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inverse semigroup crossed product C∗-algebras.

Use these pictures to characterize properties of the algebras:
e.g. to be simple, or purely infinite.
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Katsura algebras
Nekrashevych algebras

Definition
Let N ∈ N ∪ {∞}, let A ∈MN (Z+) and B ∈MN (Z) be
row-finite matrices. Define a set ΩA by

ΩA := {(i, j) ∈ {1, 2, . . . , N} × {1, 2, . . . , N} | Ai,j ≥ 1}.

Fix the following condition:

(0) ΩA(i) 6= ∅ for all i, and Bi,j = 0 for (i, j) 6∈ ΩA.
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Definition
Define OA,B to be the universal C∗-algebra generated by
mutually orthogonal projections {qi}Ni=1, partial unitaries {ui}Ni=1

with uiu∗i = u∗iui = qi, and partial isometries {si,j,n}(i,j)∈ΩA,n∈Z
satisfying the relations:

(i) s∗i,j,nsi,j,n = qj for all (i, j) ∈ ΩA and n ∈ Z.

(ii) qi =
∑

j∈ΩA(i)

Ai,j∑
n=1

si,j,ns
∗
i,j,n for all i.

Def. C∗(E)
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Now, the following facts holds:
1 OA,B is separable, nuclear and in the UCT class.
2 Every Kirchberg algebra in the UCT class can be

represented, up to isomorphism, by a OA,B.
3 For any matrix B, C∗(EA) ↪→ OA,B.
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X = {a1, . . . , an} finite alphabet. G group acting on the
n-rooted tree on X by automorphisms.

g(aiaj) = g(ai) · g|ai(aj) defines a 1-cocycle on G:

G×X → G
(g, ai) 7→ g|ai

with gh|a = g|ha · h|a and g|ab = (g|a)|b.
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Define O(G,X) to be the universal C∗-algebra generated by
isometries {sa1 , . . . , san} and unitaries {ug | g ∈ G} satisfying
the relations:

(i) s∗aisaj = δi,j for all 1 ≤ i, j ≤ n.

(ii) 1 =
n∑
i=1

sais
∗
ai

(iii) ugsai = sg(ai)ug|ai
for all g ∈ G and 1 ≤ i ≤ n.
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1 O(G,X) is separable, and there are conditions for being

nuclear and in the UCT class.
2 They allows to deal with group properties in algebra terms.
3 For any group G, On ↪→ O(G,X).
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Relation (iii) in definition is equivalent to

uisi,j,n = si,j,n̂u
k
j

for unique 1 ≤ n̂ ≤ Ai,j and k ∈ Z such that n+Bi,j = n̂+ kAi,j .

If EA is a finite graph, then u :=
N∑
i=1

ui is a unitary of OA,B.

For any i, j, usi,j,n = uisi,j,n and si,j,nu = si,j,nuj .
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Action of Z on EA: Given (i, j, n) with 1 ≤ n ≤ Aij , l ∈ Z, define
l · (i, j, n) = (i, j, n̂) for the unique 1 ≤ n̂ ≤ Ai,j and k ∈ Z such
that n+ lBi,j = n̂+ kAi,j .

1-cocycle: For the above data,

ϕ(l, (i, j, n)) = k =
(n− n̂) + lBij

Aij
.
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N is finite.
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the action need not be faithful.

Nekrashevych algebras rise from a faithful action of G, but only
on the graph Rn (one vertex and n edges).

They should come from a general setting.
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To extend (σ, ϕ) to E∗, we need to fix

σϕ(g,a)(x) = σg(x) for all g ∈ G, a ∈ E1, x ∈ E0.

We denote the data by (G,E, ϕ).
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Definition
Given (G,E, ϕ), define OG,E to be the universal C∗-algebra
generated by mutually orthogonal projections {px | x ∈ E0},
partial isometries {sa | a ∈ E1} and unitaries {ug | g ∈ G}
satisfying the relations:

(i) {px | x ∈ E0} ∪ {sa | a ∈ E1} generate C∗(E).
(ii) ugpx = pgxug for all x ∈ E0, g ∈ G.
(iii) ugsa = sgauϕ(g,a) for all a ∈ E1, g ∈ G.
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The algebraOG,E

OA,B and O(G,X) are examples of OG,E .

If the 1-cocycle is ϕ(g, a) = g for all g ∈ G, a ∈ E1, then
OG,E ∼= C∗(E) oG (crossed product).

If the 1-cocycle is ϕ(g, a) = 1 for all g ∈ G, a ∈ E1, then vertices
are fixed by the action of G, and OG,E ∼= C∗(E).
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are fixed by the action of G, and OG,E ∼= C∗(E).
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OG,E admits actions over arbitrary graphs that are nonfaithful,
do not fix vertices...

We need a picture of OG,E that allows to analyze its properties.
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Fix a ∗-inverse subsemigroup S of OG,E .

S := {sαugs∗β | g ∈ G,α, β ∈ E∗ with d(α) = gd(β)}.

Def. Inverse semigroup



Katsura and Nekrashevych algebras
The new construction

OG,E as groupoid C∗-algebra
Characterizing properties

Define an abstract version SG,E of S:

SG,E := {(α, g, β) | g ∈ G,α, β ∈ E∗ with d(α) = gd(β)},

with the operation induced that of by S.

SG,E is a ∗-inverse semigroup.
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Proposition
π : SG,E → OG,E is the universal tight representation of SG,E .

Theorem

OG,E ∼= C∗tight(SG,E).
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Define the groupoid Gtight(SG,E).

The space Etight of tight filters over the idempotent semilattice of
SG,E is homeomorphic to E∞.

SG,E acts (partially) on E∞ as follows: If (α, g, β) ∈ SG,E ,
ω = βω̂ ∈ E∞, then

(α, g, β)ω = α(gω̂),

where gω̂ is defined by recurrence over the action of g on ω̂|n
for all n ∈ N.
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Consider the transformation groupoid SG,E × E∞, and
Gtight(SG,E) the groupoid of germs of the action.

C∗(Gtight(SG,E)) is universal for tight representations of SG,E .

Theorem
There is a ∗-isomorphism

OG,E ∼= C∗tight(SG,E) ∼= C∗(Gtight(SG,E)) ∼= C(E∞) o SG,E .
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Gtight(SG,E) is Hausdoff if SG,E is E∗-unitary.

Def. E∗-unitary
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Gtight(SG,E) is Hausdoff if SG,E is E∗-unitary.

Lemma
SG,E is E∗-unitary iff holds (RF):

(g, α) ∈ G× E∗ with gα = α and ϕ(g, α) = 1 implies g = 1.
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The dynamical approach lets us to deal with some questions in
a more intuitive form.
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Simplicity: If G is amenable & Hausdorff, then C∗(G) simple iff G
is minimal & essentially principal
[Brown-Clark-Farthing-Sims].

(RF) implies Gtight(SG,E) Hausdorff.

G amenable implies Gtight(SG,E) amenable.
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For the groupoid of germs G of the action of an inverse
semigroup S on a locally compact Hausdorff space X, it is easy
to see that irreducibility of X is equivalent to minimality of G.
Then we have

Def. Minimal and Irreducible
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For the groupoid of germs G of the action of an inverse
semigroup S on a locally compact Hausdorff space X, it is easy
to see that irreducibility of X is equivalent to minimality of G.
Then we have

Theorem
Given the action of SG,E on E∞, the following are equivalent:

1 The matrix A is G-irreducible.

Def. G-Irreducible
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For the groupoid of germs G of the action of an inverse
semigroup S on a locally compact Hausdorff space X, it is easy
to see that irreducibility of X is equivalent to minimality of G.
Then we have

Theorem
Given the action of SG,E on E∞, the following are equivalent:

1 The matrix A is G-irreducible.
2 The groupoid Gtight(SG,E) is minimal.
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Essentially principal is connected to topologically free, as
follows:

Theorem
Let S be an E∗-unitary inverse semigroup, let τ be an action of
S on a locally compact, Hausdorff space X, and let G be the
corresponding groupoid of germs. Then G is essentially
principal if and only if τ is topologically free.

Def. Essentially principal

Def. Topologically free
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Thus, we can deal with the problem from the point of view of
topological freeness. And the result we get is

Theorem
Let (G,E;ϕ) with (RF). Consider the action of SG,E on E∞, and
let Gtight(SG,E) the associated groupoid. The following are
equivalent:

1 (i) The graph EA satisfies Condition (Lgen).

Def. Condition (Lgen)
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Thus, we can deal with the problem from the point of view of
topological freeness. And the result we get is

Theorem
Let (G,E;ϕ) with (RF). Consider the action of SG,E on E∞, and
let Gtight(SG,E) the associated groupoid. The following are
equivalent:

1 (i) The graph E satisfies Condition (Lgen).
(ii) Given g ∈ G and ω ∈ E∞ fixed by g, then for every n ≥ 1

there exists kn ≥ n and α ∈ E∗ with d(α) = d(ωkn
) such

that ϕ(g, ω|kn
) · α 6= α.

2 The groupoid Gtight(SG,E) is essentially principal.
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Now, we are ready to characterize simplicity.
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Theorem
Let (G,E;ϕ) with (RF), G amenable, A the adjacency matrix of
E. Then the following are equivalent:

1 (i) The matrix A is G-irreducible.
(ii) The graph E satisfies Condition (Lgen).
(iii) Given g ∈ G and ω ∈ E∞ fixed by g, then for every n ≥ 1

there exists kn ≥ n and α ∈ E∗ with d(α) = d(ωkn
) such

that ϕ(g, ω|kn
) · α 6= α.

2 OG,E is simple.
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Nekrashevych C∗-algebras.

Enrique Pardo

Universidad de Cádiz

Partial Actions and Representations Symposium
Gramado (Brasil), May 13, 2014.
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C∗(E)

E row-finite graph. C∗(E) is the universal C∗-algebra
generated by mutually orthogonal projections {px | x ∈ E0} and
partial isometries {sa | a ∈ E1} satisfying the relations:

1 s∗asb = δa,bpd(a).
2 px =

∑
a∈r−1(x)

sas
∗
a for any x ∈ E0 non source.

Return
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Inverse semigroup

A semigroup S is an inverse semigroup if for any s ∈ S exists a
unique s∗ ∈ S such that ss∗s = s and s∗ss∗ = s∗.

Return
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E∗-unitary
A ∗-inverse semigroup S is E∗-unitary if whenever s ≥ e and
e = e2, then s = s2.

Return
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Minimal
A groupoid G is said to be minimal if the only invariant open
subsets of G(0) are the empty set and G(0) itself.

Irreducible
If S is an inverse semigroup, and τ is an action by (partial)
homeomorphisms on a topological space X, then we say that
X is irreducible if it has no proper open invariant subsets.

Return
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G-irreducible

If E graph, A the adjacency matrix of E, G group acting on E0,
then A is G-irreducible if for every x, y ∈ E0 there exist g ∈ G
and n ∈ N such that (An)gx,y 6= 0.

Return
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Essentially principal
Let G be a locally compact, Hausdorff, étale groupoid. Then, G
is essentially principal if the interior of the isotropy group bundle

G′ = {γ ∈ G : d(γ) = t(γ)}

is contained in G(0).

Return
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Topologically free
Let S be an E∗-unitary inverse semigroup, and let τ be an
action of S on a topological space X. We say that the action is
topologically free if, for every s ∈ S \E(S), the interior of the set
of fixed points for s is empty.

Return
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ω ∈ E∞ is a generalizad cycle if there exists α ∈ E∗ and
(gk)k≥1 ⊆ G such that ω = α(g1α)(g2α) · · · (gkα) · · · .

Condition (Lgen)

E satisfies Condition (Lgen) if every generalized cycle has an
entry.

Return
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