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1 Metric Spaces

1.1 Introduction

In this chapter we present the main basic definitions and results relating the concept of metric
spaces.

We recall that any Banach space is a metric one, so that the framework here introduced is suitable
for a very large class of spaces.

1.2 The main definitions
We start this section presenting the metric definition and some concerning examples.

Definigao 1.1 (Metric space). Let V' be a non-empty set. We say that V is a metric space as it is
possible to define a function d:V x V — RT = [0, +00) such that

1. d(u,v) >0 if u # v and d(u,u) =0, Yu,v € V.
2. d(u,v) =d(v,u), Yu,v € V.
3. d(u,w) < d(u,v) + d(v,w), Yu,v,w € V.

Such a function d is said to be a metric for V', so that the metric space in question is denoted by

(V. d).
Exemplo 1.2. V =R is a metric space with the metric d : R x R — R where
d(u,v) = |lu—v|,Yu,v € R.

Exemplo 1.3. V = R? is a metric space with the metric d: V x V — R* where

d(u,v) = \/(ul —v1)2 + (ug — 19)2, Yu = (ug, ug), v = (v1,v;) € R%

Exemplo 1.4. V =R" is a metric space with the metric d : V x V — Rt where

d(u,v) = /(uy — 1)+ -+ (U — )2, Ya = (uy,...,u,), v=(vi,...,0,) €R".



Exemplo 1.5. V = C([a, b]), where C([a, b)) is the metric space of continuous functionsu : [a,b] — R
with the metric d: V x V. — RT where

d(u,v) = max {|u(z) —v(2)|} = ||u — V|0, Yu,v € V.

z€la,b]

Exemplo 1.6. V = C([a,b]), is a metric space with the metric d:V x V — R* where
b
d(u,v) = / lu(z) —v(x)| dz, Yu,v € V.

1.3 The space [*

In this subsection we start to define some important classes of metric spaces.
The first definition presented is about the [* space of sequences.

Definicao 1.7. We define the space [*° as
[ ={u=A{uptnen : u, € C and there exists M > 0 such that |u,| < M, Vn € N}.

A metric for 1*° may be defined by

d(u, v) = sup{|u; —v;l},

JEN

where u = {u,} e v={v,} €.

1.4 Discrete metric

At this point we introduce the definition of discrete metric.
Definicao 1.8. Let V' be a non-empty set. We define the discrete metric for V' by

R A W

In such a case we say that (V,d) is a discrete metric space.

Exercicio 1.9. Let V =R and let d: V x V — R be defined by

d(u,v) = /|u—v|.

Show that d is a metric for V.



1.5 The metric space s
In the next lines we define one more metric space of sequences, namely, the space s.
Defini¢cao 1.10 (The metric space s). We define the metric space s as s = (V,d), where

V ={u={u,}, : u, €C, Vn € N},

with the metric

Vu = {u,} and v ={v,} € V.

Exercicio 1.11. Show that this last function d is indeed a metric.

1.6 The space B(A)

Another important metric space is the space of bounded functions defined on a set A, denoted
by B(A).

Definicao 1.12. Let A be a non-empty set and define
B(A) ={u: A— R, such that there exists M > 0 such that |u(x)| < M, Vz € A}.
B(A) is said to be the space of bounded functions defined on A.

Exercicio 1.13. Show that B(A) is a metric space with the metric

d(u,v) = sup{[u(z) — v(z)]}.

€A

1.7 The space [”

Finally, one of most important metric space of sequences is the [” one, whose definition is presented
in the next lines.

Definicao 1.14. Letp > 1, p € R.
We define the space [P by

P = {u:{un} : up, € C and Z|un|p < oo}

n=1

with the metric

o 1/p
d(u,v) = (Z\un—vn\p> ,
n=1

where u = {u,} and v = {v,} € I.



At this point we shall show that d is indeed a metric.
Let p> 1, p € R. Let ¢ > 1 be such that

1 1
S =1,
p q
that is
- P
p—1

Let z,y > 0, x,y € R.
We are going to show that

1 1
ry < —af + -yt
p q
Observe that if x = 0 or y = 0 the inequality is immediate. Thus, suppose x > 0 e y > 0.

Fix y > 0 and define

1 1
h(z) = —a? + —y? — xy, Yo > 0.
p q

Observe that
and

h'(z) = (p— 1)aP™% > 0,Vz > 0.

Therefore h is convex and its minimum on (0, 4+00) is attained through the equation

that is, at zq = y*/®=1.

Hence,
min  h(z) = h(zg)
z€(0,+00)
1 1
= §($o)p+qu—$oy
L owo-n _ 1e-1, L g
= —y y "y 4~y
= (I/p=1)y"+-y*
1 1
— __yQ+_yq
q q
= 0 (2)
Thus,

1 1
h(z) = —aP + ~y? — 2y > h(xy) = 0, Yo > 0.
p q



Therefore, since y > 0 is arbitrary, we obtain
1 1
xy < —aP + -y, Va,y > 0.
p q

so that | |
vy < —a” + —y?, Vo,y > 0.
p q

Let u = {u,} € I and v = {v,,} € 1%

Denote
[o¢]
Jull, = (Z \un\p>
n=1
and
o0 q
vl = (z w)
n=1
Define also
hally | (20 )
and
VvV = =
Vlle L0 foalo)
From this and (3) we obtain,
pRIENIEIY SIS ST
n=1 p n=1 q n=1
1 1
— — —|— —
p q
= 1.

Thus,

(e}
Z unva| < [[ullpl[vllg, Vu e l?, v el

n=1

This last inequality is well known as the Holder one.

Exercicio 1.15. Prove the Minkowski inequality, namely

[u vl < flull, +[[vll, Ya,ve



Hint
[o¢]

[u+v|p = Z [tn, + v, [P

n=1
< 3+ 0alP 7 fun] + [oa]). (5)
n=1

Apply the Holder inequality to each part of the right hand side of the last inequality.
Use such an inequality to prove the triangle inequality concerning the metrics definition.

Prove also the remaining properties relating the metric definition and conclude that d : [P X [P —
R*, where
du,v) = lu—v|, Yu,velr

15 indeed a metric for the space [P.

1.8 Some fundamental definitions

Definigao 1.16 (neighborhood). Let (U,d) be a metric space. Let u € U and r > 0. We define the
neighborhood of center u and radius r, denoted by V,.(u), by

Vi(w) ={velU|du,v)<r}.

Definigao 1.17 (limit point). Let (U,d) be a metric space and E C U. A point u € U is said to be
a limit point of E if for each r > 0 there exists v € V,.(u) N E such that v # u.

We shall denote by E’ the set of all limit points of E.
Exemplo 1.18. U = R?, E = B,(0). Thus E' = B,(0).
Observacao 1.19. In the next definitions U shall denote a metric space with a metric d.

Definicao 1.20 (Isolated point). Let uw € E C U. We say that u is an isolated point of E if it is
not a limit point of E.

Exemplo 1.21.

U=R? E=DB((0,0)U{(3,3)}. Thus (3,3) is an isolated point of E.

Definigao 1.22 (Closed set). Let E C U and let E' be the set of limit points of E. We say that E
is closed if E D E'.

Exemplo 1.23.

Let U =R? and r > 0, thus E = B,((0,0)) is closed.

Definicao 1.24. A point u € E C U 1is said to be an interior point of E if there exists r > 0 such

that V.(u) C E, where
Vi(u) ={veU|d(u,v) <r}.



Exemplo 1.25.

For U = R?, let E = B;((0,0)) U{(3,3)}, for ezample u = (0.25,0.25) is an interior point of E,
in fact, for r = 0.5, if v € V.(u) then d(u,v) < 0.5 so that d(v,(0,0)) < d((0,0),u) + d(u,v) <
V1/8 +0.5 < 1 that is, v € B1((0,0)) and thus V,(u) C B1((0,0)). We may conclude that u is an
interior point of B1((0,0)). In fact all points of B1((0,0)) are interior.

Definicao 1.26 (Open set). E C U is said to be open if all its points are interior.
Exemplo 1.27.
For U = R?, the ball B1(0,0) is open.
Definicao 1.28. Let F C U, we define its complement, denoted by E°, by:
Ec={velU]|v¢E}

Definicao 1.29. A set E C U is said to bounded if there exists M > 0 such that

sup{d(u,v) | u,v € E} < M.
Definigcao 1.30. A set E C U is said to be dense in U if each point of U is either a point of E or
it is a limit point of E, that is, U = EUE'.
Exemplo 1.31.

The set Q is dense in R. Let u € R and let r > 0. Thus, from a well known result in elementary
analysis there exists v € Q such that w < v < u + r, that is, v € QN V,.(u) and v # u, where
Vi(u) = (uw —r,u+r1). Therefore u is a limit point of Q. Since u € R is arbitrary, we may conclude
that R C ', that is, Q is dense in R.

Teorema 1.32. Let (U,d) be a metric space. Let w € U and r > 0. Then V,.(u) is open.
Proof. First we recall that
Vi(u) ={veU|d(u,v) <r}.
Let v € V,.(u). We have to show that v is an interior point of V;.(u). Define r; = r — d(u,v) > 0. We
shall show that que V;, (v) C V,.(u).
Let w € V,,(v), thus d(v,w) < r. Hence
d(u,w) < d(u,v) + d(v,w) < d(u,v) +r; =r.
Therefore w € V,(u),Vw € V,, (v), that is V,,(v) C V,(u), so that we may conclude that v is an
interior point of V,.(u),Vv € V,.(u), thus, V,.(u) is open. The proof is complete.

Teorema 1.33. Let u be a limit point of E C U, where (U,d) is a metric space. Then each
neighborhood of u has an infinite number of points of E, distinct from wu.

Proof. Suppose to obtain contradiction, that there exists r > 0 such that V,.(u) has a finite number
of points of E distinct from u. Let {vy,...,v,} be such points of V,.(u) N E distinct from u. Choose
0 < r; <min{d(u,vy),d(u,vy), ....,d(u,v,) }. Hence V., (u) C V,(u) and v; € V,. (u),Vi € {1,2,...,n}.
Therefore either V,, (u) N E = {u} or V,, N E =, which contradicts the fact that u is a limit point
of F.

The proof is complete.

Corolario 1.34. Let E C U be a finite set. Then E has no limit points.



1.9 Properties of open and closed sets in a metric space

In this section we present some basic properties of open and closed sets.

Proposicao 1.35. Let {E,, a € L} be a collection of sets. Then
(UaeLEa)c = maGLE;-
Proof. Observe that

U € (UnerFo)° U & Uper By
u¢ E,Va e L
u€ B, Vae L

(TS maeLE;. (6)

t o0

Exercicio 1.36.

Prove that
(ﬂaELEa)C - UaELEg‘

Teorema 1.37. Let (U,d) be a metric space and E C U. Thus, E is open if and only if E° is closed.

Proof. Suppose E° is closed. Choose u € F, thus u ¢ E° and therefore u is not a limit point E°.
Hence there exists r > 0 such that V,.(u) N B = (). Hence, V,(u) C E, that is, u is an interior point
of E, Yu € F, so that E is open.
Reciprocally, suppose E is open. Let u € (E¢). Thus for each r > 0 there exists v € V,.(u) N E°
such that v # u, so that
Vi(uw) € E, ¥Vr > 0.

Therefore u is not an interior point of E. Since E is open we have that v ¢ E, that is, u € E°.
Hence (E€) C E°, that is, E° is closed.
The proof is complete.

Corolario 1.38. Let (U,d) be a metric space, F C U 1is closed if and only if F€ is open.
Teorema 1.39. Let (U,d) be a metric space.

1. If G, C U and G, is open VYo € L, then
UaerGa
18 open.
2. If F, C U and F, is closed VYo € L, then
Naerfa

1s closed.



3. If Gy, ...,G, C U and G; is open Vi € {1,...,n}, then
in1Gi
1S open.
4. If Fy, ..., F,, CU and F; is closed Vi € {1, ...,n}, then
Uis Fi
15 closed.

Proof. 1. Let G, C U, where G, is open Va € L. Let u € U, G,. Thus u € G, for some oy € L.
Since G, is open, there exists r > 0 such that V,.(u) C Go, C Uaer,Go. Hence, u is an interior
point, Yu € U,er,Go. Thus U, Gy, is open.

2. Let I, C U, where F, is closed Voo € L. Thus, FY is open Vo € L. From the last item, we have
Uaer F$ is open so that
mozELF’oz = (UaeLFaC)C

is closed.

3. Let GG1,...,G,, C U be open sets. Let
u € ﬂ?:lGl
Thus,
ue G, Vie{l, .., n}.
Since G is open, there exists r; > 0 such that V,,(u) C G;.
Define r = min{ry, ..., 7, }. Hence, V,.(u) C V,.(u) C G;,Vi € {1, ...,n} and therefore

This means that u is an interior point of N}, G;, and being v € N} ;G; arbitrary we obtain
that NI, G; is open.

4. Let Fiy,...,F, C U be closed sets. Thus, FY,...,F? are open. Thus, from the last item, we
obtain:
im1 Y

is open, so that
i Fi = ( ?:1Fz‘c>c

is closed.
The proof is complete.

Exercicio 1.40.



Let (U,d) be a metric space and let uy € U. Show that A = {ug} is closed. Let B = {uy,...,u,} C U.
Show that B is closed.

Definicao 1.41 (Closure). Let (U, d) be a metric space and let E C U. Denote the set of limit points
of E by E'. We define the closure of E, denoted by E, by:

E=FUFE.

Exemplos 1.42.

1. Let U =R? E = B(0,0), we have that E' = B1(0,0), so that in this ezample E = EUE' = E'.

2. Let U =R, A={1/n : n € N}, we have that A’ = {0}, and thus A= AU A" = AU{0}.
Teorema 1.43. Let (U,d) be a metric space and E C U. Thus,

1. E is closed.

2. E=F & FE is closed.

3. If F O E and F is closed, then F D E.

Proof. 1. Observe that E = EUE'. Let u € E. Thus v ¢ E and v & E' (u is not a limit point
of E). Therefore, there exists r > 0 such that V,.(u) N E = (), that is, V;.(u) C E°, thus, u is an
interior point of E°.

We shall prove that V,(u) N E = (). Let v € V,.(u) and define r; = r — d(u,v) > 0. We shall
show that
Vi (v) C Vi(u).

Let w € V,, (v), thus d(v,w) < r; and therefore
d(u,w) < d(u,v) + d(v,w) < d(u,v) +r =r,
that is, w € V,.(u). Hence,
Vi (v) C Vi(u),

and thus v is not a limit point of E, that is, v € E' v e Vi(u). Thus, V,.(u) C E° which means
that u is an interior point of E°, so that E is open, and hence E is closed.

2. Observe that E' C E = EUE'. Suppose that £ is closed. Thus £ D F', that is E D FUE" = E.
Hence F = E. Suppose E = E. From the last item F is closed, and thus F is closed.

3. Let F be a closed set such that F' O E. Thus, F' D F'.

Hence B B
F=F=FUF DFEUE =E.

The proof is complete.

Exercicios 1.44.

10



. In the proof of the last theorem we have used a result which now s requested to be proven in
an exercise form.

Let U be a metric space. Assume A C B C U. Show that A’ C B'.
. Let U be a metric space and let A, B C U. Show that

A'UB = (AUDBY).

. Let U be a metric space and let E C U. Show that E' is closed.

. Let By, Bo, ... be subsets of a metric space U.

(a) Show that if B B
A, =U"B;, then A, =U]_,B,.

(b) Show that if B B
B =U;2,B; then B D U2, B,.

. Let U be a metric space and let E C U. Recall that the interior of E, denoted by E°, is defined
as the set of all interior points of E.

(a) Show that E° is open.

(b) Show that E is open, if and only if, E = E°.

(¢) Show that if G C E and G is open, then G C E°.

(d) Prove que (E°)¢ = E°.

(e) Do E and E have always the same interior? If not, present a counter exzample.

(f) Do E and E° have always the same closure? If not, present a counter example.
. Prove that Q, the rational set, has empty interior.

. Prove that 1, the set of irrationals, has empty interior.

. Prove that given x,y € R such that x < y, there exists a € 1, such that

r<a<y.

. Prove that I s dense in R.

Hint: Prove that
zel, Vo eR,

where 1" denotes the set of limit of points of 1.
. Let B C R be an open set. Show that for all x € R the set
r+B={x+vy|ye B}

1S open.

11



11.

12.

15.

14
15,

16.

17.

18.
19.

20.

21.

22.

Let A, B C R be open sets. Show that the set
A+B={x+y : v € A andy € B},
1S open.
Let B C R be an open set. Show that for all x € R such that x # 0 the set
v -B={z-ylyeB}
1S open.
Let A, B C R, show that

(a)
(ANB)° = A°N B°,

(b)
(AUB)° > A°U B°,

and give an example in which the inclusion is proper.
Let A C R be an open set and a € A. Prove that A\ {a} is open.
Let A, B C R. Prove that:

(a) AUB=AUB,
(b) ANB C AN B, and give an example for which the last inclusion is proper.

Show that a set A is dense in R if, and only if, A® has empty interior.

Let F' C R be a closed set and let x € F'. Show that x is an isolated point of F' if, and only if,
F\ {z} is closed.

Show that if A C R is uncountable, then so is A’.
Show that if A C R then A\ A’ is countable.

Let U be a metric space and let A C U be an open set. Assume ay,..,a, € A.

Prove that A\ {ay, ...,a,} is open.

Let U be a metric space, let A C U be an open set and let FF C U be a closed one.
Show that A\ F is open and F'\ A is closed.

Let A C R be an uncountable set. Prove that AN A" # ().

12



1.10 Compact sets

Definigao 1.45 (Open covering). Let (U,d) be a metric space. We say that a collection of sets
{Go, v € L} C U is an open covering of A C U if

A C UaELGa

and G, is open, Vo € L.

Definigao 1.46 (Compact set). Let (U, d) be a metric space and K C U. We say that K is compact
if each open covering {G,, o € L} of K admits a finite sub-covering. That is, if K C UyerGo, and
G, is open Vo € L, then there exist oy, Qa, ..., o, € L such that K C U, G,,.

Teorema 1.47. Let (U,d) be a metric space. Let K C U where K is compact. Then K is closed.

Proof. Let us show that K€ is open. Let u € K°. For convenience, let us generically denote in this
proof V,.(u) = V(u,r).
For each v € K we have d(u,v) > 0. Define r, = d(u,v)/2. Thus,

V(u,r,) NV (v,1,) =0,V € K. (7)

Observe that
Uvex V (v, 1) D K.

since K is compact, there exist vy, ..., v, € K such that
K C UL V(vi,ry,). (8)
Define rg = min{r,,, ..., 7,, }, thus
V(u,ro) C V(u,ry,),¥vi € {1,...,n},
so that from this and (7) we get
Vi(u,ro) NV (vy1y,) = 0,Vi € {1,2,...,n}.

Hence,
V(u,r0) N (U, V(v5,7,)) = 0.

From this and (8) we obtain, V(u, ro) N K = 0, that is V(u,r9) C K°. Therefore u is an interior point
of K¢ and being u € K¢ arbitrary, K¢ is open so that K is closed.
The proof is complete.

Teorema 1.48. Let (U,d) be a metric space. If F C K C U, K is compact and F' is closed, then F
18 compact.

13



Proof. Let {G,,a € L} be an open covering of F, that is
F C UuerGe.
Observe that U = FU F° D K, and thus,
F¢U (UperGa) D K.

Therefore, since F° is open {F°, G,, a € L} is an open covering of K, and since K is compact,
there exist aq, ...,a,, € L such that

FFuG,uU...uG, ODKDF.

Therefore
Go, U...UGy, DF,

so that F'is compact.
Exercicio 1.49.
Show that if F is closed and K 1is compact, then F'N K s compact.

Teorema 1.50. If {K,, a € L} is a collection of compact sets in a metric space (U,d) such that
the intersection of each finite sub-collection is non-empty, then

Naer Ko # 0.
Proof. Suppose, to obtain contradiction, that
Nacr Ko = 0. (9)
Fix ap € L and denote Ly = L\ {ap}. From (9) we obtain
Koo N (Naer, Ka) = 0.

Hence
Kao C (ﬂa€L1Ka)ca

that is,
Kao C UaeLlKg.

Since, K,, is compact and K is open, Vo € L, there exist aq, as, ..., o, € Ly such that
KO‘O C U?=1K;j = ( ;'Z=1K0‘j)c’

therefore,

Koy N (M Ka,) = Koy N Ko, NN Ky, =0,

which contradicts the hypotheses. The proof is complete.

14



Corolario 1.51. Let (U,d) be a metric space. If {K,, n € N} C U is a sequence of compact
non-empty sets such that K, D K,.1,Yn € N then N2, K,, # 0.

Teorema 1.52. Let (U,d) be a metric space. If E C K C U, K is compact and E is infinite, then
E has at least one limit point in K.

Proof. Suppose, to obtain contradiction, that no point of K is a limit point of E. Then, for each
u € K there exists r, > 0 such that V(u,r,) has at most one point of E, namely, v if u € E. Observe
that {V(u,r,), u € K} is an open covering of K and therefore of E. Since each V' (u,r,) has at most
one point of E which is infinite, no finite sub-covering (relating the open cover in question), covers
E, and hence no finite sub-covering covers K O FE, which contradicts the fact that K is compact.
This completes the proof.

Teorema 1.53. Let {I,,} be a sequence of bounded closed non-empty real intervals, such that I, D
I,1,VYn € N. Thus, NI, # 0.

Proof. Let I, = [an,b,] and let E = {a,, n € N}. Thus, £ # () and E is upper bounded by b;. Let
r=supFE.
Observe that, given m,n € N we have that

an S an—f—m S bn-i—m S bma

so that

sup a, < b,,,Vm € N,
neN

that is, x < b,,,, Vm € N. Hence,
am <z <b,,Vm € N,

that is,
T € [am, by], Ym € N,

so that @ € NOy_; I;y,.
The proof is complete.

Teorema 1.54. Let [ = [a,b] C R be a bounded closed non-empty real interval. Under such hypothe-
ses, I is compact.

Proof. Observe that if =,y € [a, ] then |z — y| < (b — a).. Suppose there exists an open covering of
I, denoted by {G,, o € L} for which there is no finite sub-covering.

Let ¢ = (a + b)/2. Thus, either [a,c| or [¢,b] has no finite sub-covering related to {G,, a € L}.
Denote such an interval by ;. Dividing I; into two connected closed sub-intervals of same size, we
get an interval I for which there is no finite sub-covering related to {G,, o € L}.

Proceeding in this fashion, we may obtain a sequence of closed intervals {I,,} such that

1. In D) In+1,vn € N.
2. No finite sub-collection of {G,,« € L} covers I,,, Vn € N.

3. If x,y € I,, then |z —y| < 27"(b— a).

15



From the last theorem, there exists 2* € R such that 2* € N7 1, C I C U,erG,. Hence, there exists
ag € L such that z* € G,,. Since G, is open, there exists r > 0 such that

Vi(z™) = (a" — 12" +71) C Go,.
Choose ny € N such that
27"(b—a) < r/2.

Hence, since z* € I, if y € I,, then from item 3 above, |y — 2*| < 27"0(b — a) < r/2, that is
y € Vo(2*) C Gap-
Therefore
yel,, =ye€ Gy,

so that I,,, C G,,, which contradicts the item 2 above indicated.
The proof is complete.

Teorema 1 (Heine-Borel). Let E C R, thus the following three properties are equivalent.
1. E s closed and bounded.

2. E 1s compact.

3. Fach infinite subset of E has a limit point of E.

Proof. e 1 implies 2: Let £ C R be a closed and bounded. Thus, since £ is bounded there exists
la,b] a bounded closed interval such that E C [a,b]. From the last theorem [a,b] is compact
and since F is closed, from Theorem 1.48 we may infer that E is compact.

e 2 implies 3: This follows from Theorem1.52.

e 3 implies 1: We prove the contrapositive, that is, the negation of 1 implies the negation of 3.

The negation of 1 is: E is not bounded or E is not closed. If £ C R is not bounded, choosing
x1 € E, for each n € N there exists 2,41 € F such that |x,1| > n+ |z,| > n. Hence {z,} has
no limit points so that we have got the negation of 3.

On the other hand, suppose £ is not closed. Thus there exists xy € R such that zy € £’ and
ZTo g E.

Since o € E’, for each n € N there exists x,, € E such that |z, — x| < 1/n (2, € Vi/m(20)).
Let y € E, we are going to show that y is not limit point {z,} C E. Observe that,
[z —yl > |zo =yl — |20 — 20|
> Jro—y|l—1/n
> |zg—yl/2>0 (10)
for all n sufficiently big.

Hence y is not a limit point of {z, }, Yy € E. Therefore {z,,} C FE is a infinite set with no limit
point in FE.
In any case, we have got the negation of 3. This completes the proof.

16



Exercicios 1.55.

1. Let U be a metric space and let {Ky, A\ € L} be a collection of compact sets, such that
K, C U, VX € L. Prove that Ny, Ky s compact.

2. Let U be a metric space and let K1, K, ..., K, C U be compact sets. Prove that
U?:1Kj

18 compact.

Teorema 1.56 (Weierstrass). Any real set which is bounded and infinite has a limit point in R.

Proof. Let E C R be a bounded infinite set. Thus, there exists » > 0 such that £ C [—r,r| = I,.
Since FE is infinite and I, is compact, from Theorem 1.52, F has a limit point in I, C R. The proof
is complete. O

1.11 Separable metric spaces

Definicao 1.57 (Separable metric space). Let (V,d) be a metric space. We say that a set M C V
s dense in V if o
M=MUM =V.

If V' has dense subset which is countable, we say that V is separable.

Exemplo 1.58. V = R is separable. Indeed Q, the set of rational number, is dense in R and
countable.

Exemplo 1.59. The space [*° is not separable.
In fact, let A C I> be the set of all real sequences whose entries are only 0 and 1.
From elementary analysis it is well known that A is non-countable.
Let 0 <e < 1/4.
Suppose, to obtain contradiction, that

B - {un}neN C loo

1s dense in [*°.
Thus, for each v € A, we may select a n, € N such that

d(v, uy,) < €.
Let v,w € A be such that v # w. Therefore,
dv,w) =1,

so that
d(v,w) < d(v,up,) + d(tn,, w),
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and thus

A(tp,,w) > 1—d(v,uy,)

> 1—c¢

> 1—-1/4

= 3/4

> € (11)
So to summarize, if v # w, then

unv # unw

LetT : A — B, where

Thus T is a bijection on I,(T) C B.
Therefore,
A~ Im(T) ~ B ~N.

This contradicts A to be non-countable.
So, we may infer that [*° is non-separable.

Exercicio 1.60. Let 1 < p < +00. Prove that I is separable.

1.12 Complete metric spaces

Definigao 1.61. Let {u,} C V where (V,d) is a metric space.
We say that ug € V' is the limit of {u,} as n goes to infinity (), if for each € > 0 there exists
ng € N such that if n > ng, then
d(tn, up) < €.

In such a a case we denote,

lim u,, = ug,
n—oo

or
Uy — Uy, AS N —> OO

and say that the sequence {u,} is convergent.

Exercicio 1.62. Let (V,d) be a metric space and let {u,} CV be a convergent sequence.
Show that {u,} is bounded.

Definicao 1.63 (Cauchy sequence). Let (V,d) be a metric space and let {u,} C V be a sequence.
We say that such a sequence is a Cauchy one as for each ¢ > 0 there exists nyg € N such that if
m,n > ng, then

d(Up, Up,) < €.

Exercicio 1.64. Let (V,d) be a metric space and let {u,} CV be a Cauchy sequence.
Show that {u,} is bounded.
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Defini¢ao 1.65 (Complete metric space). Let (V,d) be a metric space. We say that V' is complete
as each Cauchy sequence in V converges to an element of V.

Exercicio 1.66. Let (V,d) be a metric space and let M C V.
1. Show that u € M if, and only if, there exists a sequence {u,} C M such that

Uy — U, AS N —r OO.

2. Show that M s closed if, and only if, the following property is valid:
If {u,} C M and u,, — u, then u € M.
Exercicio 1.67. Let (V,d) be a metric space and let M C V. Show that M is complete if, and only
if, M is closed in V.
Exercicio 1.68. Prove that R™ is complete (with the Euclidean metric).
Exercicio 1.69. Prove that c is complete, where c is the space of complex convergent sequences.

Exercicio 1.70. Let (V,d) be a metric space where V = C(|a,b]) whit the metric
b
d(u,v) = / lu(z) —v(x)| dz, Yu,v € V.

Show that V' is not complete.

2 Completion of a metric space

Definigao 2.1 (Isometries, isometric spaces). Let (V,d) and (Vi,dy) be metric space. A function
T:V — Vj is said to be a isometry of V in Vi as

di(T(u), T(v)) = d(u,v), Yu,v € V.

If there exists an isometry betwween V and Vi, we say that V' and Vy are isometric.

Teorema 2.2 (Completion). Let (V,d) be a metric space which is not complete.
Under such hypotheses, there exists a metric space (V,d) such that V is isometric to a sub-space
W of V' which is dense in V. Moreover, V is complete.

Proof. 1. First part: Construction of V.
Let {u,} and {u],} be Cauchy sequences in V.

We define a relation of equivalence in the set of Cauchy sequences in V' by declaring

{un} ~ {u}

as
) = 0.

lim d(uy,,u,,
n—oo
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Let
V= {{un} : {u,} is a Cauchy sequence in V'},

and where

{/un\} = {{u,,} €V, such that {u] }is a Cauchy sequence and {u/ } ~ {u,}}.

For u = {u,} and v = {v,,} CV define

d(i,0) = lim d(un, vy).
n—o0o
We shall show that this metric is well defined.
Let {u,} € 4 and {v,} € 0.
Observe that for, m,n € N we have that

(U, Uy) < d(Upy Upn) + d(Upn, V) 4+ (U, V)

that is,
A(tn, Uy) — AU, V) < d(Up, Upn) + d(V, v,) — 0, as m,n — 0.

Inverting the roles of m and n, we may similarly obtain:

AUy V) — AU,y V3) < d(Up, Upy) + d(Vp, v,) — 0, a8 MM — 00

so that
|d (W, V) — d(Up,v,)| = 0, as m,n — oo.

Therefore {d(un,v,)} is a real Cauchy sequence and thus it is convergent.
Let {u/,} € 4 and {v]} € 0.

Hence,
d(Up, vn) < d(tup,ul,) + d(ul,,v),) + d(v),v,),

n»-n

so that
d(tp, vn) — d(ul,v),) < d(ug,u,) + d(v,,v),) — 0, as n — oo.

n’-n

Inverting the roles of the sequences, we get

d(up,v)) — d(tn, v,) < d(ug,u),) + d(v,,v),) — 0, as n — oo,

n» -n

so that
|d(tp, vn) — d(uy,v,,)| — 0, as n — .

Thus
lim d(uy,v,) = lim d(u,,v,), V{u,} € 4, {v)} € 0.

n»-n
n—oo n—oo
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Therefore, the candidate to metric in question is well defined.

Furthermore,

~

d(a,0) =0 < lim d(up,v,) =0

n— o0
& {uw.}eu
&S u=0.
Finally, let 4,9 and @ € V.
Thus,
d(a,w) = nlg{)lo d(ty,, wy)

< lim [d(g, vy) + d(vp, wy)]

n—oo

= lim d(u,,v,) + lim d(v,, w,)
n—oo n— o0

d(@, 0) + d(d, ).

From this we may conclude that d is in fact a metric for V.

. We shall show now that V' is isometric a dense subspace of V.

Let b € V. Define b by its representative
{un} = {b,b,b,...}.

Define R -
W={b={b,b,b,...} : beV}.

Define also T': V. — W by
T(b)=b={bbb,...}.

Thus, .
d(b,¢) = lim d(b,c) = d(b,c).

n—oo

Therefore, T' is a isometry.
We are going to show that W is dense in V.
Let & € V and {u,} € 4. Let £ > 0.

Since {u,} is a Cauchy sequence, there exists ng € N such that if m,n > ng, then
AU, Up,) < /2.

Choose N > ny.
Thus, d(un,, un) < €/2,Yn > ny.
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Observe that

’lALN == {UN,UN,UN, .. } € VV,
and R
d(t,uy) = lim d(u,,uy) <e/2 < e.

n—oo

Since € > 0 is arbitrary, we may conclude that
GeEW UW,Va eV,
that is, W is dense in V.

. Now we shall show that V complete.
Let {@,} be a sequence in V.

Since W is dense in V, for each n € N there exists Z, € W such that

A 1
d(u, z,) < —.

(i, 20) < -
Observe that

A(zp 2m) < d(Zm,tm) + (i, @) + d(@, 2,)

1 1
< = d(f, ) + —
n m

Let € > 0 (a new one). Hence, there exists ny € N such that if m,n > ng, then
T €
AUy, Upy) < 3

Thus if 5
m,mn > max{—,no} ,
€

then

A

(%, 2m) < €.

Therefore, {Z,,} is a Cauchy sequence and since T': V' — W is a isometry it follows that

{zm} = {Til(ém)h

is also a Cauchy one.

Let @ be the class of {z,,}. We will show that

lim d(i,, @) = 0.

n—oo
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Indeed,

A~

A, 0) < d(lin, 20) + d(2n, @)
1
< — 4 lim d(zn, 2m)- (15)

n m—00

Therefore, X
lim d(a,, @) = 0.

n—oo

Thus, V is complete.

The proof is complete.

3 Other topics on compactness in metric spaces

Definigao 3.1 (Diameter of a set). Let (U, d) be a metric space and A C U. We define the diameter
of A, denoted by diam(A) by

diam(A) = sup{d(u,v) | u,v € A}.
Definigao 3.2. Let (U,d) be a metric space. We say that {Fy} C U is a nested sequence of sets if
FiDFDF3D ...

Teorema 3.3. If (U,d) is a complete metric space then every nested sequence of non-empty closed
sets {Fy} such that
lim diam(Fy) =0

k—+o00

has non-empty intersection, that is
My Fr # 0.

Proof. Suppose {Fy} is a nested sequence and lim diam(Fy) = 0. For each n € N select u, € F,.

k—o0
Suppose given € > 0. Since

lim diam(F},) =0,
n—oo
there exists NV € N such that if n > N then
diam(F),) < e.
Thus if m,n > N we have u,,, u, € Fy so that
d(Up, up) < €.

Hence {u,} is a Cauchy sequence. Being U complete, there exists u € U such that

U, — U asS . — 0.
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Choose m € N. We have that u,, € F,,,Vn > m, so that
uekF,=F,.

Since m € N is arbitrary we obtain
ueny 1 F,.

The proof is complete.

Teorema 3.4. Let (U,d) be a metric space. If A C U is compact then it is closed and bounded.

Proof. We have already proved that A is closed. Suppose, to obtain contradiction that A is not
bounded. Thus for each K € N there exists u,v € A such that

d(u,v) > K.

Observe that
A C UueABl (u)

Since A is compact there exists uy, ua, ..., u, € A such that

Define
R = max{d(u;,u;) | 1,7 € {1,...,n}}.

Choose u,v € A such that
d(u,v) > R+ 2. (16)
Observe that there exist 4,7 € {1,...,n} such that
u € Bi(u;), v € By(uj).
Thus

d(u,v) d(u, w;) + d(u;, uj) + d(uj,v)

<
< 2+R, (17)

which contradicts (16). This completes the proof.

Definicao 3.5 (Relative compactness). In a metric space (U,d) a set A C U is said to be relatively
compact if A is compact.

Definigao 3.6 (¢ - nets). Let (U, d) be a metric space. A set N C U is sat to be a e-net with respect
to a set A C U if for each u € A there exists v € N such that

d(u,v) < e.
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Definicao 3.7. Let (U,d) be a metric space. A set A C U is said to be totally bounded if for each
€ > 0 there exists a finite e-net with respect to A.

Proposicao 3.8. Let (U,d) be a metric space. If A C U is totally bounded then it is bounded.

Proof. Choose u,v € A. Let {uy,...,u,} be the 1 — net with respect to A. Define
R = max{d(u;,u;) | 1,7 € {1,...,n}}.
Observe that there exist 4,7 € {1,...,n} such that
d(u,u;) <1, d(v,u;) < 1.
Thus

d(u,v) d(u, u;) + d(u;, uj) + d(ug,v)

<
< R+2. (18)

Since u,v € A are arbitrary, A is bounded.

Teorema 3.9. Let (U,d) be a metric space. If from each sequence {u,} C A we can select a
convergent subsequence {u,, } then A is totally bounded.

Proof. Suppose, to obtain contradiction, that A is not totally bounded. Thus there exists g9 > 0
such that there exists no o-net with respect to A. Choose u; € A, hence {u;} is not a eg-net, that
is, there exists us € A such that

d(uy, us) > &o.

Again {u1,us} is not a gg-net for A, so that there exists ug € A such that
d(uy,uz) > go and d(ug, uz) > €.
Proceeding in this fashion we can obtain a sequence {u,} such that
d(Up, Um) > €0, if m # n. (19)
Clearly we cannot extract a convergent subsequence of {u,}, otherwise such a subsequence would be

Cauchy contradicting (19). The proof is complete.

Definigao 3.10 (Sequentially compact sets). Let (U, d) be a metric space. A set A C U is said to be
sequentially compact if for each sequence {u,} C A there exist a subsequence {u,,} and u € A such
that

Uy, — U, as k — oo.

Teorema 3.11. A subset A of a metric space (U,d) is compact if and only if it is sequentially
compact.

Proof. Suppose A is compact. By Proposition 6.8 A is countably compact. Let {u,} C A be a
sequence. We have two situations to consider.
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1. {u,} has infinitely many equal terms, that is in this case we have
Upy = Upy = oo = Up, = ... =U € A.
Thus the result follows trivially.

2. {u,} has infinitely many distinct terms. In such a case, being A countably compact, {u,} has
a limit point in A, so that there exist a subsequence {u,, } and u € A such that

Uy, — U, as k — 00.

In both cases we may find a subsequence converging to some u € A.
Thus A is sequentially compact.
Conversely suppose A is sequentially compact, and suppose {G,, « € L} is an open cover of A.
For each u € A define
d(u) = sup{r | B,(u) C G4, for some o € L}.

First we prove that 6(u) > 0,Vu € A. Choose u € A. Since A C Uuer G, there exists ag € L such
that u € G,,. Being G, open, there exists ro > 0 such that B, (u) C G-
Thus
d(u) > 1o > 0.

Now define &y by
dp = inf{d(u) | u € A}.

Therefore, there exists a sequence {u,} C A such that
d(up) = dp as n — oo.
Since A is sequentially compact, we may obtain a subsequence {u,, } and uy € A such that
0 (U, ) — 6o and u,, — uo,

as k — oo. Therefore, we may find Ky € N such that if k£ > K, then

)
d(tn,, up) < (ZO). (20)
We claim that 5
S(up,) > (ZO), if & > K,

To prove the claim, suppose
2 € By (unk),Vk > K,

4

(observe that in particular from (20)

Ug € BM(Unk)>Vk > KO).
1
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Since

there exists some o« € L such that

However, since

d(tn,,, up) < %, if k> Ko,
we obtain
Biuo) (uo) D Biun) (Uny), if k> Ko,
so that
5(up,) > 5(30),\113 > K,
Therefore
]}Lrgo (U, ) = 0p > 5(20).

Choose € > 0 such that
0g >e > 0.

From the last theorem since A it is sequentially compact, it is totally bounded. For the £ > 0 chosen
above, consider an e-net contained in A (the fact that the e-net may be chosen contained in A is also
a consequence of last theorem) and denote it by N that is,

N = {/Ul, ...,/Un} € A.

Since dy > €, there exists
Qay, ...,y € L

such that
B:(v;) C Gy, Vi € {1,...,n},

considering that
(S(UZ) > 50 >e > O,VZ € {1, ,n}

For u € A, since N is an e-net we have
u e Ul B:(v;) C UL G,

Since u € U is arbitrary we obtain

AC UL G,,.
Thus

{Goys oy Go, }
is a finite subcover for A of

{Ga, a € L}.

Hence A is compact.
The proof is complete;
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Teorema 3.12. Let (U,d) be a metric space. Thus A C U is relatively compact if and only if for
each sequence in A, we may select a convergent subsequence.

Proof. Suppose A is relatively compact. Thus A is compact so that from the last Theorem, A is
sequentially compact.

Thus from each sequence in A we may select a subsequence which converges to some element of
A. In particular, for each sequence in A C A we may select a subsequence that converges to some
element of A.

Conversely, suppose that for each sequence in A we may select a convergent subsequence. It
suffices to prove that A is sequentially compact. Let {v,} be a sequence in A. Since A is dense in
A, there exists a sequence {u, } C A such that

1
d ny Yn -
(u v)<n

From the hypothesis we may obtain a subsequence {u,, } and ug € A such that
Uy, — Uy, as k — oo.
Thus,
Up, — Ug € A, as k — oo.
Therefore A is sequentially compact so that it is compact.

Teorema 3.13. Let (U,d) be a metric space.
1. If A C U is relatively compact then it is totally bounded.
2. If (U,d) is a complete metric space and A C U is totaly bounded then A is relatively compact.

Proof. 1. Suppose A C U is relatively compact. From the last theorem, from each sequence in A
we can extract a convergent subsequence. From Theorem 3.9 A is totally bounded.

2. Let (U,d) be a metric space and let A be a totally bounded subset of U.
Let {u,} be a sequence in A. Since A is totally bounded for each k € N we find a e4-net where

e = 1/k, denoted by N, where
N, = {Uik),vék), U(k)}'

w0 Upy

In particular for & = 1 {u,} is contained in the 1-net N;. Thus at least one ball of radius 1 of N,

contains infinitely many points of {u,}. Let us select a subsequence {uﬁ,}}keN of this infinite

set (which is contained in a ball of radius 1). Similarly, we may select a subsequence here
just partially relabeled {ug)}leN of {ugk)} which is contained in one of the balls of the $-net.

Proceeding in this fashion for each £ € N we may find a subsequence denoted by {ugﬁ}meN of
the original sequence contained in a ball of radius 1/k.
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Now consider the diagonal sequence denoted by {u{)} e = {2}. Thus

2
d ny ~“m R
(2 Z)<k

that is {z;} is a Cauchy sequence, and since (U, d) is complete, there exists u € U such that

it m,n >k,

zr — u as k — oo.

From Theorem 3.12, A is relatively compact.
The proof is complete.

4 The Arzela-Ascoli Theorem

In this section we present a classical result in analysis, namely the Arzela-Ascoli theorem.

Definigao 4.1 (Equi-continuity). Let F be a collection of complex functions defined on a metric
space (U,d). We say that F is equicontinuous if for each € > 0, there exists § > 0 such that if
u,v € U and d(u,v) < then

|f(u) — f(v)] < e, Vf €F.
Furthermore, we say that F is point-wise bounded if for each w € U there exists M(u) € R such that

|f(u)] < M(u),Yf € F.

Teorema 4.2 (Arzela-Ascoli). Suppose F is a point-wise bounded equicontinuous collection of com-
plex functions defined on a metric space (U,d). Also suppose that U has a countable dense subset E.

Thus, each sequence {f,} C F has a subsequence that converges uniformly on every compact subset
of U.

Proof. Let {u,} be a countable dense set in (U, d). By hypothesis, {f,(u1)} is a bounded sequence,
therefore it has a convergent subsequence, which is denoted by { f,,, (u1)}. Let us denote

for (1) = fip(ur),Vk € N
Thus there exists g; € C such that
fl,k(m) — g1, as k — oo.

Observe that { f,, (u2)} is also bounded and also it has a convergent subsequence, which similarly as
above we will denote by { fox(u2)}. Again there exists go € C such that

f2,k(u1) — g1, as k — oo.

fz]g(UQ) — g2, as k — oo.

Proceeding in this fashion for each m € N we may obtain {f,,x} such that

fmk(uj) — gj, as k — o00,Vj € {1,...,m},
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where the set {g1, g2, ..., gm } is Obtained as above. Consider the diagonal sequence

{fk‘,k}a

and observe that the sequence .
{fk,k(um>}k>m

is such that )
fer(m) = gm € C, as k — 0o, ¥m € N.

Therefore we may conclude that from {f,} we may extract a subsequence also denoted by

{fur} = {fri}

which is convergent in
E = {un}nGN'

Now suppose K C U, being K compact. Suppose given € > 0. From the equi-continuity hypothesis
there exists § > 0 such that if u,v € U and d(u,v) < § we have

| o (1) = fn (V)] < %,Vk eN.

Observe that
K C UuGKB% (U),

and being K compact we may find {@y, ..., @y} such that
K C UL, Bs ().
Since F is dense in U, there exists
vj € B%(aj) NEVje{l,.., M}
Fixing j € {1, ..., M}, from v; € E we obtain that
Jim f, (v))
exists as k — oo. Hence there exists Ko, € N such that if k,1 > Ky, then
[Fun0) = Fu0)] < 5

Pick v € K, thus

u < B%(ﬂj)
for some j € {1,..., M}, so that

d(u,vs) < 4.

77
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Therefore if
k.l > max{Ky,, ..., Ko, },

then

+|fm(vj) _fm(u)‘

19 19 g
< —4-—4-=c¢. 21
< 3+3—|—3 € (21)

Since u € K is arbitrary, we conclude that {f,,} is uniformly Cauchy on K.
The proof is complete.

5 Topological Vector Spaces

5.1 Introduction

The main objective of this chapter is to present an outline of the basic tools of analysis necessary
to develop the subsequent chapters. We assume the reader has a background in linear algebra and
elementary real analysis at an undergraduate level. The main references for this chapter are the
excellent books on functional analysis, Rudin [6], Bachman and Narici [1] and Reed and Simon [5].
All proofs are developed in details.

5.2 Vector spaces

We denote by F a scalar field. In practice this is either R or C, the set of real or complex numbers.

Definicao 5.1 (Vector spaces). A wvector space over F is a set which we will denote by U whose
elements are called vectors, for which are defined two operations namely, addition denoted by (+) :
UxU — U, and scalar multiplication denoted by (-) : F x U — U, so that the following relations are
valid

1. u+v=v+u,Vu,v €U,

2. u+ (v+w)=(u+v)+w,Vu,v,weUl,

3. there exists a vector denoted by 6 such that u+ 60 = u, Yu € U,
4

. for each uw € U, there exists a unique vector denoted by
—u such that u + (—u) =0,

“

Oz-(ﬁ-u)z(a-ﬁ)-u,V&,ﬂEIF, UGU,

6. a-(ut+v)=a-ut+a-v,YVaeF, uvel,

=

(a+p) u=a-u+p -uVa,f €F, uel,
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8 1-u=uVueUl

Observacao 5.2. From now on we may drop the dot (-) in scalar multiplications and denote o - u
simply as au.

Definicao 5.3 (Vector subspace). Let U be a vector space. A set V. C U is said to be a vector
subspace of U if V is also a vector space with the same operations as those of U. If V # U we say
that V is a proper subspace of U.

Definigao 5.4 (Finite dimensional space). A wvector space is said to be of finite dimension if there
exists fized uy,usg,...,u, € U such that for each uw € U there are corresponding oy, ....,a, € F for

which

u= Z QU (22)
i=1

Definigao 5.5 (Topological spaces). A set U is said to be a topological space if it is possible to define
a collection o of subsets of U called a topology in U, for which are valid the following properties:

1. U € o,

2. 0 € o,

3. if A€o and B € o then ANB € o, and

4. arbitrary unions of elements in o also belong to o.

Any A € o is said to be an open set.

Observacao 5.6. When necessary, to clarify the notation, we shall denote the vector space U en-
dowed with the topology o by (U, o).

Definigao 5.7 (Closed sets). Let U be a topological space. A set A C U is said to be closed if U\ A
is open. We also denote U\ A=A°={ueU |u¢g A}.

Observacao 5.8. For any sets A, B C U we denote
A\B={ue€ A|u¢ B}.
Proposicao 5.9. For closed sets we have the following properties:
1. U and () are closed,
2. If A and B are closed sets then AU B is closed,
3. Arbitrary intersections of closed sets are closed.

Proof. 1. Since ) is open and U = ()¢, by Definition 5.7 U is closed. Similarly, since U is open and
D=U\U=U¢ 0 is closed.
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2. A, B closed implies that A¢ and B¢ are open, and by Definition 5.5, AN B¢ is open, so that
AU B = (A°N B)* is closed.

3. Consider A = Ny, Ay, where L is a collection of indices and A, is closed, VA € L. We may
write A = (Uyer AS)¢ and since AS is open YA € L we have, by Definition 5.5, that A is closed.

Definicao 5.10 (Closure). Given A C U we define the closure of A, denoted by A, as the intersection
of all closed sets that contain A.

Observagao 5.11. From Proposition 5.9 Item 3 we have that A is the smallest closed set that
contains A, in the sense that, if C' is closed and A C C then A C C.

Defini¢ao 5.12 (Interior). Given A C U we define its interior, denoted by A°, as the union of all
open sets contained in A.

Observacao 5.13. [t is not difficult to prove that if A is open then A = A°.

Definigao 5.14 (Neighborhood). Given ug € U we say that V is a neighborhood of ug if such a set
s open and contains uy. We denote such neighborhoods by V.

Proposicao 5.15. If A C U is a set such that for each u € A there exists a neighborhood V,, > u
such that V, C A, then A is open.

Proof. This follows from the fact that A = U,c4),, and any arbitrary union of open sets is open.

Defini¢ao 5.16 (Function). Let U and V' be two topological spaces. We say that f : U — V is a
function if f is a collection of pairs (u,v) € U x V' such that for each u € U there exists only one
v €V such that (u,v) € f.
In such a case we denote
v = f(u).
Definigao 5.17 (Continuity at a point). A function f : U — V is continuous at u € U if for each
neighborhood Vi) C V' of f(u) there exists a neighborhood V,, C U of u such that f(Vu) C Vi)

Definicao 5.18 (Continuous function). A function f : U — V is continuous if it is continuous at
each v e U.

Proposigao 5.19. A function f: U — V is continuous if and only if f~1(V) is open for each open
Y CV, where

V) ={uelU| fu) € V}. (23)

Proof. Suppose f~1(V) is open whenever V C V is open. Pick v € U and any open V such that
f(u) € V. Since u € f~H(V) and f(f~H(V)) C V, we have that f is continuous at u € U. Since u € U
is arbitrary we have that f is continuous. Conversely, suppose f is continuous and pick V C V open.
If f~1(V) = 0 we are done, since ) is open. Thus, suppose u € f~!(V), since f is continuous, there
exists V, a neighborhood of u such that f(V,) C V. This means V, C f~'(V) and therefore, from
Proposition 5.15, f~*(V) is open.
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Definigao 5.20. We say that (U,0) is a Hausdorff topological space if, given uy, us € U, uy # us,
there exists Vi, Vo € 0 such that

Ulevl, Uy € Vs andVlﬂVQZ(Z). (24)

Definigao 5.21 (Base). A collection o' C o is said to be a base for o if every element of ¢ may be
represented as a union of elements of o’.

Definigao 5.22 (Local base). A collection & of neighborhoods of a point u € U is said to be a local
base at u if each neighborhood of u contains a member of 6.

Definigao 5.23 (Topological vector spaces). A wector space endowed with a topology, denoted by
(U,0), is said to be a topological vector space if and only if

1. Every single point of U is a closed set,

2. The vector space operations (addition and scalar multiplication) are continuous with respect to
0.

More specifically, addition is continuous if, given u,v € U and V € o such that w4+ v € V then
there exists V, 2 v and V, > v such that V,, +V, C V. On the other hand, scalar multiplication is
continuous if given o € F, w € U and V > « - u, there exists 6 > 0 and V, 2 u such that, Vg € F
satisfying |8 — a| < § we have 5V, C V.

Given (U, o), let us associate with each ug € U and ag € F (ap # 0) the functions T,,, : U — U
and M,, : U — U defined by

T (1) = ug +u (25)
and
M,,(u) = ag - u. (26)

The continuity of such functions is a straightforward consequence of the continuity of vector space
operations (addition and scalar multiplication). It is clear that the respective inverse maps, namely
T, and Mj ., are also continuous. So if V' is open then uo+V, that is (T_,,) " (V) = To, (V) = uo+V
is open. By analogy o) is open. Thus o is completely determined by a local base, so that the term
local base will be understood henceforth as a local base at 6. So to summarize, a local base of a
topological vector space is a collection €2 of neighborhoods of @, such that each neighborhood of
contains a member of €2.
Now we present some simple results, namely:

Proposicao 5.24. If A C U is open, then Yu € A there exists a neighborhood V of 6 such that
u+V CA

Proof. Just take V = A — u.

Proposicao 5.25. Given a topological vector space (U, o), any element of o may be expressed as a
union of translates of members of €1, so that the local base ) generates the topology o.
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Proof. Let A C U open and u € A. V = A —u is a neighborhood of 6 and by definition of local base,
there exists a set Vg, C V such that Vg, € (2. Thus, we may write

A= UueA(u + VQM) (27)

5.3 Some properties of topological vector spaces

In this section we study some fundamental properties of topological vector spaces. We start with
the following proposition:

Proposicao 5.26. Any topological vector space U is a Hausdorff space.

Proof. Pick ug,u; € U such that ug # uy. Thus V = U \ {u; — up} is an open neighborhood of zero.
As 0+ 0 = 0, by the continuity of addition, there exist V; and Vs neighborhoods of # such that

Vi+Vy,CV (28)

define Y =V, NV N (=V1) N (=Vy), thus U = —U (symmetric) and U +U C V and hence

w+U+UCug+V C U\ {u} (29)
so that
Ug + v1 + vy # uy, Vv, v €U, (30)
or
Ug + V1 £ up — Vo, Yui,v9 €U, (31)
and since U = —U
(uwo +U)N (ur +U) = 0. (32)

Definig¢ao 5.27 (Bounded sets). A set A C U is said to be bounded if to each neighborhood of zero
V there corresponds a number s > 0 such that A C tV for each t > s.

Definigao 5.28 (Convex sets). A set A C U such that
ifu,v € A then \u+ (1 —Xve A, VAel0,1], (33)

18 said to be convez.

Definig¢ao 5.29 (Locally convex spaces). A topological vector space U is said to be locally convez if
there is a local base €2 whose elements are conver.

Definicao 5.30 (Balanced sets). A set A 