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Non-Abelian Sugawara construction and theq-deformed
N = 2 superconformal algebra

E Batista, J F Gomes and I J Lautenschleguer
Instituto de F́ısica Téorica-UNESP, Rua Pamplona 145, 01405-900 São Paulo, SP, Brazil

Received 14 March 1996

Abstract. The construction of aq-deformedN = 2 superconformal algebra is proposed in
terms of level-1 currents of theUq (ŝu(2)) quantum affine Lie algebra and a single real Fermi
field. In particular, it suggests the expression for theq-deformed energy–momentum tensor in
the Sugawara form. Its constituents generate two isomorphic quadratic algebraic structures. The
generalization toUq (ŝu(N + 1)) is also proposed.

1. Introduction

It has become quite well known that conformal invariance uncovers a common structure
among many important field theoretical models in two dimensions. The physics content
of such models may be extracted by use of the representation theory of the underlying
conformal algebra. String theory is among the many important examples where the energy–
momentum tensor is written in the Sugawara form, i.e. it is bilinear in the conserved
currents.

Quantum groups has also played an important role in the sense that a class of perturbed
systems may be cast within a deformed algebraic structure providing, by representation
theory, the physics content of the model. This algebraic structure is characterized by a
deformation parameterq. In particular, aq-deformed version of the Veneziano model was
proposed in [4] and [6] by replacing the ordinary oscillators byq-deformed ones in the
operator formalism of Fubini and Veneziano. The deformed model (whenq 6= 1) was
shown to lead to nonlinear Regge trajectories. It is hoped that a conformal structure arises
in terms of aq-deformed Kac–Moody algebra such that the usual Sugawara construction
is smoothly recovered in the limitq → 1. Also along these lines, aq-deformed proposal
for the Nambu action was discussed by de Vega and Sanchez in [7]. Their action shows a
non-local character and the canonical energy–momentum tensor was proposed bilinearly in
terms ofq-oscillators.

In this paper we study how aq-conformal structure may be constructed in terms of the
oscillators proposed by Frenkel and Jing [10]. They have constructed vertex operators for
simply laced Lie algebras satisfying a level-1q-deformed Kac–Moody algebra under the
operator product expansion (OPE).

An interesting feature of aq-deformed field theory is that the OPE turns out to be
less divergent than theq = 1 theory. This fact shows up since poles are smeared out
in a symmetric manner in terms of the deformation parameterq, indicating a non-local
structure. The short-distance behaviour of the operators require a consistent definition of
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normal ordering. In order to produce the correct analytic structure in terms of poles we
shall consider the deformation parameter restricted to a pure phase.

In section 2 we discuss and review the Abelianq-Sugawara construction and theN = 1
q-superconformal algebra obtained from a level-1q-deformedHq(∞) infinite Heisenberg
algebra and a single real Fermi field. In section 3 we discuss the vertex operator construction
of Frenkel and Jing forUq(ŝu(2)) (in the appendix we derive many useful identities using
the q-Taylor expansion).

In section 4, guided by the basic principle of decomposing the most divergent poles
into a product of simple poles shifted in a symmetric manner in terms of the deformation
parameterq, together with the closure of algebra, we were led to define a family of super
charge generatorsG±

α in terms of the vertex operators ofUq(ŝu(2)) and a single real Fermi
field. We show that this construction leads to aq-deformedN = 2 superconformal algebra.
In particular, the OPE of the two super charge generators define the energy–momentum
tensor which is shown to decompose into commuting bosonic and fermionic couterparts,
as preditcted by Goddard and Schwimmer [13]. The fermionic counterpart of the energy–
momentum tensor defines aq-deformed Virasoro algebra as in [15]. The bosonic energy–
momentum tensor, however, is no longer bilinear in theq-oscillators and does not yield a
closed algebra, but it can be written as a sum of two components, each of which generates
closed algebras of quadratic type. Similar structures have recently been constructed by
Frenkel and Reshetikhin [9] using a Wakimoto realization for theUq(ŝl(2)) currents. Finally,
we generalize, in section 5, the results for other simply lacedq-deformed affine Lie algebras.

2. The Abelian Sugawara construction and theq-deformed N = 1 superconformal
algebra

An Abelianq-deformed Kac–Moody algebra can be constructed from the usual undeformed
level-1U(1) current algebra:

H(z)H(w) = 1

(z − w)2
+ regular terms (1)

by replacing the double pole into a product of two simple poles symmetrically displaced in
terms of a deformation parameterq, i.e.

H(z)H(w) = 1

(z − qw)(z − wq−1)
+ regular terms. (2)

The Abelian fieldH(z) can be Laurent expanded in terms of aq-deformed infinite
Heisenberg algebraHq(∞)

H(z) =
∑
n∈Z

anz
−n−1 (3)

where from (2) we find

[an, am] = [n] δm+n,0 (4)

where [n] = (qn − q−n)/(q − q−1). Because the non-local character of the pole structure,
to obtain a consistent definition of normal ordering, we shall be assuming the deformation
parameter to be a pure phase, i.e.q = eiε, ε ∈ R. The Sugawara construction implies that
the energy—momentum tensor can be written as

T (z) = 1
2 : H(z)H(z) : (5)

where the colons (:) denote normal ordering in the sense that the positive oscillator modes are
moved to the right of those with negative modes. A classical version of (5) was proposed
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in [5], while normal ordering was later introduced in [14] with the effect of generating
central terms in theq-Virasoro algebra. From equation (2) the expression

T (z)H(w) = 1

w(q − q−1)

(
H(wq)

z − wq
− H(wq−1)

z − wq−1

)
+ regular terms |z| > |w|

(6)

can be evaluated straightforwardly.
The shift in the arguments ofH(w) on the right-hand side requires an extra index for

the closure of the algebra of the energy—momentum tensor (5). We define

T α(z) = 1
2 : H(zq

1
2α)H(zq− 1

2α) : α ∈ Z . (7)

It then follows from (6) that these operators satisfy a deformation of the Virasoro algebra
with unit central charge:

T α(z)T β(w) = 1

wq
1
2 (β+α)(q − q−1)

(
T β−α+1(wq

1
2 (−α+1))

z − wq
1
2 (β−α)+1

− T β−α−1(wq
1
2 (−α−1))

z − wq
1
2 (β−α)−1

)

+ 1

wq
1
2 (−β+α)(q − q−1)

(
T −β−α+1(wq

1
2 (−α+1))

z − wq
1
2 (−β−α)+1

− T −β−α−1(wq
1
2 (−α−1))

z − wq
1
2 (−β−α)−1

)

+ 1

wq
1
2 (β−α)(q − q−1)

(
T β+α+1(wq

1
2 (α+1))

z − wq
1
2 (β+α)+1

− T β+α−1(wq
1
2 (α−1))

z − wq
1
2 (β+α)−1

)

+ 1

wq
1
2 (−β−α)(q − q−1)

(
T −β+α+1(wq

1
2 (α+1))

z − wq
1
2 (−β+α)+1

− T −β+α−1(wq
1
2 (α−1))

z − wq
1
2 (−β+α)−1

)

+ 1

4(z − wq
1
2 (β−α)+1)(z − wq

1
2 (β−α)−1)(z − wq

1
2 (−β+α)+1)(z − wq

1
2 (−β+α)−1)

+ 1

4(z − wq
1
2 (−β−α)+1)(z − wq

1
2 (−β−α)−1)(z − wq

1
2 (β+α)+1)(z − wq

1
2 (β+α)−1)

|z| > |w| . (8)

A construction of a supercharge generator was proposed in [5] by introducing a real
Fermi fieldψ(z)

ψ(z)ψ(w) =: ψ(z)ψ(w) : + 1

(z − w)
|z| > |w| . (9)

Since the triple pole produced by the product of two supercharge generators in theq = 1
case should be replaced by the product of three simple poles

1

(z − w)3
→ 1

(z − wq−1)(z − w)(z − wq)

we realize this by the product of the bosonic current (2) and the fermion (9), i.e.
G(z) = H(z)ψ(z). The closure condition of the algebra requires a family of supercharge
generators to be defined as

Gα(z) = H(zq
1
2α)ψ(zq− 1

2α) . (10)
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Their algebra is given by

Gα(z)Gβ(w) = 2q
1
2αT β+α(wq

1
2α)

z − wq
1
2 (−β+α) + [β − α + 1]Lβ−α+1(wq

1
2 (−α+1))

q
1
2 (β−1)+α(z − wq

1
2 (β−α)+1)

− [β − α − 1]Lβ−α−1(wq
1
2 (−α−1))

q
1
2 (β+1)+α(z − wq

1
2 (β−α)−1)

+ q− 1
2α

(z − wq
1
2 (−β+α))(z − wq

1
2 (β−α)+1)(z − wq

1
2 (β−α)+1)

|z| > |w| .
(11)

The operatorsLα(z) are the fermionic part of the energy–momentum tensor

Lα(z) = 1

[α](q − q−1)
: ψ(zq

1
2α)ψ(zq− 1

2α) : (12)

and satisfy aq-deformed Virasoro algebra (see [15])

Lα(z)Lβ(w) = 1

[α][β]w(q − q−1)

(
[α + β]Lα+β(wq

1
2α)

q
1
2 (β−α)(z − wq

1
2 (β+α))

+ [−α − β]L−α−β(wq− 1
2α)

q
1
2 (−β+α)(z − wq

1
2 (−β−α))

− [α − β]Lα−β(wq
1
2α)

q
1
2 (−β−α)(z − wq

1
2 (−β+α))

− [−α + β]L−α+β(wq− 1
2 −α)

q
1
2 (β+α)(z − wq

1
2 (β−α))

+ 1

(z − wq
1
2 (−β−α))(z − wq

1
2 (β+α))

− 1

(z − wq
1
2 (−β+α))(z − wq

1
2 (β−α))

)
|z| > |w| . (13)

This algebra is not isomorphic to the bosonic one given in (8), but in the limitq → 1, these
generators become the usual fermionic energy–momentum tensor (see [16], for instance)

L(z) = 1
2 : ∂zψ(z)ψ(z) :

satisfying the usual Virasoro algebra withc = 1
2.

The closure of theN = 1 super conformal algebra is achieved with the following OPE
relations:

T α(z)Gβ(w) = 1

2wq
1
2β(q − q−1)

(
q− 1

2αGβ−α+1(wq
1
2 (−α+1))

z − wq
1
2 (β−α)+1

−q
− 1

2αGβ−α−1(wq
1
2 (−α−1))

z − wq
1
2 (β−α)−1

+ q
1
2αGβ+α+1(wq

1
2 (α+1))

z − wq
1
2 (β+α)+1

−q
1
2αGβ+α−1(wq

1
2 (α−1))

z − wq
1
2 (β+α)−1

)
|z| > |w| (14)

Lα(z)Gβ(w) = 1

[α]wq− 1
2β(q − q−1)

(
Gβ−α(wq

1
2α)

z − wq
1
2 (−β+α) − Gβ+α(wq− 1

2α)

z − wq
1
2 (−β−α)

)
|z| > |w| . (15)
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In the limit q → 1 we recover the usual undeformedN = 1 superconformal algebra, namely

G(z)G(w) = 1

(z − w)3
+ 2T (w)

(z − w)

T (z)G(w) = 3G(w)

2(z − w)2
+ G′(w)
(z − w)

T (z)T (w) = 2T (w)

(z − w)2
+ T ′(z)
(z − w)

+ 3

4(z − w)4

whereT = Tbosonic+ Lfermionic.
The deformation is therefore responsible for introducing an additional integer index into

the algebraic structure. Similar structures have already been found in the context of two loop
Kac–Moody algebras and with the conformal affine Toda models (see [1, 8], for instance).
We should also point out that the decomposition of higher-order poles into the product of
simple poles does not alter the merororphic character of the theory. In fact, a consequence
of this is the splitting of the bosonic and fermionic parts of the total energy—momentum
tensor (see [13]).

3. DeformedUq(ŝu(2)) Kac–Moody algebras and vertex operators

Consider a level-1Uq(ŝu(2)) construction in terms of vertex operators proposed by Frenkel
and Jing [10] using theq-deformed oscillators

[αn, αm] = [2n][n]

2n
δm+n,0 (16)

together with the undeformed Heisenberg algebra

[Q,P ] = i . (17)

Define a Fubini–Veneziano field

ξ±(z) = Q− iP ln z + i
∑
n<0

αn

[n]
(zq∓ 1

2 )−n + i
∑
n>0

αn

[n]
(zq± 1

2 )−n (18)

and then write the generators forUq(ŝu(2)) as

E±(z) =: exp
{
±

√
2ξ±(z)

}
: H(z) =

∑
n∈Z

αnz
−n−1 (19)

where the colons (:) denote normal ordering in the sense that positive oscillator modes are
moved to the right of those with negative modes andP to the right ofQ. The OPE for
vertices like (19) is obtained using the Baker–Campbell–Haussdorff formula. In particular,
we find

E+(z)E−(w) = D(z,w)

(z − wq)(z − wq−1)
|z| > |w| (20)

where

D(z,w) =
( z
w

)√
2P

exp

{
−

√
2

∑
n<0

αn

[n]
((zq− 1

2 )−n − (wq
1
2 )−n)

}

× exp

{
−

√
2

∑
n>0

αn

[n]
((zq

1
2 )−n − (wq− 1

2 )−n)

}
. (21)
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The non-local structure of the poles in (20) requires an expansion of the numerator inq-
Taylor series (see the appendix). In order to get a symmetric result we split the numerator
in two equal terms and expand each one separately around the diferent poles. The OPE
may be written as

E+(z)E−(w) ∼ 1

w(q − q−1)

{
9(wq

1
2 )

z − wq
− 8(wq− 1

2 )

z − wq−1

}
|z| > |w| (22)

where

9(z) = q
√

2P exp

{√
2(q − q−1)

∑
n>0

αnz
−n

}
(23)

and

8(z) = q−√
2P exp

{
−

√
2(q − q−1)

∑
n<0

αnz
−n

}
(24)

the symbol∼ standing for equality up to regular terms. The currentsE±(z) are the
generating functions of the Drinfeld generators for theq-deformed algebraUq(ŝu(2)),
E±(z) = ∑

n∈Z E
±
n z

−n−1 and the combination(9(z)−8(z))/(
√

2z(q − q−1)) correspond
to theq-deformed analogue of the undeformed Cartan sub algebra currentH(z) of ŝu(2).
It should be noted from (22) that the deformation naturally splits the positive and negative
oscillator modes according to positive and negative powers ofq. The full Uq(ŝu(2)) is
obtained from (22), together with

9(z)8(w) = (z − wq3)(z − wq−3)

(z − wq)(z − wq−1)
8(w)9(z)

9(z)E±(w) = q±2 (z − wq∓ 5
2 )

(z − wq± 3
2 )
E±(w)9(z)

E±(z)8(w) = q±2 (z − wq∓ 5
2 )

(z − wq± 3
2 )
8(w)E±(z)

E±(z)E±(w) = (zq±2 − w)

(z − wq±2)
E±(w)E±(z) |z| > |w| .

(25)

The regular part of the OPE in (22) is important in defining the energy–momentum
tensor in Sugawara form. Here we introduce the notation×

×E+(w)E−(w)×× for the remaining
regular terms after taking the equal-point limit, i.e.

×
×E

+(w)E−(w)×× = lim
z→w

{
E+(z)E−(w)− 1

w(q − q−1)

(
9(wq

1
2 )

z − wq
− 8(wq− 1

2 )

z − wq−1

)}
.

(26)

Due to the non-local character of theq-Taylor expansion, it consists of an infinite number
of terms which vanish whenq → 1. The first-order term is given by

×
×E

+(w)E−(w)×× = 1

2[2]w2(q − q−1)2

{
[q−3(A1(wq2)− 1)+ (q − q−1)]9(wq

1
2 )

+8(wq− 1
2 )[q3(B1(wq−2)− 1)− (q − q−1)]

}
+ O(q − q−1) (27)
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where the composite fieldsAα andBα are defined as

Aα(w) = 8−1(wq− 1
2α)9(wq

1
2α) (28)

Bα(w) = 8(wq− 1
2α)9−1(wq

1
2α) . (29)

They are obtained by direct calculation, as explained in the appendix. We also prove that
the higher power terms in(q − q−1) appearing in the regular part ofE+(z)E−(w) only
depend on eitherD(wq2k+1, w) or D(wq−2k−1, w), with their general structure given by

D(wq2k+1, w) =: A1(wq2)A1(wq4) . . . A1(wq2k) : 9(wq
1
2 )

D(wq−2k−1, w) = 8(wq− 1
2 ) : B1(wq−2)B1(wq−4) . . . B1(wq−2k) : .

(30)

It should be noted that all non-vanishing terms constituting the regular part ofE+(z)E−(z)
are functionals of9 and8 and, henceforth, nonlinear functionals of the Cartan subalgebra
current H(z). This fact suggests a generalization of theq-analogue of the quantum
equivalence theorem which establishes, in particular, the equality of the energy—momentum
tensor constructed from a level-1 simply laced current algebraĝ and its Cartan subalgebra
(see Goddard and Olive [12]).

4. N = 2 q-superconformal algebra

The construction of theN = 2 superconformal algebra requires two supercharges,G±(z).
The most singular term of their OPE is proporcional to a triple pole, as we have seen in
section 2 for theN = 1 case. As we have argued before, the triple pole is expected to be
replaced by a product of simple poles symmetrically displaced in terms of the deformation
parameterq. Following the same reasoning, we define the deformed supercharges as

G±(z) = E±(z)ψ(z) (31)

whereE±(z) denote the currents related toUq(ŝu(2)) step operators, andψ(z) is the Fermi
field defined by expression (9). In particular, for level-1 representations, we realize them
as the vertex operators (19). The OPE for the two supercharges yields

G+(z)G−(w) =
{

1

(z − w)(z − wq)
+ q

1
2L1(wq

1
2 )

(z − wq)

+1

2

(q−3(A1(wq2)− 1)+ (q − q−1))

[2]w(q − q−1)(z − w)
+ O(q − q−1)

}
9(wq

1
2 )

w(q − q−1)

− 8(wq− 1
2 )

w(q − q−1)

{
1

(z − w)(z − wq−1)
+ q− 1

2L−1(wq− 1
2 )

(z − wq−1)

+1

2

(q3(B1(wq−2)− 1)− (q − q−1))

[2]w(q − q−1)(z − w)
+ O(q − q−1)

}
(32)

whereLα is the fermionic energy–momentum tensor defined in (12),Aα andBα are defined
in (28), (29). Again, the shift in the arguments of currents in the right-hand side requires an
additional index to label an infinite family of supercharge generators, we therefore define

G±
α (z) = E±(zq± 1

2α)ψ(zq∓ 1
2α) . (33)
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The OPE relations for the supercharge generators is given by

G+
α (z)G

−
β (w) =

×
×E+(wq

1
2β+α)E−(wq− 1

2β)××
(zq− 1

2α − wq
1
2β)

+ [1 − α − β]q
1
2 (1+β−α)L1−α−β(wq

1
2 (1−α))9(wq

1
2 (1−β))

zq
1
2α − wq− 1

2β+1

+ [1 + α + β]q
1
2 (1+β+α)8(wq

1
2 (−1−β))L1+α+β(wq

1
2 (1+α))

zq
1
2α − wq− β

2 −1

+ 1

wq− 1
2β(q − q−1)(zq− 1

2α − wq
1
2β)

×
{

9(wq
1
2 (1−β))

zq
1
2α − wq− 1

2β+1
− 8(wq

1
2 (−1−β))

zq
1
2α − wq− 1

2β−1

}
(34)

where

×
×E

+(wq
1
2β+α)E−(wq− 1

2β)×× = 1

2[2]w2q−β(q − q−1)2

{[
q−3(A1(wq− 1

2β+2)− 1)

+(q − q−1)
]
9(wq

1
2 (−β+1))+8(wq

1
2 (−β−1))

[
q3(B1(wq− 1

2β−2)− 1)

−(q − q−1)
]} + O(q − q−1) . (35)

In the classical limit (q → 1) these generatorsG±
α become the usual supercharges of

N = 2 superconformal algebra, withG±(z) = E±(z)ψ(z) obeying the OPE relation (see
[17]):

G+(z)G−(w) = 1

(z − w)3
+

√
2H(w)

(z − w)2
+ 2T (w)+ √

2H ′(w)
(z − w)

whereT (w) = Tbosonic(w)+Lfermionic(w) is the total energy–momentum tensor, as inN = 1
case. Note that, in order not to generate spurious poles in the OPE ofG±(z)G±(w), instead
of using a single real Fermi fieldψ(z) multiplying bothE±, we could have introduced a pair
of independent Fermi fields,ψ±(z) = (ψ1(z) ± iψ2(z))/

√
2 multiplying E± respectively.

The fermion fieldsψ1,2 do obey the OPE relations (9) independently. Analysing expressions
(34) and (35), we can formulate an expression for the bosonic energy–momentum tensor
taking the coefficient of simple poles in the OPE, bearing in mind the correct classical limit
to be

T (z) = 1
2 : H 2(z) : .

We therefore define a family of operators labeled by two indices

T α;β(z) = 1

2[2]z2(q − q−1)2

{
Aα(zqβ)+ Bα(zqβ)− 2

}
(36)

with Aα andBα defined by expressions (28), (29). The algebra of theq-deformed energy–
momentum tensor (36) does not close; however, its componentsAα and Bα define a
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quadratic algebra, namely

Aα(z)Aβ(w) = f (zq
1
2α;wq− 1

2β) : Aα(z)Aβ(w) :

Bα(z)Bβ(w) = f (zq
1
2α;wq− 1

2β) : Bα(z)Bβ(w) :

Aα(z)Bβ(w) = f −1(zq
1
2α;wq− 1

2β) : Aα(z)Bβ(w) :

Bα(z)Aβ(w) = f −1(zq
1
2α;wq− 1

2β) : Bα(z)Aβ(w) :

Aα(z)G±
β (w) = q±2 (zq

1
2α − wq±( 1

2β− 5
2 ))

(zq
1
2α − wq±( 1

2β+ 3
2 ))

: Aα(z)G±
β (w) :

Bα(z)G±
β (w) = q∓2 (zq

1
2α − wq±( 1

2β+ 3
2 ))

(zq
1
2α − wq±( 1

2β− 5
2 ))

: Bα(z)G±
β (w) :

Lα(z)G±
β (w) = 1

[α]w(q − q−1)

{
G±(±β−α)(wq

1
2α)

z − wq∓ 1
2β+ 1

2α
− G±(±β+α)(wq− 1

2α)

z − wq∓ 1
2β− 1

2α

}

(37)

where the analytic structure is given by

f (z;w) = (z − wq)(z − wq−1)

(z − wq3)(z − wq−3)

andLα(z) is the fermionic energy–momentum tensor as defined by expression (12).
The higher-order terms in theq-Taylor expansion of the OPE (see the appendix) lead

us to a more general class ofq-deformed energy–momentum tensors in Sugawara form. In
fact, the multi-index family of operators is given by

T α1,β1;...;αn,βn(z) = 1

2n2[2]z2(q − q−1)2

{
: Aα1(zqβ1) · · ·Aαn(zqβn) :

+ : Bα1(zqβ1) · · ·Bαn(zqβn) : −2
}

(38)

where the colons (:) indicate that all8’s are placed to the left of the9 ’s. As before, the
algebra of the multi index energy–momentum tensor (38) does not close; however, their
constituents

Aα1,β1;...;αn,βn(z) =: Aα1(zqβ1) · · ·Aαn(zqβn) : (39)

and

Bα1,β1;...;αn,βn(z) =: Bα1(zqβ1) · · ·Bαn(zqβn) : (40)

close two isomorphic OPE algebras of the type

Aα1,β1;...;αn,βn(z)Aγ1,δ1;...;γm,δm(w)

=
n∏
i=1

m∏
j=1

f (zqβi+
1
2αi ;wqδj− 1

2γj ) : Aα1,β1;...;αn,βn(z)Aγ1,δ1;...;γm,δm(w) : . (41)

Note that the OPEG+(z)G−(w) naturally produces terms of the type (39)
and (40), becauseD(wq2k+1, w) = A1,2;1,4;...;1,2k(w)9(wq

1
2 ) and D(wq−2k−1, w) =

8(wq− 1
2 )B1,−2;1,−4;...;1,−2k(w) given in (30). These are particular cases whenαi = 1,

βi = 2i in the case ofA, and βi = −2i in the case ofB, leading to a remarkable
cancellation of poles in (41) in which the 2mn poles result in 2m only.
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5. The Sugawara construction andUq(ŝu(N + 1)) vertex operators

The vertex operator construction for an affine simply laced Lie algebraUq(ŝu(N + 1)),
requiresN independent copies ofq-oscillators satifying

[αin, α
j
m] = [Kijn][n]

2n
δm+n,0 i = 1, . . . , N (42)

whereKij is the Cartan matrix of the underlying Lie algebrasu(N + 1), and zero modes
P i andQi satisfy the usual commutation relations

[Qi, P j ] = iδij .

These commutation relations become, in the limitq → 1, the usual ones for the modes of
the Cartan sub-algebra of the undeformedŝu(N + 1) affine Lie algebra in the Chevalley
basis, i.e.

[αin, α
j
m] = Kijn δm+n,0 .

Let βi, i = 1, . . . , N be the simple roots ofg algebra. For each simple root we define
vertex operators as indicated in [10]:

E±
i (z) = exp

{
∓

√
2

∑
n<0

αin

[n]
(zq∓ 1

2 )−n
}

exp

{
∓

√
2

∑
n>0

αin

[n]
(zq± 1

2 )−n
}

e±i
√

2Qi

z±√
2P i

9i(z) = q
√

2P i exp

{√
2(q − q−1)

∑
n>0

αinz
−n

}

8i(z) = q−√
2P i exp

{
−

√
2(q − q−1)

∑
n<0

αinz
−n

} (43)

satisfying the OPE relations

E+
i (z)E

−
i (w) ∼ 1

w(q − q−1)

{
9i(wq

1
2 )

z − wq1
− 8i(wq

− 1
2 )

z − wq−1

}

E−
i (z)E

+
i (w) ∼ 1

w(q − q−1)

{
8i(wq

1
2 )

z − wq1
− 9i(wq

− 1
2 )

z − wq−1

}
E+
i (z)E

−
j (w) = (z − w)

z
: E+

i (z)E
−
j (w) : i = j ± 1

9i(z)E
±
i (w) = q±2 (z − wq∓ 5

2 )

(z − wq± 3
2 )
E±
i (w)9i(z)

9i(z)E
±
j (w) = (z − wq± 1

2 )

(z − wq∓ 3
2 )
E±
j (w)9i(z) i = j ± 1

E±
i (z)8i(w) = q±2 (z − wq∓ 5

2 )

(z − wq± 3
2 )
8i(w)E

±
i (z)

E±
i (z)8j (w) = (z − wq± 1

2 )

(z − wq∓ 3
2 )
8j (w)E

±
i (z) i = j ± 1

9i(z)8i(w) = (z − wq3)(z − wq−3)

(z − wq)(z − wq−1)
8i(w)9i(z)

9i(z)8j (w) = (z − w)2

(z − wq2)(z − wq−2)
8j (w)9i(z) i = j ± 1 .

(44)
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For a positive rootβ = βi + βi+1 + · · · + βi+s , 0 6 s 6 N − i, we consider the normal
ordered products [10]

E+
β (z) =: E+

i (zq
i)E+

i+1(zq
i+1) · · ·E+

i+s(zq
i+s) :

E−
−β(z) =: E−

i+s(zq
i+s)E−

i+s−1(zq
i+s−1) · · ·E−

i (zq
i) :

9β(z) = 9i(zq
i)9i+1(zq

i+1) · · ·9i+s(zqi+s)
8β(z) = 8i(zq

i)8i+1(zq
i+1) · · ·8i+s(zqi+s) .

(45)

The OPE relations for these operators are obtained using rules (44). In particular the OPE
of E+(z)E−(w) we find

ζ(q, z)E+
β (z)E

−
−β(w) = 1

w(q − q−1)

{
9β(wq

1
2 )

z − wq1
− 8β(wq

− 1
2 )

z − wq−1

}

+ 1

2[2]w2q2(q − q−1)2

{
[q−3(A1

β(wq
2)− 1) + (q − q−1)]9β(wq

1
2 )

+8β(wq
− 1

2 )[q3(B1
β(wq

−2)− 1)− (q − q−1)]
}

+ O(q − q−1) (46)

where

ζ(q, z) = z2(s−1)qi(2s−1)+s(s+1)

is a normalizer term introduced only to cancel factors apearing in the OPEs of vertices
associated with neighbouring roots. The fieldsAkβ andBkβ are defined as

Akβ(z) =: Aki (zq
i)Aki+1(zq

i+1) · · ·Aki+s(zqi+s) :

Bkβ(z) =: Bki (zq
i)Bki+1(zq

i+1) · · ·Bki+s(zqi+s) : .
(47)

The energy–momentum tensor associated toUq(ŝu(N + 1)) is therefore proposed to be

T k,l(z) = 1

2(2 +N)[2]z2(q − q−1)2

{ N∑
i=1

[Aki (zq
l)+ Bki (zq

l)− 2]

+2
∑
β>0

[Akβ(zq
l)+ Bkβ(zq

l)− 2]

}
(48)

providing a closed quadratic algebra for its constituentsAkβ andBkβ which can be obtained
using the primitive OPE relations in (44). In the limitq → 1, we recover the usual Sugawara
construction, namely [12]

T (z) = 1

2(1 + h)

{
N−1∑
i=1

×
×H

2
i (z)

×
× +

∑
β>0

×
×E

β(z)E−β(z)+ E−β(z)Eβ(z)××

}
(49)

whereh is the dual Coxeter number (for the algebrasu(N + 1) we haveh = N + 1),
and the crosses indicate normal ordering for the modes ofsu(N + 1) currents. For level-1
simply laced algebras, the contribution of terms quadratic in step operators in the energy–
momentum tensor is known to be proportional to terms dependent on the Cartan sub-algebra,
see [12]

×
×E

β(z)E−β(z)+ E−β(z)Eβ(z)×× = ×
×(β.H(z))

2×
× .
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6. Conclusion and outlook

A q-deformed version of theN = 2 superconformal algebra was proposed in terms of
level-1 representations ofUq(ŝu(2)) Kac–Moody algebra and a single real Fermi field. This
construction hints the form for theq-analogue for the Sugawara energy–momentum tensor
possessing an exponential dependence on the Cartan subalgebra generators. An interesting
point to be further investigated concerns the construction of an action from which such
energy–momentum tensor could be obtained using canonical methods following the line
of [7].

The study of the representations of such algebraic structure also deserves to be further
developed. In particular, identities involving conformal embeddings [2] as well as coset
constructions [11] may be obtained from representation theory.
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Appendix: q-Taylor series expansions

In this appendix we review some properties of theq-Taylor expansion, which is obtained
from the usual Taylor series by adding and subtracting terms. This ensures the same content
of the series in classical analysis, with the additional advantage of providing a non-local
expansion. An analytic functionf (z) may be written nearz = ω as either

f (z) =
∞∑
k=0

∂2k
q f (wq)

[2k]!
(z − w)2kq +

∞∑
k=0

∂2k+1
q f (w)

[2k + 1]!
(z − wq)2k+1

q (A1)

or

f (z) =
∞∑
k=0

∂2k
q f (wq

−1)

[2k]!
(z − w)2kq +

∞∑
k=0

∂2k+1
q f (w)

[2k + 1]!
(z − wq−1)2k+1

q (A2)

where [n]! = [n][n− 1]!, the symbol∂q denotes theq-derivative defined as

∂qf (z) = f (zq)− f (zq−1)

z(q − q−1)
(A3)

and

(z − w)nq =
n∏
k=1

(z − wqn−2k+1) =
n∑
k=0

[n]!

[k]![ n− k]!
zk(−w)n−k (A4)

is the q-binomial. These expansions display a non-local character and become useful in
finding regular parts of OPE inq-deformed meromorphic field theories like those presented
in this paper.

From equation (A3) we propose a general closed expression for thenth q-derivative

∂nq f (z) = 1

zn(q − q−1)n

∑
σ0=±1

∑
σ1=±1

· · ·
∑

σn−1=±1

(n−1∏
i=0

σiq
−iσi

)
f

(
zq

∑n−1
i=0 σi

)
(A5)

which can easily be proved by induction.
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A crucial observation from (A5) is that thenth-orderq-derivative is proportional to the
original function with the argument shifted by some power of the deformation parameter.
Then sums overσi = ±1, i = 0, . . . , n−1 leads to a shifted argument proportional toqn−2α.
Henceforth, the parity of the power ofq is always the same as the order of the derivative.
On the other hand, odd derivative terms in theq-Taylor expansion (A1, A2) are evaluated
in z = w while the even ones inz = wq or z = wq−1. In either case, the expansion of
f (z) in (A1), (A2) consist of linear combination of terms likef (wq2k+1), k ∈ Z.

We now apply this result to calculate the regular part of the OPEE+(z)E−(w) in
(20). The above argument implies that the right-hand side of (20) is a linear combination
of D(wq2k+1, w). The peculiar form ofD(z,w) yields a dependence entirely in terms of
the Cartan subalgebra currentH(z). To be more specific, the following identities can be
obtained by direct calculation:

D(wq2k+1, w) =
(k−1∏
i=0

8−1(wq− 1
2 +2(k−i))

)( k∏
j=0

9(wq
1
2 +2(k−j))

)
=: A1(wq2)A1(wq4) · · ·A1(wq2k) : 9(wq

1
2 ) (A6)

and

D(wq−(2k+1), w) =
( k∏
i=0

8(wq− 1
2 −2i )

)(k−1∏
j=0

9−1(wq
1
2 −2j )

)
= 8(wq− 1

2 ) : B1(wq−2)B1(wq−4) · · ·B1(wq−2k) : . (A7)

We should also point out that due to the non-locality, the expansion of the regular part
of E+(z)E−(w) does not truncate when equal point limit is taken. It is, in fact composed
of infinite number of terms which are classified in powers of(q − q−1).
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