A unified treatment of Katsura and Nekrashevych *C**-algebras.

Enrique Pardo

Universidad de Cádiz

Partial Actions and Representations Symposium Gramado (Brasil), May 13, 2014.

イロト イポト イヨト イヨト

Outline

- Katsura algebras
- Nekrashevych algebras
- 2 The new construction
 - Groups acting on graphs
 - The algebra $\mathcal{O}_{G,E}$
- \bigcirc $\mathcal{O}_{G,E}$ as groupoid C^* -algebra

< □ > < 同 > < 三 > <

4 Characterizing properties

Joint work with Ruy Exel (Departamento de Matemática, Universidade Federal de Santa Catarina, Florianópolis, Brasil),

R. EXEL, E. PARDO, *Representing Kirchberg algebras* as inverse semigroup crossed products, arXiv:1303.6268v1 (2013),

< □ > < □ > < □ > < □ > <

and

R. EXEL, E. PARDO, *Graphs, groups and self-similarity, arXiv:1307.1120v1 (2013).*

<u>GOAL</u>: Present a family of C*-algebras, generalizing certain algebras introduced by Katsura and Nekrashevych.

Realize these new algebras as groupoid C^* -algebras and as inverse semigroup crossed product C^* -algebras.

Use these pictures to characterize properties of the algebras: e.g. to be simple, or purely infinite.

イロト イヨト イヨト イ

<u>GOAL</u>: Present a family of C*-algebras, generalizing certain algebras introduced by Katsura and Nekrashevych.

Realize these new algebras as groupoid C^* -algebras and as inverse semigroup crossed product C^* -algebras.

Use these pictures to characterize properties of the algebras: e.g. to be simple, or purely infinite.

< □ > < 同 > < 三 > <

<u>GOAL</u>: Present a family of C*-algebras, generalizing certain algebras introduced by Katsura and Nekrashevych.

Realize these new algebras as groupoid C^* -algebras and as inverse semigroup crossed product C^* -algebras.

Use these pictures to characterize properties of the algebras: e.g. to be simple, or purely infinite.

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

Outline

Katsura and Nekrashevych algebras

- Katsura algebras
- Nekrashevych algebras
- The new construction
 - Groups acting on graphs
 - The algebra $\mathcal{O}_{G,E}$
- $\bigcirc \mathcal{O}_{G,E}$ as groupoid C^* -algebra
- 4 Characterizing properties

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

Definition

Let $N \in \mathbb{N} \cup \{\infty\}$, let $A \in M_N(\mathbb{Z}^+)$ and $B \in M_N(\mathbb{Z})$ be row-finite matrices. Define a set Ω_A by

 $\Omega_A := \{ (i,j) \in \{1,2,\ldots,N\} \times \{1,2,\ldots,N\} \mid A_{i,j} \ge 1 \}.$

Fix the following condition:

(0) $\Omega_A(i) \neq \emptyset$ for all *i*, and $B_{i,j} = 0$ for $(i,j) \notin \Omega_A$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● の々で

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

Definition

Let $N \in \mathbb{N} \cup \{\infty\}$, let $A \in M_N(\mathbb{Z}^+)$ and $B \in M_N(\mathbb{Z})$ be row-finite matrices. Define a set Ω_A by

 $\Omega_A := \{ (i,j) \in \{1,2,\ldots,N\} \times \{1,2,\ldots,N\} \mid A_{i,j} \ge 1 \}.$

Fix the following condition:

(0) $\Omega_A(i) \neq \emptyset$ for all *i*, and $B_{i,j} = 0$ for $(i,j) \notin \Omega_A$.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □ ● の々で

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

ヘロン 人間 とくほとく ほとう

æ

Definition

Let $N \in \mathbb{N} \cup \{\infty\}$, let $A \in M_N(\mathbb{Z}^+)$ and $B \in M_N(\mathbb{Z})$ be row-finite matrices. Define a set Ω_A by

$$\Omega_A := \{(i,j) \in \{1,2,\ldots,N\} \times \{1,2,\ldots,N\} \mid A_{i,j} \ge 1\}.$$

Fix the following condition:

(0) $\Omega_A(i) \neq \emptyset$ for all *i*, and $B_{i,j} = 0$ for $(i, j) \notin \Omega_A$.

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

<ロ> (四) (四) (三) (三) (三)

Definition

Define $\mathcal{O}_{A,B}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{q_i\}_{i=1}^N$, partial unitaries $\{u_i\}_{i=1}^N$ with $u_i u_i^* = u_i^* u_i = q_i$, and partial isometries $\{s_{i,j,n}\}_{(i,j)\in\Omega_A,n\in\mathbb{Z}}$ satisfying the relations:

(i) $s_{i,j,n}^* s_{i,j,n} = q_j$ for all $(i,j) \in \Omega_A$ and $n \in \mathbb{Z}$.

▶ Def. $C^*(E)$

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

イロト イポト イヨト イヨト 一臣

Definition

Define $\mathcal{O}_{A,B}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{q_i\}_{i=1}^N$, partial unitaries $\{u_i\}_{i=1}^N$ with $u_i u_i^* = u_i^* u_i = q_i$, and partial isometries $\{s_{i,j,n}\}_{(i,j)\in\Omega_A,n\in\mathbb{Z}}$ satisfying the relations:

(i)
$$s_{i,j,n}^* s_{i,j,n} = q_j$$
 for all $(i,j) \in \Omega_A$ and $n \in \mathbb{Z}$.

(ii) $q_i = \sum_{j \in \Omega_A(i)} \sum_{n=1}^{A_{i,j}} s_{i,j,n} s_{i,j,n}^*$ for all i.

▶ Def. $C^*(E)$

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

ヘロト 人間 とくほとく ほとう

э.

Definition

Define $\mathcal{O}_{A,B}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{q_i\}_{i=1}^N$, partial unitaries $\{u_i\}_{i=1}^N$ with $u_i u_i^* = u_i^* u_i = q_i$, and partial isometries $\{s_{i,j,n}\}_{(i,j)\in\Omega_A,n\in\mathbb{Z}}$ satisfying the relations:

(i)
$$s_{i,j,n}^* s_{i,j,n} = q_j$$
 for all $(i, j) \in \Omega_A$ and $n \in \mathbb{Z}$.
(ii) $q_i = \sum_{j \in \Omega_A(i)} \sum_{n=1}^{A_{i,j}} s_{i,j,n} s_{i,j,n}^*$ for all i .

▶ Def. $C^*(E)$

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

Definition

Define $\mathcal{O}_{A,B}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{q_i\}_{i=1}^N$, partial unitaries $\{u_i\}_{i=1}^N$ with $u_i u_i^* = u_i^* u_i = q_i$, and partial isometries $\{s_{i,j,n}\}_{(i,j)\in\Omega_A,n\in\mathbb{Z}}$ satisfying the relations:

(i)
$$s_{i,j,n}^* s_{i,j,n} = q_j$$
 for all $(i, j) \in \Omega_A$ and $n \in \mathbb{Z}$.
(ii) $q_i = \sum_{j \in \Omega_A(i)} \sum_{n=1}^{A_{i,j}} s_{i,j,n} s_{i,j,n}^*$ for all i .
(iii) $s_{i,j,n} u_j = s_{i,j,n+A_{i,j}}$ and $u_i s_{i,j,n} = s_{i,j,n+B_{i,j}}$ for all $(i, j) \in \Omega_A$ and $n \in \mathbb{Z}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 - の々⊙

The new construction $\mathcal{O}_{G,E}$ as groupoid $C^*\mbox{-algebra}$ Characterizing properties

Katsura algebras Nekrashevych algebras

くロト (過) (目) (日)

Now, the following facts holds:

- ① $\mathcal{O}_{A,B}$ is separable, nuclear and in the UCT class.
- Every Kirchberg algebra in the UCT class can be represented, up to isomorphism, by a O_{A,B}.
- For any matrix $B, C^*(E_A) \hookrightarrow \mathcal{O}_{A,B}$.

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

< ロ > < 同 > < 回 > < 回 > <</p>

Now, the following facts holds:

- $\mathcal{O}_{A,B}$ is separable, nuclear and in the UCT class.
- 2 Every Kirchberg algebra in the UCT class can be represented, up to isomorphism, by a $\mathcal{O}_{A,B}$.

Solution For any matrix $B, C^*(E_A) \hookrightarrow \mathcal{O}_{A,B}$.

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

ヘロト 人間 とくほとくほとう

Now, the following facts holds:

- $\mathcal{O}_{A,B}$ is separable, nuclear and in the UCT class.
- 2 Every Kirchberg algebra in the UCT class can be represented, up to isomorphism, by a $\mathcal{O}_{A,B}$.

If or any matrix $B, C^*(E_A) \hookrightarrow \mathcal{O}_{A,B}$.

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

ヘロト 人間 とくほとく ほとう

Now, the following facts holds:

- **1** $\mathcal{O}_{A,B}$ is separable, nuclear and in the UCT class.
- 2 Every Kirchberg algebra in the UCT class can be represented, up to isomorphism, by a $\mathcal{O}_{A,B}$.
- So For any matrix $B, C^*(E_A) \hookrightarrow \mathcal{O}_{A,B}$.

Katsura algebras Nekrashevych algebras

ヘロト 人間 とくほとくほとう

æ

$X = \{a_1, \ldots, a_n\}$ finite alphabet. G group acting on the *n*-rooted tree on X by automorphisms.

 $g(a_i a_j) = g(a_i) \cdot g_{|a_i}(a_j)$ defines a 1-cocycle on G:

 $\begin{array}{rccc} G \times X & \to & G \\ (g, a_i) & \mapsto & g_{|a_i} \end{array}$

Katsura algebras Nekrashevych algebras

イロト イポト イヨト イヨト

э.

$X = \{a_1, \ldots, a_n\}$ finite alphabet. G group acting on the *n*-rooted tree on X by automorphisms.

 $g(a_i a_j) = g(a_i) \cdot g_{|a_i}(a_j)$ defines a 1-cocycle on *G*:

 $\begin{array}{rccc} G \times X & \to & G \\ (g, a_i) & \mapsto & g_{|a_i} \end{array}$

Katsura algebras Nekrashevych algebras

イロン 不得 とくほ とくほ とうほ

 $X = \{a_1, \ldots, a_n\}$ finite alphabet. G group acting on the *n*-rooted tree on X by automorphisms.

 $g(a_i a_j) = g(a_i) \cdot g_{|a_i}(a_j)$ defines a 1-cocycle on G:

 $\begin{array}{rccc} G \times X & \to & G \\ (g, a_i) & \mapsto & g_{|a_i|} \end{array}$

Katsura algebras Nekrashevych algebras

<ロ> (四) (四) (三) (三) (三)

 $X = \{a_1, \ldots, a_n\}$ finite alphabet. G group acting on the *n*-rooted tree on X by automorphisms.

 $g(a_i a_j) = g(a_i) \cdot g_{|a_i}(a_j)$ defines a 1-cocycle on *G*:

$$\begin{array}{rccc} G \times X & \to & G \\ (g, a_i) & \mapsto & g_{|a_i|} \end{array}$$

Katsura algebras Nekrashevych algebras

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

 $X = \{a_1, \ldots, a_n\}$ finite alphabet. G group acting on the *n*-rooted tree on X by automorphisms.

 $g(a_i a_j) = g(a_i) \cdot g_{|a_i}(a_j)$ defines a 1-cocycle on *G*:

$$\begin{array}{rccc} G \times X & \to & G \\ (g, a_i) & \mapsto & g_{|a_i} \end{array}$$

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

Definition

Define $\mathcal{O}_{(G,X)}$ to be the universal C^* -algebra generated by isometries $\{s_{a_1}, \ldots, s_{a_n}\}$ and unitaries $\{u_g \mid g \in G\}$ satisfying the relations:

(i) $s_{a_i}^* s_{a_j} = \delta_{i,j}$ for all $1 \le i, j \le n$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで

The new construction $\mathcal{O}_{G,E}$ as groupoid $C^*\mbox{-algebra}$ Characterizing properties

Katsura algebras Nekrashevych algebras

Definition

Define $\mathcal{O}_{(G,X)}$ to be the universal C^* -algebra generated by isometries $\{s_{a_1}, \ldots, s_{a_n}\}$ and unitaries $\{u_g \mid g \in G\}$ satisfying the relations:

(i)
$$s_{a_i}^* s_{a_j} = \delta_{i,j}$$
 for all $1 \le i, j \le n$.
(ii) $1 = \sum_{i=1}^n s_{a_i} s_{a_i}^*$
(iii) $u_g s_{a_i} = s_{g(a_i)} u_{g_{|a_i|}}$ for all $g \in G$ and $1 \le i \le j$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─���

The new construction $\mathcal{O}_{G,E}$ as groupoid $C^*\mbox{-algebra}$ Characterizing properties

Katsura algebras Nekrashevych algebras

Definition

Define $\mathcal{O}_{(G,X)}$ to be the universal C^* -algebra generated by isometries $\{s_{a_1}, \ldots, s_{a_n}\}$ and unitaries $\{u_g \mid g \in G\}$ satisfying the relations:

(i)
$$s_{a_i}^* s_{a_j} = \delta_{i,j}$$
 for all $1 \le i, j \le n$.
(ii) $1 = \sum_{i=1}^n s_{a_i} s_{a_i}^*$
(iii) $u_g s_{a_i} = s_{g(a_i)} u_{g_{|a_i|}}$ for all $g \in G$ and $1 \le i \le r$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─���

The new construction $\mathcal{O}_{G,E}$ as groupoid $C^*\text{-algebra}$ Characterizing properties

Katsura algebras Nekrashevych algebras

Definition

Define $\mathcal{O}_{(G,X)}$ to be the universal C^* -algebra generated by isometries $\{s_{a_1}, \ldots, s_{a_n}\}$ and unitaries $\{u_g \mid g \in G\}$ satisfying the relations:

(i)
$$s_{a_i}^* s_{a_j} = \delta_{i,j}$$
 for all $1 \le i, j \le n$.
(ii) $1 = \sum_{i=1}^n s_{a_i} s_{a_i}^*$
(iii) $u_g s_{a_i} = s_{g(a_i)} u_{g|_{a_i}}$ for all $g \in G$ and $1 \le i \le n$

▲口 > ▲ 圖 > ▲ 画 > ▲ 画 > ● ▲ ④ ▲ ④

The new construction $\mathcal{O}_{G,E}$ as groupoid $C^*\mbox{-algebra}$ Characterizing properties

Katsura algebras Nekrashevych algebras

イロト イポト イヨト イヨト

1

Now, the following facts holds:

- $\mathcal{O}_{(G,X)}$ is separable, and there are conditions for being nuclear and in the UCT class.
- They allows to deal with group properties in algebra terms.
- For any group $G, \mathcal{O}_n \to \mathcal{O}_{(G,X)}$.

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

ヘロト 人間 とくほとくほとう

Now, the following facts holds:

- $\mathcal{O}_{(G,X)}$ is separable, and there are conditions for being nuclear and in the UCT class.
- Provide the approximation of the second state and a second state of the second state and a second state of the second state
- 3 For any group $G, \mathcal{O}_n \hookrightarrow \mathcal{O}_{(G,X)}$.

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

イロト イポト イヨト イヨト 一臣

Now, the following facts holds:

- $\mathcal{O}_{(G,X)}$ is separable, and there are conditions for being nuclear and in the UCT class.
- Provide the second state of the second stat

If or any group $G, \mathcal{O}_n \hookrightarrow \mathcal{O}_{(G,X)}$.

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

ヘロト 人間 とくほとくほとう

Now, the following facts holds:

- $\mathcal{O}_{(G,X)}$ is separable, and there are conditions for being nuclear and in the UCT class.
- Provide the second state of the second stat
- Solution For any group $G, \mathcal{O}_n \hookrightarrow \mathcal{O}_{(G,X)}$.

Katsura algebras Nekrashevych algebras

Relation (iii) in definition is equivalent to

$$u_i s_{i,j,n} = s_{i,j,\widehat{n}} u_j^k$$

for unique $1 \leq \widehat{n} \leq A_{i,j}$ and $k \in \mathbb{Z}$ such that $n + B_{i,j} = \widehat{n} + kA_{i,j}$.

If E_A is a finite graph, then $u := \sum_{i=1}^{N} u_i$ is a unitary of $\mathcal{O}_{A,B}$.

For any i, j, $us_{i,j,n} = u_i s_{i,j,n}$ and $s_{i,j,n} u = s_{i,j,n} u_j$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Katsura algebras Nekrashevych algebras

ヘロト 人間 とくほとくほと

Relation (iii) in definition is equivalent to

$$u_i s_{i,j,n} = s_{i,j,\widehat{n}} u_j^k$$

for unique $1 \leq \widehat{n} \leq A_{i,j}$ and $k \in \mathbb{Z}$ such that $n + B_{i,j} = \widehat{n} + kA_{i,j}$.

If E_A is a finite graph, then $u := \sum_{i=1}^N u_i$ is a unitary of $\mathcal{O}_{A,B}$.

For any i, j, $us_{i,j,n} = u_i s_{i,j,n}$ and $s_{i,j,n} u = s_{i,j,n} u_j$.

Katsura algebras Nekrashevych algebras

Relation (iii) in definition is equivalent to

$$u_i s_{i,j,n} = s_{i,j,\widehat{n}} u_j^k$$

for unique $1 \leq \hat{n} \leq A_{i,j}$ and $k \in \mathbb{Z}$ such that $n + B_{i,j} = \hat{n} + kA_{i,j}$.

If E_A is a finite graph, then $u := \sum_{i=1}^{N} u_i$ is a unitary of $\mathcal{O}_{A,B}$.

For any $i, j, us_{i,j,n} = u_i s_{i,j,n}$ and $s_{i,j,n} u = s_{i,j,n} u_j$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

イロト イポト イヨト イヨト

æ

Action of \mathbb{Z} on E_A : Given (i, j, n) with $1 \le n \le A_{ij}$, $l \in \mathbb{Z}$, define $l \cdot (i, j, n) = (i, j, \widehat{n})$ for the unique $1 \le \widehat{n} \le A_{i,j}$ and $k \in \mathbb{Z}$ such that $n + lB_{i,j} = \widehat{n} + kA_{i,j}$.

1-cocycle: For the above data, $\varphi(l, (i, j, n)) = k = \frac{(n - \hat{n}) + lB_{ij}}{A_{ij}}.$

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

イロト イポト イヨト イヨト

Action of \mathbb{Z} on E_A : Given (i, j, n) with $1 \le n \le A_{ij}$, $l \in \mathbb{Z}$, define $l \cdot (i, j, n) = (i, j, \widehat{n})$ for the unique $1 \le \widehat{n} \le A_{i,j}$ and $k \in \mathbb{Z}$ such that $n + lB_{i,j} = \widehat{n} + kA_{i,j}$.

1-cocycle: For the above data, $\varphi(l, (i, j, n)) = k = \frac{(n - \hat{n}) + lB_{ij}}{A_{ij}}.$

The new construction $\mathcal{O}_{G,E}$ as groupoid $C^*\mbox{-algebra}$ Characterizing properties

Katsura algebras Nekrashevych algebras

Relation (iii) in definition becomes

$$u^{l}s_{i,j,n} = s_{l \cdot (i,j,n)} u^{\varphi(l,(i,j,n))}.$$

Katsura algebras looks like Nekrashevych algebras whenever N is finite.

The new construction $\mathcal{O}_{G,E}$ as groupoid $C^*\mbox{-algebra}$ Characterizing properties

Katsura algebras Nekrashevych algebras

Relation (iii) in definition becomes

$$u^{l}s_{i,j,n} = s_{l \cdot (i,j,n)} u^{\varphi(l,(i,j,n))}.$$

Katsura algebras looks like Nekrashevych algebras whenever ${\cal N}$ is finite.

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

イロト イポト イヨト イヨト

Katsura algebras rise from an action of \mathbb{Z} on the graph E_A . But the action need not be faithful.

Nekrashevych algebras rise from a faithful action of G, but only on the graph R_n (one vertex and n edges).

The new construction $\mathcal{O}_{G,E}$ as groupoid C^* -algebra Characterizing properties

Katsura algebras Nekrashevych algebras

(日) (四) (日) (日) (日)

Katsura algebras rise from an action of \mathbb{Z} on the graph E_A . But the action need not be faithful.

Nekrashevych algebras rise from a faithful action of G, but only on the graph R_n (one vertex and n edges).

Katsura algebras Nekrashevych algebras

イロト イポト イヨト イヨト

Katsura algebras rise from an action of \mathbb{Z} on the graph E_A . But the action need not be faithful.

Nekrashevych algebras rise from a faithful action of G, but only on the graph R_n (one vertex and n edges).

Katsura algebras Nekrashevych algebras

Katsura algebras rise from an action of \mathbb{Z} on the graph E_A . But the action need not be faithful.

Nekrashevych algebras rise from a faithful action of G, but only on the graph R_n (one vertex and n edges).

Groups acting on graphs The algebra ${\mathcal O}_{G\,,E}$

ヘロト ヘアト ヘヨト ヘ

ъ

Outline

Katsura and Nekrashevych algebras

- Katsura algebras
- Nekrashevych algebras
- 2 The new construction
 - Groups acting on graphs
 - The algebra $\mathcal{O}_{G,E}$
- $\bigcirc \mathcal{O}_{G,E}$ as groupoid C^* -algebra
- 4 Characterizing properties

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

ヘロト 人間 とくほとく ほとう

E DQC

G group, E (finite) graph with no sources.

 $\sigma: G \times E \to E$, graph action.

 $\varphi: G \times E^1 \to G, 1$ -cocycle.

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

G group, E (finite) graph with no sources.

- $\sigma: G \times E \rightarrow E$, graph action.
- $\varphi: G \times E^1 \to G$, 1-cocycle.

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

イロト 不得 とくほと くほとう

= 990

G group, E (finite) graph with no sources.

- $\sigma: G \times E \rightarrow E$, graph action.
- $\varphi: G \times E^1 \to G$, 1-cocycle.

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

イロト イポト イヨト イヨト

э

To extend (σ, φ) to E^* , we need to fix

$$\sigma_{\varphi(g,a)}(x) = \sigma_g(x)$$
 for all $g \in G, a \in E^1, x \in E^0$.

We denote the data by (G, E, φ) .

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

イロト イポト イヨト イヨト

3

To extend (σ, φ) to E^* , we need to fix

$$\sigma_{\varphi(g,a)}(x) = \sigma_g(x)$$
 for all $g \in G, a \in E^1, x \in E^0$.

We denote the data by (G, E, φ) .

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

イロト 不同 とくほ とくほ とう

= 990

To extend (σ, φ) to E^* , we need to fix

$$\sigma_{\varphi(g,a)}(x) = \sigma_g(x)$$
 for all $g \in G, a \in E^1, x \in E^0$.

We denote the data by (G, E, φ) .

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

イロト イポト イヨト イヨト 一日

Definition

Given (G, E, φ) , define $\mathcal{O}_{G,E}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{p_x \mid x \in E^0\}$, partial isometries $\{s_a \mid a \in E^1\}$ and unitaries $\{u_g \mid g \in G\}$ satisfying the relations:

(i) $\{p_x \mid x \in E^0\} \cup \{s_a \mid a \in E^1\}$ generate $C^*(E)$.

i) $u_g p_x = p_{gx} u_g$ for all $x \in E^0, g \in G$.

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

Definition

Given (G, E, φ) , define $\mathcal{O}_{G,E}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{p_x \mid x \in E^0\}$, partial isometries $\{s_a \mid a \in E^1\}$ and unitaries $\{u_g \mid g \in G\}$ satisfying the relations:

(i)
$$\{p_x \mid x \in E^0\} \cup \{s_a \mid a \in E^1\}$$
 generate $C^*(E)$.

(ii) $u_g p_x = p_{gx} u_g$ for all $x \in E^0, g \in G$.

(iii) $u_g s_a = s_{ga} u_{arphi(g,a)}$ for all $a \in E^1, g \in G.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─���

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

Definition

Given (G, E, φ) , define $\mathcal{O}_{G,E}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{p_x \mid x \in E^0\}$, partial isometries $\{s_a \mid a \in E^1\}$ and unitaries $\{u_g \mid g \in G\}$ satisfying the relations:

(i)
$$\{p_x \mid x \in E^0\} \cup \{s_a \mid a \in E^1\}$$
 generate $C^*(E)$.

(ii)
$$u_g p_x = p_{gx} u_g$$
 for all $x \in E^0, g \in G$.

(iii) $u_g s_a = s_{ga} u_{\varphi(g,a)}$ for all $a \in E^1, g \in G$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

Definition

Given (G, E, φ) , define $\mathcal{O}_{G,E}$ to be the universal C^* -algebra generated by mutually orthogonal projections $\{p_x \mid x \in E^0\}$, partial isometries $\{s_a \mid a \in E^1\}$ and unitaries $\{u_g \mid g \in G\}$ satisfying the relations:

(i)
$$\{p_x \mid x \in E^0\} \cup \{s_a \mid a \in E^1\}$$
 generate $C^*(E)$.

(ii)
$$u_g p_x = p_{gx} u_g$$
 for all $x \in E^0, g \in G$.

(iii)
$$u_g s_a = s_{ga} u_{\varphi(g,a)}$$
 for all $a \in E^1, g \in G$.

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

$\mathcal{O}_{A,B}$ and $\mathcal{O}_{(G,X)}$ are examples of $\mathcal{O}_{G,E}$.

If the 1-cocycle is $\varphi(g, a) = g$ for all $g \in G, a \in E^1$, then $\mathcal{O}_{G,E} \cong C^*(E) \rtimes G$ (crossed product).

If the 1-cocycle is $\varphi(g, a) = 1$ for all $g \in G, a \in E^1$, then vertices are fixed by the action of G, and $\mathcal{O}_{G,E} \cong C^*(E)$.

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

 $\mathcal{O}_{A,B}$ and $\mathcal{O}_{(G,X)}$ are examples of $\mathcal{O}_{G,E}$.

If the 1-cocycle is $\varphi(g, a) = g$ for all $g \in G, a \in E^1$, then $\mathcal{O}_{G,E} \cong C^*(E) \rtimes G$ (crossed product).

If the 1-cocycle is $\varphi(g, a) = 1$ for all $g \in G, a \in E^1$, then vertices are fixed by the action of G, and $\mathcal{O}_{G,E} \cong C^*(E)$.

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

 $\mathcal{O}_{A,B}$ and $\mathcal{O}_{(G,X)}$ are examples of $\mathcal{O}_{G,E}$.

If the 1-cocycle is $\varphi(g, a) = g$ for all $g \in G, a \in E^1$, then $\mathcal{O}_{G,E} \cong C^*(E) \rtimes G$ (crossed product).

If the 1-cocycle is $\varphi(g, a) = 1$ for all $g \in G, a \in E^1$, then vertices are fixed by the action of G, and $\mathcal{O}_{G,E} \cong C^*(E)$.

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

 $\mathcal{O}_{G,E}$ admits actions over arbitrary graphs that are nonfaithful, do not fix vertices...

We need a picture of $\mathcal{O}_{G,E}$ that allows to analyze its properties.

Groups acting on graphs The algebra $\mathcal{O}_{G,E}$

 $\mathcal{O}_{G,E}$ admits actions over arbitrary graphs that are nonfaithful, do not fix vertices...

We need a picture of $\mathcal{O}_{G,E}$ that allows to analyze its properties.

Outline

Katsura and Nekrashevych algebras

- Katsura algebras
- Nekrashevych algebras
- 2) The new construction
 - Groups acting on graphs
 - The algebra $\mathcal{O}_{G,E}$
- 3 $\mathcal{O}_{G,E}$ as groupoid C^* -algebra

イロト イヨト イヨト イ

ъ

4 Characterizing properties

Fix a *-inverse subsemigroup S of $\mathcal{O}_{G,E}$.

$$\mathcal{S} := \{ s_{\alpha} u_g s_{\beta}^* \mid g \in G, \alpha, \beta \in E^* \text{ with } d(\alpha) = gd(\beta) \}.$$

= 990

▶ Def. Inverse semigroup

Define an abstract version $S_{G,E}$ of S:

$$\mathcal{S}_{G,E} := \{ (\alpha, g, \beta) \mid g \in G, \alpha, \beta \in E^* \text{ with } d(\alpha) = gd(\beta) \},\$$

イロト イポト イヨト イヨト

æ

with the operation induced that of by \mathcal{S} .

 $S_{G,E}$ is a *-inverse semigroup.

Define an abstract version $S_{G,E}$ of S:

 $\mathcal{S}_{G,E} := \{ (\alpha, g, \beta) \mid g \in G, \alpha, \beta \in E^* \text{ with } d(\alpha) = gd(\beta) \},\$

ヘロト 人間 とくほとくほとう

э.

with the operation induced that of by \mathcal{S} .

 $S_{G,E}$ is a *-inverse semigroup.

Proposition

 $\pi: S_{G,E} \to \mathcal{O}_{G,E}$ is the universal tight representation of $S_{G,E}$.

Theorem

$$\mathcal{O}_{G,E} \cong C^*_{tight}(\mathcal{S}_{G,E}).$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣んで

Proposition

 $\pi: S_{G,E} \to \mathcal{O}_{G,E}$ is the universal tight representation of $S_{G,E}$.

Theorem

$$\mathcal{O}_{G,E} \cong C^*_{tight}(\mathcal{S}_{G,E}).$$

Define the groupoid $\mathcal{G}_{\text{tight}}(\mathcal{S}_{G,E})$.

The space $\mathcal{E}_{\text{tight}}$ of tight filters over the idempotent semilattice of $\mathcal{S}_{G,E}$ is homeomorphic to E^{∞} .

 $S_{G,E}$ acts (partially) on E^{∞} as follows: If $(\alpha, g, \beta) \in S_{G,E}$, $\omega = \beta \widehat{\omega} \in E^{\infty}$, then

 $(\alpha, g, \beta)\omega = \alpha(g\widehat{\omega}),$

イロン イロン イヨン イヨン

where $g\widehat{\omega}$ is defined by recurrence over the action of g on $\widehat{\omega}_{|n|}$ for all $n \in \mathbb{N}$.

Define the groupoid $\mathcal{G}_{\text{tight}}(\mathcal{S}_{G,E})$.

The space $\mathcal{E}_{\text{tight}}$ of tight filters over the idempotent semilattice of $\mathcal{S}_{G,E}$ is homeomorphic to E^{∞} .

 $S_{G,E}$ acts (partially) on E^{∞} as follows: If $(\alpha, g, \beta) \in S_{G,E}$, $\omega = \beta \widehat{\omega} \in E^{\infty}$, then

 $(\alpha, g, \beta)\omega = \alpha(g\widehat{\omega}),$

ヘロン 人間 とくほど くほとう

where $g\widehat{\omega}$ is defined by recurrence over the action of g on $\widehat{\omega}_{|n|}$ for all $n \in \mathbb{N}$.

Define the groupoid $\mathcal{G}_{\text{tight}}(\mathcal{S}_{G,E})$.

The space $\mathcal{E}_{\text{tight}}$ of tight filters over the idempotent semilattice of $\mathcal{S}_{G,E}$ is homeomorphic to E^{∞} .

 $S_{G,E}$ acts (partially) on E^{∞} as follows: If $(\alpha, g, \beta) \in S_{G,E}$, $\omega = \beta \widehat{\omega} \in E^{\infty}$, then

 $(\alpha, g, \beta)\omega = \alpha(g\widehat{\omega}),$

ヘロト 人間 とくほとくほとう

where $g\hat{\omega}$ is defined by recurrence over the action of g on $\hat{\omega}_{|n|}$ for all $n \in \mathbb{N}$.

Define the groupoid $\mathcal{G}_{\text{tight}}(\mathcal{S}_{G,E})$.

The space $\mathcal{E}_{\text{tight}}$ of tight filters over the idempotent semilattice of $\mathcal{S}_{G,E}$ is homeomorphic to E^{∞} .

 $S_{G,E}$ acts (partially) on E^{∞} as follows: If $(\alpha, g, \beta) \in S_{G,E}$, $\omega = \beta \widehat{\omega} \in E^{\infty}$, then

$$(\alpha, g, \beta)\omega = \alpha(g\widehat{\omega}),$$

where $g\hat{\omega}$ is defined by recurrence over the action of g on $\hat{\omega}_{|n|}$ for all $n \in \mathbb{N}$.

Consider the transformation groupoid $S_{G,E} \times E^{\infty}$, and $\mathcal{G}_{\text{tight}}(S_{G,E})$ the groupoid of germs of the action.

 $C^*(\mathcal{G}_{\text{tight}}(\mathcal{S}_{G,E}))$ is universal for tight representations of $\mathcal{S}_{G,E}$.

Theorem

There is a *-isomorphism

 $\mathcal{O}_{G,E} \cong C^*_{tight}(\mathcal{S}_{G,E}) \cong C^*(\mathcal{G}_{tight}(\mathcal{S}_{G,E})) \cong C(E^{\infty}) \rtimes \mathcal{S}_{G,E}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

Consider the transformation groupoid $S_{G,E} \times E^{\infty}$, and $\mathcal{G}_{\text{tight}}(S_{G,E})$ the groupoid of germs of the action.

 $C^*(\mathcal{G}_{\mathsf{tight}}(\mathcal{S}_{G,E}))$ is universal for tight representations of $\mathcal{S}_{G,E}$.

Theorem

There is a *-isomorphism

 $\mathcal{O}_{G,E} \cong C^*_{tight}(\mathcal{S}_{G,E}) \cong C^*(\mathcal{G}_{tight}(\mathcal{S}_{G,E})) \cong C(E^{\infty}) \rtimes \mathcal{S}_{G,E}.$

イロト イポト イヨト イヨト

Consider the transformation groupoid $S_{G,E} \times E^{\infty}$, and $\mathcal{G}_{\text{tight}}(S_{G,E})$ the groupoid of germs of the action.

 $C^*(\mathcal{G}_{\mathsf{tight}}(\mathcal{S}_{G,E}))$ is universal for tight representations of $\mathcal{S}_{G,E}$.

Theorem

There is a *-isomorphism

 $\mathcal{O}_{G,E} \cong C^*_{tight}(\mathcal{S}_{G,E}) \cong C^*(\mathcal{G}_{tight}(\mathcal{S}_{G,E})) \cong C(E^{\infty}) \rtimes \mathcal{S}_{G,E}.$

イロト イポト イヨト イヨト 三日

$\mathcal{G}_{\text{tight}}(\mathcal{S}_{G,E})$ is Hausdoff if $\mathcal{S}_{G,E}$ is E^* -unitary.

▶ Def. E*-unitary

$\mathcal{G}_{\text{tight}}(\mathcal{S}_{G,E})$ is Hausdoff if $\mathcal{S}_{G,E}$ is E^* -unitary.

Lemma

 $S_{G,E}$ is E^* -unitary iff holds (RF):

 $(g, \alpha) \in G \times E^*$ with $g\alpha = \alpha$ and $\varphi(g, \alpha) = 1$ implies g = 1.

(日) (四) (三) (三) (三) (三) (○)

Outline

Katsura and Nekrashevych algebras Katsura algebras

- Nekrashevych algebras
- 2) The new construction
 - Groups acting on graphs
 - The algebra $\mathcal{O}_{G,E}$
- $\bigcirc \mathcal{O}_{G,E}$ as groupoid C^* -algebra

イロト イヨト イヨト イ

ъ

4 Characterizing properties

The dynamical approach lets us to deal with some questions in a more intuitive form.

ヘロト 人間 とくほとくほとう

= 990

Simplicity: If \mathcal{G} is amenable & Hausdorff, then $C^*(\mathcal{G})$ simple iff \mathcal{G} is minimal & essentially principal **[Brown-Clark-Farthing-Sims]**.

イロト イポト イヨト イヨト

(RF) implies $\mathcal{G}_{tight}(\mathcal{S}_{G,E})$ Hausdorff.

G amenable implies $\mathcal{G}_{\text{tight}}(\mathcal{S}_{G,E})$ amenable.

Simplicity: If \mathcal{G} is amenable & Hausdorff, then $C^*(\mathcal{G})$ simple iff \mathcal{G} is minimal & essentially principal **[Brown-Clark-Farthing-Sims]**.

ヘロト 人間 とくほとくほと

(RF) implies $\mathcal{G}_{tight}(\mathcal{S}_{G,E})$ Hausdorff.

G amenable implies $\mathcal{G}_{\text{tight}}(\mathcal{S}_{G,E})$ amenable.

Simplicity: If \mathcal{G} is amenable & Hausdorff, then $C^*(\mathcal{G})$ simple iff \mathcal{G} is minimal & essentially principal **[Brown-Clark-Farthing-Sims]**.

▲口 > ▲圖 > ▲ 国 > ▲ 国 > .

(RF) implies $\mathcal{G}_{tight}(\mathcal{S}_{G,E})$ Hausdorff.

G amenable implies $\mathcal{G}_{\text{tight}}(\mathcal{S}_{G,E})$ amenable.

Simplicity: If \mathcal{G} is amenable & Hausdorff, then $C^*(\mathcal{G})$ simple iff \mathcal{G} is minimal & essentially principal **[Brown-Clark-Farthing-Sims]**.

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

(RF) implies $\mathcal{G}_{tight}(\mathcal{S}_{G,E})$ Hausdorff.

G amenable implies $\mathcal{G}_{tight}(\mathcal{S}_{G,E})$ amenable.

For the groupoid of germs \mathcal{G} of the action of an inverse semigroup S on a locally compact Hausdorff space X, it is easy to see that irreducibility of X is equivalent to minimality of \mathcal{G} . Then we have

イロト イポト イヨト イヨト

► Def. Minimal and Irreducible

For the groupoid of germs \mathcal{G} of the action of an inverse semigroup S on a locally compact Hausdorff space X, it is easy to see that irreducibility of X is equivalent to minimality of \mathcal{G} . Then we have

Theorem

Given the action of $S_{G,E}$ on E^{∞} , the following are equivalent:

イロト イポト イヨト イヨト

The matrix A is G-irreducible.

Def. G-Irreducible

For the groupoid of germs \mathcal{G} of the action of an inverse semigroup S on a locally compact Hausdorff space X, it is easy to see that irreducibility of X is equivalent to minimality of \mathcal{G} . Then we have

Theorem

Given the action of $S_{G,E}$ on E^{∞} , the following are equivalent:

イロト イポト イヨト イヨト

- The matrix A is G-irreducible.
- **2** The groupoid $\mathcal{G}_{tight}(\mathcal{S}_{G,E})$ is minimal.

Essentially principal is connected to topologically free, as follows:

Theorem

Let *S* be an E^* -unitary inverse semigroup, let τ be an action of *S* on a locally compact, Hausdorff space *X*, and let *G* be the corresponding groupoid of germs. Then *G* is essentially principal if and only if τ is topologically free.

イロン 不得 とくほ とくほとう

► Def. Essentially principal

► Def. Topologically free

Thus, we can deal with the problem from the point of view of topological freeness. And the result we get is

Theorem

Let $(G, E; \varphi)$ with (RF). Consider the action of $S_{G,E}$ on E^{∞} , and let $\mathcal{G}_{tight}(S_{G,E})$ the associated groupoid. The following are equivalent:

イロト イポト イヨト イヨト

(i) The graph E_A satisfies Condition (Lgen).

Def. Condition (Lgen)

Thus, we can deal with the problem from the point of view of topological freeness. And the result we get is

Theorem

Let $(G, E; \varphi)$ with (RF). Consider the action of $S_{G,E}$ on E^{∞} , and let $\mathcal{G}_{tight}(S_{G,E})$ the associated groupoid. The following are equivalent:

- (i) The graph *E* satisfies Condition (Lgen).
- (ii) Given g ∈ G and ω ∈ E[∞] fixed by g, then for every n ≥ 1 there exists k_n ≥ n and α ∈ E^{*} with d(α) = d(ω_{k_n}) such that φ(g, ω_{|k_n}) ⋅ α ≠ α.
- 2 The groupoid $\mathcal{G}_{tight}(\mathcal{S}_{G,E})$ is essentially principal.

Thus, we can deal with the problem from the point of view of topological freeness. And the result we get is

Theorem

Let $(G, E; \varphi)$ with (RF). Consider the action of $S_{G,E}$ on E^{∞} , and let $\mathcal{G}_{tight}(S_{G,E})$ the associated groupoid. The following are equivalent:

- 1
- (i) The graph E satisfies Condition (Lgen).
- (ii) Given g ∈ G and ω ∈ E[∞] fixed by g, then for every n ≥ 1 there exists k_n ≥ n and α ∈ E^{*} with d(α) = d(ω_{k_n}) such that φ(g, ω_{|k_n}) ⋅ α ≠ α.
- **2** The groupoid $\mathcal{G}_{tight}(\mathcal{S}_{G,E})$ is essentially principal.

 $\begin{array}{l} \mbox{Katsura and Nekrashevych algebras} \\ \mbox{The new construction} \\ \mathcal{O}_{G,E} \mbox{ as groupoid } C^*\mbox{-algebra} \\ \\ \mbox{Characterizing properties} \end{array}$

Now, we are ready to characterize simplicity.

Theorem

Let $(G, E; \varphi)$ with (RF), G amenable, A the adjacency matrix of E. Then the following are equivalent:

- (i) The matrix A is G-irreducible.
 - (ii) The graph E satisfies Condition (Lgen).
 - (iii) Given $g \in G$ and $\omega \in E^{\infty}$ fixed by g, then for every $n \ge 1$ there exists $k_n \ge n$ and $\alpha \in E^*$ with $d(\alpha) = d(\omega_{k_n})$ such that $\varphi(g, \omega_{|k_n}) \cdot \alpha \ne \alpha$.

イロト イポト イヨト イヨト

2 $\mathcal{O}_{G,E}$ is simple.

A unified treatment of Katsura and Nekrashevych *C**-algebras.

Enrique Pardo

Universidad de Cádiz

Partial Actions and Representations Symposium Gramado (Brasil), May 13, 2014.

イロト イポト イヨト イヨト

$C^*(E)$

E row-finite graph. $C^*(E)$ is the universal C^* -algebra generated by mutually orthogonal projections $\{p_x \mid x \in E^0\}$ and partial isometries $\{s_a \mid a \in E^1\}$ satisfying the relations:

イロト イポト イヨト イヨト

э.

•
$$s_a^* s_b = \delta_{a,b} p_{d(a)}$$
.
• $p_x = \sum_{a \in r^{-1}(x)} s_a s_a^*$ for any $x \in E^0$ non source

▶ Return

Inverse semigroup

A semigroup S is an inverse semigroup if for any $s \in S$ exists a unique $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$.

イロン 不得 とくほ とくほう 一日

Return

E^* -unitary

A *-inverse semigroup S is E^* -unitary if whenever $s \ge e$ and $e = e^2$, then $s = s^2$.

Return

Minimal

A groupoid \mathcal{G} is said to be minimal if the only invariant open subsets of $\mathcal{G}^{(0)}$ are the empty set and $\mathcal{G}^{(0)}$ itself.

Irreducible

If *S* is an inverse semigroup, and τ is an action by (partial) homeomorphisms on a topological space *X*, then we say that *X* is irreducible if it has no proper open invariant subsets.

▶ Return

G-irreducible

If *E* graph, *A* the adjacency matrix of *E*, *G* group acting on E^0 , then *A* is *G*-irreducible if for every $x, y \in E^0$ there exist $g \in G$ and $n \in \mathbb{N}$ such that $(A^n)_{gx,y} \neq 0$.

イロト イポト イヨト イヨト

ъ

Return

Essentially principal

Let \mathcal{G} be a locally compact, Hausdorff, étale groupoid. Then, \mathcal{G} is essentially principal if the interior of the isotropy group bundle

$$\mathcal{G}' = \{ \gamma \in \mathcal{G} : d(\gamma) = t(\gamma) \}$$

イロト イポト イヨト イヨト

1

is contained in $\mathcal{G}^{(0)}$.

Return

Topologically free

Let S be an E^* -unitary inverse semigroup, and let τ be an action of S on a topological space X. We say that the action is topologically free if, for every $s \in S \setminus E(S)$, the interior of the set of fixed points for s is empty.

Return

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

$\omega \in E^{\infty}$ is a generalized cycle if there exists $\alpha \in E^*$ and $(g_k)_{k\geq 1} \subseteq G$ such that $\omega = \alpha(g_1\alpha)(g_2\alpha)\cdots(g_k\alpha)\cdots$.

Condition (Lgen)

 ${\it E}$ satisfies Condition (Lgen) if every generalized cycle has an entry.

イロト イポト イヨト イヨト

э.

▶ Return