Fabio Silva Botelho, PhD
Professor Adjunto, Departamento de Matemática
Universidade Federal de Santa Catarina - UFSC
****************************
Cálculo 2 – 2023-2 - Vídeo Aulas de Exercícios
Aula 16 A– Aula de Exercícios de Preparação para a Terceira Avaliação
https://drive.google.com/file/d/11ULQ0ajXFDFXr3X9wngaRiZVhrJBGwTw/view?usp=sharing
Aula 17 – Aula Síncrona de Exercícios – Preparação para a Terceira Avaliação
https://drive.google.com/file/d/1O-hc5HO9MTT6XT7PLiJo8V0f_cU6W27b/view?usp=sharing
Aula 18– Aula Síncrona - Exercícios, Preparação para a Terceira Avaliação
https://drive.google.com/file/d/10x1hs46cq0biNh2S90KHsIe64UuAO6hD/view?usp=sharing
****************************
*************************************
Análise I – 2023-2- Vídeo-Aulas de Cálculo 4 mas com padrão de Análise Real para a parte final da Terceira
Avaliação:
Aula 19 – Sequências de Funções (Primeira Parte)
https://drive.google.com/file/d/16so3zARFbYfJtFZROP6S5BWg7JW0rs3t/view?usp=sharing
Aula 20 – Integrais e Derivadas de Sequências de Funções Uniformemente Convergentes
https://drive.google.com/file/d/1DNRk1fgikRgIKvhKs8ByhTKjNMw_Gb1v/view?usp=sharing
Aula 21– Séries de Funções, Definições e Primeiros Resultados
https://drive.google.com/file/d/1l87B08DaRGDVpli9zraKeQz9vZ8HCPbx/view?usp=sharing
Aula 22 – Critério M de Weierstrass para Convergência Uniforme de Séries de Funções Reais
https://drive.google.com/file/d/1NbJTuVYacAKUfb2zMBgdLxt3oiEsZ_vy/view?usp=sharing
Aula 23 – Integrais e Derivadas de Séries de Funções Uniformemente Convergentes
https://drive.google.com/file/d/1dIrTsWMS0wHNANQpla1jWf090TaLlWJE/view?usp=sharing
Aula 24 – Séries de Potências, Primeiras Definições e Resultados
https://drive.google.com/file/d/1ddrx_ggnHVgmyMx6IMGWKOXfTHCa0cg-/view?usp=sharing
Aula 25 – Séries de Potências – Raio de Convergência
https://drive.google.com/file/d/1Mvxtd4bkdOl9Q2NMaOECLR38EtSnEn5O/view?usp=sharing
Aula 26 – Integrais e Derivadas de Séries de Potências
https://drive.google.com/file/d/19m0PrdmVth7NMsAK0-beAXjRHpqfaNM8/view?usp=sharing
Aula 36 – Aula Síncrona de 24/09/2021 – Preparação para a TerceiraAvaliação
https://drive.google.com/file/d/18vD6wEa6A2Z81wmKoKeMDjgp0XXaqqSe/view?usp=sharing
***********************************
Análise na Reta – 2023 -1
Aula 1 – Conjuntos e Funções, Revisão
https://drive.google.com/file/d/1qdTAjyODlZU_LXXMu_Uv0MskAS5MTAaT/view?usp=sharing
Aula -1 - Correção sobre a Inclusão Própria
https://drive.google.com/file/d/1LEmEWpR5dvSOVHydiWMg481Asv-24Olb/view?usp=sharing
Aula 2 – Números Naturais – Primeiras Definições, Soma e Respectivas Propriedades
https://drive.google.com/file/d/1sffRXukcYPz_epkWHoxVfZTvzrLfT_Mf/view?usp=sharing
Aula 3 – Números Naturais – Multiplicação e Respectivas Propriedades
https://drive.google.com/file/d/1ZI8D2pAnCzVK9vIaglb0vJ_F_kJbEwJj/view?usp=sharing
Aula 4 – Princípio da Boa Ordenação
https://drive.google.com/file/d/16esbWWXqoj57se9t_CLEyVqCAKJdFIbF/view?usp=sharing
Aula 5 – O Conjunto dos Inteiros e o Conjunto Racional
https://drive.google.com/file/d/1QZGCSbdvTujk2ZLABfFZ-5NaAAzEZAoB/view?usp=sharing
Aula 6 – Conjuntos Limitados Superior e Inferiormente, Limitantes Superiores e Inferiores, Supremo e Ínfimo
https://drive.google.com/file/d/1zJjgSYb4DOTrxdBSrHVh6WzTioPgGL_8/view?usp=sharing
Aula 6 – Uma Correção sobre a Propriedade do Menor Limitante Superior e Supremos
https://drive.google.com/file/d/1c_VQyDtuCqMCCnUCmZnfhIHBufZh1ow6/view?usp=sharing
Aula 7 – Aula Síncrona de Exercícios de 20/05/2021
https://drive.google.com/file/d/1V8HSyAzJnGdLtUvCarKnaU5yJoAfiQLF/view?usp=sharing
Aula 8 – Corpos, Definições e Propriedades
https://drive.google.com/file/d/1qc3szWpurMNIoHPaW2BKW98eVDF-6qyc/view?usp=sharing
Aula 9 – Corpos Ordenados, Preparando a Rota para a Construção do Corpo Real
https://drive.google.com/file/d/1oDldZEprNzZtDJT0Js86eGFB6vNjOzgh/view?usp=sharing
Aula 10 – Existência do Corpo Real – Primeira Parte – Definição de Cortes
https://drive.google.com/file/d/14jf2A3HNSCx8DiPWh1hmcQvHRGqybnva/view?usp=sharing
Aula 11 – Existência do Corpo Real – Segunda Parte – Definição da Soma
https://drive.google.com/file/d/1qbYEdVKmYq05elVP4uSEMZoofDl75-b3/view?usp=sharing
Aula 12 – Aula Síncrona de Exercícios de 27/05/2021
https://drive.google.com/file/d/1JrQB4-7fHEzV_pHX6JH5u6uD_5a4yYF8/view?usp=sharing
Aula 13 – Existência do Corpo Real – Terceira Parte – Elemento Inverso em Relação à Soma
https://drive.google.com/file/d/1dKlWZRJRQv6hfLsKJjRgEu1ajvt-A17d/view?usp=sharing
Aula 14 – Existência do Corpo Real – Quarta Parte – Definição da Multiplicação
https://drive.google.com/file/d/1i9lcbFxIBcjsY8LkgNjitCLxAZqrq4zA/view?usp=sharing
Aula 15 – Existência do Corpo Real – Quinta Parte - Elemento Inverso em Relação à Multiplicação
https://drive.google.com/file/d/1nUmyMEydN_vlIm9Zf0fKr-TLm9EQVonU/view?usp=sharing
Aula 16 – Propriedade Arquimediana e Densidade do Conjunto Racional no Conjunto Real.
https://drive.google.com/file/d/1MQ-mLfrK4yOtzmtNnK5Ez9gbSnvD2N5G/view?usp=sharing
Aula 17 – A Raiz Quadrada de 2 é um Número Irracional – Prova Formal
https://drive.google.com/file/d/1nGyjfQNBRosM5XPJ1DogAGYbj3UAHW6s/view?usp=sharing
Aula 18 – Conjuntos Enumeráveis e Não-Enumeráveis
https://drive.google.com/file/d/1N0KX1fOm5DC0PxKyDwg0jtqKz0PvGk98/view?usp=sharing
Aula 18 – Uma Correção
https://drive.google.com/file/d/1uxTuj9wvACp0RYxVw_kanJAq7QZeNps5/view?usp=sharing
Aula 19 – Toda União Enumerável de Conjuntos Enumeráveis é Enumerável. O Conjunto Racional é Enumerável
https://drive.google.com/file/d/1oQ55qyWSI4rMlurv091_PluLuRwvgc-r/view?usp=sharing
Aula 20 – O Conjunto Real é Não-Enumerável
https://drive.google.com/file/d/1ob2fGGi1M7MuoaE3WPRxy0vtdAHUPuqs/view?usp=sharing
Aula 21 – Espaços Métricos – Primeiras Definições
https://drive.google.com/file/d/1Kayr7VV18pheX07LfvYIKLT9Y8mwdxK9/view?usp=sharing
Aula 22 – Definições Fundamentais em Espaços Métricos – Conjuntos Abertos, Fechados e Outras.
https://drive.google.com/file/d/17pjuu4hksC5fqqsZimpX3vQuypDzP9l7/view?usp=sharing
Aula 23 – Propriedades de Conjuntos Abertos e Fechados em um Espaço Métrico
https://drive.google.com/file/d/1v9B5g-VfZKKrrj57oA0-UA5qhKx58yP8/view?usp=sharing
Aula 24 – Propriedades de Conjuntos Abertos e Fechados em um Espaço Métrico – Segunda Parte
https://drive.google.com/file/d/1PSBAdCCBEWJ0YSYjBkCQ3ad8ODYqKgt8/view?usp=sharing
Aula 24 – Uma Correção
https://drive.google.com/file/d/1w0aqFCsyHK_Gs-BYZCV6PTvnGLUtR1gp/view?usp=sharing
Aula 25 - Aula Síncrona de Exercícios de 10/06/2021
https://drive.google.com/file/d/1dsHc0Bu9enMtHNCD_xcEomAaV8EL7Ac9/view?usp=sharing
Aula 26 – O Fecho de um Conjunto em um Espaço Métrico
https://drive.google.com/file/d/12YOyKgidrYIE6gCLNaHmNQrDTkanO5J5/view?usp=sharing
Aula 27 – Aula Síncrona de Exercícios de 17/06/2021
https://drive.google.com/file/d/1g5jGQEl9oBoiLXnyN9TgcfOBBE8KQhsJ/view?usp=sharing
Aula 28 – Conjuntos Compactos, Definições e Propriedades
https://drive.google.com/file/d/1dbhI0hZtB2ZxCHBNb8DHG2fjguYdbBj2/view?usp=sharing
Aula 29 – Aula Síncrona de Exercícios de 24/06/2021
https://drive.google.com/file/d/1UfSzVPK_fpnPXoQabjFmQNxsB-plEmQt/view?usp=sharing
Aula 30 – Conjuntos Compactos, Propriedades – Segunda Parte
https://drive.google.com/file/d/1F7dVAOyCF4zvTozkt8-Ckq4E2muaqH1f/view?usp=sharing
Aula 31 – Todo Intervalo Real Fechado e Limitado é Compacto
https://drive.google.com/file/d/1uexHRUQqzzMiYVIcWiwkFMnHR7qwYQBw/view?usp=sharing
Aula 32 – O Teorema de Heine-Borel
https://drive.google.com/file/d/1OaO9S27Du4y5Vscltmu6CJXoWaLtJA8p/view?usp=sharing
Aula 33 – Aula Síncrona de Exercícios de 01/07/2021
https://drive.google.com/file/d/17UjHVcqAKhKa24B9j_4FeCf_L7vjiX3L/view?usp=sharing
Aula 34 – Sequências Reais, Primeiras Definições e Limites
https://drive.google.com/file/d/1W8vngdGaQTUPyx-lRAr66zbtkJk6fE7d/view?usp=sharing
Aula 35 – Unicidade do Limite, Sequências Reais Convergentes são Limitadas
https://drive.google.com/file/d/1f-GccYCx1I2hCXix-2YPFwi9o7jddCXs/view?usp=sharing
Aula 36 – Sequências Reais Monótonas e Limitadas são Convergentes
https://drive.google.com/file/d/1XiiogI8NC9QvY6mO_6eNRZJ85GT9-q7o/view?usp=sharing
Aula 37 – Propriedades dos Limites de Sequências Reais
https://drive.google.com/file/d/1C27A_HVIBFd5-lOQnrD3slROsdJhpf7s/view?usp=sharing
Aula 38 – Teorema do Confronto para Sequências Reais
https://drive.google.com/file/d/1qC8EwzXcnXuD9P0qU66yBbS7V4LXSXlh/view?usp=sharing
Aula 39 – Condição Necessária e Suficiente para um Número Real Ser Limite de uma Subsequência
https://drive.google.com/file/d/14PyFJSfQDq-R4ONNvnpTV_RJr1tE_2Hh/view?usp=sharing
Aula 40 – Limites Superior e Inferior de uma Sequência Real Limitada
https://drive.google.com/file/d/1rZa-YSk_3j6ZgY3YINoA3x8Rqe9UiXan/view?usp=sharing
Aula 41 – Aula Síncrona de Exercícios de 15/07/2021
https://drive.google.com/file/d/1fPZkLy8juX2n6N7_7x5I0h-5SavtTCKH/view?usp=sharing
Aula 42 – Uma Sequência Real Limitada é Convergente se, e somente se, Seus Limites Inferior e Superior são Iguais
https://drive.google.com/file/d/16KA_Ym59W5laEbnUaN3ZTQ5lC-qQJNps/view?usp=sharing
Aula 43 – Sequencias Reais de Cauchy – Sequências Reais são de Cauchy se, e somente se, são Convergentes
https://drive.google.com/file/d/1amG5w0QK3cfnSjtuHemqsJs9EncAFoWC/view?usp=sharing
Aula 44 – Uma Classe Especial de Sequências de Cauchy
https://drive.google.com/file/d/1KNO-M39m73QCegIXrWlkD8AAUn0SC0v_/view?usp=sharing
Aula 45 – Limites Infinitos para Sequências e Primeiras Definições e Resultados sobre Séries Numéricas Reais
https://drive.google.com/file/d/1Ouyo2p0JJ7JoR9zBjNl-TTKZzdoZ7iDb/view?usp=sharing
Aula 46 – O Critério de Comparação para Séries Reais
https://drive.google.com/file/d/1rSGQvdv__rPqvHMXGp7A0vldhTsF3EzB/view?usp=sharing
Aula 47 – Critério de Cauchy para Séries Reais e o Teste da Raiz
https://drive.google.com/file/d/1e4CahL25rNOvezpXUD6ndkaq08_dYT8L/view?usp=sharing
Aula 48 – Teste da Razão – Primeira Parte
https://drive.google.com/file/d/1Wqoi5LJyzYIN0wKAaicG_UKQ66jAahNJ/view?usp=sharing
Aula 49 – Um Resultado sobre a Comparação entre os Testes da Raiz e da Razão
https://drive.google.com/file/d/1x1Piq5o8ugYmUfMM2KBP5achiH_5LZLA/view?usp=sharing
Aula 50 – Aula Síncrona de Exercícios de 29/07/2021
https://drive.google.com/file/d/1hGiPmR-FAA8Z9GN5ABY3vHKQyHjnVrxN/view?usp=sharing
Aula 51 – Limites de Funções Reais. Primeiras Definições, Resultados e Exemplos
https://drive.google.com/file/d/1uAsDKuI0SqpY_hBNnBwifkpe8aEDd43N/view?usp=sharing
Aula 52 – Teorema do Confronto para Limites de Funções Reais
https://drive.google.com/file/d/1G57PIMYc41FpY_i09ctXvqwVUsi0CUri/view?usp=sharing
Aula 53 – Uma Condição Necessária e Suficiente para um Número Real Ser Limite de uma Função Mediante Sequências
https://drive.google.com/file/d/1fad2jcp-JAJghfVfwJZQ4GabVYMqOdi6/view?usp=sharing
Aula 54 – Uma Condição Suficiente para que o Limite de uma Função Exista Mediante Sequências
https://drive.google.com/file/d/1XlgV5ELR-d5ph0V4L0pmTgPAhMKFtwii/view?usp=sharing
Aula 55 – Propriedades dos Limites de Funções Reais
https://drive.google.com/file/d/1lsABs18ddocJu5CFFPqahpm1IXucKomN/view?usp=sharing
Aula 56 – Limites para Funções Compostas
https://drive.google.com/file/d/1UMbfm59_2XUtbbqSuR_T57FHZVk9BOeb/view?usp=sharing
Aula 57 – Funções Monótonas e Limites Laterais
https://drive.google.com/file/d/1Z-xTgk5wUwg4PmeVxpPF9FVlCL3_9qmH/view?usp=sharing
Aula 58 – Aula Síncrona de Exercícios de 05/08/2021
https://drive.google.com/file/d/1TpCqUsaRIe0w0h7GV-HXdV1bd6xXOULw/view?usp=sharing
Aula 59 – Valores de Aderência para Funções Reais
https://drive.google.com/file/d/1EM2oR43m36aiUNisjkSozd2vjugfI1MC/view?usp=sharing
Aula 60 – O Conjunto dos Valores de Aderência é Compacto para uma Função Limitada numa Vizinhança do Ponto em Questão
https://drive.google.com/file/d/1md510RFCAB45Mf5OXkAMK-eAtV8JjloJ/view?usp=sharing
Aula 61 – Limites Superiores e Inferiores para Funções Reais
https://drive.google.com/file/d/1n1awt1gLu3xJEjOcbmyEN30D1NV-0Np4/view?usp=sharing
Aula 62 – Aula Síncrona de 12/08/2021 – Limites Infinitos
https://drive.google.com/file/d/1SCpUqrQ2qx6laLXZU7FYESCTfn1mF3jh/view?usp=sharing
Aula 63 – Limites Reais no Infinito
https://drive.google.com/file/d/1pWMT6H3cAmNIYg4NT26mkP51yJyfjy8B/view?usp=sharing
Aula 64 – Limites Infinitos no Infinito
https://drive.google.com/file/d/1qegopjPQ86I1VWpzeT85dL77QhhqNNwQ/view?usp=sharing
Aula 65 – Funções Contínuas, Primeiras Definições e Resultados
https://drive.google.com/file/d/1Cm3hvyp2-VDLLlPpKfRAGUqWiemg4vRx/view?usp=sharing
Aula 66 – Uma Função Real em um Aberto é Contínua Se, e Somente Se, sua Pré-Imagem é Aberta para todo Aberto Real
https://drive.google.com/file/d/1eqQckKv2vQ1IARJdjUeBVhokCgGKIKTU/view?usp=sharing
Aula 67 – Propriedades das Funções Contínuas, Continuidade da Função Composta
https://drive.google.com/file/d/1CI-kwuPnDkurJ5qfnNJzx3O3dbVsN-Yl/view?usp=sharing
Aulo 68 – Descontinuidades de Primeira e Segunda Espécies para Funções Reais
https://drive.google.com/file/d/1qWKxhZWRVQ6-fNZU6B5cEhWiUFtRsHNO/view?usp=sharing
Aula 69 – Funções Contínuas em Conjuntos Compactos
https://drive.google.com/file/d/1A8iScNj13satu_Rge6ttWLP2OVmpxJdW/view?usp=sharing
Aula 70 – Aula Síncrona de 19/08/2021 – Teorema do Valor Intermediário
https://drive.google.com/file/d/17jkRkATqeIYBpAQzTOl_ovsP7OSiJRV_/view?usp=sharing
Análise Funcional – Curso de Verão 2023
Notas de Aula – Listas de Exercícios
Cálculo Avançado 2022-2 – Parte final do Conteúdo e Exercícios para a terceira avaliação
Aula 64 - Re-obtendo os Teoremas Clássicos de Stokes e da Divergência no R3 Mediante o Teorema Geral de Stokes no Rn
https://drive.google.com/file/d/1-DCqv7_h6s_Jq2FDyyln_2GoRTtmuYB-/view?usp=sharing
Aula
65 - Derivada de Lie de Um Campo Vetorial e Exercícios para a
Terceira
Avaliação
https://drive.google.com/file/d/1Mz6L9fn29WoC5XvPQllFHYoq9DSD001-/view?usp=sharing
To whom it may concern
About my Ph.D. program at Virginia Tech, when I got about 50% (or perhaps a little more) of its total time achieved, I realized to be completely convinced any successful approach on duality theory should be based on the works of W.R. Bielski, J.J Telega and John Toland, indeed on a combination of such approaches.
Since I also realized my adviser at that moment did not agree with such an approach, I asked the Head of Department for a change in the supervision.
At that time the thesis work was at the beginning and was almost all developed under supervision of Professor Robert C. Rogers.
I can guarantee there was no other kind of incident, allegation or circunstance concerning such an event.
During such a Ph.D. program I got a GPA of about 9.75/10.0 and published a paper in an excellent european Journal of Pure and Applied Mathematics.
The published paper is this one
8. Fabio Botelho, Dual Variational Formulations for a Non-linear Model of Plates. JOURNAL OF CONVEX ANALYSIS , v. 17, p. 131-158, 2010.
With kind regards,
Fabio Silva Botelho
https://twitter.com/FabioBotelho367
Summary of Twitter messages
Fabio Botelho @FabioBotelho367 – Nov 13, 2022
As I told you, I had no type of sexual activity in my period in the USA, from August 2006 to August 2009.
However, some false stories and false allegations have been raised concerning this.
Such false stories and allegations are a scam made to implement some criminal activities against me, my work and my family.
Also, to whom it may concern
To follow and register or not all my works and softwares developed during my Ph.D. program was an administrative decision of Virginia Tech.
I did not make any resquest or allegation concerning this subject.
Recent Pre-Prints
arXiv:2205.15910 [pdf, ps, other]
math.GM
An approximate proximal numerical procedure concerning the generalized method of lines
Authors: Fabio Silva Botelho
Abstract: This article develops an approximate proximal approach for the generalized method of lines. The present results are extensions and applications of previous ones which have been published since 2011, in books and articles such as [3,4,5,6]. We also recall that in the generalized method of lines, the domain of the partial differential equation in question is discretized in lines (or in curves) and the concerning solution is developed on these lines, as functions of the boundary conditions and the domain boundary shape. △ Less
Submitted 31 May, 2022; originally announced May 2022.
Comments: 9 pages
MSC Class: 65N40; 65N06
0.0-arXiv:2112.05189 [pdf, ps, other]
math.GM
An approximate numerical method for ordinary differential equation systems with applications to a flight mechanics model
Authors: Fabio Silva Botelho
Abstract: This short communication develops a new numerical procedure suitable for a large class of ordinary differential equation systems found in models in physics and engineering. The main numerical procedure is analogous to those concerning the generalized method of lines, originally published in the here referenced books of 2011 and 2014, [3,5], respectively. Finally, in the last section, we apply the method to a model in flight mechanics. △ Less
Submitted 9 December, 2021; originally announced December 2021.
Comments: 6 pages
MSC Class: 65L10
0.1- arXiv:2110.00994 [pdf, ps, other]
math.OC
A convex dual formulation for a large class of non-convex models in variational optimization
Authors: Fabio Silva Botelho
Abstract: This short communication develops a convex dual variational formulation for a large class of models in variational optimization. The results are established through basic tools of functional analysis, convex analysis and duality theory. The main duality principle is developed as an application to a Ginzburg-Landau type system in superconductivity in the absence of a magnetic field.
Submitted 30 March, 2022; v1 submitted 3 October, 2021; originally announced October 2021.
Comments: 7 pages, a substantial part of this article has been re-written, some corrections implemented
MSC Class: 49N15
0.2-arXiv:2109.01662 [pdf, ps, other]
math.OC
A convex dual variational formulation for non-convex optimization applied to a non-linear model of plates
Authors: Fabio Silva Botelho
Abstract: This article develops duality principles applicable to the non-linear Kirchhoff-Love model of plates. The results are obtained through standard tools of convex analysis, functional analysis, calculus of variations and duality theory. The main duality principle concerns a convex (in fact concave) dual variational formulation and related new optimality conditions for the model in question. Finally, in the last section we develop some global existence results for a similar model in elasticity. △ Less
Submitted 4 September, 2021; originally announced September 2021.
Comments: 23 pages. arXiv admin note: text overlap with arXiv:1712.01595
MSC Class: 35J58; 49N15
arXiv:2108.10170 [pdf, ps, other]
math.OC
Dual variational formulations for a large class of non-convex models in the calculus of variations
Authors: Fabio Silva Botelho
Abstract: This short communication develops dual variational formulations for a large class of models in variational optimization. The results are established through basic tools of functional analysis, convex analysis and duality theory. The main duality principle is developed as an application to a Ginzburg-Landau type system in superconductivity in the absence of a magnetic field. Finally, in the last section, we develop a new general primal dual variational formulation also suitable for the non-convex global optimization for a large class of models in physics and engineering. △ Less
Submitted 4 July, 2022; v1 submitted 18 August, 2021; originally announced August 2021.
Comments: 17 pages, some corrections implemented, a new section added
MSC Class: 49N15
Last update (This last up-date presents a general convex dual variational formulation for a global optimization of a general non-convex primal variational formulation)
8. Fabio Botelho, Dual Variational Formulations for a Non-linear Model of Plates. JOURNAL OF CONVEX ANALYSIS , v. 17, p. 131-158, 2010.
Tópicos em Cálculo Variacional e Otimização em Espaços de Banach – 2022-1
Cálculo Variacional (Notas de Aula)
Observação: As vídeo-aulas desse curso serão postadas também no meu canal do You Tube
https://www.youtube.com/channel/UCGe1piu6tU12zZArIxZ3xzw
Aula 1 – Espaços de Banach – O Espaço das Funções Contínuas é de Banach com a Norma do Máximo
Aula 2 – O Espaço das Funções C¹([a,b]) é de Banach
Aula 3 – Funcionais em Espaços de Banach e Pontos de Mínimos Globais, Definições e Exemplos
Aula 4 – A Primeira Variação à Gâteaux
https://drive.google.com/file/d/1RKCi13nIsutdeZiXExoaJ9vWiA5stMkN/view?usp=sharing
Aula 5 – Minimização de Funcionais Convexos – Primeira Parte: Funções Convexas
https://drive.google.com/file/d/1BoW1rSfCsqdZGYatmyQsTyPWn70lFBtD/view?usp=sharing
Aula 6 – Minimização de Funcionais Convexos – Segunda Parte – Definições e Exemplos
https://drive.google.com/file/d/1ZBxz0CGxveMEGiD6ffW2G1Bifobgh5RQ/view?usp=sharing
Aula 7 – Condições Suficientes de Otimalidade no Caso Convexo
https://drive.google.com/file/d/1yUywTBqzN_2PTNOBgbN22F5aW3bWJ0U5/view?usp=sharing
Aula 8 – Um Exercício Sobre a Otimização de um Funcional Convexo
https://drive.google.com/file/d/1uTqF-he85X6yhkDeqGl2u7HXbAgz_nrN/view?usp=sharing
Aula 9 – Condições Suficientes de Otimalidade no Caso Convexo, Caso de um Extremo Livre
https://drive.google.com/file/d/1tolWzASpV83Om5fFGsYUksS66AZHCbLd/view?usp=sharing
Aula 10 – Condições Suficientes de Otimalidade no Caso Convexo, Caso de Dois Extremos Livres
https://drive.google.com/file/d/14eOc_MiMXUmGef4V4njal99Bzp13mzgC/view?usp=sharing
Aula 11 – Exercícios sobre a Otimização de Funcionais Convexos
https://drive.google.com/file/d/1KyhY1MCN33yNy2ega2nb6CheFmVbec34/view?usp=sharing
Aula 12 – Condições de Otimalidade para um Funcional Convexo Envolvendo Derivadas de Segunda Ordem
https://drive.google.com/file/d/1_Y_bCrafeNx_6j7JpQ0BaMs0nycX22uV/view?usp=sharing
Aula 13 – O Lema de du Bois-Reymond
https://drive.google.com/file/d/1xENdphcroBvFrUIhI79lKUdN8cDFC097/view?usp=sharing
Aula 14 – O Lema Fundamental do Cálculo Variacional para o Caso Uni-Dimensional
https://drive.google.com/file/d/1v_oMpXE9Vzujx23WP6wCiStJHchnZdXv/view?usp=sharing
Aula 15 – Cálculo Variacional, o Caso de Espaços de Funções Escalares no Rn
https://drive.google.com/file/d/19e2iDxAQbe7aHp7TAdWS5JaePz__7xLj/view?usp=sharing
Aula 16 – Condiçoes Suficientes de Otimalidade no Caso Convexo, Caso de Espaços de Funções Escalares no Rn
https://drive.google.com/file/d/1xFQOo_RS-yP8UASLaiOJY_MpHyDSxUSi/view?usp=sharing
Aula 17 – A Segunda Variação à Gâteaux
Aula 18 – Condições Necessárias de Primeira Ordem e Suficientes de Segunda Ordem para um Mínimo Local
Aula 19 – Funcionais Contínuos em Espaços de Banach
Aula 20 – Variação à Gâteaux – Resultados Formais
As seguintes vídeo-aulas do curso de Análise Funcional são partes fundamentais desse curso de Cálculo Variacional
Aula 36 – O Teorema da Hahn-Banach
https://drive.google.com/file/d/1QMv-7uOwWKAOBdgwCbmAcDpZ8rmkFeJX/view?usp=sharing
Aula 37 – Aula de Exercícios – Preparação para a Primeira Avaliação
https://drive.google.com/file/d/1UNRLD0sYD83vbec2fSLgj9p9CTrDiEWn/view?usp=sharing
Aula 38 – Espaço Dual Topológico e Corolários do Teorema de Hahn-Banach
https://drive.google.com/file/d/1KP-O28MZg52NB1faElqDMhubl0zlxoFs/view?usp=sharing
Aula 39 – O Teorema de Hahn-Banach, Forma Geométrica
https://drive.google.com/file/d/136wEF4xfOXwYFtZjTGxSA523aisF9Nu4/view?usp=sharing
Correções para a Aula 39
https://drive.google.com/file/d/1TZO4jOdSc19zFcvIKc4zNMeWR_2UBjpw/view?usp=sharing
Aula 40 – Teorema de Hahn-Banach, Segunda Forma Geométrica
https://drive.google.com/file/d/1lkWwqDpXHGD1CE39UCmrXY88yIYkxvOH/view?usp=sharing
Aula 41 – Em um Espaço de Banach, um Conjunto Convexo A é Fortemente Fechado se, e somente se, é Fracamente fechado
https://drive.google.com/file/d/114ITf1FN8UIaVC0GCkHlVX5AqOSQvnIP/view?usp=sharing
Aula 42 – A Topologia Fraca-Estrela ( a ser postada em breve)
Aula 43 – O Teorema de Banach- Alaoglu – Compacidade Fraca-Estrela no Espaço Dual
https://drive.google.com/file/d/1S6kI0A82_5gYvOWFz28wfg56xWC5UIVd/view?usp=sharing
Aula 44 – O Teorema de Kakutani – Um Espaço de Banach é Reflexivo se, e somente se, a Bola Fechada Unitária é Fracamente Compacta
https://drive.google.com/file/d/1Ra9nIpWtOohCqCMWLekdsQTxg8rd5O_s/view?usp=sharing
Aula 21 -B – Variação à Gâteaux, O Caso Vetorial no Cálculo Variacional
https://drive.google.com/file/d/1gy2pCLLCYAyRKLNr2PaWurXRcueulvBu/view?usp=sharing
https://youtu.be/FXt9iO--2LQ (Aula 21 -B - no You Tube)
Aula 22 – B – Funcionais Fracamente Semi-Contínuos Inferiormente (f.s.c.i.) em Espaços de Banach
https://drive.google.com/file/d/1j9NK3C0NGYZZ0rZ0UQIEqmDI_HDYvuWe/view?usp=sharing
https://youtu.be/4V3YkDBpTi4
(Aula 22 – B no
You Tube)
Aula 23 – B – Funcionais Polares, Bi-Polares e o Envelope Convexo
Aula 24 -B – Subgradientes e Continuidade de Funcionais Convexos
Aula 25 – B- O Conjunto dos Subgradientes de um Funcional Convexo e Contínuo num Ponto é Não-Vazio nesse Ponto
Aula 26 – B – A Transformada de Legendre e Propriedades
Aula 27 - Equivalência entre os Pontos Críticos dos Funcionais Primal e Dual no Contexto da Transformada de Legendre
Aula 30 – Teoria da Dualidade no Caso Convexo
Aula 31 – O Teorema Mín-Máx em Espaços de Banach
Cálculo 4 – 2021 - 2
Aula 1 – Sequências Reais, Primeiras Definições, Limite de uma Sequência Real
https://drive.google.com/file/d/1kU6u95VP7E7mxVtK9rw8Syrnrlb5cdER/view?usp=sharing
Aula 2 – Unicidade do Limite de uma Sequência Real, Exercícios
https://drive.google.com/file/d/1IEv8OUztJpZQO6JotJFsHNaOmQzCp0qj/view?usp=sharing
Aula 3 – Sequências Reais Monótonas e Limitadas são Convergentes
https://drive.google.com/file/d/1hOl4OXKh1vASjns-5Qab7pxRIdTR5l2M/view?usp=sharing
Aula 4 – Propriedades dos Limites de Sequências Reais, Limite da Série Geométrica
https://drive.google.com/file/d/1TaTZpT4Vi-gIZhtb9rDqZkJjAV1vmXxh/view?usp=sharing
Aula 5 – O Teorema do Confronto para Sequências Reais
https://drive.google.com/file/d/1UJhc1CHVlrTnk8XvcLri9X_2ugWx6JWV/view?usp=sharing
Aula 6 – Limites Superior e Inferior de uma Sequência Limitada (Aula Assíncrona)
https://drive.google.com/file/d/1y8dzMxI1lzv0JYLpEiA43UezRyKkBI1x/view?usp=sharing
Aula 7 – Exercícios sobre Limites Inferiores e Superiores para uma Sequência Real
https://drive.google.com/file/d/1qLYBgx25J3uCOD66NMgt9uN6niIott3n/view?usp=sharing
Aula 8 – Sequências de Cauchy
https://drive.google.com/file/d/1X47EnHnKt9xozKRa9ermAxfPa6KG-hjq/view?usp=sharing
Aula 9 – Uma Classe Especial de Sequências de Cauchy
https://drive.google.com/file/d/18jB2FkMwunwxdiiZ-9qRYKq-yAz026Jo/view?usp=sharing
Aula 10 – Séries Numéricas Reais, o Critério de Comparação
https://drive.google.com/file/d/1ouWUDD7n-KOTqTCC8D0ErwlKKkZLtiM4/view?usp=sharing
Aula 11– (Revisada, uma Correção no Último Exercício)
Critério de Cauchy para a Convergência de Séries Reais
https://drive.google.com/file/d/1Ny3ify7HJAVeQ4oYfBU8hDkR_BMIjn3M/view?usp=sharing
Aula 11 A – Critério de Convergência para Séries Alternadas
https://drive.google.com/file/d/1O6Bh5DuVeBS-LdwfOiOXdZXEzGn3LI5d/view?usp=sharing
Aula 12 – Teste da Razão para Convergência de Séries Reais (Aula Assíncrona)
https://drive.google.com/file/d/1229Fz0QZgeebMI4b3y2bag1G2ptNBg1r/view?usp=sharing
Aula 13 – Teste da Raiz para Convergência de Séries Reais
https://drive.google.com/file/d/1PtaRiNXPlNE7HBx9TuvUB7d3C0xsSgch/view?usp=sharing
Aula 14 – Critério de Comparação das Razões para Convergência de Séries Reais
https://drive.google.com/file/d/1b6FM0PgJJPvNoip82mk4CkMdUpvJQr-L/view?usp=sharing
Aula 15 - Critério da Integral para a Convergência de Séries Reais
https://drive.google.com/file/d/12v_9Yb8T9rSPFKEWLANQELQeJ_G0LX2R/view?usp=sharing
Aula 16 – Critério de Comparação dos Limites para Convergência de Séries Reais
https://drive.google.com/file/d/1Ea1AOw6PB3UIhmY9_2MZiMn8Q_B476QE/view?usp=sharing
Aula 17 – Critério de Cauchy para a Convergência de Séries Reais
https://drive.google.com/file/d/1Ny3ify7HJAVeQ4oYfBU8hDkR_BMIjn3M/view?usp=sharing
Aula 18– Lema de Abel e Critério de Dirichlet para a Convergência de Séries Reais
https://drive.google.com/file/d/1T5oLPUuLFK1cw5WLqccLcQlaGCKFvJzp/view?usp=sharing
Conteúdo para a segunda avaliação a ser postada dia 25 de março:
Aula 19 – Sequências de Funções (Primeira Parte)
https://drive.google.com/file/d/16so3zARFbYfJtFZROP6S5BWg7JW0rs3t/view?usp=sharing
Aula 20 – Integrais e Derivadas de Sequências de Funções Uniformemente Convergentes
https://drive.google.com/file/d/1DNRk1fgikRgIKvhKs8ByhTKjNMw_Gb1v/view?usp=sharing
Aula 21– Séries de Funções, Definições e Primeiros Resultados
https://drive.google.com/file/d/1l87B08DaRGDVpli9zraKeQz9vZ8HCPbx/view?usp=sharing
Aula 22 – Critério M de Weierstrass para Convergência Uniforme de Séries de Funções Reais
https://drive.google.com/file/d/1NbJTuVYacAKUfb2zMBgdLxt3oiEsZ_vy/view?usp=sharing
Aula 23 – Integrais e Derivadas de Séries de Funções Uniformemente Convergentes
https://drive.google.com/file/d/1dIrTsWMS0wHNANQpla1jWf090TaLlWJE/view?usp=sharing
Aula 24 – Séries de Potências, Primeiras Definições e Resultados
https://drive.google.com/file/d/1ddrx_ggnHVgmyMx6IMGWKOXfTHCa0cg-/view?usp=sharing
Aula 25 – Séries de Potências – Raio de Convergência
https://drive.google.com/file/d/1Mvxtd4bkdOl9Q2NMaOECLR38EtSnEn5O/view?usp=sharing
Aula 26 – Integrais e Derivadas de Séries de Potências
https://drive.google.com/file/d/19m0PrdmVth7NMsAK0-beAXjRHpqfaNM8/view?usp=sharing
Aula 27– Séries de Fourier – Primeiros Resultados
https://drive.google.com/file/d/1vMnh3SOz_NkmC_bXCz_6zs54KdfbDEr9/view?usp=sharing
Aula 28 – Convergência Uniforme da Série de Fourier de uma Função de Classe C² num intervalo fechado
https://drive.google.com/file/d/1mPX9wdARHwIDeK1jvDGJ83aXfoadGchR/view?usp=sharing
Aula 29 – A Série de Fourier de uma Função de Classe C² Converge Uniformemente para tal Função num Intervalo Fechado
https://drive.google.com/file/d/1yWj3jDkim5GyGuZfVb3hR2QexPoxWpSH/view?usp=sharing
Aula 30 – Um Exercício sobre o Cálculo da Série de Fourier de uma Função
https://drive.google.com/file/d/1oKVxRIyNIbJoOSG2RDVghe2nu6jtbzpr/view?usp=sharing
Aula 31 – Revisão – Teorema do Valor Médio – Preparando a Rota para a Prova da Fórmula de Taylor
https://drive.google.com/file/d/1e45ZD0zYDwGGsc9kEyQf5I_NGZwL4Cqn/view?usp=sharing
Aula 32 – Fórmula de Taylor – Preparando a Rota para as Séries de Taylor
https://drive.google.com/file/d/1R64AwA5RVEneU6Eji0dJwQKH4_d8jGEq/view?usp=sharing
Aula 33 – Método de Separação de Variáveis para EDPs – Equação do Calor
https://drive.google.com/file/d/1nT3IoTb48Lek5_bkcR1ftghdLHjV_0_E/view?usp=sharing
Aula 34 – Obtenção da Equação da Onda mediante o Cálculo Variacional
https://drive.google.com/file/d/1FZBVS9MZ8vGeHPY3MwsyPWvSFn1Ef0ih/view?usp=sharing
Correções para a Aula 34
https://drive.google.com/file/d/1hn7bKEF5jjBvsJU2r5QMrACs0Q4g78Nw/view?usp=sharing
Aula 35 – Equação da Onda – Solução pelo Método de Separação de Variáveis
https://drive.google.com/file/d/1ev858heD3AQUoMi7Y4heet37ybgDpD37/view?usp=sharing
Aula 36 – Aula Síncrona de 24/09/2021 – Preparação para a Segunda Avaliação
https://drive.google.com/file/d/18vD6wEa6A2Z81wmKoKeMDjgp0XXaqqSe/view?usp=sharing
Análise 1 – 2021-2
Aula 1 – Espaços Métricos – Primeiras Definições e Resultados
https://drive.google.com/file/d/18uIqJYHJq9n_SKjdpjrtkiZX1suPtG7a/view?usp=sharing
Aula 2 – Espaços Métricos, Propriedades dos Conjuntos Abertos e Fechados
https://drive.google.com/file/d/1lz4O24djdYUhMjmug_fEqCwsOtIs7CuY/view?usp=sharing
Aula 3 – O Fecho de um Conjunto em um Espaço Métrico
https://drive.google.com/file/d/1kjpbaiGKH5AFALvlpjTI6sNJ6JXlxW9z/view?usp=sharing
Aula 4 – Conjuntos Compactos, Primeiras Definições e Resultados
https://drive.google.com/file/d/1JNvRInnoTSOABorH3IuJsiwA6Yq1_Hk0/view?usp=sharing
Aula 5 – Conjuntos Compactos, Outros Resultados
https://drive.google.com/file/d/1U2X3CLQoJK70Eg11_FP_MkMhteuKpTMe/view?usp=sharing
Aula 6 – O Teorema de Heine-Borel
https://drive.google.com/file/d/1w0949K_9Qg8tmQ6-62k4dZPhcVhpb-Bj/view?usp=sharing
Aula 7 – O Espaço Rn, Topologia para o Rn
https://drive.google.com/file/d/16Ea6fULb1N3ud0D3vyW2uYZhODJnFIMO/view?usp=sharing
Aula 8 – Desigualdade de Cauchy-Schwartz
https://drive.google.com/file/d/1z-YZSF2GhteNhNmhaXyQxeU14F7e7qvc/view?usp=sharing
Aula 9 – Funções Escalares de Várias Variáveis e Respectivos Limites
https://drive.google.com/file/d/1fbQrGZ31WsbfmpwEX7XejqyDwYdZlovH/view?usp=sharing
Aula 10 – Unicidade do Limite para Uma Função de Várias Variáveis
https://drive.google.com/file/d/1Dq6HRdPgDnDyNziccSj7d8kxffLgaYEK/view?usp=sharing
Aula 11 – O Teorema do Confronto e Outros Resultados
https://drive.google.com/file/d/1_fkcG9mf_eWZ0U2dMlPPlhG5snvNTCS-/view?usp=sharing
Aula 12 – Propriedades dos Limites
https://drive.google.com/file/d/1YsJEwejPSecymJHnkojQmV7CTEcvhY4W/view?usp=sharing
Análise 1 - Aulas reiniciando em Fevereiro/2022
Aula 1 – B – Limite da Função Composta
https://drive.google.com/file/d/155D6vj9Ja4bJVw4ZxuN_YN0kNKhBH2gM/view?usp=sharing
Aula 2 – B- Tipos de Descontinuidades
https://drive.google.com/file/d/1UEKIUjtQWg_5aAuLvJE6q19Yq44uTrIT/view?usp=sharing
Aula 3 – B - Derivadas Direcionais
https://drive.google.com/file/d/1GTWL841H29Agh_Q34ZGrjWuyydZoVMlZ/view?usp=sharing
Aula 4 – B – Diferenciabilidade no Rn
https://drive.google.com/file/d/14RB2ubfbCD6rYEt6Y6Q5Z38-ZPOSunrZ/view?usp=sharing
Aula 5 – B – Mais Detalhes Sobre a Diferenciabilidade no R2
https://drive.google.com/file/d/1jdYpqvdZEj1iHOGxuRBedCv3YEAOtiwl/view?usp=sharing
Aula 6 -B – Exemplo de Função Diferenciável Utilizando a Definição de Diferenciabilidade
https://drive.google.com/file/d/1zv1gq8EsQNt7xjrD9foLLDJNfzG0sSij/view?usp=sharing
Aula 7 – B – Interpretação da Diferenciabilidade e o Conceito de Diferencial
https://drive.google.com/file/d/1aETiYyHTuQHUaWMm3gN2Y3u_GpJFH4fX/view?usp=sharing
Aula 8 – B- Condições Suficientes para a Diferenciabilidade no Rn
https://drive.google.com/file/d/1h8rr2x-z2D3gF1qd_9Hu-M9ZW0GzRbCr/view?usp=sharing
Aula 9- B – Regra da Cadeia no Rn
https://drive.google.com/file/d/1N2G1Bo1cw5CmGe1JefmXvieMnu6lsLlW/view?usp=sharing
Aula 10 – B – Regra da Cadeia no R2
https://drive.google.com/file/d/1iBTpHQiAteknSQ-kIlSZ0LQhclWQrSEY/view?usp=sharing
Aula 11 – B – Derivadas de Ordem Mais Alta
https://drive.google.com/file/d/1CQ8P8tLKjeK0-PZd8TAtT13zKOpw2eiv/view?usp=sharing
Aula 12 – B- Sobre a Igualdade das Derivadas Mistas de Segunda Ordem
https://drive.google.com/file/d/1NverGUn00LGDodfRF-pZ1D1gL_k40hgx/view?usp=sharing
Aula 13 – B – O Teorema de Taylor no Rn
https://drive.google.com/file/d/1_aUIFHmTMgUHNb31jH3qJ4WHiyUEgIDk/view?usp=sharing
Aula 14 – B- F órmula de Taylor para o R2 com Resto de Lagrange de Segunda Ordem
https://drive.google.com/file/d/1Xf_dCZPQLNyo99yoL5NGa557dWol446O/view?usp=sharing
Aula 15 – B – Fórmula de Taylor para o R2, uma Estimativa para o Resto de Lagrange
https://drive.google.com/file/d/10mBePUnYsmWNjT7X1B-hpy2zLPfRlC9p/view?usp=sharing
Aula 16 – B – Extremos Locais e Globais para Funções no Rn
https://drive.google.com/file/d/1_2SAasYy0CUxc1HFWNwMZiSUVrPh54Od/view?usp=sharing
Aula 17 – B – Extremos Locais , Teste das Derivadas Parciais de Segunda Ordem
https://drive.google.com/file/d/1WfcO6JHcm1HXvEvnrFPdS8qGj4YW-KJ_/view?usp=sharing
Aula 18 – B- Teorema da Função Implícita, Caso Escalar
https://drive.google.com/file/d/16uKzDgWTUjOTn0c_dH3sxdv8XD5-TK1C/view?usp=sharing
Aula 19 – B- Funções Vetoriais no Rn e Respectivos Limites
https://drive.google.com/file/d/1vKSHpaFOZTH4lBwVXiCsHBC7TywfrzPE/view?usp=sharing
Aula 20 – B – Funções Vetoriais no Rn, Propriedades dos Limites
https://drive.google.com/file/d/1FRPaLCF1V0tHSdzEXvgIE5Dd26YzCLoR/view?usp=sharing
Aula 21 – B – Continuidade, Derivadas Direcionais, Diferenciabilidade e Matriz Jacobiana para Funções Vetoriais
https://drive.google.com/file/d/1gG8CwtjPWYwVl2fLfc9_hDv34NS5kARu/view?usp=sharing
Aula 22 – B – Uma Função Vetorial é Diferenciável Se, e Somente Se, Cada Função Coordenada é Diferenciável
https://drive.google.com/file/d/1CoPJedfk5fP8vzyab41M692nuksXFpGp/view?usp=sharing
Aula 23 – B – Desigualdades do Valor Médio para Funções Vetoriais a uma e n Variáveis
https://drive.google.com/file/d/19mWf2VSG1taJmTIuJWIlL61Xd3wE8Qem/view?usp=sharing
Aula 24 – B – O Teorema do Ponto Fixo de Banach no Rn
https://drive.google.com/file/d/1x92JUVemfVShubYNiqokZLGOqTOBjDX9/view?usp=sharing
Aula 25 – B – O Teorema da Função Implícita, Caso Vetorial
https://drive.google.com/file/d/1TkTA6DjVWBCHVV_dELbYqdfUZDny12Sa/view?usp=sharing
Aula 25 – B-1-O Teorema da Função Implícita, Caso Vetorial – Revisão
https://drive.google.com/file/d/1U_L7UcoHC_oRgagYlN4V89sBwKWdwOyA/view?usp=sharing
Aula 26 – B – Multiplicadores de Lagrange, Primeira Parte, Uma Restrição no R3
https://drive.google.com/file/d/1xkoh3k_g875uj5HuoswrcZIiTuARH6ub/view?usp=sharing
Aula 26 – B -1 – Multiplicadores de Lagrange, Primeira Parte, Revisão
https://drive.google.com/file/d/1zfjyTnnJoVCAg7XkjgYRwyAQFBuN9C4B/view?usp=sharing
Aula 27 – B – Multiplicadores de Lagrange, Segunda Parte, Duas Restrições no R4
https://drive.google.com/file/d/1khlikZZ1JnO2r-Rw69egNfP5ul1hy390/view?usp=sharing
Aula 28 – B – Multiplicadores de Lagrange, Terceira Parte, Caso Geral no R(n+m) (m restrições)
https://drive.google.com/file/d/1-5X5OjJM1xQz55hZ79wX8-osCvkDf0qn/view?usp=sharing
Aula 29 – B – O Teorema da Função Inversa no Rn
https://drive.google.com/file/d/1ljvMs9h-Ftv-v71O36vGq0PQeAXJDU7z/view?usp=sharing
Obs.: Aulas 30 a 34, Material de Cálculo 4, mas com padrão de Análise Real, uma atualização será postada em breve
Aula 30 – Sequências de Funções (Primeira Parte)
https://drive.google.com/file/d/16so3zARFbYfJtFZROP6S5BWg7JW0rs3t/view?usp=sharing
Aula 31 – Integrais e Derivadas de Sequências de Funções Uniformemente Convergentes
https://drive.google.com/file/d/1DNRk1fgikRgIKvhKs8ByhTKjNMw_Gb1v/view?usp=sharing
Aula 32– Séries de Funções, Definições e Primeiros Resultados
https://drive.google.com/file/d/1l87B08DaRGDVpli9zraKeQz9vZ8HCPbx/view?usp=sharing
Aula 33 – Critério M de Weierstrass para Convergência Uniforme de Séries de Funções Reais
https://drive.google.com/file/d/1NbJTuVYacAKUfb2zMBgdLxt3oiEsZ_vy/view?usp=sharing
Aula 34 – Integrais e Derivadas de Séries de Funções Uniformemente Convergentes
https://drive.google.com/file/d/1dIrTsWMS0wHNANQpla1jWf090TaLlWJE/view?usp=sharing
Aula 35 – B - O Teorema de Arzela-Ascoli
https://drive.google.com/file/d/1n6TjpiFDajCEMRg_MB8gXno0KocE5wnf/view?usp=sharing
Aula 36 – B- O Teorema de Stone-Weierstrass – Densidade dos Polinômios no Espaço das Funções Contínuas
https://drive.google.com/file/d/1MhNrX92x6Ms-US7d7P7mQTVW0kNLzkSa/view?usp=sharing
Primeira Atualização:
Aula 37 – B – Convergência Uniforme e Continuidade em Espaços Métricos
https://drive.google.com/file/d/1F6doljfJ2Sb4-K1V9jPmV3Z9jJfLrjQN/view?usp=sharing
Aula 38 – B - Espaços de Banach
https://drive.google.com/file/d/1VRf6-_Ruk_gxHHxEFRPh7FuvtLH3hGzT/view?usp=sharing
Aula 39 - B – O Espaço das Funções C¹([a,b]) é de Banach
https://drive.google.com/file/d/10gKKLowHsSr_jKpgC9v4ztjxL1ivFcuZ/view?usp=sharing
Análise Funcional – 2021-2
Notas de Aula – Listas de Exercícios
Aula 1 – Espaços Métricos – Revisão – Primeiras Definições e Exemplos
https://drive.google.com/file/d/153R3C1v4ERP4ZdN6_BPraURAIgnTpQoL/view?usp=sharing
Aula 2 – Uma Métrica para o Espaço das Sequências Complexas
https://drive.google.com/file/d/1BmgrfxNi3OTn-M8Tybsqa6zsSISftAxk/view?usp=sharing
Aula 3 – Espaços lp – Desigualdades de Young, Hölder e Minkowiski
https://drive.google.com/file/d/1vf_uoJcNgRBzLGbYP8DPtqPOXZZOss9D/view?usp=sharing
Aula 3 – Correções e Revisão da Desigualdade de Minkowiski
https://drive.google.com/file/d/1R8LeVjnSdQ2T_p-X5LIBJEOtdYBJ8cbm/view?usp=sharing
Aula 4 – Parte Final da Aula Síncrona de 08/09/2021 – Definições Fundamentais em Espaços Métricos
https://drive.google.com/file/d/10dYRuDFqb0159krMmSQvp8V_ncDlJr5C/view?usp=sharing
Aula 4 – Correções
https://drive.google.com/file/d/1okysIn5HdaD_crN79sGpaXSP_D3zqELB/view?usp=sharing
Aula 5 – Propriedades de Conjuntos Abertos e Fechados em Espaços Métricos
https://drive.google.com/file/d/1KHjn-HAaQOCjL5tGY7ZiaRfHAw6lkLzf/view?usp=sharing
Aulas 6 a 10, Revisão de alguns conceitos fundamentais em Análise Real
Aula 6 – O Fecho de um Conjunto em um Espaço Métrico
https://drive.google.com/file/d/12YOyKgidrYIE6gCLNaHmNQrDTkanO5J5/view?usp=sharing
Aula 7 – Conjuntos Compactos, Definições e Propriedades
https://drive.google.com/file/d/1dbhI0hZtB2ZxCHBNb8DHG2fjguYdbBj2/view?usp=sharing
Aula 8 – Conjuntos Compactos, Propriedades – Segunda Parte
https://drive.google.com/file/d/1F7dVAOyCF4zvTozkt8-Ckq4E2muaqH1f/view?usp=sharing
Aula 9 – Todo Intervalo Real Fechado e Limitado é Compacto
https://drive.google.com/file/d/1uexHRUQqzzMiYVIcWiwkFMnHR7qwYQBw/view?usp=sharing
Aula 10 – O Teorema de Heine-Borel
https://drive.google.com/file/d/1OaO9S27Du4y5Vscltmu6CJXoWaLtJA8p/view?usp=sharing
Aula 11 – Espaços Métricos Separáveis e Completos
https://drive.google.com/file/d/13FdncBK8iwrnI1EmV4z-Xox_XAq9xcRo/view?usp=sharing
Aula 12 – Completamento de um Espaço Métrico
https://drive.google.com/file/d/1-96HeG7HOHQMgoA4-GXgND2aMGTfaPoI/view?usp=sharing
Aula 12 – Uma Correção para a Parte Final da Aula
https://drive.google.com/file/d/1A3N3WOONYDoSH-tDcnNHZX5aJRq-ySAI/view?usp=sharing
Aula 13 – Compacidade em Espaços Métricos
https://drive.google.com/file/d/1IcZtq1WIOSp2o7NvxbFM0LFFYNCSaI6d/view?usp=sharing
Aula 14 – Em Espaços Métricos, um Conjunto A é Compacto Se, e Somente Se, A é Sequencialmente Compacto (Revisão)
https://drive.google.com/file/d/1ChkufNWci9GxSXRzedawYmbxSu-R-1Gn/view?usp=sharing
Aula 15 – Em um Espaço Métrico Completo, um Conjunto A é Relativamente Compacto Se, e Somente Se, é Totalmente Limitado
https://drive.google.com/file/d/13hFBBLPNLmAaQqCHMckH0kYENdM3OD0R/view?usp=sharing
Aula 16 – O Teorema de Arzela-Ascoli
https://drive.google.com/file/d/1n6TjpiFDajCEMRg_MB8gXno0KocE5wnf/view?usp=sharing
Aula 17 – Espaços Topológicos, Primeiras Definições e Resultados
https://drive.google.com/file/d/144M6y19mx8RztsohbG9YlRWo2ke7kblF/view?usp=sharing
Aula 18 – Todo Espaço VETORIAL Topológico é Espaço de Haussdorff
https://drive.google.com/file/d/1RCwbCjfyz3-PIRDYZCY1jbFk2THWRSVP/view?usp=sharing
Aula 19 – Vizinhanças Balanceadas e Convexas em Espaços Vetoriais Topológicos
https://drive.google.com/file/d/1mdmH8oEYOmWsLUuN8uHpImPUHzHeH8fs/view?usp=sharing
Aula 20 – Nets e Convergência em Espaços Topológicos
https://drive.google.com/file/d/18yXyDR5bMmEBwrP5wcVU0bYFYpXoNuZp/view?usp=sharing
Aula 21 – Compacidade em Espaços Topológicos
https://drive.google.com/file/d/1xBna4iKVgCIsUMFfyr6MvqGD4ZforpEp/view?usp=sharing
Aula 22 - O Envelope Convexo de um Conjunto em Espaços Vetoriais Topológicos
https://drive.google.com/file/d/1RmcX1GFmXw8iT0U-zWteFENKuuFLRBNn/view?usp=sharing
Aula 23 – Linearidade e Continuidade em Espaços Vetoriais Topológicos
https://drive.google.com/file/d/1RvLSnb3eItjDm0PJmWhiU9UTxi48hTGA/view?usp=sharing
Aula 24 – Linearidade e Continuidade em Espaços Vetoriais Topológicos, Operadores Lineares Limitados
https://drive.google.com/file/d/1XpD5EAXjjHIFWyATeP3tOTfee-JR2oGg/view?usp=sharing
Aula 25 – O Teorema da Categoria de Baire
https://drive.google.com/file/d/1_CCup85O48KDVuP6W8Y6MjA0cLVCbA9e/view?usp=sharing
Aula 26 – O Princípio da Limitação Uniforme (P.L.U.)
https://drive.google.com/file/d/1kn88VKrhJ30tAdtfU-Oo1RJVZkjG_wQw/view?usp=sharing
Aula 27 – O Teorema da Aplicação Aberta
https://drive.google.com/file/d/1FohsXY8MrfjYrCnvlqCyWRZNdp7Vl5Qr/view?usp=sharing
Uma Correção – Aula 27
https://drive.google.com/file/d/1GAFV6Utl_8XozZ9qTcjTzcwE4MzXIAcw/view?usp=sharing
Aula 28 – O Teorema do Gráfico Fechado e Alguns Resultados sobre Subespaços de Dimensão Finita
https://drive.google.com/file/d/1LcTS_f9QYTyqr2hITHEnoJK780YxEY2b/view?usp=sharing
Aula 29 – Espaços de Hilbert, Primeiras Definições e Resultados
https://drive.google.com/file/d/1rSBCS-nhwzq6NS-WmJCMFYYCesjBD3bq/view?usp=sharing
Aula 30 – Espaços de Hilbert, Ortogonalidade e Projeção Ortogonal em um Subsespaço Vetorial Fechado
https://drive.google.com/file/d/1yACCnE6VLIO06s0cd-UUWHrV-mo3gdSN/view?usp=sharing
Aula 31 – O Lema de Riesz ( Representação do Espaço Dual a um Espaço de Hilbert)
https://drive.google.com/file/d/1thlz_vKcW8MAccwC8XQfPPoeEMwRLaiL/view?usp=sharing
Aula 32 – Ortonormalidade e Bases Ortonormais em Espaços de Hilbert
https://drive.google.com/file/d/1RTrD22baH-78y5UigKYD11ITZQVOnhSF/view?usp=sharing
Aula 33 – Projeção em um Conjunto Convexo em um Espaço de Hilbert
https://drive.google.com/file/d/1gJ7pL19WASb69UVgTpeyopLluHZ0LF39/view?usp=sharing
Aula 34 – Projeção em um Conjunto Convexo, Segunda Parte
https://drive.google.com/file/d/1MhzRSHLifPnW3TKbb4dzi-Imfpda320t/view?usp=sharing
Aula 35 - Os Teoremas de Stampacchia e Lax-Milgram
https://drive.google.com/file/d/1D2IVjbjYZ6hLD7WmWKTiZLSa37hP_Ioy/view?usp=sharing
Aula 36 – O Teorema da Hahn-Banach
https://drive.google.com/file/d/1QMv-7uOwWKAOBdgwCbmAcDpZ8rmkFeJX/view?usp=sharing
Aula 37 – Aula de Exercícios – Preparação para a Primeira Avaliação
https://drive.google.com/file/d/1UNRLD0sYD83vbec2fSLgj9p9CTrDiEWn/view?usp=sharing
Aula 38 – Espaço Dual Topológico e Corolários do Teorema de Hahn-Banach
https://drive.google.com/file/d/1KP-O28MZg52NB1faElqDMhubl0zlxoFs/view?usp=sharing
Aula 39 – O Teorema de Hahn-Banach, Forma Geométrica
https://drive.google.com/file/d/136wEF4xfOXwYFtZjTGxSA523aisF9Nu4/view?usp=sharing
Correções para a Aula 39
https://drive.google.com/file/d/1TZO4jOdSc19zFcvIKc4zNMeWR_2UBjpw/view?usp=sharing
Aula 40 – Teorema de Hahn-Banach, Segunda Forma Geométrica
https://drive.google.com/file/d/1lkWwqDpXHGD1CE39UCmrXY88yIYkxvOH/view?usp=sharing
Aula 41 – Em um Espaço de Banach, um Conjunto Convexo A é Fortemente Fechado se, e somente se, é Fracamente fechado
https://drive.google.com/file/d/114ITf1FN8UIaVC0GCkHlVX5AqOSQvnIP/view?usp=sharing
Aula 42 – A Topologia Fraca-Estrela
Aula 43 – O Teorema de Banach- Alaoglu – Compacidade Fraca-Estrela no Espaço Dual
https://drive.google.com/file/d/1S6kI0A82_5gYvOWFz28wfg56xWC5UIVd/view?usp=sharing
Aula 44 – O Teorema de Kakutani – Um Espaço de Banach é Reflexivo se, e somente se, a Bola Fechada Unitária é Fracamente Compacta
https://drive.google.com/file/d/1Ra9nIpWtOohCqCMWLekdsQTxg8rd5O_s/view?usp=sharing
Aula 45 – Se um Espaço de Banach V é tal que V* é Separável, então V é Também Separável
https://drive.google.com/file/d/1pU5os8e0Yn1MVsau6QqeD2HasQB1mwkh/view?usp=sharing
Aula 46 – Um Espaço de Banach V é Separável se, e somente se, a Bola Unitária em V* é Metrizável com Relação à Topologia Fraca-Estrela
https://drive.google.com/file/d/11Jhbh-U4hEZ2b6cD_yKQu89P7Si5z3pM/view?usp=sharing
Aula 47 – Espaços de Banach Uniformemente Convexos são Reflexivos, O Teorema de Milman Pettis
https://drive.google.com/file/d/1HvYrLD4R4Z9p3Eh6IV9lAusL1xWQAGN6/view?usp=sharing
Aula 48 – Exercícios de Preparação para a Segunda Avaliação e Alguns Outros Tópicos
https://drive.google.com/file/d/1TBJjS8in2ZS1KWpuKby3WogX9Bxl29xz/view?usp=sharing
Medida e Integração – 2021 -1
Aula 1 – A Medida de Lebesgue na Reta – Medida Exterior
https://drive.google.com/file/d/192U1zBEzySFrAhPqWoco9M-YuIeSPrvz/view?usp=sharing
Aula 2 – Medida Exterior de um Intervalo Fechado
https://drive.google.com/file/d/1k9-B21yD5TPfMXOhyIj7N6F_aELYhP_C/view?usp=sharing
Aula 3 – Conjuntos Mensuráveis e a Medida de Lebesgue
https://drive.google.com/file/d/1vkOB_WrMTy-UzUu3h_BxyPpoTwWzKVFE/view?usp=sharing
Aula 4 – A União Enumerável de Conjuntos Mensuráveis é Mensurável
https://drive.google.com/file/d/1nL0B6K8HAVdfRRIVqohrVLflAgH1vVyA/view?usp=sharing
Aula 5 – Intervalos Reais são Mensuráveis
https://drive.google.com/file/d/1-f35F4xH3X5bcbaRVwRrznj120rW0BhV/view?usp=sharing
Aula 6 – Aditividade Enumerável da Medida de Lebesgue para Conjuntos Mensuráveis e Disjuntos
https://drive.google.com/file/d/1zCdH0AkyX2Atd9NsgaD36iL84eca2Vog/view?usp=sharing
Aula 7 – Aula Síncrona de Exercícios de 30/06/2021
https://drive.google.com/file/d/15HdkDqx30rjzFhtJANdb2AeY08mr7v7i/view?usp=sharing
Aula 7 – Correções e Complementos
https://drive.google.com/file/d/14IKQN8ZvTwGKJ7TzWStgpyeo9vMP1HRm/view?usp=sharing
Aula 8 – Funções Mensuráveis
https://drive.google.com/file/d/16FFeUUZmCAvoIbRNWAvAAKVy9M6s0PYo/view?usp=sharing
Aula 9- Propriedades das Funções Mensuráveis
https://drive.google.com/file/d/1wgRP322Q5iy5Evj0j_hRqeWRy4ThsQIr/view?usp=sharing
Correções e um exercício sobre a Aula 2
https://drive.google.com/file/d/1HG0dk5H_e6ZQPdJtZz2GG_9eLgNwRslf/view?usp=sharing
Aula 10 – Propriedades do Ínfimo, Supremo e Limites de Sequências de Funções Mensuráveis
https://drive.google.com/file/d/1hzNqI_7LMW6bJLnESqrNAG7rKPaSXn6Q/view?usp=sharing
Aula 11– Medidas, Definições e Propriedades
https://drive.google.com/file/d/12F_rxVEBcFYW74YZN61sr2ZMFLRTRLSz/view?usp=sharing
Aula 12– Funções Simples, Propriedades e Integrais
https://drive.google.com/file/d/1Ka_FGCzN7TucP2QhgfE7lwvo5JbKWZkv/view?usp=sharing
Aula 13– A Integral de Lebesgue, o Teorema da Convergência Monótona de Lebesgue
https://drive.google.com/file/d/1PZriu67bahRRpQxLzjxIAmYV8fQInZw1/view?usp=sharing
Aula 14 – Revisão – Teorema da Convergência Monótona de Lebesgue
https://drive.google.com/file/d/1g9SP4wwG045rv6A1dG8hsi2Tx_MjL7Gm/view?usp=sharing
Aula 15– Lema de Fatou
https://drive.google.com/file/d/1eonudNpY1tDA_YCaNFLvlRogL0PL_MKT/view?usp=sharing
Aula 16 – Integral e Conjuntos de Medida Zero, Teorema de Lebesgue da Convergência Monótona num Contexto mais Geral
https://drive.google.com/file/d/13iQbeMKufB-kuTgKa7Lw3BfZFbjYNwmC/view?usp=sharing
Aula 17 – Aula Síncrona de Exercícios de 14/07/2021
https://drive.google.com/file/d/1xZ6edbEmn66aBkBMzxJCi_5811gotLPJ/view?usp=sharing
Aula 18 – Aula Síncrona de Exercícios de 21/07/2021
https://drive.google.com/file/d/10fFbc6R7hghAM_bUhx4XAXsTqstYEdUK/view?usp=sharing
Aula 19– Funções Integráveis à Lebesgue, Propriedades da Integral de Lebesgue
https://drive.google.com/file/d/1FAiHxwyltpy6SsvFWna9vFAinsdpZYBW/view?usp=sharing
Aula 20 – Teorema de Lebesgue da Convergência Dominada
https://drive.google.com/file/d/1ZD_b3N383sgWo64VHnz73U6dHXHxcr3F/view?usp=sharing
Aula 21– Revisão - Integrais que Dependem de um Parâmetro
https://drive.google.com/file/d/1xjS7T1r4uTtCQBZWJWK_kxG9-hF0ujzL/view?usp=sharing
Aula 22 A – Integrais que Dependem de um Parâmetro, Parte Final
https://drive.google.com/file/d/1-1bBgAf3UGXD7a6asxgRp82N45zvT9lB/view?usp=sharing
Aula 23 – Espaços Lp – Desigualdade de Hölder
https://drive.google.com/file/d/1wQpMcNgGfwldVSpoBK5kmCM933-Wzj8L/view?usp=sharing
Aula 24 – Espaços Lp – Desigualdade de Minkowiski
https://drive.google.com/file/d/1_0mwUJZJjyVY3em-4s-QAr2LeWKfvE6s/view?usp=sharing
Aula 25 – Espaços Lp são Espaços de Banach , onde 1≤ p<∞
https://drive.google.com/file/d/1JdHu3PNV1eJRPe8NspPUSQQ49e3_NlZ8/view?usp=sharing
Aula 26 – Espaços L∞ são Espaços de Banach
https://drive.google.com/file/d/1FDzmXVt78DMyDDBOrzeT1H9apUKMN8SQ/view?usp=sharing
Aula 27 – Aula Síncrona de Exercícios de 28/07/2021
https://drive.google.com/file/d/1qEi-C5hSR6B-9C9D_AsSFTufAICR3_HO/view?usp=sharing
Aula 28 – Modos de Convergência – Primeira Parte
https://drive.google.com/file/d/1P0y-xtmTCcAOz4T0utqGSlCPeOmvoV_8/view?usp=sharing
Aula 29 – Convergência em Medida
https://drive.google.com/file/d/1DtclFy1YDEZ8v1uaPZG5yiMSHghDQlRj/view?usp=sharing
Aula 30 – Convergência em Medida Implica para uma Sub-Sequência Convergência Simples em Quase Todo o Domínio
https://drive.google.com/file/d/16mmVAfV1rHOvujid6E1JASTYKJD1oASa/view?usp=sharing
Aula 31- Exercício 3Q – Capítulo 3 – Bartle
https://drive.google.com/file/d/17h9lBMRIGZ0OeOqWOvE8va_CJK-WjM_8/view?usp=sharing
Aula 32 – Sequências de Cauchy em Medida Convergem em Medida
https://drive.google.com/file/d/1RaQk4RZEclSS3O6vu3lPfZw8CFdJErIP/view?usp=sharing
Aula 33 – Sequências Convergentes em Medida Dominadas em Módulo Pontualmente por uma Função no Lp Convergem em Lp
https://drive.google.com/file/d/1Uc-35v-yWi7wxXGIsjf-oVw7q-WZCgjo/view?usp=sharing
Aula 34 – Sequências Quase Uniformemente de Cauchy Convergem Quase Uniformemente e Convergem Pontualmente em Quase Todo o Domínio
https://drive.google.com/file/d/1drWUq3bNWmJtz5dNwuK3q9lnqbs_mnvr/view?usp=sharing
Aula 35 – Relações entre Convergência Quase Uniforme e Convergência em Medida (Revisada)
https://drive.google.com/file/d/15f1l44p87f7m8HqP8D3hlhNnBetfUQHx/view?usp=sharing
Aula 36 – Correções
https://drive.google.com/file/d/1yR0uFyxPvdDgayvqJYfukgW0Jf5dl3PD/view?usp=sharing
Aula 37 – Aula Síncrona de Exercícios de 04/08/2021
https://drive.google.com/file/d/1Jg7BGPCFnkqntYeGI8OjSz3JGztiRgPd/view?usp=sharing
Aula 38 – Aula Síncrona de Exercícios de 11/08/2021
https://drive.google.com/file/d/193mAN2LYofCsc9bBeD7_qphPeggBI_-m/view?usp=sharing
Aula 39 – Teorema de Egoroff
https://drive.google.com/file/d/1Z55LvI7Sph-oRDUTe-j43UJ0I3mBwO8Z/view?usp=sharing
Aula 40 – Correções (na conclusão da aula)
https://drive.google.com/file/d/1dceMhA6OZgVtKxNE0Yf3WyPMmqdRyVTu/view?usp=sharing
Aula 41 – Teorema de Vitali (Primeira Parte)
https://drive.google.com/file/d/1d3yBs4MpC9flm1ZRt0gZSpm8mDi1LKvk/view?usp=sharing
Aula 42 – Teorema de Vitali (Segunda Parte)
https://drive.google.com/file/d/1JNvXB5HRcNCQNvuk7lDeScR1Er6iarqA/view?usp=sharing
Aula 43 – Teorema de Vitali (Terceira Parte – Recíproca das Primeira e Segunda Partes)
https://drive.google.com/file/d/1vVhQQtaPM9IIvMt5NGeuDNgGjuLizArT/view?usp=sharing
Aula 44 – Exercício 5.O – Capítulo 5 – Bartle
https://drive.google.com/file/d/1An38Ala_XmkUU1twNFxDmHT47EToVTsO/view?usp=sharing
Aula 45 – Exercício 5.D – Capítulo 5 – Bartle
https://drive.google.com/file/d/1HwOSdc0xCXleQh0TIQB1CH1w5la0SLiG/view?usp=sharing
Correções – Aula 30 – Exercício 5.D – Bartle
https://drive.google.com/file/d/1sX7h_WJ34rFponnD2SdBO_ek3wpU3AXB/view?usp=sharing
Aula 46 – Exercício 5.C – Capítulo 5 – Bartle
https://drive.google.com/file/d/1izVpvR0iG6y3ybcwDOznMaBkQC6uKroK/view?usp=sharing
Aula 47 – Medidas com Sinal, Primeiras Definições e Resultados
https://drive.google.com/file/d/1tZUxvCDBPudiCnDpDdCfM6H0kK5hT7H7/view?usp=sharing
Aula 48 – Medidas com Sinal, Conjuntos Positivos e Negativos, Propriedades e Resultados
https://drive.google.com/file/d/1V_v_MR-Bm6LnMggyOIXU1iaxIGDKumUp/view?usp=sharing
Aula 49 – Decomposição de Hahn e Respectiva Decomposição de Jordan de uma Medida com Sinal
https://drive.google.com/file/d/1xS6yjPFCsR9CMLApo4jTgxQZPDuHAahD/view?usp=sharing
Aula 50 – Exercício Adicional de Preparação para a Primeira Avaliação
https://drive.google.com/file/d/1Okqlqw-ATceT2lwhwaHfBzT-X1VVEuZG/view?usp=sharing
Aula 51 – Exercício 4 S – Capítulo 4 – Bartle
https://drive.google.com/file/d/1cNFe-QcgALRBUGWy_vrz88tMpGiPHfhG/view?usp=sharing
Aula 52 – Exercício 4 T – Capítulo 4 – Bartle
https://drive.google.com/file/d/1a1opcnJY-9DwfrDyk0qdF7iJ8RoPxvda/view?usp=sharing
Aula 53 – Teorema de Radon-Nikodym
https://drive.google.com/file/d/1AV3G7jwigXIWsJjtnMLpppU0GNri_8XH/view?usp=sharing
Aula 54 – Teorema da Decomposição de Lebesgue
https://drive.google.com/file/d/1lJnjJjVuN4FtCMqVwOVUCiwcNtyYpK5c/view?usp=sharing
Aula 55 – Densidade das Funções Simples e Mensuráveis no Espaço Lp, onde 1≤ p< +∞.
https://drive.google.com/file/d/1yevqmoLbGx0eyiThMFckvRu-h5VyiwXA/view?usp=sharing
Aula 56 – Preparando a Rota para a Representação do Espaço Dual ao Lp, onde 1<p<+∞
https://drive.google.com/file/d/1BlLy3EDwDmDkC37JaCbWUTSk0ckF678x/view?usp=sharing
Aula 57 – (Revisada) Um Lema Auxiliar sobre uma Classe Especial de Séries de Funções no Lp
https://drive.google.com/file/d/1lM1CEYpmstXMBu-yedbcvIqoe1NTYwi7/view?usp=sharing
Aula 58 – Representação do Espaço Dual ao Lp – Teorema de Riesz – Parte 1 – Medida Finita
https://drive.google.com/file/d/1Ztrg3bDB8fsGkDSxXirs8HF2s7e-fqqo/view?usp=sharing
Aula 59 – Representação do Espaço Dual ao Lp – Teorema de Riesz – Parte 2 – Medida Sigma-Finita
https://drive.google.com/file/d/1eIMTzE0qF-TyW3slWOmnXhRg3Pwm_y4J/view?usp=sharing
Aula 60 – Representação do Espaço Dual ao Lp – Teorema de Riesz – Parte 3 – Caso Geral
https://drive.google.com/file/d/1e7Mvyre6GceGPd4hbwLmDYehBJ9sTCkZ/view?usp=sharing
Aula 61 – Definições de Álgebra de Conjuntos e Medida Sobre uma Álgebra – Exemplos na Reta Real
https://drive.google.com/file/d/1K7fWHv-fPfbDXOyA0dIZstoGxp0leIBj/view?usp=sharing
Aula 62 – Medida Exterior, Definição e Propriedades
https://drive.google.com/file/d/1S5VRUwTKwcuWViC-BeSx7ESM90FM05Ks/view?usp=sharing
Correções para a Conclusão da Aula 47
https://drive.google.com/file/d/1r_PBchbOxJavxhbJ-JkN4Fnrj4Zqbkcl/view?usp=sharing
Aula 63 – Medida Exterior - Teorema de Carathéodory
https://drive.google.com/file/d/1_4-dK8zlly2lX3IKh-ddPWQncAPYqYDJ/view?usp=sharing
Aula 64 – Teorema da Extensão de Hahn, Medida de Lebesgue e Medida de Lebesgue-Stieltjes
https://drive.google.com/file/d/1gIfFN9IQVw9ezMlW-H9izhc2ddFUhtWa/view?usp=sharing
Aula 65 – Representação do Espaço Dual ao Espaço das Funções Contínuas C([a,b]), Teorema de Riesz
https://drive.google.com/file/d/1zve01-RVyIpln090-Fxynnks-EN4kwlk/view?usp=sharing
Aula 66 – Aula Síncrona de 14/04/2021 – Exercícios – Capítulo 6 – Bartle
https://drive.google.com/file/d/1FqCi1nMF4aPZJKKXlHRXKMKbZs4eWcBw/view?usp=sharing
Aula 67 – Espaços de Medida Produto , Primeiras Definições
https://drive.google.com/file/d/1oWy_HsROuHhtZh6_x1yHSDsVV-IcPMFJ/view?usp=sharing
Aula 68 – Sobre a Mensurabilidade de Seções x e y de Conjuntos e Funções Mensuráveis no Espaço Produto X x Y.
https://drive.google.com/file/d/1DTrS2Shk_ZVn5S6UwwgNBX-40Cbgruvd/view?usp=sharing
Aula 69 – Classes Monótonas em Espaços Mensuráveis
https://drive.google.com/file/d/1kvFr5-4wOzotetu6hoy2T2N8Jb3R29UJ/view?usp=sharing
Aula 70 – Integração de Funções Simples no Espaço Produto
https://drive.google.com/file/d/1mtwGmVcle9PFX8p1U6NVRLlmdpiOLY0X/view?usp=sharing
Aula 71 – Teoremas de Tonelli e Fubini sobre Integração Iterada em Espaços Produto
https://drive.google.com/file/d/1dyIXbKi8nIR9Zm2O2g2aY0pOGIQXfs72/view?usp=sharing
Aula 72 – A Medida de Lebesgue no Rn – Medida Exterior e Propriedades
https://drive.google.com/file/d/1PKSeFZPV0XXiCbZhLlc4enwTpVXZTtyS/view?usp=sharing
Cálculo 4 – 2021 – 1
Aula 1 – Sequências Reais, Definições, Propriedades e Limites
https://drive.google.com/file/d/1aYi9EUBgmQZZOhMkpELppgSzaQcoL3Ue/view?usp=sharing
Aula 1 – Uma Correção e Complementos
https://drive.google.com/file/d/1nXb6_bWNvtz8AwK77nE2Mu8ySYIXfIbq/view?usp=sharing
Aula 2 – Teorema do Confronto, Exemplos e Exercícios
https://drive.google.com/file/d/1SMqssRs_cz1iFy4HVk8HABRQ8kbA-mF2/view?usp=sharing
Aula 2 – Correções e Complementos
https://drive.google.com/file/d/1BZlWL8UA7nZfMrDQFN9JjX6MQNC2trhG/view?usp=sharing
Aula 3 – Sequências Monótonas, Definições e Exercícios
https://drive.google.com/file/d/1d2flG1HKJOM1Iq0vFKzuCJ7xALfvT0hd/view?usp=sharing
Aula 3-1- Complementos sobre Supremo e Ínfimo, Sequências Reais Monótonas e Limitadas são Convergentes
https://drive.google.com/file/d/1Dj4_67spTX0HcYEcRouC3ToElMhKnzMj/view?usp=sharing
Aula 4 – Outros Resultados sobre Sequências Reais e Exercícios
https://drive.google.com/file/d/1yYtxhYYI2skZ6MRwfLGTFqgemykVh8Qg/view?usp=sharing
Aula 5 – Limites Superior e Inferior de uma Sequência Limitada
https://drive.google.com/file/d/1y8dzMxI1lzv0JYLpEiA43UezRyKkBI1x/view?usp=sharing
Aula 6 – Sequências Reais de Cauchy
https://drive.google.com/file/d/1axmNPJGYRo_GkXm2lkUW-Y4G1_LqNYdh/view?usp=sharing
Aula 7 – Uma Classe Especial de Sequências de Cauchy
https://drive.google.com/file/d/1iZ77Z272O1cjqHfS1lIpIqwUwr4hFTNZ/view?usp=sharing
Aula 8 – Séries Numéricas Reais – O Critério de Comparação para Convergência de Séries Reais
https://drive.google.com/file/d/1ixk-ilb90DpjuFD4QCKl-zp03k8gtbd7/view?usp=sharing
Aula 9 – Critério de Convergência para Séries Alternadas
https://drive.google.com/file/d/1zmSmxFIsGptDvnIA0TV8afvYUt9vdDGe/view?usp=sharing
Aula 10 – Teste da Razão para Convergência de Séries Reais
https://drive.google.com/file/d/1229Fz0QZgeebMI4b3y2bag1G2ptNBg1r/view?usp=sharing
Aula 11 – Teste da Raiz para Convergência de Séries Reais
https://drive.google.com/file/d/1PtaRiNXPlNE7HBx9TuvUB7d3C0xsSgch/view?usp=sharing
Aula 12 – Critério de Comparação das Razões para Convergência de Séries Reais
https://drive.google.com/file/d/1b6FM0PgJJPvNoip82mk4CkMdUpvJQr-L/view?usp=sharing
Aula 13 - Critério da Integral para a Convergência de Séries Reais
https://drive.google.com/file/d/12v_9Yb8T9rSPFKEWLANQELQeJ_G0LX2R/view?usp=sharing
Aula 14 – Critério de Comparação dos Limites para Convergência de Séries Reais
https://drive.google.com/file/d/1Ea1AOw6PB3UIhmY9_2MZiMn8Q_B476QE/view?usp=sharing
Aula 15 – Critério de Cauchy para a Convergência de Séries Reais
https://drive.google.com/file/d/1Ny3ify7HJAVeQ4oYfBU8hDkR_BMIjn3M/view?usp=sharing
Aula 16 – Lema de Abel e Critério de Dirichlet para a Convergência de Séries Reais
https://drive.google.com/file/d/1T5oLPUuLFK1cw5WLqccLcQlaGCKFvJzp/view?usp=sharing
Aula 16 A– Aula de Exercícios de Preparação para a Primeira Avaliação
https://drive.google.com/file/d/11ULQ0ajXFDFXr3X9wngaRiZVhrJBGwTw/view?usp=sharing
Aula 17 – Aula Síncrona de Exercícios de 04/08/2021 – Preparação para a Primeira Avaliação
https://drive.google.com/file/d/1O-hc5HO9MTT6XT7PLiJo8V0f_cU6W27b/view?usp=sharing
Aula 18– Aula Síncrona 2020-2, dia 26/03/2021 – Exercícios, Preparação para a Primeira Avaliação
https://drive.google.com/file/d/10x1hs46cq0biNh2S90KHsIe64UuAO6hD/view?usp=sharing
Aula 19 – Sequências de Funções (Primeira Parte)
https://drive.google.com/file/d/16so3zARFbYfJtFZROP6S5BWg7JW0rs3t/view?usp=sharing
Aula 20 – Integrais e Derivadas de Sequências de Funções Uniformemente Convergentes
https://drive.google.com/file/d/1DNRk1fgikRgIKvhKs8ByhTKjNMw_Gb1v/view?usp=sharing
Aula 21– Séries de Funções, Definições e Primeiros Resultados
https://drive.google.com/file/d/1l87B08DaRGDVpli9zraKeQz9vZ8HCPbx/view?usp=sharing
Aula 22 – Critério M de Weierstrass para Convergência Uniforme de Séries de Funções Reais
https://drive.google.com/file/d/1NbJTuVYacAKUfb2zMBgdLxt3oiEsZ_vy/view?usp=sharing
Aula 23 – Integrais e Derivadas de Séries de Funções Uniformemente Convergentes
https://drive.google.com/file/d/1dIrTsWMS0wHNANQpla1jWf090TaLlWJE/view?usp=sharing
Aula 24 – Séries de Potências, Primeiras Definições e Resultados
https://drive.google.com/file/d/1ddrx_ggnHVgmyMx6IMGWKOXfTHCa0cg-/view?usp=sharing
Aula 25 – Séries de Potências – Raio de Convergência
https://drive.google.com/file/d/1Mvxtd4bkdOl9Q2NMaOECLR38EtSnEn5O/view?usp=sharing
Aula 26 – Integrais e Derivadas de Séries de Potências
https://drive.google.com/file/d/19m0PrdmVth7NMsAK0-beAXjRHpqfaNM8/view?usp=sharing
Aula 27– Séries de Fourier – Primeiros Resultados
https://drive.google.com/file/d/1vMnh3SOz_NkmC_bXCz_6zs54KdfbDEr9/view?usp=sharing
Aula 28 – Convergência Uniforme da Série de Fourier de uma Função de Classe C² num intervalo fechado
https://drive.google.com/file/d/1mPX9wdARHwIDeK1jvDGJ83aXfoadGchR/view?usp=sharing
Aula 29 – A Série de Fourier de uma Função de Classe C² Converge Uniformemente para tal Função num Intervalo Fechado
https://drive.google.com/file/d/1yWj3jDkim5GyGuZfVb3hR2QexPoxWpSH/view?usp=sharing
Aula 30 – Um Exercício sobre o Cálculo da Série de Fourier de uma Função
https://drive.google.com/file/d/1oKVxRIyNIbJoOSG2RDVghe2nu6jtbzpr/view?usp=sharing
Aula 31 – Revisão – Teorema do Valor Médio – Preparando a Rota para a Prova da Fórmula de Taylor
https://drive.google.com/file/d/1e45ZD0zYDwGGsc9kEyQf5I_NGZwL4Cqn/view?usp=sharing
Aula 32 – Fórmula de Taylor – Preparando a Rota para as Séries de Taylor
https://drive.google.com/file/d/1R64AwA5RVEneU6Eji0dJwQKH4_d8jGEq/view?usp=sharing
Aula 33 – Método de Separação de Variáveis para EDPs – Equação do Calor
https://drive.google.com/file/d/1nT3IoTb48Lek5_bkcR1ftghdLHjV_0_E/view?usp=sharing
Aula 34 – Obtenção da Equação da Onda mediante o Cálculo Variacional
https://drive.google.com/file/d/1FZBVS9MZ8vGeHPY3MwsyPWvSFn1Ef0ih/view?usp=sharing
Correções para a Aula 34
https://drive.google.com/file/d/1hn7bKEF5jjBvsJU2r5QMrACs0Q4g78Nw/view?usp=sharing
Aula 35 – Equação da Onda – Solução pelo Método de Separação de Variáveis
https://drive.google.com/file/d/1ev858heD3AQUoMi7Y4heet37ybgDpD37/view?usp=sharing
Aula 36 – Aula Síncrona de 24/09/2021 – Preparação para a Segunda Avaliação
https://drive.google.com/file/d/18vD6wEa6A2Z81wmKoKeMDjgp0XXaqqSe/view?usp=sharing
Introdução à Análise – 2021 -1
Aula 1 – Conjuntos e Funções, Revisão
https://drive.google.com/file/d/1qdTAjyODlZU_LXXMu_Uv0MskAS5MTAaT/view?usp=sharing
Aula -1 - Correção sobre a Inclusão Própria
https://drive.google.com/file/d/1LEmEWpR5dvSOVHydiWMg481Asv-24Olb/view?usp=sharing
Aula 2 – Números Naturais – Primeiras Definições, Soma e Respectivas Propriedades
https://drive.google.com/file/d/1sffRXukcYPz_epkWHoxVfZTvzrLfT_Mf/view?usp=sharing
Aula 3 – Números Naturais – Multiplicação e Respectivas Propriedades
https://drive.google.com/file/d/1ZI8D2pAnCzVK9vIaglb0vJ_F_kJbEwJj/view?usp=sharing
Aula 4 – Princípio da Boa Ordenação
https://drive.google.com/file/d/16esbWWXqoj57se9t_CLEyVqCAKJdFIbF/view?usp=sharing
Aula 5 – O Conjunto dos Inteiros e o Conjunto Racional
https://drive.google.com/file/d/1QZGCSbdvTujk2ZLABfFZ-5NaAAzEZAoB/view?usp=sharing
Aula 6 – Conjuntos Limitados Superior e Inferiormente, Limitantes Superiores e Inferiores, Supremo e Ínfimo
https://drive.google.com/file/d/1zJjgSYb4DOTrxdBSrHVh6WzTioPgGL_8/view?usp=sharing
Aula 6 – Uma Correção sobre a Propriedade do Menor Limitante Superior e Supremos
https://drive.google.com/file/d/1c_VQyDtuCqMCCnUCmZnfhIHBufZh1ow6/view?usp=sharing
Aula 7 – Aula Síncrona de Exercícios de 20/05/2021
https://drive.google.com/file/d/1V8HSyAzJnGdLtUvCarKnaU5yJoAfiQLF/view?usp=sharing
Aula 8 – Corpos, Definições e Propriedades
https://drive.google.com/file/d/1qc3szWpurMNIoHPaW2BKW98eVDF-6qyc/view?usp=sharing
Aula 9 – Corpos Ordenados, Preparando a Rota para a Construção do Corpo Real
https://drive.google.com/file/d/1oDldZEprNzZtDJT0Js86eGFB6vNjOzgh/view?usp=sharing
Aula 10 – Existência do Corpo Real – Primeira Parte – Definição de Cortes
https://drive.google.com/file/d/14jf2A3HNSCx8DiPWh1hmcQvHRGqybnva/view?usp=sharing
Aula 11 – Existência do Corpo Real – Segunda Parte – Definição da Soma
https://drive.google.com/file/d/1qbYEdVKmYq05elVP4uSEMZoofDl75-b3/view?usp=sharing
Aula 12 – Aula Síncrona de Exercícios de 27/05/2021
https://drive.google.com/file/d/1JrQB4-7fHEzV_pHX6JH5u6uD_5a4yYF8/view?usp=sharing
Aula 13 – Existência do Corpo Real – Terceira Parte – Elemento Inverso em Relação à Soma
https://drive.google.com/file/d/1dKlWZRJRQv6hfLsKJjRgEu1ajvt-A17d/view?usp=sharing
Aula 14 – Existência do Corpo Real – Quarta Parte – Definição da Multiplicação
https://drive.google.com/file/d/1i9lcbFxIBcjsY8LkgNjitCLxAZqrq4zA/view?usp=sharing
Aula 15 – Existência do Corpo Real – Quinta Parte - Elemento Inverso em Relação à Multiplicação
https://drive.google.com/file/d/1nUmyMEydN_vlIm9Zf0fKr-TLm9EQVonU/view?usp=sharing
Aula 16 – Propriedade Arquimediana e Densidade do Conjunto Racional no Conjunto Real.
https://drive.google.com/file/d/1MQ-mLfrK4yOtzmtNnK5Ez9gbSnvD2N5G/view?usp=sharing
Aula 17 – A Raiz Quadrada de 2 é um Número Irracional – Prova Formal
https://drive.google.com/file/d/1nGyjfQNBRosM5XPJ1DogAGYbj3UAHW6s/view?usp=sharing
Aula 18 – Conjuntos Enumeráveis e Não-Enumeráveis
https://drive.google.com/file/d/1N0KX1fOm5DC0PxKyDwg0jtqKz0PvGk98/view?usp=sharing
Aula 18 – Uma Correção
https://drive.google.com/file/d/1uxTuj9wvACp0RYxVw_kanJAq7QZeNps5/view?usp=sharing
Aula 19 – Toda União Enumerável de Conjuntos Enumeráveis é Enumerável. O Conjunto Racional é Enumerável
https://drive.google.com/file/d/1oQ55qyWSI4rMlurv091_PluLuRwvgc-r/view?usp=sharing
Aula 20 – O Conjunto Real é Não-Enumerável
https://drive.google.com/file/d/1ob2fGGi1M7MuoaE3WPRxy0vtdAHUPuqs/view?usp=sharing
Aula 21 – Espaços Métricos – Primeiras Definições
https://drive.google.com/file/d/1Kayr7VV18pheX07LfvYIKLT9Y8mwdxK9/view?usp=sharing
Aula 22 – Definições Fundamentais em Espaços Métricos – Conjuntos Abertos, Fechados e Outras.
https://drive.google.com/file/d/17pjuu4hksC5fqqsZimpX3vQuypDzP9l7/view?usp=sharing
Aula 23 – Propriedades de Conjuntos Abertos e Fechados em um Espaço Métrico
https://drive.google.com/file/d/1v9B5g-VfZKKrrj57oA0-UA5qhKx58yP8/view?usp=sharing
Aula 24 – Propriedades de Conjuntos Abertos e Fechados em um Espaço Métrico – Segunda Parte
https://drive.google.com/file/d/1PSBAdCCBEWJ0YSYjBkCQ3ad8ODYqKgt8/view?usp=sharing
Aula 24 – Uma Correção
https://drive.google.com/file/d/1w0aqFCsyHK_Gs-BYZCV6PTvnGLUtR1gp/view?usp=sharing
Aula 25 - Aula Síncrona de Exercícios de 10/06/2021
https://drive.google.com/file/d/1dsHc0Bu9enMtHNCD_xcEomAaV8EL7Ac9/view?usp=sharing
Aula 26 – O Fecho de um Conjunto em um Espaço Métrico
https://drive.google.com/file/d/12YOyKgidrYIE6gCLNaHmNQrDTkanO5J5/view?usp=sharing
Aula 27 – Aula Síncrona de Exercícios de 17/06/2021
https://drive.google.com/file/d/1g5jGQEl9oBoiLXnyN9TgcfOBBE8KQhsJ/view?usp=sharing
Aula 28 – Conjuntos Compactos, Definições e Propriedades
https://drive.google.com/file/d/1dbhI0hZtB2ZxCHBNb8DHG2fjguYdbBj2/view?usp=sharing
Aula 29 – Aula Síncrona de Exercícios de 24/06/2021
https://drive.google.com/file/d/1UfSzVPK_fpnPXoQabjFmQNxsB-plEmQt/view?usp=sharing
Aula 30 – Conjuntos Compactos, Propriedades – Segunda Parte
https://drive.google.com/file/d/1F7dVAOyCF4zvTozkt8-Ckq4E2muaqH1f/view?usp=sharing
Aula 31 – Todo Intervalo Real Fechado e Limitado é Compacto
https://drive.google.com/file/d/1uexHRUQqzzMiYVIcWiwkFMnHR7qwYQBw/view?usp=sharing
Aula 32 – O Teorema de Heine-Borel
https://drive.google.com/file/d/1OaO9S27Du4y5Vscltmu6CJXoWaLtJA8p/view?usp=sharing
Aula 33 – Aula Síncrona de Exercícios de 01/07/2021
https://drive.google.com/file/d/17UjHVcqAKhKa24B9j_4FeCf_L7vjiX3L/view?usp=sharing
Aula 34 – Sequências Reais, Primeiras Definições e Limites
https://drive.google.com/file/d/1W8vngdGaQTUPyx-lRAr66zbtkJk6fE7d/view?usp=sharing
Aula 35 – Unicidade do Limite, Sequências Reais Convergentes são Limitadas
https://drive.google.com/file/d/1f-GccYCx1I2hCXix-2YPFwi9o7jddCXs/view?usp=sharing
Aula 36 – Sequências Reais Monótonas e Limitadas são Convergentes
https://drive.google.com/file/d/1XiiogI8NC9QvY6mO_6eNRZJ85GT9-q7o/view?usp=sharing
Aula 37 – Propriedades dos Limites de Sequências Reais
https://drive.google.com/file/d/1C27A_HVIBFd5-lOQnrD3slROsdJhpf7s/view?usp=sharing
Aula 38 – Teorema do Confronto para Sequências Reais
https://drive.google.com/file/d/1qC8EwzXcnXuD9P0qU66yBbS7V4LXSXlh/view?usp=sharing
Aula 39 – Condição Necessária e Suficiente para um Número Real Ser Limite de uma Subsequência
https://drive.google.com/file/d/14PyFJSfQDq-R4ONNvnpTV_RJr1tE_2Hh/view?usp=sharing
Aula 40 – Limites Superior e Inferior de uma Sequência Real Limitada
https://drive.google.com/file/d/1rZa-YSk_3j6ZgY3YINoA3x8Rqe9UiXan/view?usp=sharing
Aula 41 – Aula Síncrona de Exercícios de 15/07/2021
https://drive.google.com/file/d/1fPZkLy8juX2n6N7_7x5I0h-5SavtTCKH/view?usp=sharing
Aula 42 – Uma Sequência Real Limitada é Convergente se, e somente se, Seus Limites Inferior e Superior são Iguais
https://drive.google.com/file/d/16KA_Ym59W5laEbnUaN3ZTQ5lC-qQJNps/view?usp=sharing
Aula 43 – Sequencias Reais de Cauchy – Sequências Reais são de Cauchy se, e somente se, são Convergentes
https://drive.google.com/file/d/1amG5w0QK3cfnSjtuHemqsJs9EncAFoWC/view?usp=sharing
Aula 44 – Uma Classe Especial de Sequências de Cauchy
https://drive.google.com/file/d/1KNO-M39m73QCegIXrWlkD8AAUn0SC0v_/view?usp=sharing
Aula 45 – Limites Infinitos para Sequências e Primeiras Definições e Resultados sobre Séries Numéricas Reais
https://drive.google.com/file/d/1Ouyo2p0JJ7JoR9zBjNl-TTKZzdoZ7iDb/view?usp=sharing
Aula 46 – O Critério de Comparação para Séries Reais
https://drive.google.com/file/d/1rSGQvdv__rPqvHMXGp7A0vldhTsF3EzB/view?usp=sharing
Aula 47 – Critério de Cauchy para Séries Reais e o Teste da Raiz
https://drive.google.com/file/d/1e4CahL25rNOvezpXUD6ndkaq08_dYT8L/view?usp=sharing
Aula 48 – Teste da Razão – Primeira Parte
https://drive.google.com/file/d/1Wqoi5LJyzYIN0wKAaicG_UKQ66jAahNJ/view?usp=sharing
Aula 49 – Um Resultado sobre a Comparação entre os Testes da Raiz e da Razão
https://drive.google.com/file/d/1x1Piq5o8ugYmUfMM2KBP5achiH_5LZLA/view?usp=sharing
Aula 50 – Aula Síncrona de Exercícios de 29/07/2021
https://drive.google.com/file/d/1hGiPmR-FAA8Z9GN5ABY3vHKQyHjnVrxN/view?usp=sharing
Aula 51 – Limites de Funções Reais. Primeiras Definições, Resultados e Exemplos
https://drive.google.com/file/d/1uAsDKuI0SqpY_hBNnBwifkpe8aEDd43N/view?usp=sharing
Aula 52 – Teorema do Confronto para Limites de Funções Reais
https://drive.google.com/file/d/1G57PIMYc41FpY_i09ctXvqwVUsi0CUri/view?usp=sharing
Aula 53 – Uma Condição Necessária e Suficiente para um Número Real Ser Limite de uma Função Mediante Sequências
https://drive.google.com/file/d/1fad2jcp-JAJghfVfwJZQ4GabVYMqOdi6/view?usp=sharing
Aula 54 – Uma Condição Suficiente para que o Limite de uma Função Exista Mediante Sequências
https://drive.google.com/file/d/1XlgV5ELR-d5ph0V4L0pmTgPAhMKFtwii/view?usp=sharing
Aula 55 – Propriedades dos Limites de Funções Reais
https://drive.google.com/file/d/1lsABs18ddocJu5CFFPqahpm1IXucKomN/view?usp=sharing
Aula 56 – Limites para Funções Compostas
https://drive.google.com/file/d/1UMbfm59_2XUtbbqSuR_T57FHZVk9BOeb/view?usp=sharing
Aula 57 – Funções Monótonas e Limites Laterais
https://drive.google.com/file/d/1Z-xTgk5wUwg4PmeVxpPF9FVlCL3_9qmH/view?usp=sharing
Aula 58 – Aula Síncrona de Exercícios de 05/08/2021
https://drive.google.com/file/d/1TpCqUsaRIe0w0h7GV-HXdV1bd6xXOULw/view?usp=sharing
Aula 59 – Valores de Aderência para Funções Reais
https://drive.google.com/file/d/1EM2oR43m36aiUNisjkSozd2vjugfI1MC/view?usp=sharing
Aula 60 – O Conjunto dos Valores de Aderência é Compacto para uma Função Limitada numa Vizinhança do Ponto em Questão
https://drive.google.com/file/d/1md510RFCAB45Mf5OXkAMK-eAtV8JjloJ/view?usp=sharing
Aula 61 – Limites Superiores e Inferiores para Funções Reais
https://drive.google.com/file/d/1n1awt1gLu3xJEjOcbmyEN30D1NV-0Np4/view?usp=sharing
Aula 62 – Aula Síncrona de 12/08/2021 – Limites Infinitos
https://drive.google.com/file/d/1SCpUqrQ2qx6laLXZU7FYESCTfn1mF3jh/view?usp=sharing
Aula 63 – Limites Reais no Infinito
https://drive.google.com/file/d/1pWMT6H3cAmNIYg4NT26mkP51yJyfjy8B/view?usp=sharing
Aula 64 – Limites Infinitos no Infinito
https://drive.google.com/file/d/1qegopjPQ86I1VWpzeT85dL77QhhqNNwQ/view?usp=sharing
Aula 65 – Funções Contínuas, Primeiras Definições e Resultados
https://drive.google.com/file/d/1Cm3hvyp2-VDLLlPpKfRAGUqWiemg4vRx/view?usp=sharing
Aula 66 – Uma Função Real em um Aberto é Contínua Se, e Somente Se, sua Pré-Imagem é Aberta para todo Aberto Real
https://drive.google.com/file/d/1eqQckKv2vQ1IARJdjUeBVhokCgGKIKTU/view?usp=sharing
Aula 67 – Propriedades das Funções Contínuas, Continuidade da Função Composta
https://drive.google.com/file/d/1CI-kwuPnDkurJ5qfnNJzx3O3dbVsN-Yl/view?usp=sharing
Aulo 68 – Descontinuidades de Primeira e Segunda Espécies para Funções Reais
https://drive.google.com/file/d/1qWKxhZWRVQ6-fNZU6B5cEhWiUFtRsHNO/view?usp=sharing
Aula 69 – Funções Contínuas em Conjuntos Compactos
https://drive.google.com/file/d/1A8iScNj13satu_Rge6ttWLP2OVmpxJdW/view?usp=sharing
Aula 70 – Aula Síncrona de 19/08/2021 – Teorema do Valor Intermediário
https://drive.google.com/file/d/17jkRkATqeIYBpAQzTOl_ovsP7OSiJRV_/view?usp=sharing
Cálculo 4 – 2020-2
Aula 1 – Sequências Reais, Definições, Propriedades e Limites
https://drive.google.com/file/d/1aYi9EUBgmQZZOhMkpELppgSzaQcoL3Ue/view?usp=sharing
Aula 2 – Teorema do Confronto, Exemplos e Exercícios
https://drive.google.com/file/d/1SMqssRs_cz1iFy4HVk8HABRQ8kbA-mF2/view?usp=sharing
Aula 3 – Sequências Monótonas, Definições e Exercícios
https://drive.google.com/file/d/1d2flG1HKJOM1Iq0vFKzuCJ7xALfvT0hd/view?usp=sharing
Aula 4 – Outros Resultados sobre Sequências Reais e Exercícios
https://drive.google.com/file/d/1yYtxhYYI2skZ6MRwfLGTFqgemykVh8Qg/view?usp=sharing
Aula 5 – Limites Superior e Inferior de uma Sequência Limitada
https://drive.google.com/file/d/1y8dzMxI1lzv0JYLpEiA43UezRyKkBI1x/view?usp=sharing
Aula 6 – Sequências Reais de Cauchy
https://drive.google.com/file/d/1axmNPJGYRo_GkXm2lkUW-Y4G1_LqNYdh/view?usp=sharing
Aula 7 – Uma Classe Especial de Sequências de Cauchy
https://drive.google.com/file/d/1iZ77Z272O1cjqHfS1lIpIqwUwr4hFTNZ/view?usp=sharing
Aula 8 – Séries Numéricas Reais – O Critério de Comparação para Convergência de Séries Reais
https://drive.google.com/file/d/1ixk-ilb90DpjuFD4QCKl-zp03k8gtbd7/view?usp=sharing
Aula 9 – Critério de Convergência para Séries Alternadas
https://drive.google.com/file/d/1zmSmxFIsGptDvnIA0TV8afvYUt9vdDGe/view?usp=sharing
Aula 10 – Teste da Razão para Convergência de Séries Reais
https://drive.google.com/file/d/1229Fz0QZgeebMI4b3y2bag1G2ptNBg1r/view?usp=sharing
Aula 11 – Teste da Raiz para Convergência de Séries Reais
https://drive.google.com/file/d/1PtaRiNXPlNE7HBx9TuvUB7d3C0xsSgch/view?usp=sharing
Aula 12 – Critério de Comparação das Razões para Convergência de Séries Reais
https://drive.google.com/file/d/1b6FM0PgJJPvNoip82mk4CkMdUpvJQr-L/view?usp=sharing
Aula 13 - Critério da Integral para a Convergência de Séries Reais
https://drive.google.com/file/d/12v_9Yb8T9rSPFKEWLANQELQeJ_G0LX2R/view?usp=sharing
Aula 14 – Critério de Comparação dos Limites para Convergência de Séries Reais
https://drive.google.com/file/d/1Ea1AOw6PB3UIhmY9_2MZiMn8Q_B476QE/view?usp=sharing
Aula 15 – Critério de Cauchy para a Convergência de Séries Reais
https://drive.google.com/file/d/1Ny3ify7HJAVeQ4oYfBU8hDkR_BMIjn3M/view?usp=sharing
Aula 16 – Lema de Abel e Critério de Dirichlet para a Convergência de Séries Reais
https://drive.google.com/file/d/1T5oLPUuLFK1cw5WLqccLcQlaGCKFvJzp/view?usp=sharing
Aula 17 – Sequências de Funções (Primeira Parte)
https://drive.google.com/file/d/16so3zARFbYfJtFZROP6S5BWg7JW0rs3t/view?usp=sharing
Aula 18 – Integrais e Derivadas de Sequências de Funções Uniformemente Convergentes
https://drive.google.com/file/d/1DNRk1fgikRgIKvhKs8ByhTKjNMw_Gb1v/view?usp=sharing
Aula 19 – Séries de Funções, Definições e Primeiros Resultados
https://drive.google.com/file/d/1l87B08DaRGDVpli9zraKeQz9vZ8HCPbx/view?usp=sharing
Aula 20 – Aula Síncrona do dia 26/03/2021 – Exercícios
https://drive.google.com/file/d/10x1hs46cq0biNh2S90KHsIe64UuAO6hD/view?usp=sharing
Aula 21 – Critério M de Weierstrass para Convergência Uniforme de Séries de Funções Reais
https://drive.google.com/file/d/1NbJTuVYacAKUfb2zMBgdLxt3oiEsZ_vy/view?usp=sharing
Aula 22 – Integrais e Derivadas de Séries de Funções Uniformemente Convergentes
https://drive.google.com/file/d/1dIrTsWMS0wHNANQpla1jWf090TaLlWJE/view?usp=sharing
Aula 23 – Séries de Potências, Primeiras Definições e Resultados
https://drive.google.com/file/d/1ddrx_ggnHVgmyMx6IMGWKOXfTHCa0cg-/view?usp=sharing
Aula 24 – Séries de Potências – Raio de Convergência
https://drive.google.com/file/d/1Mvxtd4bkdOl9Q2NMaOECLR38EtSnEn5O/view?usp=sharing
Aula 25 – Integrais e Derivadas de Séries de Potências
https://drive.google.com/file/d/19m0PrdmVth7NMsAK0-beAXjRHpqfaNM8/view?usp=sharing
Aula 26 – Séries de Fourier – Primeiros Resultados
https://drive.google.com/file/d/1vMnh3SOz_NkmC_bXCz_6zs54KdfbDEr9/view?usp=sharing
Aula 27 – Convergência Uniforme da Série de Fourier de uma Função de Classe C² num intervalo fechado
https://drive.google.com/file/d/1mPX9wdARHwIDeK1jvDGJ83aXfoadGchR/view?usp=sharing
Aula 28 – A Série de Fourier de uma Função de Classe C² Converge Uniformemente para tal Função num Intervalo Fechado
https://drive.google.com/file/d/1yWj3jDkim5GyGuZfVb3hR2QexPoxWpSH/view?usp=sharing
Aula 29 – Um Exercício sobre o Cálculo da Série de Fourier de uma Função
https://drive.google.com/file/d/1oKVxRIyNIbJoOSG2RDVghe2nu6jtbzpr/view?usp=sharing
Aula 31 – Revisão – Teorema do Valor Médio – Preparando a Rota para a Prova da Fórmula de Taylor
https://drive.google.com/file/d/1e45ZD0zYDwGGsc9kEyQf5I_NGZwL4Cqn/view?usp=sharing
Aula 32 – Fórmula de Taylor – Preparando a Rota para as Séries de Taylor
https://drive.google.com/file/d/1R64AwA5RVEneU6Eji0dJwQKH4_d8jGEq/view?usp=sharing
Aula 33 – Método de Separação de Variáveis para EDPs – Equação do Calor
https://drive.google.com/file/d/1nT3IoTb48Lek5_bkcR1ftghdLHjV_0_E/view?usp=sharing
Aula 34 – Obtenção da Equação da Onda mediante o Cálculo Variacional
https://drive.google.com/file/d/1FZBVS9MZ8vGeHPY3MwsyPWvSFn1Ef0ih/view?usp=sharing
Correções para a Aula 34
https://drive.google.com/file/d/1hn7bKEF5jjBvsJU2r5QMrACs0Q4g78Nw/view?usp=sharing
Aula 35 – Equação da Onda – Solução pelo Método de Separação de Variáveis
https://drive.google.com/file/d/1ev858heD3AQUoMi7Y4heet37ybgDpD37/view?usp=sharing
Medida e Integração 2020-2
Aula 1 – Funções Mensuráveis
https://drive.google.com/file/d/16FFeUUZmCAvoIbRNWAvAAKVy9M6s0PYo/view?usp=sharing
Aula 2- Propriedades das Funções Mensuráveis
https://drive.google.com/file/d/1wgRP322Q5iy5Evj0j_hRqeWRy4ThsQIr/view?usp=sharing
Correções e um exercício sobre a Aula 2
https://drive.google.com/file/d/1HG0dk5H_e6ZQPdJtZz2GG_9eLgNwRslf/view?usp=sharing
Aula 3 – Propriedades do Ínfimo, Supremo e Limites de Sequências de Funções Mensuráveis
https://drive.google.com/file/d/1hzNqI_7LMW6bJLnESqrNAG7rKPaSXn6Q/view?usp=sharing
Aula 4 – Medidas, Definições e Propriedades
https://drive.google.com/file/d/12F_rxVEBcFYW74YZN61sr2ZMFLRTRLSz/view?usp=sharing
Aula 5 – Funções Simples, Propriedades e Integrais
https://drive.google.com/file/d/1Ka_FGCzN7TucP2QhgfE7lwvo5JbKWZkv/view?usp=sharing
Aula 6 – A Integral de Lebesgue, o Teorema da Convergência Monótona de Lebesgue
https://drive.google.com/file/d/1PZriu67bahRRpQxLzjxIAmYV8fQInZw1/view?usp=sharing
Aula 7 – Revisão – Teorema da Convergência Monótona de Lebesgue
https://drive.google.com/file/d/1g9SP4wwG045rv6A1dG8hsi2Tx_MjL7Gm/view?usp=sharing
Aula 8 – Lema de Fatou
https://drive.google.com/file/d/1eonudNpY1tDA_YCaNFLvlRogL0PL_MKT/view?usp=sharing
Aula 9 – Integral e Conjuntos de Medida Zero, Teorema de Lebesgue da Convergência Monótona num Contexto mais Geral
https://drive.google.com/file/d/13iQbeMKufB-kuTgKa7Lw3BfZFbjYNwmC/view?usp=sharing
Aula 10 – Funções Integráveis à Lebesgue, Propriedades da Integral de Lebesgue
https://drive.google.com/file/d/1FAiHxwyltpy6SsvFWna9vFAinsdpZYBW/view?usp=sharing
Aula 11 – Teorema de Lebesgue da Convergência Dominada
https://drive.google.com/file/d/1ZD_b3N383sgWo64VHnz73U6dHXHxcr3F/view?usp=sharing
Aula 12 – Revisão - Integrais que Dependem de um Parâmetro
https://drive.google.com/file/d/1xjS7T1r4uTtCQBZWJWK_kxG9-hF0ujzL/view?usp=sharing
Aula 12 A – Integrais que Dependem de um Parâmetro, Parte Final
https://drive.google.com/file/d/1-1bBgAf3UGXD7a6asxgRp82N45zvT9lB/view?usp=sharing
Aula 13 – Espaços Lp – Desigualdade de Hölder
https://drive.google.com/file/d/1wQpMcNgGfwldVSpoBK5kmCM933-Wzj8L/view?usp=sharing
Aula 14 – Espaços Lp – Desigualdade de Minkowiski
https://drive.google.com/file/d/1_0mwUJZJjyVY3em-4s-QAr2LeWKfvE6s/view?usp=sharing
Aula 15 – Espaços Lp são Espaços de Banach , onde 1≤ p<∞
https://drive.google.com/file/d/1JdHu3PNV1eJRPe8NspPUSQQ49e3_NlZ8/view?usp=sharing
Aula 16 – Espaços L∞ são Espaços de Banach
https://drive.google.com/file/d/1FDzmXVt78DMyDDBOrzeT1H9apUKMN8SQ/view?usp=sharing
Aula 17 – Modos de Convergência – Primeira Parte
https://drive.google.com/file/d/1P0y-xtmTCcAOz4T0utqGSlCPeOmvoV_8/view?usp=sharing
Aula 18 – Convergência em Medida
https://drive.google.com/file/d/1DtclFy1YDEZ8v1uaPZG5yiMSHghDQlRj/view?usp=sharing
Aula 19 – Convergência em Medida Implica para uma Sub-Sequência Convergência Simples em Quase Todo o Domínio
https://drive.google.com/file/d/16mmVAfV1rHOvujid6E1JASTYKJD1oASa/view?usp=sharing
Aula 20 - Exercício 3Q – Capítulo 3 – Bartle
https://drive.google.com/file/d/17h9lBMRIGZ0OeOqWOvE8va_CJK-WjM_8/view?usp=sharing
Aula 21 – Sequências de Cauchy em Medida Convergem em Medida
https://drive.google.com/file/d/1RaQk4RZEclSS3O6vu3lPfZw8CFdJErIP/view?usp=sharing
Aula 22 – Sequências Convergentes em Medida Dominadas em Módulo Pontualmente por uma Função no Lp Convergem em Lp
https://drive.google.com/file/d/1Uc-35v-yWi7wxXGIsjf-oVw7q-WZCgjo/view?usp=sharing
Aula 23 – Sequências Quase Uniformemente de Cauchy Convergem Quase Uniformemente e Convergem Pontualmente em Quase Todo o Domínio
https://drive.google.com/file/d/1drWUq3bNWmJtz5dNwuK3q9lnqbs_mnvr/view?usp=sharing
Aula 24 – Relações entre Convergência Quase Uniforme e Convergência em Medida (Revisada)
https://drive.google.com/file/d/15f1l44p87f7m8HqP8D3hlhNnBetfUQHx/view?usp=sharing
Aula 24 – Correções
https://drive.google.com/file/d/1yR0uFyxPvdDgayvqJYfukgW0Jf5dl3PD/view?usp=sharing
Aula 25 – Teorema de Egoroff
https://drive.google.com/file/d/1Z55LvI7Sph-oRDUTe-j43UJ0I3mBwO8Z/view?usp=sharing
Aula 25 – Correções (na conclusão da aula)
https://drive.google.com/file/d/1dceMhA6OZgVtKxNE0Yf3WyPMmqdRyVTu/view?usp=sharing
Aula 26 – Teorema de Vitali (Primeira Parte)
https://drive.google.com/file/d/1d3yBs4MpC9flm1ZRt0gZSpm8mDi1LKvk/view?usp=sharing
Aula 27 – Teorema de Vitali (Segunda Parte)
https://drive.google.com/file/d/1JNvXB5HRcNCQNvuk7lDeScR1Er6iarqA/view?usp=sharing
Aula 28 – Teorema de Vitali (Terceira Parte – Recíproca das Primeira e Segunda Partes)
https://drive.google.com/file/d/1vVhQQtaPM9IIvMt5NGeuDNgGjuLizArT/view?usp=sharing
Aula 29 – Exercício 5.O – Capítulo 5 – Bartle
https://drive.google.com/file/d/1An38Ala_XmkUU1twNFxDmHT47EToVTsO/view?usp=sharing
Aula 30 – Exercício 5.D – Capítulo 5 – Bartle
https://drive.google.com/file/d/1HwOSdc0xCXleQh0TIQB1CH1w5la0SLiG/view?usp=sharing
Correções – Aula 30 – Exercício 5.D – Bartle
https://drive.google.com/file/d/1sX7h_WJ34rFponnD2SdBO_ek3wpU3AXB/view?usp=sharing
Aula 31 – Exercício 5.C – Capítulo 5 – Bartle
https://drive.google.com/file/d/1izVpvR0iG6y3ybcwDOznMaBkQC6uKroK/view?usp=sharing
Aula 32 – Medidas com Sinal, Primeiras Definições e Resultados
https://drive.google.com/file/d/1tZUxvCDBPudiCnDpDdCfM6H0kK5hT7H7/view?usp=sharing
Aula 33 – Medidas com Sinal, Conjuntos Positivos e Negativos, Propriedades e Resultados
https://drive.google.com/file/d/1V_v_MR-Bm6LnMggyOIXU1iaxIGDKumUp/view?usp=sharing
Aula 34 – Decomposição de Hahn e Respectiva Decomposição de Jordan de uma Medida com Sinal
https://drive.google.com/file/d/1xS6yjPFCsR9CMLApo4jTgxQZPDuHAahD/view?usp=sharing
Aula 35 – Exercício Adicional de Preparação para a Primeira Avaliação
https://drive.google.com/file/d/1Okqlqw-ATceT2lwhwaHfBzT-X1VVEuZG/view?usp=sharing
Aula 36 – Exercício 4 S – Capítulo 4 – Bartle
https://drive.google.com/file/d/1cNFe-QcgALRBUGWy_vrz88tMpGiPHfhG/view?usp=sharing
Aula 37 – Exercício 4 T – Capítulo 4 – Bartle
https://drive.google.com/file/d/1a1opcnJY-9DwfrDyk0qdF7iJ8RoPxvda/view?usp=sharing
Aula 38 – Teorema de Radon-Nikodym
https://drive.google.com/file/d/1AV3G7jwigXIWsJjtnMLpppU0GNri_8XH/view?usp=sharing
Aula 39 – Teorema da Decomposição de Lebesgue
https://drive.google.com/file/d/1lJnjJjVuN4FtCMqVwOVUCiwcNtyYpK5c/view?usp=sharing
Aula 40 – Densidade das Funções Simples e Mensuráveis no Espaço Lp, onde 1≤ p< +∞.
https://drive.google.com/file/d/1yevqmoLbGx0eyiThMFckvRu-h5VyiwXA/view?usp=sharing
Aula 41 – Preparando a Rota para a Representação do Espaço Dual ao Lp, onde 1<p<+∞
https://drive.google.com/file/d/1BlLy3EDwDmDkC37JaCbWUTSk0ckF678x/view?usp=sharing
Aula 42 – (Revisada) Um Lema Auxiliar sobre uma Classe Especial de Séries de Funções no Lp
https://drive.google.com/file/d/1lM1CEYpmstXMBu-yedbcvIqoe1NTYwi7/view?usp=sharing
Aula 43 – Representação do Espaço Dual ao Lp – Teorema de Riesz – Parte 1 – Medida Finita
https://drive.google.com/file/d/1Ztrg3bDB8fsGkDSxXirs8HF2s7e-fqqo/view?usp=sharing
Aula 44 – Representação do Espaço Dual ao Lp – Teorema de Riesz – Parte 2 – Medida Sigma-Finita
https://drive.google.com/file/d/1eIMTzE0qF-TyW3slWOmnXhRg3Pwm_y4J/view?usp=sharing
Aula 45 – Representação do Espaço Dual ao Lp – Teorema de Riesz – Parte 3 – Caso Geral
https://drive.google.com/file/d/1e7Mvyre6GceGPd4hbwLmDYehBJ9sTCkZ/view?usp=sharing
Aula 46 – Definições de Álgebra de Conjuntos e Medida Sobre uma Álgebra – Exemplos na Reta Real
https://drive.google.com/file/d/1K7fWHv-fPfbDXOyA0dIZstoGxp0leIBj/view?usp=sharing
Aula 47 – Medida Exterior, Definição e Propriedades
https://drive.google.com/file/d/1S5VRUwTKwcuWViC-BeSx7ESM90FM05Ks/view?usp=sharing
Correções para a Conclusão da Aula 47
https://drive.google.com/file/d/1r_PBchbOxJavxhbJ-JkN4Fnrj4Zqbkcl/view?usp=sharing
Aula 48 – Medida Exterior - Teorema de Carathéodory
https://drive.google.com/file/d/1_4-dK8zlly2lX3IKh-ddPWQncAPYqYDJ/view?usp=sharing
Aula 49 – Teorema da Extensão de Hahn, Medida de Lebesgue e Medida de Lebesgue-Stieltjes
https://drive.google.com/file/d/1gIfFN9IQVw9ezMlW-H9izhc2ddFUhtWa/view?usp=sharing
Aula 50 – Representação do Espaço Dual ao Espaço das Funções Contínuas C([a,b]), Teorema de Riesz
https://drive.google.com/file/d/1zve01-RVyIpln090-Fxynnks-EN4kwlk/view?usp=sharing
Aula 51 – Aula Síncrona de 14/04/2021 – Exercícios – Capítulo 6 – Bartle
https://drive.google.com/file/d/1FqCi1nMF4aPZJKKXlHRXKMKbZs4eWcBw/view?usp=sharing
Aula 52 – Espaços de Medida Produto , Primeiras Definições
https://drive.google.com/file/d/1oWy_HsROuHhtZh6_x1yHSDsVV-IcPMFJ/view?usp=sharing
Aula 53 – Sobre a Mensurabilidade de Seções x e y de Conjuntos e Funções Mensuráveis no Espaço Produto X x Y.
https://drive.google.com/file/d/1DTrS2Shk_ZVn5S6UwwgNBX-40Cbgruvd/view?usp=sharing
Aula 54 – Classes Monótonas em Espaços Mensuráveis
https://drive.google.com/file/d/1kvFr5-4wOzotetu6hoy2T2N8Jb3R29UJ/view?usp=sharing
Aula 55 – Integração de Funções Simples no Espaço Produto
https://drive.google.com/file/d/1mtwGmVcle9PFX8p1U6NVRLlmdpiOLY0X/view?usp=sharing
Aula 56 – Teoremas de Tonelli e Fubini sobre Integração Iterada em Espaços Produto
https://drive.google.com/file/d/1dyIXbKi8nIR9Zm2O2g2aY0pOGIQXfs72/view?usp=sharing
Aula 57 – A Medida de Lebesgue no Rn – Medida Exterior e Propriedades
https://drive.google.com/file/d/1PKSeFZPV0XXiCbZhLlc4enwTpVXZTtyS/view?usp=sharing
Aula 58 – Aula Síncrona de 28/04/2021 – Exercícios - Bartle (Devido a uma falha na conexão comece o vídeo aos 14 minutos)
https://drive.google.com/file/d/1Pe4dzZ3q-9s0AMJyZkvZzXERP-IHSiYD/view?usp=sharing
Remark: My work on duality theory is a kind of extension and generalization of some results of J.J. Telega and W.R. Bielski combined with a specific D.C. optimization approach.
It is a great honour for me to have my work based on those of such exceptional researchers.
I am very grateful for their wonderful contributions to applied mathematics and to science as a whole.
My new book entitled
Last article:
arXiv:2012.03053 [pdf, ps, other]
math.CA math.AP math.FA
A note on the Korn inequality in a n-dimensional context
Authors: Fabio Silva Botelho
Abstract: In this short communication, we present a new proof for the Korn inequality in a n-dimensional context. The results are based on standard tools of real and functional analysis. For the final result the standard Poincaré inequality plays a fundamental role.
Submitted 5 December, 2020; originally announced December 2020.
Comments: 6 pages
MSC Class: 35Q74
Cálculo Avançado 2020-1
Resultados da terceira avaliação
Unidade I – Análise Diferencial no Rn
Aula
10 C - Teorema da Função Implícita no Rn - Caso
Escalar
(Revised)
https://drive.google.com/file/d/1gYzpEqsPElKZsNF3QzAotRtA0_W3rSzu/view?usp=sharing
Correções- Aula 10 C - O Teorema da Função Implícita no Rn, Caso Escalar
https://drive.google.com/file/d/1HsJA9h0DJ2BnZd0_fxira1UVG_VFhPmN/view?usp=sharing
Link
Aula 11 - B - Funções Vetoriais no
Rn
https://drive.google.com/file/d/1OvJlyA4u6dbxDfjuqELWQQobZq4VB6nV/view?usp=sharing
Link
Aula 12 - B - Limites, Continuidade e Diferenciabilidade de
Funções
Vetoriais
no
Rn
https://drive.google.com/file/d/1clMrPeeiyYVXZ8QIxwutoU3tAjpEIJAZ/view?usp=sharing
Link
Aula 13 - B - Desigualdade do Valor Médio para Funções
Vetoriais
https://drive.google.com/file/d/1MFD6KCJqdDaaww9yvu71XgeVznAon75l/view?usp=sharing
Aula 14 - O Teorema do Ponto Fixo de Banach no Rn
https://drive.google.com/file/d/1syoBLL877l5M5AMRWwazfExI_UROocrf/view?usp=sharing
Aula
15 - Teorema da Função implícita, Caso Vetorial
no Rn (Links para as
vídeo-aulas)
https://drive.google.com/file/d/1qIIsFGxSoXQnxc6xe_HtBCuWSuw-9880/view?usp=sharing
Aula
16 - O Método dos Multiplicadores de Lagrange (Parte 1)
https://drive.google.com/file/d/1DfALNu7KhKNle61sZct3ERem0bsaoiPi/view?usp=sharing
Aula
17 - Multiplicadores de Lagrange, Caso no R4 com Duas Restrições
(Parte
2)
https://drive.google.com/file/d/1nuQz_aXfZRCJW_IFnieQmcp3Df1n3sjU/view?usp=sharing
Aula
18 - Multiplicadores de Lagrange, Caso Geral no R(n+m)
https://drive.google.com/file/d/1Fj72BhuPvzitB9u85M4-M1OU38q17uzS/view?usp=sharing
Aula
19 - Teorema da Função Inversa no Rn
https://drive.google.com/file/d/1DR5mt1xi7V6i7K3wQH6XGqKwBJllzbyd/view?usp=sharing
Unidade II - Integração no Rn
Aula 20 - Integração no Rn - Primeiras Definições e Resultados
https://drive.google.com/file/d/1k6iXydl_QfdTmoMEIILgfDWvjpz1BGhB/view?usp=sharing
Aula
21 - Critério de Integrabilidade no Rn e Propriedades da
Integral
de
Riemann
https://drive.google.com/file/d/1UYWxF1nh0-TISiL397DBMjyVlP-KVbZ4/view?usp=sharing
Aula
22 - Propriedades da Integral de Riemann no
Rn
https://drive.google.com/file/d/1BhpHcnirYN-Ep47jnDt8Zsh7I9dZwAgY/view?usp=sharing
Aula 23 - A Integrabilidade à Riemann no Rn da Função Composta
https://drive.google.com/file/d/13cnXlxAAUNkRL3-h4IKmUXWMtEDOKlEH/view?usp=sharing
Aula 24 – Integrabilidade de Funções Contínuas em Blocos Compactos no Rn
https://drive.google.com/file/d/1mp-Vn1FAJiciGoSncgc9pAjKXO6B3Y1S/view?usp=sharing
Aula
25 - Propriedades da Medida Exterior no
Rn
https://drive.google.com/file/d/135R3uynfSoeYbmhA1-pR7Gs9ZBYdasel/view?usp=sharing
Aula 26 - O Critério de Integrabilidade de Riemann Lebesgue - Primeira Parte
https://drive.google.com/file/d/1YrKr9NF-bIHdo-BrlCEwJEh85unM3pfN/view?usp=sharing
Aula 27 - Critério de Integrabilidade de Riemann-Lebesgue - Segunda Parte
https://drive.google.com/file/d/1JaeEeOhTJoQNYA1-T0PybUkPNhTwXAto/view?usp=sharing
Aula
28 - Somas de Riemann -Primeira
Parte
https://drive.google.com/file/d/1HZe4pb8DnMbSE-zoYk-GLS0C1d4k4NFc/view?usp=sharing
Aula
29 - Somas de Riemann - Segunda
Parte
https://drive.google.com/file/d/1SjXCe2ZkcAMdwZo-PdYY8ngSByTDK2PM/view?usp=sharing
Aula 30 Integração Dupla - Formalismo e Exemplos
https://drive.google.com/file/d/1fZFJPdWZrOBr9iAofrlMt5-YEd42EWhV/view?usp=sharing
Aula 31 - Mudança de Variáveis na Integral Dupla
https://drive.google.com/file/d/14BZN8z2dWlV0HspdXve_aIEhz5zHzSZe/view?usp=sharing
Aula 32 - Integração Tripla no R3 - Primeira Parte
https://drive.google.com/file/d/1rkCMyBFRRezI20ORUE0Po89kmyKi2Fr9/view?usp=sharing
Aula 33 - Mudança de Variáveis na Integral Tripla no R3
https://drive.google.com/file/d/1hZchIZM5RgpyBeeK00EsIJmh_iM_Kwtc/view?usp=sharing
Aula 34 - Integral Tripla no R3 em Coordenadas Esféricas
https://drive.google.com/file/d/1t8uvuYlDS0bHoanamRQlhQcIflKGOCtG/view?usp=sharing
Aula 35 - Integrais de Linha
https://drive.google.com/file/d/1UqRohi0adP6UQ9KmY0AdLV9lK041BPMR/view?usp=sharing
Aula 36 - Teorema de Green no Plano
https://drive.google.com/file/d/1u19Nz5VYZH4_DX-J3W78wxYyanM9cKrB/view?usp=sharing
Aula 36 - Teorema de Green no Plano - Correções
https://drive.google.com/file/d/1LMT4U-oYyqE-SsaTjHQKsM37zd0ElPfv/view?usp=sharing
Aula 37 - Formas Diferenciais no R3
https://drive.google.com/file/d/1JahXKqm7xxKZ-GJmb9NnDaA4gA8rFUSZ/view?usp=sharing
Aula 38 - Condições necessárias e suficientes para um campo vetorial ser um gradiente no Rn
https://drive.google.com/file/d/1HCQ3QTKyVvtXQV1d1s66WumC5bCZMzZl/view?usp=sharing
Aula 39 - Superfícies no R3 - Cálculo da Área
https://drive.google.com/file/d/1aCnTLtq5O14BKRnzTn5j9aWUq6ped8gn/view?usp=sharing
Aula 40 - Equações Paramétricas de uma Superfície no R3 - Cálculo da Área
https://drive.google.com/file/d/1S4gIHQbyzqg_ezh6P6NwBLj2in0nuu3_/view?usp=sharing
Aula 40 - Equações Paramétricas de Superfícies no R3 - Correções
https://drive.google.com/file/d/1wU8seT9W8Gz2wKhBvCqSWvzWv9fD1CBh/view?usp=sharing
Aula 41 - Teorema da Divergência no R3
https://drive.google.com/file/d/1RXXonWIrGO6i1jpnTBzib8GSnqKdNJNl/view?usp=sharing
Aula 42 - Teorema de Stokes no R3
https://drive.google.com/file/d/1fM3VhLfsBDysD2YYPiFDN2erETPW3P-T/view?usp=sharing
Aula 43 - A Forma Local das Submersões
https://drive.google.com/file/d/131hTJAWScJN5gE522yWBFztPBlX5simo/view?usp=sharing
Aula 44 - A Forma Local das Imersões
https://drive.google.com/file/d/1BVPtEHUJzVTGmpcIOjj49FIDLALFy7V4/view?usp=sharing
Correções para a Aula 44
https://drive.google.com/file/d/1JS9opmywD3P1mg1NWvyMswk_tM94-drM/view?usp=sharing
Aula 45 - Superfícies no Rn - Primeiros resultados
https://drive.google.com/file/d/1BYWHx9uVS9qU200VfIZ6LuSD1c-U7x5n/view?usp=sharing
Aula 46 - Superfícies Orientáveis no Rn
https://drive.google.com/file/d/1Gq20HJ6Huz0OPYLIExJhaUYgqEAQO547/view?usp=sharing
Aula 47 – Espaço Tangente para Superfícies no Rn
https://drive.google.com/file/d/1qIbmnVxHCFWMDB0HMq2-EnSatxLJRuK9/view?usp=sharing
Aula 48 - Superfícies no Rn com Bordo
https://drive.google.com/file/d/1LeJA8koOpZNjlwuhUm94AXiD1akAvfn4/view?usp=sharing
Aula 49 - Parametrizações para Superfícies no Rn com Bordo
https://drive.google.com/file/d/1H5uM7YEb6Wad6VHCcDZPmp6ol8mUDOFT/view?usp=sharing
Aula 50 – Espaço Tangente para uma Superfície no Rn com Bordo e a Parametrização Padrão
https://drive.google.com/file/d/1058oC_CtUxrrF4WEWciXxEDC2BXhIJds/view?usp=sharing
Aula 51 – Campo Normal Unitário Exterior ao Bordo de uma Superfície no Rn, Orientação do Bordo
https://drive.google.com/file/d/1HbMjNu7jRyZNoHWS5-Mit_dBUYCYlXtu/view?usp=sharing
Aula 52 - Espaço e Base Duais para um Espaço Vetorial m-Dimensional
https://drive.google.com/file/d/1f_6owfDEv1u9zEhrabhVx55fMvEzNIbR/view?usp=sharing
Aula 53 – Base para o Espaço dual ao Espaço Tangente a uma Superfície no Rn
https://drive.google.com/file/d/1VDgON8NjIalSF5huwhCQGXhuXT7NYrd6/view?usp=sharing
Aula 54 - Campos Vetoriais Tangenciais a uma Superfície no Rn e Colchete de Lie
https://drive.google.com/file/d/1Zn1DiIfOlxpwHyVLo9Gn-lsXDkofBtTQ/view?usp=sharing
Aula 55 - Campos Vetoriais Tangenciais a uma Superfície no Rn e Álgebras de Lie
https://drive.google.com/file/d/1ZWRqfzPmSCIsTTKCBGFITnhxp2XUmV7a/view?usp=sharing
Aula 56 – Sobre a Existência da Curva Integral para um Campo Vetorial em um Superfície no Rn
https://drive.google.com/file/d/1oPTLQm9Fg5xOGWNWP4k0Jdf_jf4p1O60/view?usp=sharing
Aula 57 - Desigualdade de Gronwall e Continuidade do Fluxo de um Campo Vetorial
https://drive.google.com/file/d/1UGLZ2Mtc88qMFA7HjcMXMjDo7tvJ15i5/view?usp=sharing
Aula 58 - Partições da Unidade
https://drive.google.com/file/d/1Sjr3JFov_wIlpkXH7Kc2q1XqJ2PqKdf7/view?usp=sharing
Aula 59 - Produto Exterior e Formas Diferenciais
https://drive.google.com/file/d/1Qg3ncooTYAWRn4-X7stcAQRFgKYmS5JL/view?usp=sharing
Aula 60 - O Teorema de Stokes para um superfície no Rn com Bordo
https://drive.google.com/file/d/1ICGblDgXEczfrSs_HoNW0-A8QGkQqcUx/view?usp=sharing
Aula 61 - Um Exemplo Simples Sobre a Integração de Formas Diferenciais em Superfícies no Rn.
https://drive.google.com/file/d/1OulfQtTWIZbvP5tQtM-DVG5Ozr7g78IL/view?usp=sharing
Aula 62- Volume de uma Superfície no Rn. Forma Diferencial Volume
https://drive.google.com/file/d/12UrLXA67pAeMdtwC7Z1L4b51QmkCPdS8/view?usp=sharing
Aula 63 - Mudança de Variáveis na Integral no Rn
https://drive.google.com/file/d/1H4V-DRK46IiGmo-VOMdoVzkN3ReEFgES/view?usp=sharing
Aula 64 - Re-obtendo os Teoremas Clássicos de Stokes e da Divergência no R3 Mediante o Teorema Geral de Stokes no Rn
https://drive.google.com/file/d/1-DCqv7_h6s_Jq2FDyyln_2GoRTtmuYB-/view?usp=sharing
Aula
65 - Derivada de Lie de Um Campo Vetorial e Exercícios para a
Terceira
Avaliação
https://drive.google.com/file/d/1Mz6L9fn29WoC5XvPQllFHYoq9DSD001-/view?usp=sharing
Pre-prints 2020
1- arXiv:2008.00232 [pdf, ps, other]
math.AP math.OC
On duality principles for non-convex optimization with applications to superconductivity and some existence results for a model in non-linear elasticity
Authors: Fabio Silva Botelho
Abstract: This article develops duality principles applicable to the Ginzburg-Landau system in superconductivity. The main results are obtained through standard tools of convex analysis, functional analysis, calculus of variations and duality theory. In the second section, we present the general result for the case including a magnetic field and the respective magnetic potential in a local extremal context.… ▽ More
Submitted 3 September, 2020; v1 submitted 1 August, 2020; originally announced August 2020.
Comments: 27 pages
MSC Class: 49N15
2- arXiv:2007.02772 [pdf, ps, other]
math.FA On Lagrange multiplier theorems for non-smooth optimization for a large class of variational models in Banach spaces
Authors: Fabio Silva Botelho
Abstract: In this short communication, we present optimality conditions for a class of non-smooth variational problems. The main results are based on standard tools of functional analysis and calculus of variations. Firstly we address a model with equality constraints and, in a second step, a more general model with equality and inequality constraints, always in a general Banach spaces context.
Submitted 17 July, 2020; v1 submitted 29 June, 2020; originally announced July 2020.
Comments: 9 pages, some corrections implemented
MSC Class: 49K27
3-arXiv:2006.13042 [pdf, ps, other]
A generalization of the Ekeland variational principle
Authors: Fabio Silva Botelho
Abstract: In this short communication, we present a generalization of the Ekeland variational principle. The main result is established through standard tools of functional analysis and calculus of variations. The novelty here is a result involving the second Gâteaux variation of the functional in question.
Submitted 22 June, 2020; originally announced June 2020.
Comments: 5 pages
MSC Class: 49K27
4-arXiv:2006.11240 [pdf, other]
math.OC 4- Optimal control for the nonlinear Fisher-Kolmogorov system with applications to aquatic plant management
Authors: Alexandre Molter, Fabio Silva Botelho
Abstract: Spatiotemporal dynamics of populations may be described by the reaction-diffusion Fisher-Kolmogorov model. In this work we have proposed a new formulation for a control problem of aquatic plants in a temporal dynamics. The solution of this problem is extended to a spatiotemporal Fisher-Kolmogorov system with multiple species of plants interacting in the same place. The control consists on human in… ▽ More
Submitted 19 June, 2020; originally announced June 2020.
Comments: 15 pages
MSC Class: 49M15; 92B99
5-arXiv:2003.00325 [pdf, ps, other]
math.GM A general variational formulation for relativistic mechanics based on fundamentals of differential geometry
Authors: Fabio Botelho
Abstract: The first part of this article develops a variational formulation for relativistic mechanics. The results are established through standard tools of variational analysis and differential geometry. The novelty here is that the main motion manifold has a n+1 dimensional range. It is worth emphasizing in a first approximation we have neglected the self-interaction energy part. In its second part, th… ▽ More
Submitted 26 March, 2020; v1 submitted 29 February, 2020; originally announced March 2020.
Comments: 25 pages, minor corrections implemented, new sections added
MSC Class: 53Z05
About the first work to successfully apply convex analysis to the complementary energy concept for a model in non-linear mechanics, published in 1985.
My research on duality theory is, in some sense, an extension and generalization of the ideas of JJ Telega and WR Bielski contained in this article,
combined with some results on D.C. optimization.
Even if you desagree with the opinion and references of other people, from a spiritual perspective, it is important not to spread lies nor slandering such a person or his family.
Krishnamurti used to refer to such a serenity facing disagreement as the essence of a moral and spiritual maturity.
Análise Funcional – Curso de Verão – 2020 – Resultados da P-2
Cálculo Avançado – 2019 -2 - Notas de Aula
Livros:
Functional Analysis and Applied Optimization in Banach Spaces, Springer 2014.
Real Analysis and Applications, Springer 2018.
This work is dedicated in memoriam to David Bohm and Jiddu Krishnamurti
Pre-prints – Physics
0.1- arXiv:2003.00325 [pdf, ps, other]
math.GM
A general variational formulation for relativistic mechanics based on fundamentals of differential geometry
Authors: Fabio Botelho
Abstract: This article develops a variational formulation for relativistic mechanics. The results are established through standard tools of variational analysis and differential geometry. The novelty here is that the main motion manifold has a n+1 dimensional range. Finally, it is worth emphasizing in a first approximation we have neglected the self-interaction energy part.
Submitted 29 February, 2020; originally announced March 2020.
Comments: 6 pages
MSC Class: 53Z05
1. arXiv:1812.04097 [pdf, ps, other]
A variational formulation for relativistic mechanics based on Riemannian geometry and its application to the quantum mechanics context
Comments: 15 pages, new results based on the Weinberg approach for relativistic mechanics
Subjects: Analysis of PDEs (math.AP)
2. A Variational Formulation for the Relativistic Klein-Gordon Equation
3- arXiv:1908.04611 [pdf, ps, other]
quant-ph
A variational formulation for relativistic mechanics, a new interpretation for the Bohr atomic model and some concerning applications
Authors: Fabio Botelho
Abstract: This article develops a variational formulation for the relativistic Klein-Gordon equation. The main results are obtained through an extension of the classical mechanics approach to a more general context, which in some sense, includes the quantum mechanics one. For the second part of the text, the definition of normal field and its relation with the wave function concept play a fundamental role in the main results establishment. Among the applications, we include a model with the presence of electromagnetic fields and also the modeling of a chemical reaction. Finally, in the last section, we present some results about the Spin operator in a relativistic context. △ Less
Submitted 16 October, 2019; v1 submitted 13 August, 2019; originally announced August 2019.
Comments: 38 pages, some minor mistakes and typos corrected
MSC Class: 81Q05
Pre-prints-Applied Mathematics
1-00 arXiv:1910.01118 [pdf, ps, other]
math.OC
On duality principles for one and three-dimensional non-linear models in elasticity
Authors: Fabio Botelho
Abstract: In this article, we develop duality principles applicable to primal variational formulations found in the non-linear elasticity theory. As a first application, we establish the concerning results in details for one and three-dimensional models. We emphasize such duality principles are applicable to a larger class of variational optimization problems, such as non-linear models of plates and shells and other models in elasticity. Finally, we formally prove there is no duality gap between the primal and dual formulations, in a local extremal context. △ Less
Submitted 3 October, 2019; originally announced October 2019.
Comments: 13 pages. arXiv admin note: text overlap with arXiv:1712.02701
MSC Class: 49N15
1- arXiv:1909.01790 [pdf, ps, other]
math.OC
A primal dual variational formulation suitable for a large class of non-convex problems in optimization
Authors: Fabio Botelho
Abstract: In this article we develop a new primal dual variational formulation suitable for a large class of non-convex problems in the calculus of variations. The results are obtained through basic tools of convex analysis, duality theory, the Legendre transform concept and the respective relations between the primal and dual variables. The novelty here is that the dual formulation is established also for the primal variables, however with a large domain region of concavity about a critical point. Finally, we formally prove there is no duality gap between the primal and dual formulations in a local extremal context. △ Less
Submitted 3 September, 2019; originally announced September 2019.
Comments: 8 pages
MSC Class: 49N15
Pre-print- On the solution of the Navier-Stokes system- announced, see it in the next line
arXiv:1908.09751 [pdf, ps, other]
math.GM
On the generalized method lines applied to the time-independent incompressible Navier-Stokes system
Authors: Fabio Botelho
Abstract: In the first part of this article, we obtain a linear system whose the solution solves the time-independent incompressible Navier-Stokes system for the special case in which the external forces vector is a gradient. In a second step we develop approximate solutions, also for the time independent incompressible Navier-Stokes system, through the generalized method of lines. We recall that for such a method, the domain of the partial differential equation in question is discretized in lines and the concerning solution is written on these lines as functions of the boundary conditions and boundary shape. Finally, we emphasize these last main results are established through applications of the Banach fixed point theorem. △ Less
Submitted 11 August, 2019; originally announced August 2019.
Comments: 21 pages
MSC Class: 65N40; 65N06
0.1- arXiv:1907.02503 [pdf, ps, other]
math.OC
A numerical method for an inverse optimization problem through the generalized method of lines
Authors: Fabio Silva Botelho
Abstract: This article develops a solution for an inverse problem through the generalized method of lines. We consider a Laplace equation on a domain with internal and external boundaries with standard Dirichlet boundary conditions. Also, we specify a third non-homogeneous Newmann type boundary condition for the external boundary, and consider the problem of finding the optimal shape for the internal boundary such that all the prescribed boundary conditions are satisfied. The novelty here presented is the application of the generalized method of lines as a tool to compute a solution for such an inverse optimization problem. △ Less
Submitted 4 July, 2019; originally announced July 2019.
Comments: 7 pages
MSC Class: 49N45; 65N40
1.0-0arXiv:1907.00200 [pdf, ps, other]
math.OC
A duality principle and related numerical method for a class of shape optimization problems in elasticity
Authors: Fabio Botelho, Alexandre Molter
Abstract: In this article we develop a duality principle and concerning numerical method for a shape optimization problem in elasticity. We consider the problem of finding the optimal shape for an elastic solid which minimizes its structural inner energy resulting from the action of external loads to be specified. The main results are obtained through standard tools of convex analysis and duality theory. We emphasize our algorithm do not include a filter to process the results, so that the result obtained is indeed a critical point for the original optimization problem. Finally, in the last section, we present some numerical examples concerning applications of the theoretical results established. △ Less
Submitted 29 June, 2019; originally announced July 2019.
Comments: 7 pages
MSC Class: 49N15; 49Q10
1.0-arXiv:1906.07758 [pdf, ps, other]
math.OC
Duality suitable for a class of non-convex optimization problems
Authors: Fabio Botelho
Abstract: In this article we develop a duality principle suitable for a large class of problems in optimization. The main result is obtained through basic tools of convex analysis and duality theory. We establish a correct relation between the critical points of the primal and dual formulations and formally prove there is no duality gap between such formulations, in a local extremal context.
Submitted 18 June, 2019; originally announced June 2019.
Comments: 7 pages
MSC Class: 49N15
1. arXiv:1904.12379 [pdf, ps, other]
math.NA
On the generalized method of lines and its proximal explicit and hyper-finite difference approaches
Authors: Fabio Botelho
Abstract: This article firstly develops a proximal explicit approach for the generalized method of lines. In such a method, the domain of the PDE in question is discretized in lines and the equation solution is written on these lines as functions of the boundary conditions and domain shape. The main objective of introducing a proximal formulation is to minimize the solution error as a typical parameter… ▽ More
Submitted 7 May, 2019; v1 submitted 28 April, 2019; originally announced April 2019.
Comments: 18 pages, some typos corrected, a new result added
MSC Class: 65N40; 65N06
1.1. arXiv:1904.02286 [pdf, ps, other]
math.OC
A primal dual variational formulation and a multi-duality principle for a non-linear model of plates
Authors: Fabio Botelho
Submitted 18 April, 2019; v1 submitted 3 April, 2019; originally announced April 2019.
Comments: 20 pages, some typos corrected, a new result added
MSC Class: 49N15; 74P99
2. arXiv:1903.06014 [pdf, ps, other]
A duality principle for non-convex optimization in Rn
Comments: 13 pages, some typos and errors corrected, in this version all proof details have been provided
Subjects: Optimization and Control (math.OC)
3. arXiv:1902.08811 [pdf, ps, other]
Comments: 10 pages
Subjects: Optimization and Control (math.OC)
4. arXiv:1902.04448 [pdf, ps, other]
Existence of solution for an optimal control problem associated to the Ginzburg-Landau system in superconductivity
Fabio Botelho, Eduardo Pandini Barros
Comments: 8 pages
Subjects: Optimization and Control (math.OC)
5. arXiv:1812.04097 [pdf, ps, other]
A variational formulation for relativistic mechanics based on Riemannian geometry and its application to the quantum mechanics context
Comments: 15 pages, new results based on the Weinberg approach for relativistic mechanics
Subjects: Analysis of PDEs (math.AP)
6. arXiv:1809.09575 [pdf, ps, other]
On central fields in the calculus of variations
Comments: 12 pages, typos corrected
Subjects: Optimization and Control (math.OC)
7. arXiv:1804.06283 [pdf, ps, other]
On General Duality Principles for Non-Convex Variational Optimization with Applications to the Ginzburg-Landau System in Superconductivity
Comments: 32 pages, typos corrected, other results added
Subjects: Optimization and Control (math.OC)
8. arXiv:1712.04809 [pdf, ps, other]
A duality principle for a semi-linear model in micro-magnetism
Comments: 7 pages
Subjects: Optimization and Control (math.OC)
9. arXiv:1712.03552 [pdf, ps, other]
On the numerical solution of non-linear first order ordinary differential equation systems
Comments: 9 pages
Subjects: Numerical Analysis (math.NA)
10. arXiv:1712.02701 [pdf, ps, other]
A duality principle for non-linear elasticity
Comments: 10 pages, more typos and errors corrected, some parts of the text have been re-written
Subjects: Optimization and Control (math.OC)
11. arXiv:1712.01595 [pdf, ps, other]
Global existence results and duality for non-linear models of plates and shells
Comments: 28 pages, some parts of the text have been re-written, variational nature of the dual formulations retaken
Subjects: Analysis of PDEs (math.AP); Optimization and Control (math.OC)
This work is dedicated in memoriam to Professor J.J. Telega
12. arXiv:1712.01031 [pdf, ps, other]
On duality principles for non-convex variational models applied to a Ginzburg-Landau type equation
Comments: 14 pages, more typos corrected
Subjects: Optimization and Control (math.OC)
Artigos completos publicados em periódicos
1. Fabio Botelho, A note on Riemannian geometry and the relativistic quantum mechanics context. CIÊNCIA E NATURA, v. 40, p. 58, 2018.
2. Fabio Botelho.,A Variational Formulation for the Relativistic Klein-Gordon Equation. CIÊNCIA E NATURA, v. 40, p. 57, 2018.
4. Lucas dos Santos Fernandez, Alexandre Molter, Fabio Silva Botelho, Simultaneous topology optimization and proportional actuators localization. SeMA Journal, v. 23, p. --, 2016.
5. Fabio Botelho, On the Lagrange multiplier theorem in Banach spaces. Matemática Aplicada e Computacional (Cessou em 1997. Cont. ISSN 1807-0302 Computational & Applied Mathematics) , v. 32, p. 135-144, 2013.
6. Fabio Botelho. Existence of solution for the Ginzburg Landau system, a related optimal control problem and its computation by the generalized method of lines. Applied Mathematics and Computation , v. 218, p. 11976-11989, 2012.
7. Fabio Botelho, On duality principles for scalar and vectorial multi-well variational problems. Nonlinear Analysis , v. 75, p. 1904-1918, 2012.
8. Fabio Botelho, Dual Variational Formulations for a Non-linear Model of Plates. JOURNAL OF CONVEX ANALYSIS , v. 17, p. 131-158, 2010.