle slide SS on the contrary is a non-trivial scattering, each one of the2

two outgoing geons being a superposition of many geons in the spectrum.

( )4. The spin-statistics connection for 2H1 d topological geons

The spin-statistics theorem is a well-established law of physics, and it holds true for
most of the quantum particles in nature. In considering quantum topology change and,
more generally, quantum gravity, one is naturally led to inquire whether a sort of field
theory exists which gives geons as quantum excitations on a topologically trivial
classical background. Such a theory remains hitherto utterly elusive, but one may try to
investigate some of its aspects. For instance, in such a theory the quanta would be geons,
so one fundamental research work would be a thorough analysis of the spin and statistics
of geons and in particular whether the geons enjoy the canonical spin-statistics connec-
tion.

In order to pose the problem properly, we start with some general comments. Spin
and statistics are two properties which can be defined independently of each other. They
refer not only to particles, but in general to localized sub-systems that may consist of
several particles or even extended objects like solitons. The tensorial or spinorial nature
of spin is determined by the behavior of the wave function when the sub-system
undergoes a 2p rotation. Statistics determines what happens when two identical
sub-systems are exchanged. The canonical spin-statistics connection asserts the identity
of the operators implementing 2p-rotation and exchange. It is thus clear that our first
task is to define the quantum operators responsible for 2p rotation and exchange. In the

Ž .case of 2q1 d orientable geons, we can easily find these operators among the algebra
described in Section 2. In doing so, we will be led to a definite spin-statistics relation
differing from the canonical one by a phase.

In the usual spin-statistics theorem, we prepare a two-particle state which is a tensor
Ž .product of two copies of the same arbitrary one-particle state with the same spin, in

order to probe the relation between the exchange and 2p-rotation operators. However,
here we meet a problem: we have only been able to prove the existence of such a
relation in the special case when the total fluxes of each geon not only belong to the
same conjugation class, but are the same. This is rather unexpected at first sight,

Ž .because in the definition of the IRR’s of the one-geon algebra, Eq. 3.8 , we can see that
each vector of the basis of a representation space has an associated and possibly distinct
flux c sj cjy1, where csabay1 by1. The geon state is in general a superposition ofi i i

such vectors, and therefore the flux of a geon state is not well defined for most states in
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a given representation. To overcome this problem we advance the claim that the total
flux should be a superselected quantity in the same sense that electric charge is
superselected. We shall explain how this superselection occurs in Section 5. Here we
simply note that as a consequence, the only physical states are superpositions of basis
vectors with the same total flux. If we assume this, then the spin-statistics connection
holds for all physical states.

We start by considering a pair of geons on the plane. The algebra AA Ž2. is fixed as
soon as we choose a finite group H. In Section 2 we saw that the exchange of two geons

Ž .is realized by the operator RR defined in 2.27 . Similarly, the 2p rotation of one of the
ˆ ˆ Ž2.geons can be written as C m I or ImC . We would like to know if the algebra AA2p 2p

implies any kind of relation between exchange and 2p rotations.
Žw x . Ž1. :Let us start by fixing a representation rs a,b ,r of AA . State vectors N i, j gHHr r

Ž .given by 3.8 do not have a well-defined spin, or in other words, they are not
ˆeigenstates of C . In order to establish the spin-statistics relation we need first to know2p

ˆ ˆwhat are the eigenstates of C . We recall that C gMM and that MM is a finite group.2p 2p

Therefore there exists a least non-negative integer N such that

ˆNC s1 4.1Ž .2p

ˆ i2p s Ž .and the eigenvalues of C are e , where the spin ss0,1rN,2rN, . . . , Ny1 rN.2p

One can see that the operator

Ny11
yi n2p s nˆP s e C 4.2Ž .Ýs 2pN ns0

projects into states with spin s. The front factor is just a normalization constant to
ensure that P 2 sP , and we assume of course that N02, so that we have a non-trivials s

behavior under a 2p-rotation. Furthermore, any state of HH with spin s can be obtainedr
:by linear combinations of Ns; ij given by

: :Ns ; i , j sP N ij . 4.3Ž .rs

Žw x .Consider a pair of geons both carrying the same representation rs a,b ,r and the
same spin s. In addition, let us consider both geons to have the same total flux
c sj cjy1, where csabay1 by1, i.e. we assume that each geon is in a state which isi i i

the superposition of basis vectors having the same flux. This will have the following
Ž . :consequence. The j ’s in 3.7 act on Na,b in such a way that the flux c becomesi

� : 4conjugated by j . In other words, the flux of each vector in the basis N i, j will beri

equal to c . Hence c becomes a quantity characterizing the particular superselectioni i

sector within r. We are going to show that the statistics of the system is completely
determined by the spin s and the representation r. It does not depend on c . Morei

precisely,

: : iŽ2p syu r . : :RRNc mNf se Nf mNc , 4.4Ž .
: :where the states Nc and Nf transform according to the same representation r and

have both the same spin s and the same total flux c . Also, u is an angle that dependsi r

only on the representation r. The usual spin-statistics connection is true only for
representations r such that u s0.r
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Ž . : : Ž .It is enough to show that 4.4 is true for states Nc and Nf in the basis 4.3 :
Ny11

yi n2p s nˆ: : : : : :Nc sP N ij s e C j Na,b mN j , Nf sP Nkl� 4Ýr r rs 2p i sN ns0

Ny11
yi n2p s nˆ : :s e C j Na,b mN l , c sc . 4.5� 4 Ž .Ý r2p k i kN ns0

Ž .Using 3.14 one can show after some algebra that

: : : :RR P N ij mP Nkl sNF mP N ij 4.6� 4 Ž .r r rs s s

with

1
yi n2p s n y1ˆ ˆ: : :NF s e C d Na ,b mN l . 4.7� 4 Ž .Ý r2p c k kiN n

In the last formula, we used the notation

: :Na ,b :sj Na,b , 4.8Ž .k k k

: y1 y1 Ž .with c , the total flux of Na ,b , being given by c sa b a b . The result 4.6 is ai i i i i i i i
Žtensor product where only the first factor is not yet in the desirable form of a

. :phase =Nc .
:Let us take a closer look at NF . First let us define

ˆ ˆE sd C 4.9Ž .i c 2pi

:and write NF as

1
i2p s yi n2p s n y1ˆ: : :NF se e C E j Na,b mN l . 4.10� 4 Ž .Ý r2p i kN n

To proceed, we will show that

E j sj E , 4.11Ž .i k k 1

ˆ ˆ y1 y1where E sd C with csaba b . Indeed, first note that1 c 2p

ˆ ˆ< : < : < : < : < :E j a,b sd C j a,b sd C a ,b s a ,b sj a,b , 4.12Ž .i k c 2p k c 2p k k k k ki i

where we have used the fact that c sc . Thereforei k

E j sj b , 4.13Ž .i k k

< :where b belongs to the stability group K of a,b .Ža,b.
ˆAll we have to do is to show that in fact bsE :sd C . We recall that by1 c 2p

definition j se.1
Ž .From 4.13 it follows that

bsjy1E j . 4.14Ž .k i k

ˆIf we take a generic j to be of the form d v for some g gH and v gMM, we seek g k k kk

that

y1ˆy1 ˆ ˆy1 ˆ ˆ ˆ y1bsv d d C d v sd d C d sd C , 4.15Ž .ž / ž /k g c 2p g k g c 2p g g c g 2pk i k k i k k i k
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since v commutes with H-transformations. We will show presently thatk

c sc sg cgy1 , 4.16Ž .i k k k

Ž . Ž .which allows us to conclude, from 4.15 , that bsE , and hence 4.11 follows. In1
Ž .order to show 4.16 we write

ˆ y1 y1< : < : < : < :a ,b sj a,b :sd v a,b sv g ag , g bg . 4.17Ž .k k k g k k k k k kk

w xRemembering that the elements of MM do not change the total flux 7 , we can compare
the total fluxes of the first and last expressions. That gives us

c sg cgy1 . 4.18Ž .k k k

Ž .Now, from 4.11 we have

Ey1j sj Ey1 . 4.19Ž .i k k 1

It is a simple exercise to show that E is in the center of the stability group K of1 Ža,b.
: Ž .Na,b . Therefore, from 3.11 , we can write

y1 : : : y1 :E j Na,b mN l sj Na,b mE N l . 4.20� 4 Ž .r ri k k 1

: Ž .Since the states N l form a basis for an unitary IRR of K , from Schur’s lemmar Ža,b.
iu r Ž .we conclude that the operator E gives a phase e in 4.20 depending on the IRR1

Žw x .rs a,b ,r . Putting the results together we have

1
iŽ2p syu . yi n2p s n iŽ2p syu .r rˆ: : : :NF se e C j Na,b mN l se P Nkl . 4.21� 4 Ž .Ý r2p k sN n

Ž .This concludes the demonstration of Eq. 4.4 . Since the phase u comes from generalr

considerations, it is indeterminate in our formalism.

5. The role of H: superselection and clustering

In this short section we are interested in emphasizing how the hypothesis of
superselection of total fluxes and the possibility of clustering of geon subsystems arise
naturally if we confine ourselves to local operators as the only ones with physical
significance.

We therefore start off by noting that the H-transformations in our one-geon algebra
are actually non-local operations, since they are effectively equivalent, from the stand-
point of the one geon, to move ‘‘distant geons’’, or alternatively, ‘‘distant fluxes’’ in a
circle at infinity around the geon. This apparently innocent observation entails a striking

Žconclusion: since all elements of the algebra other than the H-transformations which
.elements are also ‘‘local operators’’ , commute with the total flux, we have that the

total flux must be a superselected quantity. As we saw in the previous section, this is
enough to ensure the spin-statistics connection for geons. This may appear to be strange
at first: we have seen that the total flux can be changed by the action of H. However,
since H-transformations are non-local, they cannot affect local observables in a sensible,
local theory. The only local operators would therefore be the elements of the mapping
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class group, and these clearly do not change the total flux. This can be generalized for N
geons: the total flux of the entire N-geon system is then superselected, the flux of each
geon being however subject to changes, much as it occurs in QED charged sectors.
However, in this case one must have a suitable notion of clustering, i.e. if we consider
Ny1 geons to be ‘‘distant’’ in a suitable sense, the remaining ‘‘solitary’’ geon can be
seen as really isolated, and it must be in a state belonging to a one-geon algebra IRR.
We will explain the necessity of these concepts in what follows.

First of all we must make precise what our notion of ‘‘distant’’ is. We should recall
that we are actually studying the low-energy limit of a field theory, and in spite of the
fact that the theory in this limit is effectively independent of the metric, we have started
off with a metric in order to define our theory. Therefore it makes sense to use this
metric to measure distances and assume ‘‘distant’’ geons or fluxes to be those which are
much further than the characteristic size of the geon under consideration. We hereafter
take this to be the meaning of ‘‘distant’’. ‘‘Local’’ will then mean within distances
comparable to the characteristic size of the geon.

With these definitions we can now proceed to clarify how the notions of clustering
and superselection should arise to ensure the spin-statistics connection for geons. To
establish this connection in the previous section we considered states of the form

: : : :Nc mNf , where Nc and Nf were states transforming in the same IRR r and
having the same spin s. We made, in the course of our demonstration, two basic
assumptions:

: :Ø The states Nc and Nf were considered to have definite, well-defined total fluxes
c and c , i.e. they were each superpositions of basis vectors having the same totali k

flux;
Ø The fluxes c and c are the same.i k

The second asumption is very natural and easily implemented, since as pointed out in
w x31 in a similar context, the fluxes ‘‘being equal’’ is a well-defined, H-invariant notion.
One only has to prepare two one-geon states with same total flux. The first asumption,
however, looks quite artificial at first sight, without some extra input. After all, each
IRR vector space is generated by vectors having different total fluxes, although in the
same conjugacy class. To impose that only superpositions of vectors having the same
flux should be considered apparently threatens generality. This is not so however, if we
assume that the notions of clustering of geon subsystems and superselection of total flux
should play a role in our physical description. First, let us consider the clustering
property. Consider a system of N geons on the plane. It is really rather natural to
assume that geon subsystems can be isolated as long as we consider only local operators.
This means that, if we fix one geon and take the other Ny1 geons to infinity, this
remaining geon should be described by the one-geon algebra AA Ž1., and its state should
belong to an IRR of AA Ž1.. On the other hand, the total flux of the N-geon system is
superselected, but the total fluxes of individual geons are not uniquely defined by the
N-geon total flux, and in particular a geon can even be in a superposition of various flux
states. It is to preclude this possibility that the clustering property appears: since the
geon can be isolated, it is effectively equivalent to a one-geon system, and in particular
all operations which change its flux are indistinguishable from H-transformations on a
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one-geon system. Therefore the isolated geon in a pure state must haÕe a definite total
Žflux as well. Mixed one-geon states with a probability distribution of total fluxes are of

.course permitted .
The consequence of the previous discussion for a two-geon system is as follows. For

a one-geon system, superselection of the total flux means that the IRR’s r must further
split into superselected subspaces, and the physical states belong to these subspaces.

: :Now, for a two-geon system in a state Nc mNf , only the total flux must be
superselected, but the clustering property ensures that each geon must have a definite

: :flux. Therefore for physical states, Nc and Nf must separately be superpositions of
states with definite flux. The conclusion is that the two assumptions we made to check
the spin-statistics connections become most natural if we include superselection of the
total flux and the clustering property as physical requirements of the theory.

6. Geons in quantum gravity

In this section our aim is to describe what are the consequences of our results to
quantum gravity. In the canonical metric formalism of gravity on a space-time manifold
MM of the form S=R, we may perform a space versus time splitting and define the

Ž . `Ž .classical configuration space Q as follows. Let us specialize to 2q1 d. Let R S be
the space of all Riemannian metrics on the space manifold S which are equal to some
conical metric in a neighborhood NN of infinity.3 We quotient this space by the group

`Ž . w xDiff S of diffeomorphisms of the spatial 2-manifold S to obtain Q 28 . Therefore
we may denote the Q as

R` SŽ .
Qs , 6.1Ž .

`Diff SŽ .
Now, Q is not simply connected in general, and in this case one may have many

distinct quantizations, a phenomenon which is seen for example in the ‘‘u vacua’’ of
QCD.4 To see this we resort to the so-called covering space quantization, which we

Ž w x.briefly review here for a more complete account, see Ref. 28 . In this approach, wave
Ž .functions defining domains of operators like the Hamiltonian are taken to be functions

˜on the universal covering space Q of Q with certain specific properties. It can be shown
that in our case

R` SŽ .
Q̃s , 6.2Ž .

`Diff SŽ .0

`Ž .where Diff S is the component connected to the identity, and hence a normal0
`Ž .subgroup, of Diff S . In what follows it will always be understood that these diffeos

are of S, and hence we will omit the argument.

3 Ž .These boundary conditions for the metric substitute the usual 3q1 d ‘‘asymptotically Minkowskian’’
Ž . w xscenario for the 2q1 d case. See Ref. 32 and references therein for a more complete discussion.

4 In this section, the word ‘‘quantization’’ will have a meaning slightly different from the rest of the paper.
It will mean simply an appropriate assignment of a Hilbert space of wave functions to a classical configuration
space.
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˜It is well known that the universal covering X of any topological space X is a
˜Ž .principal bundle over X with structure group p X , and the projection p: X™X given1

˜by the covering map. The structure group has a free right action g : x™xg on X and the˜ ˜
˜ Ž .quotient Xrp X by this action is again X. This action is fiber-preserving, i.e. for1

˜ ˜Ž . Ž . Ž .every ggp X , xgX we have p xg sp x . Therefore Q is a principal bundle over˜ ˜ ˜1
Ž . Ž . Ž .Q with structure group p Q , which can inferred from 6.1 and 6.2 to be isomorphic1

to the mapping class group M .S

Wave functions C need not be single-valued on Q if Q contains non-contractible
loops. Actually the transformation of the wave function when such loops are traversed

Ž .gives a representation of p Q . This can be seen in the following way. All that must be1

single-valued are observables like C )C . On the other hand, since the universal covering
space is by definition simply connected, functions on it can always be taken to be

˜single-valued. Therefore, if we could define wave functions as functions on Q such that
C )C is still a function on Q, we would circumvent the multi-valuedness of the wave
functions while leaving the probability interpretation unharmed. This task is easily
accomplished in the following way. Let HH be a complex vector space with a hermitianr

² : Ž .inner product , carrying a unitary representation r of p Q ,M . We say that a1 S

˜ ˜Ž .function C :Q™HH is equiÕariant if for every ggp Q ,qgQ we have˜r 1

C qg sr gy1 C q . 6.3Ž . Ž . Ž .Ž .˜ ˜

˜ Ž . ² :Hence, since Qrp Q sQ, we have that C ,C can indeed be viewed as a function1
Žon Q, as we wanted. Therefore our quantum Hilbert space V may be taken to be ther

˜.norm completion of the space of equivariant functions C :Q™HH such that ther

² :function C ,C , seen as a function on Q, gives a finite number when properly
Ž .integrated on the whole of Q the latter process defines the inner product . This recipe

w xobviously depends on which representation r we take. Actually, it can be shown 28
that there are at least as many inequivalent quantizations as there are unitary irreducible
representations of M .S

As we have mentioned, wave functions on Q pick an ‘‘Aharonov–Bohm phase’’
whenever they traverse a non-contractible path in Q, i.e. they transform according to

Ž .some representation of p Q . Since this group is non-abelian in general, the wave1

function may transform via a non-abelian representation. This is akin to the behaviour of
sections of a vector bundle with a flat connection. Actually this is the case: it is well

Ž w x.known see e.g., Ref. 33 that the set of equivariant functions on a principal bundle
taking values in some vector space V is in bijective correspondence to the set of sections
of the associated vector bundle with fiber V. Since the structure group is discrete, the
bundle is always flat.

We therefore arrive at the conclusion that any unitary representation of the mapping
class group provides a vector bundle over Q whose space of square-integrable sections
forms a possible Hilbert space for geons in quantum gravity as far as kinematics is
concerned. These spaces must have further imposed dynamical constraints, i.e. they
must be a suitable arena for dynamics before they really can be claimed to be authentic

Ž .quantum gravity Hilbert spaces for geons. In this 2q1 d context we can actually do
more than this. It is possible to impose all the dynamical constraints of general relativity
to obtain the reduced configuration space, thereby taking into account dynamical aspects
as well. Our space Q will then be the moduli space of the surface S, and its universal
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˜ w x Ž .covering Q will be the Teichmuller space 34 . Again, p Q will be the mapping class¨ 1

group and our discussion will go mostly along the same lines.5 This state of affairs is
somewhat reminiscent of quantization of matter particles in Minkowski space-time, in
the context of usual quantum mechanics. One can have many representations of the
Lorentz group, but on the one hand only some of them seem to be realized in nature, and
on the other hand the dynamics selects which representation survives in each physical
situation, e.g., the tensorial representations for the Klein–Gordon field or the spinorial
and tensorial representations for the Dirac field.

Thus, we are led to the questions of whether, and how, the Hilbert spaces we have
presented in the previous sections fit into this scheme, and in particular whether the
spin-statistics connection we have found extends to these quantum gravity geon states.
First of all, we note that some of the Hilbert spaces HH , carrying representationsr

Žw x . Ž .rs a,b ,r of our field algebra AA in the notation defined in Section 5 carry
naturally a representation of the mapping class group: we recall that the elements of this
group were naturally included in AA, and hence we may say that r contains a

Ž .representation possibly reducible of the mapping class group. We will again denote
˜this representation by r. Therefore the vector bundle associated to Q with fiber HH ,r

where the r ’s are just as stated, gives another Hilbert space for geons in quantum
gravity, via its square-integrable sections. In this new scenario the fibers are internal
state spaces.

However, we are now faced with another problem: do these sections carry a
representation of the mapping class group? In other words, is it possible to extend the
action on each fiber to an action on the space of sections? The answer is known to be

w xnegative in general 25,26,36–38 . One can nevertheless implement operators corre-
sponding to elements of M on states localized at a point qgQ. In particular, we mayS

extend the operators RR and C , related to statistics and spin respectively, to operators2p

ˆ ˆR and C acting on such localized states. We will show at the end of this section that2p

such states obey a spin-statistics connection inherited from the fibers. Here we presently
give a simple geometrical discussion to bring out the reasoning behind these remarks.

˜ w xA very useful construction of the universal covering space Q is as follows 28 . Let
Žus assume that the space Q is connected if this is not so we can always choose a

.connected component . Let q be a point of Q which once chosen is not to be changed.0

Let a be a path on Q from q to another point qgQ.6 The path space PPQ of Q isq 0
� 4 Xthe space a of these paths. Let us next say that two paths a and a are equivalentq q q

and write a ;a
X if one of them can be deformed to the other holding q and q fixed.q q 0

˜ w xOne can then show that the space Q is the same as the space of equivalence classes aq
˜ w xof such paths, the projection map p:Q™Q being given by a ¨q. For a fixed q,q

these equivalence classes form the fiber over the point q.
Ž .The group p Q can be identified with the set of equivalence classes of loops1

w x w X xw xstarting and ending at q , i.e. a , with the compositions of loops a a s0 q q q0 0 0X X ˜w x w x w xa ( a , where we first trace a , and then trace a . This group acts on Q on theq q q q0 0 0 0

5 Strictly speaking, this discussion is valid for genus g 02. For genus 1, things are a bit more complicated.
w xFor details see, for instance, Ref. 35 .

6 � w x < Ž . Ž . 4In this discussion all parametrized curves a : 0,1™Q a 0 s q ;a 1 s q with different parametriza-0

tions but with same image in Q are to be regarded as the same path.
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w xw x w xright via the composition of paths: a a s a ( a . This corresponds to the free,q q q q0 0˜Ž .fiberwise action of p Q on Q that we mentioned before. Note moreover that we have1
Ž . Ž .chosen a fiducial point and put p Q ,p Q;q , the latter denoting the homotopy1 1 0

group of paths based at q , to be our ‘‘model’’ for the structure group. Now, we might0
Ž .consider p Q;q , the homotopy group of paths based at another point qgQ. This1

Ž .group is isomorphic to p Q;q , but the isomorphism is not canonical, and we will see1 0
Ž .that this fact prevents the extension of the action of p Q when this group is1

Ž . �w x4non-abelian. We point out that p Q;q acts on the space a on the left, and1 q
Ž .therefore does not interfere with the action of p Q;q ; if we denote an element of1 0

Ž . w x w xw x w xp Q;q by g , we have that g a s g ( a .1 q q q q q

We now show that exchange and 2p-rotation correspond to actions like that of
Ž . Ž .p Q;q , and not to the globally defined right action of p Q . If d denotes a diffeo and1 1

) ˜h a metric, let hd denote the pull-back metric d h. Then Q consists of elements
` ` ` ` ˜ 7Ž .hDiff , Q of elements hDiff , and p Q sDiff rDiff acts on Q on the right:0 1 0
` Ž `.Ž `. ` `hDiff ™ hDiff dDiff shdDiff , with dgDiff . This action is globally defined.0 0 0 0

The association of a 2p-rotation or exchange however is not to this action of Diff`rDiff`.0

Instead, it is obtained as follows. Let qshDiff` gQ correspond to two well-separated
� Ž . 4 Ž . Ž .geons and let q t :0( t(1 be a loop in Q based at q 0 sq 1 sq. We can write

Ž . Ž . ` ` Ž . Ž .q t sh t Diff , and there exists an element dgDiff such that h 1 sh 0 d, since
Ž . Ž . w xq 0 sq 1 . Now it is shown elsewhere 25,26 that the physical process of exchange

` ` ` Ž `.say is associated with an element RRDiff of Diff rDiff RRgDiff and a loop0 0
Ž .based at q 0 gQ. But this correspondence is not unique, being deduced from the

˜Ž . w xp Q;q action on Q. Thus according to 25,26 , the exchange process gives a curve1
` ˜� Ž .4 Ž . Ž . � Ž . 4h t with h 1 sh 0 RR. It becomes the curve h t Diff in Q and the loop0

� Ž . `4 Ž .h t Diff in Q. Now to find the diffeo and the loop for exchange based at q 0 , the
`Ž . Ž . Ž .starting metric can be h 0 or h 0 sh 0 d, for any dgDiff as both give rise to the

Ž . � Ž .4 � Ž .4 Ž . Ž .same q 0 . Then for the two curves h t and h t , we have h 1 sh 0 RR and
` ` ˜Ž . Ž . � Ž . 4 � Ž . 4h 1 sh 0 RR. They give the curves h t Diff and h t Diff in Q and the loops0 0

` `� Ž . 4 � Ž . 4h t Diff and h t Diff in Q. But the homotopy classes of these loops are not in
( )general the same, being related by the action of p Q;q . They do not therefore always1

y1 `˜ � Ž . 4define an unambiguous element of Q. To see this first note that h t d Diff also0
`� Ž . 4projects to the loop h t Diff while at the same time it has the same starting point

` ` ` `Ž . � Ž . 4 � Ž . 4 � Ž . 4h 0 Diff as h t Diff . It follows that the lifts of the loops h t Diff and h t Diff0 0
` ` y1 `˜ Ž . � Ž . 4 � Ž . 4to Q with the same starting point h 0 Diff are h t Diff and h t d Diff . But0 0 0

Ž . ` Ž . y1 `their endpoints in general are different, being h 0 RRDiff and h 0 d RRd Diff0 0

respectively, showing that the two loops may not be homotopic. Further the diffeos
associated to the exchange can be RR or d RRdy1 and their images in Diff`rDiff` can be0

different.
Ž .Suppose then that we want to consider a global action of p Q on the quantum1

states. The two-geon configuration hDiff` 'qgQ is described in quantum theory by
˜an equivariant function C on Q taking values in some vector space HH which carries aG

` ` ˜w xrepresentation G of Diff rDiff . We assume that C is localized at a point a gQ in0 q

7 Let G be any group and X a space on which G acts on the right. We may take the quotient XrG of
equivalence classes by the action. Let also xg X. We denote by xG the equivalence class of x in XrG.
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w xthe fiber over q. The exchange process will then correspond to a loop class g gq
Ž .p Q;q . This will act on the wave function by1

y1w x w x w x w xg C a sC g a . 6.4Ž .Ž . Ž . ž /q q q q

w xy1w x w y1 xSince g a s g ( a is in the fiber over q as well, there exists a uniqueq q q q
w g x Ž . w y1 x w xw g xs gp Q such that g ( a s a s . Therefore0 1 q q q 0

y1y1 gw x w x w xC g a sG s C a . 6.5Ž .Ž .Ž .ž /q q 0 q

However, this association of an element of the fundamental group of Q based at q to
Ž .an element of p Q is canonical only for C localized at a point q in the fiber over q as˜1

w X x y1Ž . w xstated, otherwise we may pick another a gp q which is related to a by theq q
w X x w xw x w x Ž .relation a s a t , for some t gp Q . Then we haveq q 1

y1 y1X X gw x w x w x w x w x w x w x w x w xg C a sC g a sC g a t sC a s tŽ . Ž . Ž .ž / ž /q q q q q q q 0

y1y1 Xgw x w x w xsG t s t C a . 6.6Ž .Ž .Ž .0 q

Thus we have problems with continuity of the action for non-abelian G if we try to
Ž .extend the action of p Q to non-localized states.1

We are now ready to consider the content of the spin-statistics theorem in this context
of localized states. Let HH be a Hilbert space carrying a representation G of the algebraG

˜for one geon. Consider the space of equivariant functions C :Q™HH , which is theG

space of states of the geon in quantum gravity, and denote it by V . We have seen thatG

the mapping class group will not act on all of V , but will have an action on localizedG

states. Technically speaking these are ‘‘delta functions’’ concentrated at some point
˜qgQ. This means distributions, i.e. linear functionals d on the C ’s such that, for each˜ q̃

CgV , we haveG

d C 'C q . 6.7Ž . Ž . Ž .˜q̃

Let dgDiff`rDiff`, and qshDiff`, where as before h denotes some metric on S.˜0 0

Then Diff`rDiff` acts on the localized space as follows:0

ˆ y1dd sd , 6.8Ž .q qd˜ ˜

Ž . Ž y1 . Ž . Ž .y1and given any state CgV , d C sC qd sG d d C , from the equivariance˜G qd q˜ ˜
property. Hence we may simply put, with a slight abuse of notation,

d̂d sG d d . 6.9Ž . Ž .q q˜ ˜

We are actually interested in the action of RR and C . Like in the case of vectors in2p

HH , we can construct localized states with definite spin s, namely by applying the spinG

Ž .projector P in 4.2 to any generic state. Note, nevertheless that the definition given ins
Ž .6.8 does not apply directly in this case, since P is not an element of the mapping classs

group as it has been defined. This need not bother us, though, since the definition of
Ž .6.9 extends by linearity to the algebra generated by the mapping class group, so we
may define a localized state of spin s, denoted by d Ž s. through the equationq̃

d Ž s.sG P d . 6.10Ž . Ž .q s q˜ ˜
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Ž s. ˜Now pick two equal states d localized at the same point qgQ and with the same˜q̃

spin s. These are eigenvectors of the operator C with eigenvalue expi2p s, and we2p̂

may write, for any two states F and C in V :G

ˆ Ž s. Ž s.RR d md F ,C sRR G P F q mG P C q . 6.11� 4Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜q q s s˜ ˜

But since the vectors in the parenthesis are both vectors in HH , the spin-statisticsG

Ž .relation is valid for them. Since F and C are arbitrary, we may conclude from 4.4 that

ˆ Ž s. Ž s. iŽ2p syu r . Ž s. Ž s.RR d md se d md , 6.12Ž .q q q q˜ ˜ ˜ ˜

which is the expression for the spin-statistics connection for the localized geon states in
quantum gravity.

7. Final remarks

In this paper, we have shown how to explicitly encode information on non-trivial
spatial topology in the quantum theory of topological geons. We have described its
classical degrees of freedom by using the low-energy limit of a Yang–Mills theory
coupled to a Higgs field in the Higgs phase, where the symmetry is spontaneously
broken down to a finite gauge group. It has been argued that this is enough to capture
aspects of the topology of the underlying space manifold, and it has been shown how
such a theory can be quantized. The field algebra for one or many geons has been
derived, and its representations, corresponding to the various geonic sectors of the
theory, have been worked out in detail.

w xOur discussion borrowed heavily from the theory of quantization of vortices 15,16 .
It led to a striking consequence: we have been able to derive a new spin-statistics
relation obeyed by the geonic states. In this relation, there is still a parameter u to ber

fixed for each representation of the geon algebra AA Ž1., but to obtain it explicitly one has
to fix a finite group H and use the formalism to work out the representations of the geon
algebra. We will attempt this elsewhere. We have also shown how the geonic states we
describe here correspond to quantum gravity states of geons.

One is naturally led to inquire whether the framework developed in this paper can be
extended to cover the more general case when the gauge group is a Lie group. In

Ž .particular it is known that general relativity in 2q1 d can be viewed as a Chern–Simons
Ž . w xtheory with gauge group ISO 2,1 39,40 , and therefore one may investigate the

Ž .spin-statistics connection when H in this paper is replaced by ISO 2,1 . Such general-
izations will be the issues of a forthcoming paper.
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