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1 Metric Spaces

1.1 Introduction

In this chapter we present the main basic definitions and results relating the concept of metric
spaces.

We recall that any Banach space is a metric one, so that the framework here introduced is suitable
for a very large class of spaces.

1.2 The main definitions
We start this section presenting the metric definition and some concerning examples.

Definigao 1.1 (Metric space). Let V' be a non-empty set. We say that V is a metric space as it is
possible to define a function d:V x V — RT = [0, +00) such that

1. d(u,v) >0 if u # v and d(u,u) =0, Yu,v € V.
2. d(u,v) =d(v,u), Yu,v € V.
3. d(u,w) < d(u,v) + d(v,w), Yu,v,w € V.

Such a function d is said to be a metric for V', so that the metric space in question is denoted by

(V. d).
Exemplo 1.2. V =R is a metric space with the metric d : R x R — R where
d(u,v) = |lu—v|,Yu,v € R.

Exemplo 1.3. V = R? is a metric space with the metric d: V x V — R* where

d(u,v) = \/(ul —v1)2 + (ug — 19)2, Yu = (ug, ug), v = (v1,v;) € R%

Exemplo 1.4. V =R" is a metric space with the metric d : V x V — Rt where

d(u,v) = /(uy — 1)+ -+ (U — )2, Ya = (uy,...,u,), v=(vi,...,0,) €R".



Exemplo 1.5. V = C([a, b]), where C([a, b)) is the metric space of continuous functionsu : [a,b] — R
with the metric d: V x V. — RT where

d(u,v) = max {|u(z) —v(2)|} = ||u — V|0, Yu,v € V.

z€la,b]

Exemplo 1.6. V = C([a,b]), is a metric space with the metric d:V x V — R* where
b
d(u,v) = / lu(z) —v(x)| dz, Yu,v € V.

1.3 The space [*

In this subsection we start to define some important classes of metric spaces.
The first definition presented is about the [* space of sequences.

Definicao 1.7. We define the space [*° as
[ ={u=A{uptnen : u, € C and there exists M > 0 such that |u,| < M, Vn € N}.

A metric for 1*° may be defined by

d(u, v) = sup{|u; —v;l},

JEN

where u = {u,} e v={v,} €.

1.4 Discrete metric

At this point we introduce the definition of discrete metric.
Definicao 1.8. Let V' be a non-empty set. We define the discrete metric for V' by

R A W

In such a case we say that (V,d) is a discrete metric space.

Exercicio 1.9. Let V =R and let d: V x V — R be defined by

d(u,v) = /|u—v|.

Show that d is a metric for V.



1.5 The metric space s
In the next lines we define one more metric space of sequences, namely, the space s.
Defini¢cao 1.10 (The metric space s). We define the metric space s as s = (V,d), where

V ={u={u,}, : u, €C, Vn € N},

with the metric

Vu = {u,} and v ={v,} € V.

Exercicio 1.11. Show that this last function d is indeed a metric.

1.6 The space B(A)

Another important metric space is the space of bounded functions defined on a set A, denoted
by B(A).

Definicao 1.12. Let A be a non-empty set and define
B(A) ={u: A— R, such that there exists M > 0 such that |u(x)| < M, Vz € A}.
B(A) is said to be the space of bounded functions defined on A.

Exercicio 1.13. Show that B(A) is a metric space with the metric

d(u,v) = sup{[u(z) — v(z)]}.

€A

1.7 The space [”

Finally, one of most important metric space of sequences is the [” one, whose definition is presented
in the next lines.

Definicao 1.14. Letp > 1, p € R.
We define the space [P by

P = {u:{un} : up, € C and Z|un|p < oo}

n=1

with the metric

o 1/p
d(u,v) = (Z\un—vn\p> ,
n=1

where u = {u,} and v = {v,} € I.



At this point we shall show that d is indeed a metric.
Let p> 1, p € R. Let ¢ > 1 be such that

1 1
S =1,
p q
that is
- P
p—1

Let z,y > 0, x,y € R.
We are going to show that

1 1
ry < —af + -yt
p q
Observe that if x = 0 or y = 0 the inequality is immediate. Thus, suppose x > 0 e y > 0.

Fix y > 0 and define

1 1
h(z) = —a? + —y? — xy, Yo > 0.
p q

Observe that
and

h'(z) = (p— 1)aP™% > 0,Vz > 0.

Therefore h is convex and its minimum on (0, 4+00) is attained through the equation

that is, at zq = y*/®=1.

Hence,
min  h(z) = h(zg)
z€(0,+00)
1 1
= §($o)p+qu—$oy
L owo-n _ 1e-1, L g
= —y y "y 4~y
= (I/p=1)y"+-y*
1 1
— __yQ+_yq
q q
= 0 (2)
Thus,

1 1
h(z) = —aP + ~y? — 2y > h(xy) = 0, Yo > 0.
p q



Therefore, since y > 0 is arbitrary, we obtain
1 1
xy < —aP + -y, Va,y > 0.
p q

so that | |
vy < —a” + —y?, Vo,y > 0.
p q

Let u = {u,} € I and v = {v,,} € 1%

Denote
[o¢]
Jull, = (Z \un\p>
n=1
and
o0 q
vl = (z w)
n=1
Define also
hally | (20 )
and
VvV = =
Vlle L0 foalo)
From this and (3) we obtain,
pRIENIEIY SIS ST
n=1 p n=1 q n=1
1 1
— — —|— —
p q
= 1.

Thus,

(e}
Z unva| < [[ullpl[vllg, Vu e l?, v el

n=1

This last inequality is well known as the Holder one.

Exercicio 1.15. Prove the Minkowski inequality, namely

[u vl < flull, +[[vll, Ya,ve



Hint
[o¢]

[u+v|p = Z [tn, + v, [P

n=1
< 3+ 0alP 7 fun] + [oa]). (5)
n=1

Apply the Holder inequality to each part of the right hand side of the last inequality.
Use such an inequality to prove the triangle inequality concerning the metrics definition.

Prove also the remaining properties relating the metric definition and conclude that d : [P X [P —
R*, where
du,v) = lu—v|, Yu,velr

15 indeed a metric for the space [P.

1.8 Some fundamental definitions

Definigao 1.16 (neighborhood). Let (U,d) be a metric space. Let u € U and r > 0. We define the
neighborhood of center u and radius r, denoted by V,.(u), by

Vi(w) ={velU|du,v)<r}.

Definigao 1.17 (limit point). Let (U,d) be a metric space and E C U. A point u € U is said to be
a limit point of E if for each r > 0 there exists v € V,.(u) N E such that v # u.

We shall denote by E’ the set of all limit points of E.
Exemplo 1.18. U = R?, E = B,(0). Thus E' = B,(0).
Observacao 1.19. In the next definitions U shall denote a metric space with a metric d.

Definicao 1.20 (Isolated point). Let uw € E C U. We say that u is an isolated point of E if it is
not a limit point of E.

Exemplo 1.21.

U=R? E=DB((0,0)U{(3,3)}. Thus (3,3) is an isolated point of E.

Definigao 1.22 (Closed set). Let E C U and let E' be the set of limit points of E. We say that E
is closed if E D E'.

Exemplo 1.23.

Let U =R? and r > 0, thus E = B,((0,0)) is closed.

Definicao 1.24. A point u € E C U 1is said to be an interior point of E if there exists r > 0 such

that V.(u) C E, where
Vi(u) ={veU|d(u,v) <r}.



Exemplo 1.25.

For U = R?, let E = B;((0,0)) U{(3,3)}, for ezample u = (0.25,0.25) is an interior point of E,
in fact, for r = 0.5, if v € V.(u) then d(u,v) < 0.5 so that d(v,(0,0)) < d((0,0),u) + d(u,v) <
V1/8 +0.5 < 1 that is, v € B1((0,0)) and thus V,(u) C B1((0,0)). We may conclude that u is an
interior point of B1((0,0)). In fact all points of B1((0,0)) are interior.

Definicao 1.26 (Open set). E C U is said to be open if all its points are interior.
Exemplo 1.27.
For U = R?, the ball B1(0,0) is open.
Definicao 1.28. Let F C U, we define its complement, denoted by E°, by:
Ec={velU]|v¢E}

Definicao 1.29. A set E C U is said to bounded if there exists M > 0 such that

sup{d(u,v) | u,v € E} < M.
Definigcao 1.30. A set E C U is said to be dense in U if each point of U is either a point of E or
it is a limit point of E, that is, U = EUE'.
Exemplo 1.31.

The set Q is dense in R. Let u € R and let r > 0. Thus, from a well known result in elementary
analysis there exists v € Q such that w < v < u + r, that is, v € QN V,.(u) and v # u, where
Vi(u) = (uw —r,u+r1). Therefore u is a limit point of Q. Since u € R is arbitrary, we may conclude
that R C ', that is, Q is dense in R.

Teorema 1.32. Let (U,d) be a metric space. Let w € U and r > 0. Then V,.(u) is open.
Proof. First we recall that
Vi(u) ={veU|d(u,v) <r}.
Let v € V,.(u). We have to show that v is an interior point of V;.(u). Define r; = r — d(u,v) > 0. We
shall show that que V;, (v) C V,.(u).
Let w € V,,(v), thus d(v,w) < r. Hence
d(u,w) < d(u,v) + d(v,w) < d(u,v) +r; =r.
Therefore w € V,(u),Vw € V,, (v), that is V,,(v) C V,(u), so that we may conclude that v is an
interior point of V,.(u),Vv € V,.(u), thus, V,.(u) is open. The proof is complete.

Teorema 1.33. Let u be a limit point of E C U, where (U,d) is a metric space. Then each
neighborhood of u has an infinite number of points of E, distinct from wu.

Proof. Suppose to obtain contradiction, that there exists r > 0 such that V,.(u) has a finite number
of points of E distinct from u. Let {vy,...,v,} be such points of V,.(u) N E distinct from u. Choose
0 < r; <min{d(u,vy),d(u,vy), ....,d(u,v,) }. Hence V., (u) C V,(u) and v; € V,. (u),Vi € {1,2,...,n}.
Therefore either V,, (u) N E = {u} or V,, N E =, which contradicts the fact that u is a limit point
of F.

The proof is complete.

Corolario 1.34. Let E C U be a finite set. Then E has no limit points.



1.9 Properties of open and closed sets in a metric space

In this section we present some basic properties of open and closed sets.

Proposicao 1.35. Let {E,, a € L} be a collection of sets. Then
(UaeLEa)c = maGLE;-
Proof. Observe that

U € (UnerFo)° U & Uper By
u¢ E,Va e L
u€ B, Vae L

(TS maeLE;. (6)

t o0

Exercicio 1.36.

Prove that
(ﬂaELEa)C - UaELEg‘

Teorema 1.37. Let (U,d) be a metric space and E C U. Thus, E is open if and only if E° is closed.

Proof. Suppose E° is closed. Choose u € F, thus u ¢ E° and therefore u is not a limit point E°.
Hence there exists r > 0 such that V,.(u) N B = (). Hence, V,(u) C E, that is, u is an interior point
of E, Yu € F, so that E is open.
Reciprocally, suppose E is open. Let u € (E¢). Thus for each r > 0 there exists v € V,.(u) N E°
such that v # u, so that
Vi(uw) € E, ¥Vr > 0.

Therefore u is not an interior point of E. Since E is open we have that v ¢ E, that is, u € E°.
Hence (E€) C E°, that is, E° is closed.
The proof is complete.

Corolario 1.38. Let (U,d) be a metric space, F C U 1is closed if and only if F€ is open.
Teorema 1.39. Let (U,d) be a metric space.

1. If G, C U and G, is open VYo € L, then
UaerGa
18 open.
2. If F, C U and F, is closed VYo € L, then
Naerfa

1s closed.



3. If Gy, ...,G, C U and G; is open Vi € {1,...,n}, then
in1Gi
1S open.
4. If Fy, ..., F,, CU and F; is closed Vi € {1, ...,n}, then
Uis Fi
15 closed.

Proof. 1. Let G, C U, where G, is open Va € L. Let u € U, G,. Thus u € G, for some oy € L.
Since G, is open, there exists r > 0 such that V,.(u) C Go, C Uaer,Go. Hence, u is an interior
point, Yu € U,er,Go. Thus U, Gy, is open.

2. Let I, C U, where F, is closed Voo € L. Thus, FY is open Vo € L. From the last item, we have
Uaer F$ is open so that
mozELF’oz = (UaeLFaC)C

is closed.

3. Let GG1,...,G,, C U be open sets. Let
u € ﬂ?:lGl
Thus,
ue G, Vie{l, .., n}.
Since G is open, there exists r; > 0 such that V,,(u) C G;.
Define r = min{ry, ..., 7, }. Hence, V,.(u) C V,.(u) C G;,Vi € {1, ...,n} and therefore

This means that u is an interior point of N}, G;, and being v € N} ;G; arbitrary we obtain
that NI, G; is open.

4. Let Fiy,...,F, C U be closed sets. Thus, FY,...,F? are open. Thus, from the last item, we
obtain:
im1 Y

is open, so that
i Fi = ( ?:1Fz‘c>c

is closed.
The proof is complete.

Exercicio 1.40.



Let (U,d) be a metric space and let uy € U. Show that A = {ug} is closed. Let B = {uy,...,u,} C U.
Show that B is closed.

Definicao 1.41 (Closure). Let (U, d) be a metric space and let E C U. Denote the set of limit points
of E by E'. We define the closure of E, denoted by E, by:

E=FUFE.

Exemplos 1.42.

1. Let U =R? E = B(0,0), we have that E' = B1(0,0), so that in this ezample E = EUE' = E'.

2. Let U =R, A={1/n : n € N}, we have that A’ = {0}, and thus A= AU A" = AU{0}.
Teorema 1.43. Let (U,d) be a metric space and E C U. Thus,

1. E is closed.

2. E=F & FE is closed.

3. If F O E and F is closed, then F D E.

Proof. 1. Observe that E = EUE'. Let u € E. Thus v ¢ E and v & E' (u is not a limit point
of E). Therefore, there exists r > 0 such that V,.(u) N E = (), that is, V;.(u) C E°, thus, u is an
interior point of E°.

We shall prove that V,(u) N E = (). Let v € V,.(u) and define r; = r — d(u,v) > 0. We shall
show that
Vi (v) C Vi(u).

Let w € V,, (v), thus d(v,w) < r; and therefore
d(u,w) < d(u,v) + d(v,w) < d(u,v) +r =r,
that is, w € V,.(u). Hence,
Vi (v) C Vi(u),

and thus v is not a limit point of E, that is, v € E' v e Vi(u). Thus, V,.(u) C E° which means
that u is an interior point of E°, so that E is open, and hence E is closed.

2. Observe that E' C E = EUE'. Suppose that £ is closed. Thus £ D F', that is E D FUE" = E.
Hence F = E. Suppose E = E. From the last item F is closed, and thus F is closed.

3. Let F be a closed set such that F' O E. Thus, F' D F'.

Hence B B
F=F=FUF DFEUE =E.

The proof is complete.

Exercicios 1.44.

10



. In the proof of the last theorem we have used a result which now s requested to be proven in
an exercise form.

Let U be a metric space. Assume A C B C U. Show that A’ C B'.
. Let U be a metric space and let A, B C U. Show that

A'UB = (AUDBY).

. Let U be a metric space and let E C U. Show that E' is closed.

. Let By, Bo, ... be subsets of a metric space U.

(a) Show that if B B
A, =U"B;, then A, =U]_,B,.

(b) Show that if B B
B =U;2,B; then B D U2, B,.

. Let U be a metric space and let E C U. Recall that the interior of E, denoted by E°, is defined
as the set of all interior points of E.

(a) Show that E° is open.

(b) Show that E is open, if and only if, E = E°.

(¢) Show that if G C E and G is open, then G C E°.

(d) Prove que (E°)¢ = E°.

(e) Do E and E have always the same interior? If not, present a counter exzample.

(f) Do E and E° have always the same closure? If not, present a counter example.
. Prove that Q, the rational set, has empty interior.

. Prove that 1, the set of irrationals, has empty interior.

. Prove that given x,y € R such that x < y, there exists a € 1, such that

r<a<y.

. Prove that I s dense in R.

Hint: Prove that
zel, Vo eR,

where 1" denotes the set of limit of points of 1.
. Let B C R be an open set. Show that for all x € R the set
r+B={x+vy|ye B}

1S open.

11



11.

12.

15.

14
15,

16.

17.

18.
19.

20.

21.

22.

Let A, B C R be open sets. Show that the set
A+B={x+y : v € A andy € B},
1S open.
Let B C R be an open set. Show that for all x € R such that x # 0 the set
v -B={z-ylyeB}
1S open.
Let A, B C R, show that

(a)
(ANB)° = A°N B°,

(b)
(AUB)° > A°U B°,

and give an example in which the inclusion is proper.
Let A C R be an open set and a € A. Prove that A\ {a} is open.
Let A, B C R. Prove that:

(a) AUB=AUB,
(b) ANB C AN B, and give an example for which the last inclusion is proper.

Show that a set A is dense in R if, and only if, A® has empty interior.

Let F' C R be a closed set and let x € F'. Show that x is an isolated point of F' if, and only if,
F\ {z} is closed.

Show that if A C R is uncountable, then so is A’.
Show that if A C R then A\ A’ is countable.

Let U be a metric space and let A C U be an open set. Assume ay,..,a, € A.

Prove that A\ {ay, ...,a,} is open.

Let U be a metric space, let A C U be an open set and let FF C U be a closed one.
Show that A\ F is open and F'\ A is closed.

Let A C R be an uncountable set. Prove that AN A" # ().

12



1.10 Compact sets

Definigao 1.45 (Open covering). Let (U,d) be a metric space. We say that a collection of sets
{Go, v € L} C U is an open covering of A C U if

A C UaELGa

and G, is open, Vo € L.

Definigao 1.46 (Compact set). Let (U, d) be a metric space and K C U. We say that K is compact
if each open covering {G,, o € L} of K admits a finite sub-covering. That is, if K C UyerGo, and
G, is open Vo € L, then there exist oy, Qa, ..., o, € L such that K C U, G,,.

Teorema 1.47. Let (U,d) be a metric space. Let K C U where K is compact. Then K is closed.

Proof. Let us show that K€ is open. Let u € K°. For convenience, let us generically denote in this
proof V,.(u) = V(u,r).
For each v € K we have d(u,v) > 0. Define r, = d(u,v)/2. Thus,

V(u,r,) NV (v,1,) =0,V € K. (7)

Observe that
Uvex V (v, 1) D K.

since K is compact, there exist vy, ..., v, € K such that
K C UL V(vi,ry,). (8)
Define rg = min{r,,, ..., 7,, }, thus
V(u,ro) C V(u,ry,),¥vi € {1,...,n},
so that from this and (7) we get
Vi(u,ro) NV (vy1y,) = 0,Vi € {1,2,...,n}.

Hence,
V(u,r0) N (U, V(v5,7,)) = 0.

From this and (8) we obtain, V(u, ro) N K = 0, that is V(u,r9) C K°. Therefore u is an interior point
of K¢ and being u € K¢ arbitrary, K¢ is open so that K is closed.
The proof is complete.

Teorema 1.48. Let (U,d) be a metric space. If F C K C U, K is compact and F' is closed, then F
18 compact.

13



Proof. Let {G,,a € L} be an open covering of F, that is
F C UuerGe.
Observe that U = FU F° D K, and thus,
F¢U (UperGa) D K.

Therefore, since F° is open {F°, G,, a € L} is an open covering of K, and since K is compact,
there exist aq, ...,a,, € L such that

FFuG,uU...uG, ODKDF.

Therefore
Go, U...UGy, DF,

so that F'is compact.
Exercicio 1.49.
Show that if F is closed and K 1is compact, then F'N K s compact.

Teorema 1.50. If {K,, a € L} is a collection of compact sets in a metric space (U,d) such that
the intersection of each finite sub-collection is non-empty, then

Naer Ko # 0.
Proof. Suppose, to obtain contradiction, that
Nacr Ko = 0. (9)
Fix ap € L and denote Ly = L\ {ap}. From (9) we obtain
Koo N (Naer, Ka) = 0.

Hence
Kao C (ﬂa€L1Ka)ca

that is,
Kao C UaeLlKg.

Since, K,, is compact and K is open, Vo € L, there exist aq, as, ..., o, € Ly such that
KO‘O C U?=1K;j = ( ;'Z=1K0‘j)c’

therefore,

Koy N (M Ka,) = Koy N Ko, NN Ky, =0,

which contradicts the hypotheses. The proof is complete.

14



Corolario 1.51. Let (U,d) be a metric space. If {K,, n € N} C U is a sequence of compact
non-empty sets such that K, D K,.1,Yn € N then N2, K,, # 0.

Teorema 1.52. Let (U,d) be a metric space. If E C K C U, K is compact and E is infinite, then
E has at least one limit point in K.

Proof. Suppose, to obtain contradiction, that no point of K is a limit point of E. Then, for each
u € K there exists r, > 0 such that V(u,r,) has at most one point of E, namely, v if u € E. Observe
that {V(u,r,), u € K} is an open covering of K and therefore of E. Since each V' (u,r,) has at most
one point of E which is infinite, no finite sub-covering (relating the open cover in question), covers
E, and hence no finite sub-covering covers K O FE, which contradicts the fact that K is compact.
This completes the proof.

Teorema 1.53. Let {I,,} be a sequence of bounded closed non-empty real intervals, such that I, D
I,1,VYn € N. Thus, NI, # 0.

Proof. Let I, = [an,b,] and let E = {a,, n € N}. Thus, £ # () and E is upper bounded by b;. Let
r=supFE.
Observe that, given m,n € N we have that

an S an—f—m S bn-i—m S bma

so that

sup a, < b,,,Vm € N,
neN

that is, x < b,,,, Vm € N. Hence,
am <z <b,,Vm € N,

that is,
T € [am, by], Ym € N,

so that @ € NOy_; I;y,.
The proof is complete.

Teorema 1.54. Let [ = [a,b] C R be a bounded closed non-empty real interval. Under such hypothe-
ses, I is compact.

Proof. Observe that if =,y € [a, ] then |z — y| < (b — a).. Suppose there exists an open covering of
I, denoted by {G,, o € L} for which there is no finite sub-covering.

Let ¢ = (a + b)/2. Thus, either [a,c| or [¢,b] has no finite sub-covering related to {G,, a € L}.
Denote such an interval by ;. Dividing I; into two connected closed sub-intervals of same size, we
get an interval I for which there is no finite sub-covering related to {G,, o € L}.

Proceeding in this fashion, we may obtain a sequence of closed intervals {I,,} such that

1. In D) In+1,vn € N.
2. No finite sub-collection of {G,,« € L} covers I,,, Vn € N.

3. If x,y € I,, then |z —y| < 27"(b— a).

15



From the last theorem, there exists 2* € R such that 2* € N7 1, C I C U,erG,. Hence, there exists
ag € L such that z* € G,,. Since G, is open, there exists r > 0 such that

Vi(z™) = (a" — 12" +71) C Go,.
Choose ny € N such that
27"(b—a) < r/2.

Hence, since z* € I, if y € I,, then from item 3 above, |y — 2*| < 27"0(b — a) < r/2, that is
y € Vo(2*) C Gap-
Therefore
yel,, =ye€ Gy,

so that I,,, C G,,, which contradicts the item 2 above indicated.
The proof is complete.

Teorema 1 (Heine-Borel). Let E C R, thus the following three properties are equivalent.
1. E s closed and bounded.

2. E 1s compact.

3. Fach infinite subset of E has a limit point of E.

Proof. e 1 implies 2: Let £ C R be a closed and bounded. Thus, since £ is bounded there exists
la,b] a bounded closed interval such that E C [a,b]. From the last theorem [a,b] is compact
and since F is closed, from Theorem 1.48 we may infer that E is compact.

e 2 implies 3: This follows from Theorem1.52.

e 3 implies 1: We prove the contrapositive, that is, the negation of 1 implies the negation of 3.

The negation of 1 is: E is not bounded or E is not closed. If £ C R is not bounded, choosing
x1 € E, for each n € N there exists 2,41 € F such that |x,1| > n+ |z,| > n. Hence {z,} has
no limit points so that we have got the negation of 3.

On the other hand, suppose £ is not closed. Thus there exists xy € R such that zy € £’ and
ZTo g E.

Since o € E’, for each n € N there exists x,, € E such that |z, — x| < 1/n (2, € Vi/m(20)).
Let y € E, we are going to show that y is not limit point {z,} C E. Observe that,
[z —yl > |zo =yl — |20 — 20|
> Jro—y|l—1/n
> |zg—yl/2>0 (10)
for all n sufficiently big.

Hence y is not a limit point of {z, }, Yy € E. Therefore {z,,} C FE is a infinite set with no limit
point in FE.
In any case, we have got the negation of 3. This completes the proof.

16



Exercicios 1.55.

1. Let U be a metric space and let {Ky, A\ € L} be a collection of compact sets, such that
K, C U, VX € L. Prove that Ny, Ky s compact.

2. Let U be a metric space and let K1, K, ..., K, C U be compact sets. Prove that
U?:1Kj

18 compact.

Teorema 1.56 (Weierstrass). Any real set which is bounded and infinite has a limit point in R.

Proof. Let E C R be a bounded infinite set. Thus, there exists » > 0 such that £ C [—r,r| = I,.
Since FE is infinite and I, is compact, from Theorem 1.52, F has a limit point in I, C R. The proof
is complete. O

1.11 Separable metric spaces

Definicao 1.57 (Separable metric space). Let (V,d) be a metric space. We say that a set M C V
s dense in V if o
M=MUM =V.

If V' has dense subset which is countable, we say that V is separable.

Exemplo 1.58. V = R is separable. Indeed Q, the set of rational number, is dense in R and
countable.

Exemplo 1.59. The space [*° is not separable.
In fact, let A C I> be the set of all real sequences whose entries are only 0 and 1.
From elementary analysis it is well known that A is non-countable.
Let 0 <e < 1/4.
Suppose, to obtain contradiction, that

B - {un}neN C loo

1s dense in [*°.
Thus, for each v € A, we may select a n, € N such that

d(v, uy,) < €.
Let v,w € A be such that v # w. Therefore,
dv,w) =1,

so that
d(v,w) < d(v,up,) + d(tn,, w),
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and thus

A(tp,,w) > 1—d(v,uy,)

> 1—c¢

> 1—-1/4

= 3/4

> € (11)
So to summarize, if v # w, then

unv # unw

LetT : A — B, where

Thus T is a bijection on I,(T) C B.
Therefore,
A~ Im(T) ~ B ~N.

This contradicts A to be non-countable.
So, we may infer that [*° is non-separable.

Exercicio 1.60. Let 1 < p < +00. Prove that I is separable.

1.12 Complete metric spaces

Definigao 1.61. Let {u,} C V where (V,d) is a metric space.
We say that ug € V' is the limit of {u,} as n goes to infinity (), if for each € > 0 there exists
ng € N such that if n > ng, then
d(tn, up) < €.

In such a a case we denote,

lim u,, = ug,
n—oo

or
Uy — Uy, AS N —> OO

and say that the sequence {u,} is convergent.

Exercicio 1.62. Let (V,d) be a metric space and let {u,} CV be a convergent sequence.
Show that {u,} is bounded.

Definicao 1.63 (Cauchy sequence). Let (V,d) be a metric space and let {u,} C V be a sequence.
We say that such a sequence is a Cauchy one as for each ¢ > 0 there exists nyg € N such that if
m,n > ng, then

d(Up, Up,) < €.

Exercicio 1.64. Let (V,d) be a metric space and let {u,} CV be a Cauchy sequence.
Show that {u,} is bounded.
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Defini¢ao 1.65 (Complete metric space). Let (V,d) be a metric space. We say that V' is complete
as each Cauchy sequence in V converges to an element of V.

Exercicio 1.66. Let (V,d) be a metric space and let M C V.
1. Show that u € M if, and only if, there exists a sequence {u,} C M such that

Uy — U, AS N —r OO.

2. Show that M s closed if, and only if, the following property is valid:
If {u,} C M and u,, — u, then u € M.
Exercicio 1.67. Let (V,d) be a metric space and let M C V. Show that M is complete if, and only
if, M is closed in V.
Exercicio 1.68. Prove that R™ is complete (with the Euclidean metric).
Exercicio 1.69. Prove that c is complete, where c is the space of complex convergent sequences.

Exercicio 1.70. Let (V,d) be a metric space where V = C(|a,b]) whit the metric
b
d(u,v) = / lu(z) —v(x)| dz, Yu,v € V.

Show that V' is not complete.

2 Completion of a metric space

Definigao 2.1 (Isometries, isometric spaces). Let (V,d) and (Vi,dy) be metric space. A function
T:V — Vj is said to be a isometry of V in Vi as

di(T(u), T(v)) = d(u,v), Yu,v € V.

If there exists an isometry betwween V and Vi, we say that V' and Vy are isometric.

Teorema 2.2 (Completion). Let (V,d) be a metric space which is not complete.
Under such hypotheses, there exists a metric space (V,d) such that V is isometric to a sub-space
W of V' which is dense in V. Moreover, V is complete.

Proof. 1. First part: Construction of V.
Let {u,} and {u],} be Cauchy sequences in V.

We define a relation of equivalence in the set of Cauchy sequences in V' by declaring

{un} ~ {u}

as
) = 0.

lim d(uy,,u,,
n—oo
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Let
V= {{un} : {u,} is a Cauchy sequence in V'},

and where

{/un\} = {{u,,} €V, such that {u] }is a Cauchy sequence and {u/ } ~ {u,}}.

For u = {u,} and v = {v,,} CV define

d(i,0) = lim d(un, vy).
n—o0o
We shall show that this metric is well defined.
Let {u,} € 4 and {v,} € 0.
Observe that for, m,n € N we have that

(U, Uy) < d(Upy Upn) + d(Upn, V) 4+ (U, V)

that is,
A(tn, Uy) — AU, V) < d(Up, Upn) + d(V, v,) — 0, as m,n — 0.

Inverting the roles of m and n, we may similarly obtain:

AUy V) — AU,y V3) < d(Up, Upy) + d(Vp, v,) — 0, a8 MM — 00

so that
|d (W, V) — d(Up,v,)| = 0, as m,n — oo.

Therefore {d(un,v,)} is a real Cauchy sequence and thus it is convergent.
Let {u/,} € 4 and {v]} € 0.

Hence,
d(Up, vn) < d(tup,ul,) + d(ul,,v),) + d(v),v,),

n»-n

so that
d(tp, vn) — d(ul,v),) < d(ug,u,) + d(v,,v),) — 0, as n — oo.

n’-n

Inverting the roles of the sequences, we get

d(up,v)) — d(tn, v,) < d(ug,u),) + d(v,,v),) — 0, as n — oo,

n» -n

so that
|d(tp, vn) — d(uy,v,,)| — 0, as n — .

Thus
lim d(uy,v,) = lim d(u,,v,), V{u,} € 4, {v)} € 0.

n»-n
n—oo n—oo
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Therefore, the candidate to metric in question is well defined.

Furthermore,

~

d(a,0) =0 < lim d(up,v,) =0

n— o0
& {uw.}eu
&S u=0.
Finally, let 4,9 and @ € V.
Thus,
d(a,w) = nlg{)lo d(ty,, wy)

< lim [d(g, vy) + d(vp, wy)]

n—oo

= lim d(u,,v,) + lim d(v,, w,)
n—oo n— o0

d(@, 0) + d(d, ).

From this we may conclude that d is in fact a metric for V.

. We shall show now that V' is isometric a dense subspace of V.

Let b € V. Define b by its representative
{un} = {b,b,b,...}.

Define R -
W={b={b,b,b,...} : beV}.

Define also T': V. — W by
T(b)=b={bbb,...}.

Thus, .
d(b,¢) = lim d(b,c) = d(b,c).

n—oo

Therefore, T' is a isometry.
We are going to show that W is dense in V.
Let & € V and {u,} € 4. Let £ > 0.

Since {u,} is a Cauchy sequence, there exists ng € N such that if m,n > ng, then
AU, Up,) < /2.

Choose N > ny.
Thus, d(un,, un) < €/2,Yn > ny.
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Observe that

’lALN == {UN,UN,UN, .. } € VV,
and R
d(t,uy) = lim d(u,,uy) <e/2 < e.

n—oo

Since € > 0 is arbitrary, we may conclude that
GeEW UW,Va eV,
that is, W is dense in V.

. Now we shall show that V complete.
Let {@,} be a sequence in V.

Since W is dense in V, for each n € N there exists Z, € W such that

A 1
d(u, z,) < —.

(i, 20) < -
Observe that

A(zp 2m) < d(Zm,tm) + (i, @) + d(@, 2,)

1 1
< = d(f, ) + —
n m

Let € > 0 (a new one). Hence, there exists ny € N such that if m,n > ng, then
T €
AUy, Upy) < 3

Thus if 5
m,mn > max{—,no} ,
€

then

A

(%, 2m) < €.

Therefore, {Z,,} is a Cauchy sequence and since T': V' — W is a isometry it follows that

{zm} = {Til(ém)h

is also a Cauchy one.

Let @ be the class of {z,,}. We will show that

lim d(i,, @) = 0.

n—oo
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Indeed,

A~

A, 0) < d(lin, 20) + d(2n, @)
1
< — 4 lim d(zn, 2m)- (15)

n m—00

Therefore, X
lim d(a,, @) = 0.

n—oo

Thus, V is complete.

The proof is complete.

3 Other topics on compactness in metric spaces

Definigao 3.1 (Diameter of a set). Let (U, d) be a metric space and A C U. We define the diameter
of A, denoted by diam(A) by

diam(A) = sup{d(u,v) | u,v € A}.
Definigao 3.2. Let (U,d) be a metric space. We say that {Fy} C U is a nested sequence of sets if
FiDFDF3D ...

Teorema 3.3. If (U,d) is a complete metric space then every nested sequence of non-empty closed
sets {Fy} such that
lim diam(Fy) =0

k—+o00

has non-empty intersection, that is
My Fr # 0.

Proof. Suppose {Fy} is a nested sequence and lim diam(Fy) = 0. For each n € N select u, € F,.

k—o0
Suppose given € > 0. Since

lim diam(F},) =0,
n—oo
there exists NV € N such that if n > N then
diam(F),) < e.
Thus if m,n > N we have u,,, u, € Fy so that
d(Up, up) < €.

Hence {u,} is a Cauchy sequence. Being U complete, there exists u € U such that

U, — U asS . — 0.
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Choose m € N. We have that u,, € F,,,Vn > m, so that
uekF,=F,.

Since m € N is arbitrary we obtain
ueny 1 F,.

The proof is complete.

Teorema 3.4. Let (U,d) be a metric space. If A C U is compact then it is closed and bounded.

Proof. We have already proved that A is closed. Suppose, to obtain contradiction that A is not
bounded. Thus for each K € N there exists u,v € A such that

d(u,v) > K.

Observe that
A C UueABl (u)

Since A is compact there exists uy, ua, ..., u, € A such that

Define
R = max{d(u;,u;) | 1,7 € {1,...,n}}.

Choose u,v € A such that
d(u,v) > R+ 2. (16)
Observe that there exist 4,7 € {1,...,n} such that
u € Bi(u;), v € By(uj).
Thus

d(u,v) d(u, w;) + d(u;, uj) + d(uj,v)

<
< 2+R, (17)

which contradicts (16). This completes the proof.

Definicao 3.5 (Relative compactness). In a metric space (U,d) a set A C U is said to be relatively
compact if A is compact.

Definigao 3.6 (¢ - nets). Let (U, d) be a metric space. A set N C U is sat to be a e-net with respect
to a set A C U if for each u € A there exists v € N such that

d(u,v) < e.
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Definicao 3.7. Let (U,d) be a metric space. A set A C U is said to be totally bounded if for each
€ > 0 there exists a finite e-net with respect to A.

Proposicao 3.8. Let (U,d) be a metric space. If A C U is totally bounded then it is bounded.

Proof. Choose u,v € A. Let {uy,...,u,} be the 1 — net with respect to A. Define
R = max{d(u;,u;) | 1,7 € {1,...,n}}.
Observe that there exist 4,7 € {1,...,n} such that
d(u,u;) <1, d(v,u;) < 1.
Thus

d(u,v) d(u, u;) + d(u;, uj) + d(ug,v)

<
< R+2. (18)

Since u,v € A are arbitrary, A is bounded.

Teorema 3.9. Let (U,d) be a metric space. If from each sequence {u,} C A we can select a
convergent subsequence {u,, } then A is totally bounded.

Proof. Suppose, to obtain contradiction, that A is not totally bounded. Thus there exists g9 > 0
such that there exists no o-net with respect to A. Choose u; € A, hence {u;} is not a eg-net, that
is, there exists us € A such that

d(uy, us) > &o.

Again {u1,us} is not a gg-net for A, so that there exists ug € A such that
d(uy,uz) > go and d(ug, uz) > €.
Proceeding in this fashion we can obtain a sequence {u,} such that
d(Up, Um) > €0, if m # n. (19)
Clearly we cannot extract a convergent subsequence of {u,}, otherwise such a subsequence would be

Cauchy contradicting (19). The proof is complete.

Definigao 3.10 (Sequentially compact sets). Let (U, d) be a metric space. A set A C U is said to be
sequentially compact if for each sequence {u,} C A there exist a subsequence {u,,} and u € A such
that

Uy, — U, as k — oo.

Teorema 3.11. A subset A of a metric space (U,d) is compact if and only if it is sequentially
compact.

Proof. Suppose A is compact. By Proposition 6.8 A is countably compact. Let {u,} C A be a
sequence. We have two situations to consider.
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1. {u,} has infinitely many equal terms, that is in this case we have
Upy = Upy = oo = Up, = ... =U € A.
Thus the result follows trivially.

2. {u,} has infinitely many distinct terms. In such a case, being A countably compact, {u,} has
a limit point in A, so that there exist a subsequence {u,, } and u € A such that

Uy, — U, as k — 00.

In both cases we may find a subsequence converging to some u € A.
Thus A is sequentially compact.
Conversely suppose A is sequentially compact, and suppose {G,, « € L} is an open cover of A.
For each u € A define
d(u) = sup{r | B,(u) C G4, for some o € L}.

First we prove that 6(u) > 0,Vu € A. Choose u € A. Since A C Uuer G, there exists ag € L such
that u € G,,. Being G, open, there exists ro > 0 such that B, (u) C G-
Thus
d(u) > 1o > 0.

Now define &y by
dp = inf{d(u) | u € A}.

Therefore, there exists a sequence {u,} C A such that
d(up) = dp as n — oo.
Since A is sequentially compact, we may obtain a subsequence {u,, } and uy € A such that
0 (U, ) — 6o and u,, — uo,

as k — oo. Therefore, we may find Ky € N such that if k£ > K, then

)
d(tn,, up) < (ZO). (20)
We claim that 5
S(up,) > (ZO), if & > K,

To prove the claim, suppose
2 € By (unk),Vk > K,

4

(observe that in particular from (20)

Ug € BM(Unk)>Vk > KO).
1
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Since

there exists some o« € L such that

However, since

d(tn,,, up) < %, if k> Ko,
we obtain
Biuo) (uo) D Biun) (Uny), if k> Ko,
so that
5(up,) > 5(30),\113 > K,
Therefore
]}Lrgo (U, ) = 0p > 5(20).

Choose € > 0 such that
0g >e > 0.

From the last theorem since A it is sequentially compact, it is totally bounded. For the £ > 0 chosen
above, consider an e-net contained in A (the fact that the e-net may be chosen contained in A is also
a consequence of last theorem) and denote it by N that is,

N = {/Ul, ...,/Un} € A.

Since dy > €, there exists
Qay, ...,y € L

such that
B:(v;) C Gy, Vi € {1,...,n},

considering that
(S(UZ) > 50 >e > O,VZ € {1, ,n}

For u € A, since N is an e-net we have
u e Ul B:(v;) C UL G,

Since u € U is arbitrary we obtain

AC UL G,,.
Thus

{Goys oy Go, }
is a finite subcover for A of

{Ga, a € L}.

Hence A is compact.
The proof is complete;
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Teorema 3.12. Let (U,d) be a metric space. Thus A C U is relatively compact if and only if for
each sequence in A, we may select a convergent subsequence.

Proof. Suppose A is relatively compact. Thus A is compact so that from the last Theorem, A is
sequentially compact.

Thus from each sequence in A we may select a subsequence which converges to some element of
A. In particular, for each sequence in A C A we may select a subsequence that converges to some
element of A.

Conversely, suppose that for each sequence in A we may select a convergent subsequence. It
suffices to prove that A is sequentially compact. Let {v,} be a sequence in A. Since A is dense in
A, there exists a sequence {u, } C A such that

1
d ny Yn -
(u v)<n

From the hypothesis we may obtain a subsequence {u,, } and ug € A such that
Uy, — Uy, as k — oo.
Thus,
Up, — Ug € A, as k — oo.
Therefore A is sequentially compact so that it is compact.

Teorema 3.13. Let (U,d) be a metric space.
1. If A C U is relatively compact then it is totally bounded.
2. If (U,d) is a complete metric space and A C U is totaly bounded then A is relatively compact.

Proof. 1. Suppose A C U is relatively compact. From the last theorem, from each sequence in A
we can extract a convergent subsequence. From Theorem 3.9 A is totally bounded.

2. Let (U,d) be a metric space and let A be a totally bounded subset of U.
Let {u,} be a sequence in A. Since A is totally bounded for each k € N we find a e4-net where

e = 1/k, denoted by N, where
N, = {Uik),vék), U(k)}'

w0 Upy

In particular for & = 1 {u,} is contained in the 1-net N;. Thus at least one ball of radius 1 of N,

contains infinitely many points of {u,}. Let us select a subsequence {uﬁ,}}keN of this infinite

set (which is contained in a ball of radius 1). Similarly, we may select a subsequence here
just partially relabeled {ug)}leN of {ugk)} which is contained in one of the balls of the $-net.

Proceeding in this fashion for each £ € N we may find a subsequence denoted by {ugﬁ}meN of
the original sequence contained in a ball of radius 1/k.
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Now consider the diagonal sequence denoted by {u{)} e = {2}. Thus

2
d ny ~“m R
(2 Z)<k

that is {z;} is a Cauchy sequence, and since (U, d) is complete, there exists u € U such that

it m,n >k,

zr — u as k — oo.

From Theorem 3.12, A is relatively compact.
The proof is complete.

4 The Arzela-Ascoli Theorem

In this section we present a classical result in analysis, namely the Arzela-Ascoli theorem.

Definigao 4.1 (Equi-continuity). Let F be a collection of complex functions defined on a metric
space (U,d). We say that F is equicontinuous if for each € > 0, there exists § > 0 such that if
u,v € U and d(u,v) < then

|f(u) — f(v)] < e, Vf €F.
Furthermore, we say that F is point-wise bounded if for each w € U there exists M(u) € R such that

|f(u)] < M(u),Yf € F.

Teorema 4.2 (Arzela-Ascoli). Suppose F is a point-wise bounded equicontinuous collection of com-
plex functions defined on a metric space (U,d). Also suppose that U has a countable dense subset E.

Thus, each sequence {f,} C F has a subsequence that converges uniformly on every compact subset
of U.

Proof. Let {u,} be a countable dense set in (U, d). By hypothesis, {f,(u1)} is a bounded sequence,
therefore it has a convergent subsequence, which is denoted by { f,,, (u1)}. Let us denote

for (1) = fip(ur),Vk € N
Thus there exists g; € C such that
fl,k(m) — g1, as k — oo.

Observe that { f,, (u2)} is also bounded and also it has a convergent subsequence, which similarly as
above we will denote by { fox(u2)}. Again there exists go € C such that

f2,k(u1) — g1, as k — oo.

fz]g(UQ) — g2, as k — oo.

Proceeding in this fashion for each m € N we may obtain {f,,x} such that

fmk(uj) — gj, as k — o00,Vj € {1,...,m},
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where the set {g1, g2, ..., gm } is Obtained as above. Consider the diagonal sequence

{fk‘,k}a

and observe that the sequence .
{fk,k(um>}k>m

is such that )
fer(m) = gm € C, as k — 0o, ¥m € N.

Therefore we may conclude that from {f,} we may extract a subsequence also denoted by

{fur} = {fri}

which is convergent in
E = {un}nGN'

Now suppose K C U, being K compact. Suppose given € > 0. From the equi-continuity hypothesis
there exists § > 0 such that if u,v € U and d(u,v) < § we have

| o (1) = fn (V)] < %,Vk eN.

Observe that
K C UuGKB% (U),

and being K compact we may find {@y, ..., @y} such that
K C UL, Bs ().
Since F is dense in U, there exists
vj € B%(aj) NEVje{l,.., M}
Fixing j € {1, ..., M}, from v; € E we obtain that
Jim f, (v))
exists as k — oo. Hence there exists Ko, € N such that if k,1 > Ky, then
[Fun0) = Fu0)] < 5

Pick v € K, thus

u < B%(ﬂj)
for some j € {1,..., M}, so that

d(u,vs) < 4.

77
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Therefore if
k.l > max{Ky,, ..., Ko, },

then

+|fm(vj) _fm(u)‘

19 19 g
< —4-—4-=c¢. 21
< 3+3—|—3 € (21)

Since u € K is arbitrary, we conclude that {f,,} is uniformly Cauchy on K.
The proof is complete.

5 Topological Vector Spaces

5.1 Introduction

The main objective of this chapter is to present an outline of the basic tools of analysis necessary
to develop the subsequent chapters. We assume the reader has a background in linear algebra and
elementary real analysis at an undergraduate level. The main references for this chapter are the
excellent books on functional analysis, Rudin [6], Bachman and Narici [1] and Reed and Simon [5].
All proofs are developed in details.

5.2 Vector spaces

We denote by F a scalar field. In practice this is either R or C, the set of real or complex numbers.

Definicao 5.1 (Vector spaces). A wvector space over F is a set which we will denote by U whose
elements are called vectors, for which are defined two operations namely, addition denoted by (+) :
UxU — U, and scalar multiplication denoted by (-) : F x U — U, so that the following relations are
valid

1. u+v=v+u,Vu,v €U,

2. u+ (v+w)=(u+v)+w,Vu,v,weUl,

3. there exists a vector denoted by 6 such that u+ 60 = u, Yu € U,
4

. for each uw € U, there exists a unique vector denoted by
—u such that u + (—u) =0,

“

Oz-(ﬁ-u)z(a-ﬁ)-u,V&,ﬂEIF, UGU,

6. a-(ut+v)=a-ut+a-v,YVaeF, uvel,

=

(a+p) u=a-u+p -uVa,f €F, uel,
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8 1-u=uVueUl

Observacao 5.2. From now on we may drop the dot (-) in scalar multiplications and denote o - u
simply as au.

Definicao 5.3 (Vector subspace). Let U be a vector space. A set V. C U is said to be a vector
subspace of U if V is also a vector space with the same operations as those of U. If V # U we say
that V is a proper subspace of U.

Definigao 5.4 (Finite dimensional space). A wvector space is said to be of finite dimension if there
exists fized uy,usg,...,u, € U such that for each uw € U there are corresponding oy, ....,a, € F for

which

u= Z QU (22)
i=1

Definigao 5.5 (Topological spaces). A set U is said to be a topological space if it is possible to define
a collection o of subsets of U called a topology in U, for which are valid the following properties:

1. U € o,

2. 0 € o,

3. if A€o and B € o then ANB € o, and

4. arbitrary unions of elements in o also belong to o.

Any A € o is said to be an open set.

Observacao 5.6. When necessary, to clarify the notation, we shall denote the vector space U en-
dowed with the topology o by (U, o).

Definigao 5.7 (Closed sets). Let U be a topological space. A set A C U is said to be closed if U\ A
is open. We also denote U\ A=A°={ueU |u¢g A}.

Observacao 5.8. For any sets A, B C U we denote
A\B={ue€ A|u¢ B}.
Proposicao 5.9. For closed sets we have the following properties:
1. U and () are closed,
2. If A and B are closed sets then AU B is closed,
3. Arbitrary intersections of closed sets are closed.

Proof. 1. Since ) is open and U = ()¢, by Definition 5.7 U is closed. Similarly, since U is open and
D=U\U=U¢ 0 is closed.
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2. A, B closed implies that A¢ and B¢ are open, and by Definition 5.5, AN B¢ is open, so that
AU B = (A°N B)* is closed.

3. Consider A = Ny, Ay, where L is a collection of indices and A, is closed, VA € L. We may
write A = (Uyer AS)¢ and since AS is open YA € L we have, by Definition 5.5, that A is closed.

Definicao 5.10 (Closure). Given A C U we define the closure of A, denoted by A, as the intersection
of all closed sets that contain A.

Observagao 5.11. From Proposition 5.9 Item 3 we have that A is the smallest closed set that
contains A, in the sense that, if C' is closed and A C C then A C C.

Defini¢ao 5.12 (Interior). Given A C U we define its interior, denoted by A°, as the union of all
open sets contained in A.

Observacao 5.13. [t is not difficult to prove that if A is open then A = A°.

Definigao 5.14 (Neighborhood). Given ug € U we say that V is a neighborhood of ug if such a set
s open and contains uy. We denote such neighborhoods by V.

Proposicao 5.15. If A C U is a set such that for each u € A there exists a neighborhood V,, > u
such that V, C A, then A is open.

Proof. This follows from the fact that A = U,c4),, and any arbitrary union of open sets is open.

Defini¢ao 5.16 (Function). Let U and V' be two topological spaces. We say that f : U — V is a
function if f is a collection of pairs (u,v) € U x V' such that for each u € U there exists only one
v €V such that (u,v) € f.
In such a case we denote
v = f(u).
Definigao 5.17 (Continuity at a point). A function f : U — V is continuous at u € U if for each
neighborhood Vi) C V' of f(u) there exists a neighborhood V,, C U of u such that f(Vu) C Vi)

Definicao 5.18 (Continuous function). A function f : U — V is continuous if it is continuous at
each v e U.

Proposigao 5.19. A function f: U — V is continuous if and only if f~1(V) is open for each open
Y CV, where

V) ={uelU| fu) € V}. (23)

Proof. Suppose f~1(V) is open whenever V C V is open. Pick v € U and any open V such that
f(u) € V. Since u € f~H(V) and f(f~H(V)) C V, we have that f is continuous at u € U. Since u € U
is arbitrary we have that f is continuous. Conversely, suppose f is continuous and pick V C V open.
If f~1(V) = 0 we are done, since ) is open. Thus, suppose u € f~!(V), since f is continuous, there
exists V, a neighborhood of u such that f(V,) C V. This means V, C f~'(V) and therefore, from
Proposition 5.15, f~*(V) is open.
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Definigao 5.20. We say that (U,0) is a Hausdorff topological space if, given uy, us € U, uy # us,
there exists Vi, Vo € 0 such that

Ulevl, Uy € Vs andVlﬂVQZ(Z). (24)

Definigao 5.21 (Base). A collection o' C o is said to be a base for o if every element of ¢ may be
represented as a union of elements of o’.

Definigao 5.22 (Local base). A collection & of neighborhoods of a point u € U is said to be a local
base at u if each neighborhood of u contains a member of 6.

Definigao 5.23 (Topological vector spaces). A wector space endowed with a topology, denoted by
(U,0), is said to be a topological vector space if and only if

1. Every single point of U is a closed set,

2. The vector space operations (addition and scalar multiplication) are continuous with respect to
0.

More specifically, addition is continuous if, given u,v € U and V € o such that w4+ v € V then
there exists V, 2 v and V, > v such that V,, +V, C V. On the other hand, scalar multiplication is
continuous if given o € F, w € U and V > « - u, there exists 6 > 0 and V, 2 u such that, Vg € F
satisfying |8 — a| < § we have 5V, C V.

Given (U, o), let us associate with each ug € U and ag € F (ap # 0) the functions T,,, : U — U
and M,, : U — U defined by

T (1) = ug +u (25)
and
M,,(u) = ag - u. (26)

The continuity of such functions is a straightforward consequence of the continuity of vector space
operations (addition and scalar multiplication). It is clear that the respective inverse maps, namely
T, and Mj ., are also continuous. So if V' is open then uo+V, that is (T_,,) " (V) = To, (V) = uo+V
is open. By analogy o) is open. Thus o is completely determined by a local base, so that the term
local base will be understood henceforth as a local base at 6. So to summarize, a local base of a
topological vector space is a collection €2 of neighborhoods of @, such that each neighborhood of
contains a member of €2.
Now we present some simple results, namely:

Proposicao 5.24. If A C U is open, then Yu € A there exists a neighborhood V of 6 such that
u+V CA

Proof. Just take V = A — u.

Proposicao 5.25. Given a topological vector space (U, o), any element of o may be expressed as a
union of translates of members of €1, so that the local base ) generates the topology o.
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Proof. Let A C U open and u € A. V = A —u is a neighborhood of 6 and by definition of local base,
there exists a set Vg, C V such that Vg, € (2. Thus, we may write

A= UueA(u + VQM) (27)

5.3 Some properties of topological vector spaces

In this section we study some fundamental properties of topological vector spaces. We start with
the following proposition:

Proposicao 5.26. Any topological vector space U is a Hausdorff space.

Proof. Pick ug,u; € U such that ug # uy. Thus V = U \ {u; — up} is an open neighborhood of zero.
As 0+ 0 = 0, by the continuity of addition, there exist V; and Vs neighborhoods of # such that

Vi+Vy,CV (28)

define Y =V, NV N (=V1) N (=Vy), thus U = —U (symmetric) and U +U C V and hence

w+U+UCug+V C U\ {u} (29)
so that
Ug + v1 + vy # uy, Vv, v €U, (30)
or
Ug + V1 £ up — Vo, Yui,v9 €U, (31)
and since U = —U
(uwo +U)N (ur +U) = 0. (32)

Definig¢ao 5.27 (Bounded sets). A set A C U is said to be bounded if to each neighborhood of zero
V there corresponds a number s > 0 such that A C tV for each t > s.

Definigao 5.28 (Convex sets). A set A C U such that
ifu,v € A then \u+ (1 —Xve A, VAel0,1], (33)

18 said to be convez.

Definig¢ao 5.29 (Locally convex spaces). A topological vector space U is said to be locally convez if
there is a local base €2 whose elements are conver.

Definicao 5.30 (Balanced sets). A set A C U is said to be balanced if A C A, Ya € F such that
la < 1.
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Teorema 5.31. In a topological vector space U we have:
1. Every neighborhood of zero contains a balanced neighborhood of zero,
2. Every convex neighborhood of zero contains a balanced convex neighborhood of zero.

Proof. 1. Suppose U is a neighborhood of zero. From the continuity of scalar multiplication,
there exist V (neighborhood of zero) and § > 0, such that oV C U whenever |a| < d. Define
W = Ujg<saV, thus W C U is a balanced neighborhood of zero.

2. Suppose U is a convex neighborhood of zero in U. Define
A={nald | a € C, |a| =1}. (34)

As 0-0 =6 (where 6 € U denotes the zero vector) from the continuity of scalar multiplication
there exists § > 0 and there is a neighborhood of zero V such that if |5| < § then YV C U.
Define W as the union of all such V. Thus W is balanced and a~'W =W as |a| = 1, so that
W = aW C ald, and hence W C A, which implies that the interior A° is a neighborhood of
zero. Also A° C U. Since A is an intersection of convex sets, it is convex and so is A°. Now
will show that A° is balanced and complete the proof. For this, it suffices to prove that A is
balanced. Choose r and § such that 0 <r <1 and || = 1. Then

rpA = ﬂ‘a|:1’l“60éu = ﬁ|a‘:17“0éu. (35)

Since alf is a convex set that contains zero, we obtain rald C old, so that rSA C A, which
completes the proof.

Proposicao 5.32. Let U be a topological vector space and V a neighborhood of zero in U. Given
u € U, there exists r € RT such that fu € V, VB such that |B] < r.

Proof. Observe that u+V is a neighborhood of 1 - u, then by the continuity of scalar multiplication,
there exists W neighborhood of u and r > 0 such that

BW C u+ V,Vp such that |f — 1] <, (36)
so that
Pu€u+V, (37)
or
(8 —1Du eV, where |/ — 1| <, (38)
and thus
Bu € V,Vf such that \B| <, (39)

which completes the proof.
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Corolério 5.33. Let V be a neighborhood of zero in U, if {r,} is a sequence such thatr, >0, Vn € N

and lim r, = oo, then U C U2 1, V.
n—oo

Proof. Let uw € U, then au € V for any « sufficiently small, from the last proposition u € éV. As
r, — oo we have that r, > é for n sufficiently big, so that u € r,), which completes the proof.

Proposicao 5.34. Suppose {9,} is sequence such that 6,, — 0, &, < §,—1, Vn € N and V a bounded
neighborhood of zero in U, then {6,V} is a local base for U.

Proof. Let U be a neighborhood of zero, as V is bounded, there exists ¢, € R™ such that V C U for
any t > to. As lim ¢, = 0, there exists ng € N such that if n > ng then 9,, < %, so that 0,V C U,Vn

n—00

such that n > nyg.

Definigao 5.35 (Convergence in topological vector spaces). Let U be a topological vector space. We
say {u,} converges to ug € U, if for each neighborhood V of uqy then, there exists N € N such that

u, € V,Vn > N.

Definigao 5.36 (Dense set). Let (V,0) be a topological vector space (T.V.E.). Let A,B C V. We
say that A is dense in B as B
B cCA.

Definicao 5.37. We say that topological vector space V' is separable as it has a dense and countable
set.

5.4 Nets and convergence

Definicao 5.38. A directed system is a set of indices I, with a order relation <, which satisfies the
following properties:

1. If a, B €1, then there exists v € I such that

a=<vyandf <.

2. < € a partial order relation.

Definigao 5.39 (Net). Let (V,0) be a topological space. A net in (V,0) is a function defined on a
directed system I with range in V', where we denote such a net by

{ua}aela

and where
u, €V, Va € 1.

Definicao 5.40 (Convergent net). Let (V, o) be a topological space and let {us}acr be a net in V.
We say that such a net converges u € V' as for each neighborhood W € o of u there exists § € I
such that if o = 3, then
Uy € W.
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Definigao 5.41. Let (V,0) be a topological space and let {uy}acr be a net in' V. We say that u € V
1s a cluster point of the net in question as for each neighborhood W € o of u and each B € I, there
exists o = (3 such that

Uy € W.

Definig¢ao 5.42 (Limit point). Let (Vo) be a topological space e let A C V. We say thatu € V is a
limit point of A as for each neighborhood W € o of u, there exists v € W N A such that v # u.

Teorema 5.43. Let (V,d) be a topological space and let A C V.

Under such hypotheses, B
A=AUA

where A" denotes the set of limit points of A.

Proof. Let ue AUA'.
If u € A, then u € A.
Thus, suppose u € A"\ A.
Hence, for each neighborhood W € o of u, there exists u,, € A\ {u} such that u,, € W.
Denote by I the set of all neighborhoods of u, partially order by the relation

Wi < Wy & Wy C Wh.
From the exposed above we may obtain a net {u, }wes such that
Uy —> U.

Assume, to obtain contradiction, that v & A.
Hence u € A° which is an open set. Since u,, — u, there exists W € I such that if Wy = W,
then
Uy € A°.
In particular w,, € A°, if Wy > Wj, which contradicts
Uy € A\ {u}.

Summarizing,

ue A Yuec AUA.

Therefore,
AUA C A (40)

Reciprocally, suppose u € A.

Ifue A, thenue AUA".

Suppose, to obtain contradiction, that u & A and u ¢ A’
Thus there exists a neighborhood W € o of u such that

WnA=1/.
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Thus, A C W€ and W€ is closed, so that

Acwe
From this and u € W we get _
ug A,
a contradiction. Therefore u € A or u € A, Yu € A.

Thus

ACAUA. (41)
From (40) e (41), we obtain

A=AUA.
This complete the proof. O

Teorema 5.44. Let (Vy,01) and (Va,03) be topological spaces.

Let f: Vi — V5 be a function.

Letuw € V. Thus f is continuous at u if, and only if, for each net {ug}acr C Vi such that u, — u,
we have that

Proof. Suppose f is continuous at u. Let {uq}acr be a net such that

Ug — U.

Let W) € o2 be such that f(u) € Wy.
From the hypotheses, there exists V,, € oy such that u € V,, and

f(Vu) C Wf(u).
From u, — u, there exists § € I such that if o > 3, then
Uy € V.

Therefore,
f(ua) S Wf(u), if a > f.

Since Wy, is arbitrary, it follows that

Reciprocally, suppose
flua) = f(u)
whenever
Uy — U.

Suppose, to obtain contradiction, that f is not continuous at w.
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Thus there exists Wy, € o, such that f(u) € Wy, and so that for each neighborhood W € oy
of u there exists uy, € W such that

fluw) & W)
Denote by I the set of all neighborhoods of u, partially ordered by the relation

W, < Wy & Wy, C Wh.
Thus, the net {uw }wes is such that
Uw — U.

However
f(uw) ¢ Vf(u), YIW e 1.

Hence, {f(uw)} does not converges to f(u), which contradicts the reciprocal hypothesis.
The proof is complete.

6 Compactness in topological vector spaces

We start this section with the definition of open covering.

Defini¢ao 6.1 (Open Covering). Given B C U we say that {O,, « € A} is a covering of B if
B C UuerOy. If O, is open Vo € A then {O,} is said to be an open covering of B.

Definig¢ao 6.2 (Compact Sets). A set B C U is said to be compact if each open covering of B has
a finite sub-covering. More explicitly, if B C Ugea O, where O, is open Yo € A, then, there exist
a1y .oy @ € A such that B C O,, U ...UQ,,, for some n, a finite positive integer.

Teorema 6.3. Let (V,0) be a topological space. Let K C V.
Under such hypotheses, K is compact if, and only if, each net {uy}ac; C K has a limit point in
K.

Proof. Suppose K is compact. Let {uq}acr C K be a net with infinite distinct terms (otherwise the
result is immediate).
Denote E = {uy}aecr. Suppose, to obtain contradiction, that no point of K is a limit point of E.
Hence, for each u € K, there exists a neighborhood W, of u such that

W.NE =10,

or

WyNE={u}ifuek.

In any case each W, has no more than one point of E.
Observe that U,cx W, D K. Since K is compact, there exist uy,...,u, € K such that

ECK CU_W,.
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From this we may conclude that F has no more than n distinct elements, which contradicts E to
have infinity distinct terms.

Reciprocally, suppose that each net {u,}aer C K has at least one limit point in K.

Suppose, to obtain contradiction K is not compact.

Thus there exists an open covering {G,, « € L} of K which admits no finite sub-covering.

Denote by F' the finite sub-collections of {G,, « € L}.

Hence, for a W € F' we may select a uy ¢ W where uy, € K.

Let us partially order F' through the relation

W, < Wy & W, C Wa.

From the hypotheses, the net {uy }wer has a limit point u € K.
Observe that
U € K CUuerGa.

Thus, there exists ag € L such that
u € Goq-

Since w is a limit point of {uw }wer C K, there exists W = G,, such that
Uw, € Gao - Wl-

This contradicts uy, & Wj. Therefore, K is compact.
The proof is complete. O

Proposicao 6.4. A compact subset of a Hausdorff space is closed.

Proof. Let U be a Hausdorff space and consider A C U, A compact. Given x € A and y € A°, there
exist open sets O, and Oy such that x € O,, y € Oy and O, N O} = (. It is clear that A C Uy O,
and since A is compact, we may find {21, x9, ..., x, } such that A C U, O,,. For the selected y € A°
we have y € M, 05 and (N, 05) N (UL, O0,,) = 0. Since N7, 05 is open, and y is an arbitrary
point of A° we have that A° is open, so that A is closed, which completes the proof. The next result
is very useful.

Teorema 6.5. Let {K,, a € L} be a collection of compact subsets of a Hausdorff topological vector
space U, such that the intersection of every finite sub-collection (of {K,, o € L}) is non-empty.
Under such hypotheses
Naer Ko # 0.

Proof. Fix ag € L. Suppose, to obtain contradiction that
maeLKa - Q)

That is,
Koy N [PEZ20 K] = 0.

Thus,
NP7 K C K°

acl ag?

41



so that

Koy C [MZ1° Ko,

Koy C [UZ7°KE).

However K,, is compact and K is open, Va € L.
Hence, there exist aq, ..., a,, € L such that

Ko, CUL K.
From this we may infer that
K., N[N K,,] =0,
which contradicts the hypotheses.
The proof is complete.

Proposicao 6.6. Let U be a topological Hausdorff space and let A C B where A is closed and B is
compact.
Under such hypotheses, A is compact.

Proof. Consider {O,,«a € L} an open cover of A. Thus {A¢, O,, « € L} is a cover of U, so that
it is a cover of B. As B is compact, there exist aq, s, ..., a, such that A°U (U,0,,) D B D A,
so that {O,,, ¢ € {1,...,n}} covers A. From this we may infer that A is compact. The proof is
complete. O

Definigao 6.7 (Countably compact sets). A set A is said to be countably compact if every infinite
subset of A has a limit point in A.

Proposicao 6.8. Fvery compact subset of a Hausdorff topological space U is countably compact.

Proof. Let B an infinite subset of A compact and suppose B has no limit point in A, so that
there is no any limit point. Choose a countable infinite set {x1,zs,z3,....} C B and define F =
{1, 9, x3,...}. It is clear that F has no limit point. Thus for each n € N, there exist O,, open such
that O, N F = {x,}. Also, for each x € A\ F, there exist O, such that z € O, and O, N F = ).
Thus {O,, v € A\ F'; O1,0,,...} is an open cover of A without a finite subcover, which contradicts
the fact that A is compact.

6.1 A note on convexity in topological vector spaces

Defini¢ao 6.9. Let (V, o) be a topological vector space. Let A C'V be such that A # ().
We define the convex hull of A, denoted by Conv(A), as

Conv(A) = {ZAkuk :neN, N>0, up € A, Ve e{l,...,n} and ZAkzl}.
k=1 k=1

Teorema 6.10. let (V,0) be a topological vector space. Let A C'V be such that A # ().
Under such hypotheses, Conv(A) is conve.
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Proof. Let u,v € Conv(A) and let A € [0,1]. Thus, there exist ny,ns € N such that

ni n2
u = E Apup and v = E AkUk,
k=1 k=1

where up, € Ae A\, >0, Vb € {1,...n;} and also > 7L, Ay = 1.
Moreover, vy € A, A, > 0, Vk € {1,...ny} and ) ;2 A\, = 1.
Thus, we have that

ni n2
Mo+ (1= No = Mg+ > (1= M)Ay,

k=1 k=1
where
A\, > 0,up € A, Ve e {1,...,n1}
e ~
(1=XMA >0,u, € A, VE € {1,...,n2}

so that . s

ST+ D (T=NA=A+(1-X) =1

k=1 k=1
Therefore,

Au+ (1 = Xv) € Conv(A), Yu,v € Conv(A), A €0, 1].

Hence, Conv(A) is convex.
The proof is complete.

Teorema 6.11. Let (V,0) be a topological vector space. Let A C'V be such that A # .
Under such hypotheses, A if, and only if, Conv(A) = A.

Proof. Suppose that A is convex. We shall prove that
A=B, = {Z)\kuk c M >0, up € A Vk e {l,...,n} and Z)\kzl},VneN.
k=1 k=1

We shall do it by induction on n.

Observe that for n = 1 and n = 2, from the convexity of A we obtain A = B; and A = Bs.

Let n € N. Suppose A = B,,. We are going to prove that A = B,,;; which will complete the
induction.

Clearly B, C B, 1, so that A C B, 1.

Reciprocally, let u € B, 1. Thus, there exist uy,...,u,41 € A and Ay, ... \,41 such that A\, >
0,Vke{l,....n+1}, S0 A\ =1, and

n+1

k=1
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With no loss in generality, assume 0 < A,;; < 1 (otherwise the conclusion is immediate).
Thus,

Hence,
My
L= A L= A
Therefore, defining
~ Ak
= >0, Vk 1
k 1 — )\n+1 ) € { ) 7n}
we have that .
2 =1,
k=1

so that

Since A convex, we obtain

wy = (]- - /\n+1)w + /\n—l—lun—i—l € A7

that is,
n+1
wy = Z)\kuk =u € A,Vu € B,;1.
k=1
Thus,
B C A,
and hence
Bn+1 — A
This completes the induction, that is,
A= B,, Yn€eN.

Hence,
A=U2 B, = Conv(A).

Reciprocally, assume A = Conv(A). Since Conv(A) is convex, A is convex.
The proof is complete.
U

Observagao 6.12. Let A C B C V. Clearly Conv(A) C Conv(B). In particular, if B is convet,
then

Conv(A) C B = Conu(B).
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Proposicao 6.13. Let (V, o) be a topological vector space. Suppose that a non-empty A C V is open.
Under such hypotheses, Conv(A) is open.

Proof. Let u € Conv(A). Thus, there exist n € N, uy € A, Ay > 0, Vk € {1,...,n} such that
ZZ:I /\k = 1, and u = ZZ:I )\kuk

With no loss in generality, assume A\; # 0 (redefine the indices, if necessary).

Since u; € A and A is open, there exists a neighborhood V,,, of u; such that V,, C A.

Thus, W = A\ Vi, + Aug + -+ - + Au, C Conv(A).

Observe that W is open and u € W C Conv(A).

Therefore u is an interior point of Conv(A),Vu € Conv(A). Thus, Conv(A) is open.

This completes the proof. O

Proposigao 6.14. Let (V,0) be a topological vector space. Suppose A C V is convex and A° # ().
Under such hypotheses, A° € convexo.

Proof. Let u,v € A° and X € [0,1]. Thus, there exist neighborhoods V,, of u and V,, of V' such that
V., C A and V, C A. Hence,
B=V,uUV, CA.

Therefore, since A is convex, we obtain
Conv(B) C Conv(A) = A.
From the last proposition Conv(B) is open and moreover Conv(B) C A°. Thus,
A+ (1 = ANv € Conv(B) C A°, Yu,v € A°, X € [0, 1].

From this we may infer that A° is convex.
The proof is complete.
O

Observagao 6.15. Let (V,0) be a topological vector space a let A C V' be a non-empty open set..
Thus, tA is open, ¥t € F such that t # 0.
Let B C 'V be a balanced set such that 0 € B°.
Let a € F be such that 0 < || < 1. Thus,

aB° Cc aB C B.

Since aB° is open, we have that aB° C B°, Yo € F such that |o| < 1.
From this we may infer that B° is balanced.
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7 Normed and metric spaces

The idea here is to prepare a route for the study of Banach spaces defined below. We start with
the definition of norm.

Defini¢ao 7.1 (Norm). A vector space U is said to be a normed space, if it is possible to define a
function || - ||y : U = RT = [0, +00), called a norm, which satisfies the following properties:

L lullg >0, ifu6 and |ullpy =0 u=20
2 Nutvlly <l + llvflo, ¥ w0 e U,
3. |laul|lg = |a|||u||lv, Vu € U, a € F.

Now we recall the definition of metric.

Definigao 7.2 (Metric Space). A wvector space U is said to be a metric space if it is possible to define
a function d : U x U — R*, called a metric on U, such that

1. 0 <d(u,v), Yu,veU,

2. du,v) =0 u=uv,

3. d(u,v) =d(v,u), Yu,v e U,

4. d(u,w) < d(u,v) + d(v,w),Vu,v,w € U.

A metric can be defined through a norm, that is
d(u,0) = [[u = v]lo. (42)

In this case we say that the metric is induced by the norm.
The set B,.(u) = {v € U | d(u,v) < r} is called the open ball with center at u and radius r. A
metric d : U x U — R* is said to be invariant if

dlu+w,v+w) = d(u,v),Vu,v,w € U. (43)

The following are some basic definitions concerning metric and normed spaces:

Definicao 7.3 (Convergent sequences). Given a metric space U, we say that {u,} C U converges
to ug € U as n — oo, if for each ¢ > 0, there exists ng € N, such that if n > ng then d(un,up) < €.
In this case we write u,, — ug as n — +oo.

Definigao 7.4 (Cauchy sequence). {u,} C U is said to be a Cauchy sequence if for each € > 0 there
exists ng € N such that d(u,, u,,) < €,¥Ym,n > ng

Defini¢ao 7.5 (Completeness). A metric space U is said to be complete if each Cauchy sequence
related to d : U x U — R converges to an element of U.

Definicao 7.6 (Limit point). Let (U,d) be a metric space and let E C U. We say that v € U is a
limit point of E if for each r > 0 there exists w € B,(v) N E such that w # v.
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Definicao 7.7 (Interior point, topology for (U,d)). Let (U,d) be a metric space and let E C U. We
say that u € E is interior point if there exists r > 0 such that B,.(u) C E. If a point of E is not a
limit one is said to be isolated. We may define a topology for a metric space (U,d), by declaring as
open all set EE C U such that all its points are interior. Such a topology is said to be induced by the
metric d.

Proposicao 7.8. Let (U,d) be a metric space. The set o of all open sets, defined through the last
definition, is indeed a topology for (U, d).

Proof. 1. Obviously () and U are open sets.

2. Assume A and B are open sets and define C' = AN B. Let u € C' = AN B, thus from u € A,
there exists r; > 0 such that B, (u) C A. Similarly from u € B there exists ro > 0 such that
B,,(u) C B.

Define = min{ry,72}. Thus B,(u) C AN B = C, so that w is an interior point of C'. Since
u € C is arbitrary, we may conclude that C' is open.

3. Suppose {A,, a € L} is a collection of open sets. Define £ = U,er A, and we shall show that
E is open.

Choose u € E = Uy Ay. Thus there exists oy € L such that v € A,,. Since A,, is open there
exists 7 > 0 such that B,(u) C A, C UserAa = E. Hence u is an interior point of E, since
u € E is arbitrary, F = U, A, is open.

The proof is complete. H

Definigao 7.9. Let (U,d) be a metric space and let E C U. We define E' as the set of all the limit
points of E.

Teorema 7.10. Let (U,d) be a metric space and let E C U. Then E is closed if and only if E' C E.

Proof. Suppose E' C E. Let u € E¢, thus u € E and u € E’. Therefore there exists r > 0 such that
B,(u)N E =0, so that B,.(u) C E°. Therefore u is an interior point of E°. Since u € E° is arbitrary
we may infer that E° is open, so that E' = (E¢)° is closed.

Conversely, suppose that F is closed, that is E¢ is open.

If E' = () we are done.

Thus assume E’ # () and choose u € E’. Thus for each r > 0 there exists v € B,(u) N E such
that v # u. Thus B,(u) € E¢,Vr > 0 so that u is not a interior point of E°. Since E° is open, we
have that u &€ E° so that u € E. We have thus obtained, u € E,Vu € E’, so that £/ C E.

The proof is complete.

Observacao 7.11. From this last result, we may conclude that in a metric space E C U 1is closed if
and only if B/ C E.

At this point we recall the definition of Banach space.

Defini¢ao 7.12 (Banach Spaces). A normed vector space U is said to be a Banach Space if each
Cauchy sequence related to the metric induced by the norm converges to an element of U.
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Observacao 7.13. Let (U,0) be a topological space. We say that the topology o is compatible with
a metricd : U x U — RY if o coincides with the topology generated by such a metric. In this case
we say that d : U x U — R induces the topology o.

Definigao 7.14 (Metrizable spaces). A topological vector space (U, o) is said to be metrizable if o is
compatible with some metric d.

Definicao 7.15 (Normable spaces). A topological vector space (U, o) is said to be normable if the
induced metric (by this norm) is compatible with o.

8 Linear mappings

Given U,V topological vector spaces, a function (mapping) f: U — V, AC U and B C V, we
define:

fA) ={f(u) | ue A}, (44)
and the inverse image of B, denoted f~1(B) as
f(B)={ue U] f(u) € B}. (45)
Definigao 8.1 (Linear Functions). A function f:U — V is said to be linear if
flau+ Bv) = af(u) + Bf(v),Vu,v e U, a,p € F. (46)

Defini¢ao 8.2 (Null Space and Range). Given f : U — V, we define the null space and the range
of f, denoted by N(f) and R(f) respectively, as

N(f)={uve U] f(u) =0} (47)
and
R(f)={veV |3JueU such that f(u) = v}. (48)
Note that if f is linear then N(f) and R(f) are subspaces of U and V' respectively.

Proposicao 8.3. Let U,V be topological vector spaces. If f : U — V' is linear and continuous at @,
then it is continuous everywhere.

Proof. Since f is linear we have f(f) = 6. Since f is continuous at 6, given V C V' a neighborhood
of zero, there exists U C U neighborhood of zero, such that

fu) cv. (49)

Thus
v—ueld= flv—u)=fv)— flu) eV, (50)
veu+U= f(v) € flu)+V, (51)

which means that f is continuous at u. Since u is arbitrary, f is continuous everywhere.
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9 Linearity and continuity

Definigao 9.1 (Bounded Functions). A function f : U — V is said to be bounded if it maps bounded
sets into bounded sets.

Proposicao 9.2. A set E is bounded if and only if the following condition is satisfied: whenever
{u,} C E and {a,} CF are such that o, — 0 as n — 0o we have a,u, — 0 as n — oo.

Proof. Suppose E is bounded. Let U/ be a balanced neighborhood of in U, then E C tU for some

t. For {u,} C E, as a;,, — 0, there exists N such that if n > N then ¢t < ﬁ Since t7'E C U and U

is balanced, we have that a,u, € U, Vn > N, and thus a,u, — 6. Conversely, if F is not bounded,
there is a neighborhood V of 6 and {r,} such that r,, — oo and E is not contained in r,V, that is,
we can choose u,, such that 7 'u, is not in V, ¥n € N, so that {r,u,} does not converge to 6.

Proposicao 9.3. Let f : U — V be a linear function. Consider the following statements
1. f is continuous,
2. f is bounded,
3. If u, — 0 then {f(u,)} is bounded,
4. If u, — 0 then f(u,) — 6.
Then,
e 1 implies 2,
e 2 implies 3,
o if U 1s metrizable with invariant metric,then 3 implies 4, which implies 1.

Proof. 1. 1 implies 2: Suppose f is continuous, for YW C V neighborhood of zero, there exists a
neighborhood of zero in U, denoted by V, such that

fo») cw. (52)
If E is bounded, there exists ¢, € R* such that E C tV, Vi > t,, so that
f(E) C f(tV) =tf(V) CtW, ¥Vt >t, (53)
and thus f is bounded.

2. 2 implies 3: Suppose u,, — 6 and let W be a neighborhood of zero. Then there exists N € N
such that if n > N then u, € V C W where V is a balanced neighborhood of zero. On the
other hand, for n < N, there exists K, such that u, € K,V. Define K = max{1, K1, ..., K,,}.
Then u,, € KV,¥n € N and hence {u,} is bounded. Finally from 2, we have that {f(u,)} is
bounded.
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3. 3 implies 4: Suppose U is metrizable with invariant metric and let u,, — 6. Given K € N, there
exists nxg € N such that if n > ng then d(u,,0) < 7. Define v, =1 if n < ny and v, = K, if
ng < n <ngyp so that

d(Vptin, 0) = d(Kuy,, 0) < Kd(u,,0) < K™ (54)

Thus since 2 implies 3 we have that { f(y,u,)} is bounded so that, by Proposition 9.2 f(u,) =
Y f(vaun) — 0 as n — .

4. 4 implies 1: suppose 1 fails. Thus there exists a neighborhood of zero W C V such that f~*(W)
contains no neighborhood of zero in U. Particularly, we can select {u,} such that u, € By, (0)
and f(u,) not in W so that { f(u,)} does not converge to zero. Thus 4 fails.

10 Continuity of operators in Banach spaces

Let U,V be Banach spaces. We call a function A : U — V an operator.

Proposicao 10.1. Let U,V be Banach spaces. A linear operator A : U — V is continuous if and
only if there exists K € RT such that

|A(u) ||y < Kl|ul|y, Vu € U.
Proof. Suppose A is linear and continuous. From Proposition 9.3,
if {u,} C U is such that u, — 0 then A(u,) — 0. (55)

We claim that for each € > 0 there exists ¢ > 0 such that if ||ul|y < then ||A(u)||v < e.

Suppose, to obtain contradiction that the claim is false.

Thus there exists o > 0 such that for each n € N there exists u,, € U such that [ju,[v < % and
Ay > eo.

Therefore u,, — 6 and A(u,,) does not converge to 6, which contradicts (55).

Thus the claim holds.

In particular, for € = 1 there exists § > 0 such that if ||u|ly < ¢ then |[|A(u)||y < 1. Thus given
an arbitrary not relabeled u € U, u # 6, for

ou
w =
2[Jullv

we have

o[ A(w)lv
[Aw)llv = =5 5— < 1,
2[Jullv
that is 5
14y < 2 v, e o
Defining
2
K==
)
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the first part of the proof is complete. Reciprocally, suppose there exists K > 0 such that
|A(w) ||y < Kl|ul|y, Vu € U.

Hence w,, — 6 implies ||A(u,)||y — 0, so that from Proposition 9.3, A is continuous.
The proof is complete.

11 Some classical results on Banach spaces

In this section we present some important results in Banach spaces. We start with the following
theorem.

11.1 The Baire Category Theorem

Teorema 11.1. Let U and V' be Banach spaces and let A : U — V be a linear operator. Then A is
bounded if and only if the set C C U has at least one interior point, where

C=A"ve V]| v]y < 1.
Proof. Suppose there exists ug € U in the interior of C. Thus, there exists r > 0 such that
By (u) ={uve U] |u—uwlv<r}cC.
Fix w € U such that ||u||y < . Thus, we have
[A(W)[lv < [[A(w + uo)llv + [|Auo)lv-

Observe also that
[ (w + uo) — uolly <7,

so that u + ug € B,(up) C C and thus
[A(u+ uo)flvy <1
and hence
[A®w)[lv <1+ [|A(uo)llv, (56)

Vu € U such that ||u||y < r. Fix an arbitrary not relabeled v € U such that u # 6. From (56)
_uor
lullv 2

w

is such that
A lv r

=7 K
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so that 9
[A(u) ||y < (1 + HA(U())Hv)HUHU;

Since u € U is arbitrary, A is bounded.
Reciprocally, suppose A is bounded. Thus

|A(u)|lv < Kl|ullp,Vu € U,

for some K > 0. In particular
1
D=<uelU| HUHUSE cC.

The proof is complete.
Definicao 11.2. A set S in a metric space U is said to be nowhere dense if S has an empty interior.

Teorema 11.3 (Baire Category Theorem). A complete metric space is never the union of a countable
number of nowhere dense sets.

Proof. Suppose, to obtain contradiction, that U is a complete metric space and

where each A,, is nowhere dense. Since A; is nowhere dense, there exist u; € U which is not in A;,
otherwise we would have U = A;, which is not possible since U is open. Furthermore, A{ is open, so
that we may obtain u; € A{ and 0 < 7 < 1 such that

B, = By, (u1)

satisfies
Bl N Al = @

Since A, is now@ere dense we have B; is not contained in A,. Therefore we may select us € By \flg
and since B; \ Aj is open, there exists 0 < ry < 1/2 such that

By = BTQ(UQ) C B\ /_12,

that is
BQ N AQ - Q)

Proceeding inductively in this fashion, for each n € N we may obtain u, € B, \ A,, such that we
may choose an open ball B, = B, (u,) such that

Bn C Bn—h
B,NA,=10
and
0<rm, <2
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Observe that {u,} is a Cauchy sequence, considering that if m,n > N then w,,u,, € By, so that

AU, up) < 2(287N).

Define
= lim u,.
n—oo
Since
U, € By,Vn > N,
we get

uw € By C By_;.

Therefore u is not in Ay_1,VN > 1, which means w is not in U A,, = U, a contradiction.
The proof is complete.

11.2 The Principle of Uniform Boundedness

Teorema 11.4 (The Principle of Uniform Boundedness). Let U be a Banach space. Let F be a
family of linear bounded operators from U into a normed linear space V. Suppose for each u € U
there exists a K, € R such that

T (uw)|ly < Ky, VT € F.

Then, there exists K € R such that
|IT| < K,VT € F.

Proof. Define
B,={ueU||T)|y <n,VT € F}.

By the hypotheses, given v € U, u € B, for all n sufficiently big. Thus,

Moreover each B, is closed. By the Baire category theorem there exists ny € N such that B, has
non-empty interior. That is, there exists ug € U and r > 0 such that

B, (ug) C By,-
Thus, fixing an arbitrary 7' € F, we have
T (uw)|ly < ng,Vu € B(ug), -
Thus if ||ul|ly < r then ||(u + ug) — uol|ly < r, so that
1T (u + uo)||v < no,

that is
1T (w)llv = [T (uo)llv < no.
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Thus

T (uw)|lv < 2ng, if |Jully <. (57)
For u € U arbitrary, u # 6, define
ru
2||ullv
from (57) we obtain
|| T(w)|lv
|7 (w)l < 2ny,
2||ul]
so that A
1Ty < ol ”U,v U
Hence 4
IT| <=2 vTeF
r

The proof is complete.

11.3 The Open Mapping Theorem

Teorema 11.5 (The Open Mapping Theorem). Let U and V' be Banach spaces and let A:U — V
be a bounded onto linear operator. Thus if O C U is open then A(Q) is open in V.

Proof. First we will prove that given r > 0, there exists ' > 0 such that

A(B.(8)) > BL(0). (58)
Here BY(0) denotes a ball in V' of radius r’ with center in 6. Since A is onto

V =U;2  A(nBy(0)).

By the Baire Category Theorem, there exists ng € N such that the closure of A(ngB;(#)) has non-
empty interior, so that A(B(#)) has non-empty interior. We will show that there exists ' > 0 such
that

BY(6) < A(B:(0)).

Observe that there exists yo € V and r; > 0 such that

By (yo) € A(B1(0))- (59)
Define uy € By(#) which satisfies A(ug) = yo. We claim that

A(B,,(0)) D By, (6),

where 79 = 1 + ||ug|ly. To prove the claim, pick

y € A(B1(9))
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thus there exists u € U such that ||ul|y < 1 and A(u) = y. Therefore
A(u) = A(u — uo + up) = A(u — ug) + A(uo).
But observe that

[ull + [[uollu
1+ Jluollu
= T9, (60)

lw = wollw

VAN VAN

so that
A(u —ug) € A(B,,(0)).

This means
y = A(u) € A(uo) + A(B,(9)),

and hence
A(B1(0)) C A(ug) + A(B,,(0)).

That is, from this and (59), we obtain

A(ug) + A(B,,(0)) D A(B1(0)) D B}, (yo) = Aluo) + By, (0),

and therefore
A(B,,(9)) D B, ().

Since

A(B,,(0)) = r2A(B1(0)),
we have, for some not relabeled r; > 0 that
A(B1(9)) > BY(6).

Thus it suffices to show that

A(B1(0)) C A(Ba(0)),
to prove (58). Let y € A(Bi(f)), since A is continuous we may select u; € By () such that
y = A(w) € B, 5(0) C A(Bya(0)).
Now select uy € By/2(#) so that
y— Alur) — Alus) € B 4(0).

By induction, we may obtain
U/n 6 BQlfn (0),

such that .
y— Y _ Aluy) € B, j5u(0).

J=1
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Define

u=D_ un
n=1
we have that u € By(#), so that
y= Alun) = A(u) € A(By(6)).
n=1

Therefore
A(B:(0)) C A(Bo(0)).

The proof of (58) is complete.
To finish the proof of this theorem, assume O C U is open. Let vy € A(O). Let ug € O be such
that A(ug) = vo. Thus there exists r > 0 such that

BT(UO) C O.

From (58),
A(B,(0)) > By(0),

for some ' > 0. Thus
A(O) D A(ug) + A(B,(0)) D vy + BY ().

This means that vy is an interior point of A(Q). Since vy € A(O) is arbitrary, we may conclude that
A(O) is open.
The proof is complete.

Teorema 11.6 (The Inverse Mapping Theorem). A continuous linear bijection of one Banach space
onto another has a continuous inverse.

Proof. Let A: U — V satisfying the theorem hypotheses. Since A is open, A~! is continuous.

11.4 The Closed Graph Theorem

Defini¢ao 11.7 (Graph of a Mapping). Let A: U — V be an operator, where U and V are normed
linear spaces. The graph of A denoted by T'(A) is defined by

T(A) = {(u,v) €U X V | v =A(u)}.

Teorema 11.8 (The Closed Graph Theorem). Let U and V' be Banach spaces and let A : U — V
be a linear operator. Then A is bounded if and only if its graph is closed.

Proof. Suppose I'(A) is closed. Since A is linear I'(A) is a subspace of U @ V. Also, being I'(A)
closed, it is a Banach space with the norm

[, A(w))|| = [lullo + | AWy
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Consider the continuous mappings
I (u, A(u)) = u

and
o (u, A(u)) = A(u).

Observe that II; is a bijection, so that by the inverse mapping theorem II;' is continuous. As
A= H2 o) Hfl,

it follows that A is continuous. The converse is immediate.

12 A note on finite dimensional normed spaces

We start this section with the following theorem.

Teorema 12.1. Let V be a complex normed vector space (not necessarily of finite-dimension). Sup-
pose {uy,...,u,} CV be a linearly independent set. Under such hypotheses, there exists ¢ > 0 such
that

|laqguy + - - - + apun|ly > c(joa| + - + |awl), Yaq,...,«a, € C. (61)
Proof. For aq,...,a, € C, let us denote
s =|ag| + -+ ||

Thus, if s =0, then a; = ... = a,, = 0 and (61) holds.
Suppose then s > 0
Denoting §; = <2, Vj € {1,...,n} we have that (61) is equivalent to

|Brur + -+ - + Bounlly = ¢, VB1,. .., B, € C, such that Z 18] = 1. (62)

Jj=1

Suppose to obtain, contradiction, there is no ¢ > 0 such that (62) holds.
Thus there exist sequences {v,,} C V and {3]"} C C such that

U = Pl ur + ..o+ B uy,
such that

> 18" =1, YmeN
j=1

and
lvm|lvy — 0, as m — oc.

In particular
87" <1,VmeN, je{l,....n}.
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It is a well known result in elementary analysis that a bounded sequence C" has a convergent
subsequence.

Hence, there exists a subsequence {my} of N and

BYeC,Vje{l,....,n}

such that
B — 67, Vje{l,...,n},
and .
> o181 =1.
j=1
Thus .
Uy, — Z @Quj.
j=1
Since

> I8 =1,
j=1

this contradicts

Um, — 0.

k

Therefore, there exists ¢ > 0 such that (61) holds.
The proof is complete.

O

Now we present the following result about the completeness of finite dimensional subspaces in a
normed complete vector space.

Teorema 12.2. Let V' be a complex normed vector space and let M be finite dimensional subspace
of V.

Under such hypotheses, M is complete (closed). In particular, each normed finite dimensional
vector space is complete.

Proof. Let {v,,} € M be a Cauchy sequence. Let n € N be the dimension of M. Let {uy,...,u,}
be a basis for M.
Hence, there exists a sequence {aj'} C C such that
U = Qf'Uy + -+ + Q) Uy,

Let € > 0. Since {v,,} is a Cauchy sequence, there exists ng € N such that, if m,l > ng, then

||Um — UZHV < €.
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Hence, from this and the last theorem, there exists ¢ > 0 such that

e > Z(@T—a Y,
=1 v
> oSl -a)
i—1
> cla} —ozé-|, Vm,l > ng, ¥j € {1,--- ,n}. (63)

Thus {af'} C Cis a Cauchy sequence.
Therefore, there exists a oz? € C such that

O .
of' = aj, Vi e{l,...,n}.

From this, denoting vo = > afu; € M, we get

n
v — vollv < Z " — Y| ||uylly — 0, as m — oo.
=1

From this last result, we may infer that M is complete. O
Definigao 12.3 (Equivalence between two norms). Let V' be a vector space. Two norms
- flos F- 1l V = RY
are said to be equivalent, if there exists o, 5 > 0 such that
allullo < flully < Bllullo, Yu e V.

Teorema 12.4. Let V be a finite dimensional vector space. Under such hypotheses, any two norms
defined on V' are equivalent.

Proof. Assume the dimension of V' is n.
Let {uy,...,u,} CV be a basis for V. Let || - ||o, || - [[1 : V — RT be two norms in V.
Let uw € V. Hence there exists aq, ..., a, € C such that

n
u = Z ;U5 ,
j=1
so that there exists ¢ > 0 which does not depend on u, such that

[ulls = ellan] + - =+ |an]).

On the other hand

n n
K
lullo <Y leylllugllo < Ky Jay| < —llully, Vu eV,

Jj=1 J=1
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where K = maxjeq, o1 {|u;llo}-
Interchanging the roles of || - ||o and || - |[; we may obtain K7j,¢; > 0 such that

K
[ua [y < —cl [ullo, Yu € V.
1

Denoting a = & and § = IC<_117 we have obtained,

allullo < flully < Bllullo, Yu e V.

The proof is complete. O

13 Hilbert Spaces

13.1 Introduction

At this point we introduce an important class of spaces namely, the Hilbert spaces, which are a
special class of metric spaces.

14 The main definitions and results

Definicao 14.1. Let H be a vector space. We say that H is a real pre-Hilbert space if there exists a
function (-,-)g : H x H — R such that

1. (u,v)g = (v,u)g, Yu,v € H,

2. (u+v,w)y = (u,w)y + (v,w)g, Yu,v,w € H,

3. (au,v)g = a(u,v)y, Yu,v € H, a € R,

4. (u,u)y >0, Yu € H, and (u,u)y =0, if and only if u = 0.

Observagao 14.2. The function (-,-)g : H x H — R is called an inner-product.
Proposicao 14.3 (Cauchy-Schwarz inequality). Let H be a pre-Hilbert space. Defining

||u||H =V (u,u)H,Vu € Hu

we have
[(w, V)| < [Jullmllv|w, Yu,v € H.

Equality holds if and only if u = av for some a € R orv =46.
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Proof. If v = 6 the inequality is immediate. Assume v # 0. Given a € R we have

0 < (u—av,u—av)g
= (u,u)g + o, v)g — 2a(u,v)g
[l + &®[|v]l7r — 2a(u, v) & (64)

In particular for o = (u, v)g/||v||%, we obtain

(u,v)7
0 < [Jullf — W,
H

that is
|[(u, v)m| < [Jullmllv] .

The proof of the remaining conclusions is left as an exercise.

Proposicao 14.4. On a pre-Hilbert space H, the function
|-|lg:H—R

18 a norm, where as above
[uller =/ (u, ).

Proof. The only non-trivial property to be verified, concerning the definition of norm, is the triangle
inequality:.
Observe that, given u,v € H, from the Cauchy-Schwarz inequality we have,

lu+olll; = (utv,uto)y

(
(u,u)g + (v,v)g + 2(u,v)y
(
|

u,u)g + (v,0) g + 2|(u, v) gl
ull? + loll% + 2llullallol|a
(lulle + Jollm)?. (65)

IN A

Therefore
lu+vllg <llullg + [|v]|g, Vu,v € H.

The proof is complete.

Definicao 14.5. A pre-Hilbert space H is to be a Hilbert space if it is complete, that is, if any cauchy
sequence in H converges to an element of H.

Definigao 14.6 (Orthogonal Complement). Let H be a Hilbert space. Considering M C H we define
its orthogonal complement, denoted by M*, by

M*+={u€c H|(um)g=0,VYm¢e M}.
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Teorema 14.7. Let H be a Hilbert space, M a closed subspace of H and suppose uw € H. Under
such hypotheses There exists a unique mg € M such that

lu = mollrr = min {{ju —mllm}.
Moreover ng = u — my € M+ so that
u = mg + Ng,
where mg € M and ng € M*. Finally, such a representation through M @ M* is unique.

Proof. Define d by
d= inf {||lu—m| g}
meM

Let {m;} C M be a sequence such that
|lu—m;||lg — d, asi— oo.
Thus, from the parallelogram law we have

Hmi—ij?{ = Hmi—u—(mj—u)qu
= 2[m; — ullfy + 2[m; —ull%
| = 2u + m; + mjl|%
= 2fm; — ullfy + 2[m; —ull%
—4|| = u+ (m; +my) /2|13
< 2llmi — ullf 4 2llm; — ul|f — 4d°
— 2d*°4+2d* —4d* =0, as i,j — +oo. (66)

Thus {m;} C M is a Cauchy sequence. Since M is closed, there exists mg € M such that
m; — Mg, as ¢ — +00,
so that

lw = millr = [lu = molln = d.

Define
ng = U — My.

We will prove that ng € M+.
Pick m € M and t € R, thus we have

d* < lu— (mo —tm)||
= [no +tmlly
= lInolli; + 2(no, m)mt + [|m||5t*. (67)

Since
Inoll7 = llu—mo||% = d?,
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we obtain
2(ng, m) gt + ||m||3t* > 0,vt € R

so that
(ng,m)g = 0.
Being m € M arbitrary, we obtain
Ng € Mt

It remains to prove the uniqueness. Let m € M, thus

lu=mllf = llu—mo+mo—ml

= Ju—mollf + lm —mol, (68)

since
(u—mg,m —mg)y = (ng,m —mg)g = 0.
From (68) we obtain
luw = m| > [lu—moll7 = d°,
if m # my.
Therefore my is unique.

Now suppose
U =mq+ ny,

where m; € M and n, € M*. As above, for m € M

lu—=mlf = flu—mi+m —m|%
= Jlu—=mllf + [m —m%,
> lu—mi|lg (69)

and thus since mg such that
d = llu—mo|n

is unique, we get
myp = 1Mmy

and therefore
ny =u—mMy = "Nyg.

The proof is complete.
Teorema 14.8 (The Riesz Lemma). Let H be a Hilbert space and let f : H — R be a continuous
linear functional. Then there exists a unique ug € H such that

fu) = (u,up)p,Yu € H.

Moreover

/1

e = |Juollm-
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Proof. Define N by
N={ue H| f(u) =0}.

Thus, as f is a continuous and linear N is a closed subspace of H. If N = H, then f(u) =0 =
(u,0)p,Yu € H and the proof would be complete. Thus assume N # H. By the last theorem there
exists v # 0 such that v € N*.
Define
f)

ol

Uop

Thus if © € N we have
f(u) =0= (u,up)g = 0.

On the other hand if u = av for some a € R, we have
flu) = af(v)
f)(av,v)n

vll%

= (aw, uo)u- (70)

Therefore f(u) equals (u,ug)y in the space spanned by N and v. Now we show that this last space
(then span of N and v) is in fact H. Just observe that given v € H we may write

e (a0 SO -

Since
flp
f(v)
we have finished the first part of the proof, that is, we have proven that

f(u) = (u,uo) g, Yu € H.
To finish the proof, assume u; € H is such that

f(uw) = (u,u1) g, Yu € H.

Thus,
Huo—uleq = (Uo—ul,uo—ul)H
= (Uo — Uy, UO)H - (Uo - U17U1)H
= f(uo—ul) _f(uo—ul) = 0. (72)

Hence u; = ug.
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Let us now prove that

/]

e = |[uollm-

First observe that

[l = sup{f(u) |ueH, [lulz <1}
= sup{|(v,uo)u| |u € H, |lully <1}
sup{||ullmlluollu | u € H, |Jullx <1}
ol - (73)

IA A

On the other hand

[z = sup{f(u) |ue H, [lullz <1}

Ug
= ] (I|uOHH)

(UOaUO)H
[woll
= luofla- (74)

From (73) and (74)
/]

e = ||uolla-
The proof is complete.

Observacao 14.9. Similarly as above we may define a Hilbert space H over C, that is, a complex
one. In this case the complex inner product (-,-)y : H x H — C s defined through the following
properties:

1. (u,v)g = (v,u)y, Yu,v € H,

u+v,w)g = (u,w)g + (v,w)y, Yu,v,w € H,

L

(
-
. (ou,v)g = a(u,v)g, Yu,v € H, a € C,

4. (u,u)y >0, Vu € H, and (u,u) =0, if and only if u = 0.
Observe that in this case we have
(u,av)y = a(u,v)g, Yu,v € H, a € C,

where for a = a+bi € C, we have @ = a — bi. Finally, similar results as those proven above are valid
for complex Hilbert spaces.
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15 Orthonormal basis

In this section we study separable Hilbert spaces and the related orthonormal bases.

Definicao 15.1. Let H be a Hilbert space. A set S C H 1is said to orthonormal if
Jullz =1,

and
(u,v)g = 0,Vu,v € S, such that u # v.

If S is not properly contained in any other orthonormal set, it is said to be an orthonormal basis for

H.
Teorema 15.2. Let H be a Hilbert space and let {u, }_, be an orthonormal set. Then for allu € H,

we have
N N 2
n=1 n=1 H

Proof. Observe that

u= Z(u, Up) U, + <u - Z(u, un)Hun> :

n=1 n=1

Furthermore, we may easily obtain that

N N
Z(u, Up) g U, and u — Z(u, Up) U,
n=1 n=1
are orthogonal vectors so that
lullfy = (v, w)m
N 2 N 2
= Z (U, up) || + ||u— Z(u,un)Hun
n=1 H n=1 H
N N 2
= Z| w, ) g |+ |l — Z(u,un)Hun (75)
n=1 n=1 H
O

Corolario 15.3 (Bessel inequality). Let H be a Hilbert space and let {u,}_, be an orthonormal set.
Then for all w € H, we have

N
lullFr > > 1w, ) u .
n=1

Teorema 15.4. Fach Hilbert space has an orthonormal basis.
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Proof. Define by C' the collection of all orthonormal sets in H. Define an order in C by stating
S1 < Sy if S7 C Sy. Then (' is partially ordered and obviously non-empty, since

v/|lvl|lm € C,Yv € Hyv # 6.

Now let {S,}acr be a linearly ordered subset of C. Clearly Uyer S, is an orthonormal set which
is an upper bound for {Sg }acr.

Therefore, every linearly ordered subset has an upper bound, so that by Zorn’s lemma C' has a
maximal element, that is, an orthonormal set not properly contained in any other orthonormal set.

This completes the proof.

Teorema 15.5. Let H be a Hilbert space and let S = {uq}aer be an orthonormal basis. Then for

each v € H we have
V=Y (ta, V) flla,

a€el

loll = 1(ua, 0)ul.

a€eL

and

Proof. Let L' C L a finite subset of L. From Bessel’s inequality we have,

> ey v)ul < Jollz

acl’

From this, we may infer that the set A, = {a € L | |(uq,v)n| > 1/n} is finite, so that
A={a e L||(ua,v)u| >0} =U2 A,

is at most countable.
Thus (ua,v)y # 0 for at most countably many /s € L, which we order by {ay,}nen. Since the

sequence
N

SN = Z ‘(uamv)H‘Qa

i=1
is monotone and bounded, it is converging to some real limit as N — oo. Define

n

Up = Z(uai>U>Huaia
i=1
so that for n > m we have

n 2

Z (uaia /U)Huai

1=m+1

= Y |t v)aP

i=m-+1

= |$p — Sml- (76)

| vn — UMH?H’ =

H
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Hence, {v,} is a Cauchy sequence which converges to some v’ € H.
Observe that
N
(v—="1"up)g = lim (v— Z(uai, V) By Uay ) H

N—o0 -
=1

(U7 ual)H - (U7 ua;)H

= 0. (77)
Also, if a # a4, VI € N then
(v—2" uy)yg = A}iinoo(v — Zl(uai, V) gy, Ua) g = 0.
Hence
v—v Llu,, Yo € L.
If

v—1v #0,

then we could obtain an orthonormal set

v—1
{““’ R - v’HH}

which would properly contain the complete orthonormal set

{tqo, a € L},
a contradiction.
Therefore v —v' = 6, that is
N
= 1 ) .
v NIE)HOO Z(uaz7 U>Huaz

=1

15.1 The Gram-Schmidt orthonormalization

Let H be a Hilbert space and and {u,} C H be a sequence of linearly independent vectors.
Consider the procedure:

wh
W =U,, V1= 3
[wi ]l
W
Wy = Uz — (U1,U2)HU17 U2 = Wu
2|| H
and inductively,
n—1
w
Wy, = Uy, — Z(vk,un)Hvk, Uy = ﬁ,Vn e N,n> 2.
k=1 Wn||H
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Observe that clearly {v,} is an orthonormal set and for each m € N, {v;}7, and {u}, span
the same vector subspace of H.

Such a process of obtaining the orthonormal set {v,} is known as the Gram-Schmidt orthonor-
malization.

We finish this section with the following theorem.

Teorema 15.6. A Hilbert space H is separable if and only if has a countable orthonormal basis. If
dim(H) = N < oo, the H is isomorphic to CV. If dim(H) = +oo then H is isomorphic to 1>, where

= {{yn} | yn € C,Vn €N and Y |ya|* < —i—oo} .
n=1

Proof. Suppose H is separable and let {u,} be a countable dense set in H. To obtain an orthonormal
basis it suffices to apply the Gram-Schmidt orthonormalization procedure to the greatest linearly
independent subset of {u,}.

Conversely, if B = {v,} is an orthonormal basis for H, the set of all finite linear combinations of
elements of B with rational coefficients are dense in H, so that H is separable.

Moreover, if dim(H) = +oo consider the isomorphism F : H — [? given by

F(u) = {(una u)H}nGN'
Finally, if dim(H) = N < +o00, consider the isomorphism F : H — CV given by
F(u) = {(tn, w) i}y

The proof is complete. H

16 Projection on a convex set

Teorema 16.1. Let H be a Hilbert space and let K C H be a non-empty, closed and convex set.
Under such hypotheses, for each f € H there exists a unique u € K such that

17— ully = min 7 —].
Moreover, u € K 1is such that
(f —u,v—u)yg <0, Yv € K.

Proof. Define
d=inf |[f —vlln.

Hence, for each n € N there exists v,, € K such that

d<||f—vllg <d+1/n.
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Let m,n € N. Define a = f — v, and b = f — v,,. From the parallelogram law, we have

la +bll% + lla — bl = 2(llall + lI61%).

that is,
12 = (vn + o) [l7 + lvn = vnllfy = 2(1f = vallF + 1S = villz),
so that
2
Up + U
fon = vl = —4<Hf— : >+2<1\f—vnr\z+\1f—vm\1%>
< —Ad® +2(d+1/n)*+ (2(d + 1/m)?
—  —4d® +2d* + 24

0, as m,n — oo. (78)
Hence {v,} is a Cauchy sequence so that there exists u € K such that
|vn, — ul|lg — 0, as n — oc.

Therefore,
If = vnll = [If = ullu = d, as n — oo.

Now let v € K and t € [0,1]. Define
w=(1—t)u+tv.

Observe that, since K is convex, w € K, Vt € [0, 1].

Hence,

If =l < If —wly

If = (1= thu = toly
= [I(f —w) +t(u—0)l
= |If = ulliy +2(f — w,w = v)ut + ]u — vl (79)

From this, we obtain
t
(f —u,v—u) < §]|U—UHH, vt € [0, 1].

Letting ¢ — 0 we get
(f —u,v—u) <0, Vv e K.

The proof is complete. O
Corolario 16.2. In the context of the last theorem, assume
(f —u,v—u) <0,Yv € K.

Under such hypotheses,

1f =l = min{lf =l

Finally, such a u € K is unique.
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Proof. Let v € K. Thus,

1f =l = If = ol = 117 = 2(f, W) + [lully

=A% +20f,0)n = ol

—llu = vl + el = 2(w,v)m + ok

2(u, w)g — 2(u,v)p + 2(f,0) = 2(f,u) = [Ju —vg
= 2(f —u,v—u)y — [lu—vll

0. (80)

IN

Summarizing,
\f =l > ||f —ulla, Yve K.

Suppose now that uy,us € K be such that
(f —u,v—u)g <0, Yv € K,
(f — ug,v —ug)y <0, Yo € K,
With v = usy in the last first inequality and v = u; in the last second one, we get

(f —ui,us —u)g <0

and
(f —u2,up —ug)y <O0.

Adding these two last inequalities, we obtain
(fyug —ur)m + (f,ur — ug)m — (ur,ug — u1) g + (ug, up — u1)g <0,

that is,
[ug — ua |7 <0,

so that
||U1 - U2HH =0,

and therefore,
U1p = U9.

Hence, the © € K in question is unique.
The proof is complete. O

Proposicao 16.3. Let H be a Hilbert space and K C H a non-empty, closed and conver set.
Let f € H. Define Pk(f) =u where u € K is such that

17— ulsr = min | — vl
Under such hypotheses,

| Pk fi — Pr follu < ||fi — follu, Vi, fa € H.
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Proof. Let fi, fo € H and u; = Pk fi and uy = Pk f5.
From the last proposition,
(fl —ul,v—ul)H S 0, VU & K

and
(fo —ug,v —ug)y <0, Vv € K.

With v = us in the first last inequality and v = u; in the last second one, we obtain
(fl — Uy, U2 — Ul)H <0,

(fo —u2,us —u2)y <O0.

Adding these two last inequalities, we get
(fr,ug —ur)m — (fo,ue — w) g + (ug — ur,ug —uy)g <0,
that is,

(fz — fi,ug — Ul)H

Jug — w3 <
< |lfe = fullellue — wi||a,

so that
lue —willg < ||fe — fillu-

This completes the proof.

Corolario 16.4. Let H be a Hilbert space and let M C H be a closed vector subspace of H.
Let f € H. Thus, uw = Py/(f) is such that w € M and

(f —u,v)g =0,Yv € M.

Proof. In the previous results, we have got,

(f —u,v—u) <0, Yo e M.

Let v € M be such that v # 0.
Thus,
(f —u,tv—u)y <0, Vt € R.

Hence,
t(f_u>v)H < (f—u,u), vt € R.

From this we obtain
(f —u,v) =0, Yo e M.
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Observacao 16.5. Reciprocally, if
(f —u,v) =0, Yo € M,

then,
(f —u,v—u)g =0, Yv € M,

so that

17 The theorems of Stampacchia and Lax-Milgram

In this section we present the statement and proof of two well known results, namely, the Stam-
pacchia and Lax-Milgram theorems.

Definicao 17.1. Let a: H x H — R be a bilinear form.
1. We say that a is bounded if there exists ¢ > 0 such that

|a(u, v)| < cllullulvlla, Yu,v e H.

2. We say that a is coercive if there exists a > 0 such that

la(v, )] > aljvll, Yo € H.

Teorema 17.2 (Stampacchia). Let H be a Hilbert space and let a : H x H — R be a bounded and
coercive bilinear form.

Let K C H be a non-empty, closed and convex set. Under such hypotheses, for each f € H there
exists a unique u € K such that

a(u,v —u) > (f,v—u)y, Yo € K. (82)

Moreover, if a is symmetric, that is, a(u,v) = a(v,u), Yu,v € H, such u € K in question is also
such that

%a(u, u) — (f ) = min {a(g’ v, U)H} . (83)

Proof. Fix w € H. The function
v a(u,v), Yv € H,

is continuous and linear.
Hence from the Riesz representation theorem, there exists a unique vector denoted by A(u) € H

such that
(A(u),v)yg = a(u,v), Yv € H.

Clear such an operator A is linear, and
|((A(u),v)u| = la(u, v)] < cllullallv]H,
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for some ¢ > 0, so that
[A(u)l[r = SEE{I(A(U),U)H! s lolle < 13 < eflully
Moreover,
(Av,v)g = a(v,v) > ao|jv||3, Yv € H,

for some a > 0.
Let p > 0 to be specified.
Define T'(v) = Px(pf — pA(v) +v).
Observe that

IT(v1) = T(v)[I7

< lpA(vr) — pA(v2) + (v — v)|| %
= o1 — vallzr — 2p(A(v1 — v2),v1 — v2)u + P*[| A(vr — va2) || T
< (1 =2ap+ cp?)|jvr — vaol|F

Let F(p) =1 —2ap + cp*.
Thus, if F'(py) = 0 then

—2a + 2poc = 0,
that is,

«

Po = —

c
Therefore ) ) )
« Q «
c c c

Observe that we may redefine a larger ¢ > 0 such that

2

(8}
0<1l——<1.
C

Hence,
[T (01) = T(va)llm < Allor — v,

2
A=q/1- = <1
C

From this and Banach fixed point theorem, there exists u € K such that

where

T(u) = u,

that is,
P (pf — pAu+u) = u.

From this and Theorem 16.1, we obtain

(pf = pAu) +u —u,v—u)y <0, Yv € K.
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Thus,
a(u,v —u) = (Au),v —u)g > (f,v —u)y, Yv € K.

Assume now that a(u,v) is also symmetric. Thus, a(u,v) define a inner product in H, inducing
a norm
a(u,u)

which is equivalent to ||u|| g, since

Vellulp = Va(u,u) = Valully, Yu e H.

From the Riesz representation theorem, there exists a unique g € H such that
(f,v)g =a(g,v), Yv € H.

Similarly to the indicated above we may obtain u € K such that

u = Pk(g)
so that
a(g —u,v—u) <0, Yv € K.
Hence,
a(g,v —u) —a(u,v —u) <0,
that is

a(u,v —u) > a(g,v—u) = (f,v—u), Yv € K.

Moreover from u = Pg(g) we obtain

a(g—u,g—u) :E)Iélff(la(g—’l)%g—?)).

Therefore
a(g, g) — 2a(g,u) + a(u,u) < a(g, g) — 2a(g,v) + a(v,v),
that is,
a(u,u a(v,v
L g Ci) B
2 2
so that
2 (e < 8D (foy, o e i
The proof is complete. 0

Corolario 17.3 (Lax-Milgram theorem). Assume a(u,v) is a bounded, coercive and symmetric bi-
linear form on H. Under such hypotheses, there exists a unique u € H such that

a(u,v) = (f,v), Yo € H.

Moreover, such a w € H 1is such that
1 1
éa(u,u) — (fyu)yg = min ia(v,v) —(f,v)m.

Proof. The proof follows from the Stampacchia theorem with K = H. O
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18 The Hahn-Banach Theorems and the Weak Topologies

19 Introduction

In this chapter we present the Hahn-Banach theorems and some important applications. Also, a
study on weak topologies is developed in details.

20 The Hahn-Banach theorems

In this chapter U always denotes a Banach space.
Teorema 20.1 (The Hahn-Banach theorem). Consider a functional p : U — R such that
p(Au) = Ap(u),Yu € U, XA > 0, (85)
and
p(u+v) < p(u) + p(v),Vu,v € U. (86)
Let V- C U be a proper subspace of U and let g : V — R be a linear functional such that
g(u) < p(u),Yu € V. (87)
Under such hypotheses, there exists a linear functional f : U — R such that
g(u) = f(u),Yu eV, (88)
and
f(u) < p(u),Yu e U. (89)
Proof. Choose z € U \ V. Denote by V the space spanned by V and z, that is,
V={v+taz|veVeacR}. (90)
We may define an extension of ¢ from V to V, denoted by §, by
9z +v) = ag(z) + g(v), (91)

where g(z) will be properly specified in the next lines.
Let vi,v9 € V, a >0, § > 0. Thus,

Bg(v1) + ag(va) = g(Bur + avy)
= (a+p)g (afﬂv1+aiﬂv2)
< (@t 0 (2500 - a4 S+ 62))
< Bp(vr — az) + ap(ve + Bz) (92)
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and therefore .

~=plon = a2) +9(0n)] < lp(va +52) = gl

Yui,v9 € V, «, > 0. Thus, there exists a € R such that

@ﬁioé@m@—&@+y@»]Saﬁwggj$@@+a@—9@D- (93)
We shall define g(z) = a. Therefore, if v > 0, then
glaz+v) = aa+ g(v)
< [200+a2) - g a+ g0
= p(v+ az). (94)

On the other hand, if @ < 0, then —a > 0. Thus,

@2 (v~ (~0)2) + g(v))
so that
glaz+v) = aa+ g(v)
< | (oplw+az) + go))| @t g(o)
= plv+az) (95)
and hence

g(u) < p(u),Vu € V.

Define now by £ the set of all extensions e of g, which satisfy e(u) < p(u) on the domain of e, where
such a domain is always a subspace of U. We shall also define a partial order for £ denoting e; < es
as the domain of ey contains the domain of e; and e; = e; on the domain of e;. Let {e,}aca be an
ordered subset of £. Let V,, be the domain of e, Vo € A. Define e on U, 4V, by setting e = e, on V.
Clearly e, < e, Ya € A so that each ordered subset of £ has an upper bound. From this and Zorn
Lemma, £ has a maximal element f defined on some subspace U C U such that f(u) < p(u),Vu € U.
Suppose, to obtain contradiction, that U # U and let z; € U \ U. As above indicated, we may obtain
an extension f; from U to the subspace spanned by z; and U, which contradicts the maximality of
f.

The proof is complete.

Definicao 20.2 (Topological dual spaces). Let U be a Banach space. We shall define its dual
topological space, as the set of all linear continuous functionals defined on U. We suppose such a dual
space of U, may be represented by another vector space U*, through a bilinear form (-, )y : UxU* — R
(here we are referring to standard representations of dual spaces of Sobolev and Lebesgue spaces, to
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be addressed in the subsequent chapters). Thus, given f: U — R linear and continuous, we assume
the existence of a unique u* € U* such that

fu) = (u,u")y,Vu € U. (96)
The norm of f , denoted by ||f||u~, is defined as
1f 1o~ = 81615{|<u,u*>u| Fully < 1} = [u*lo- (97)

Corolario 20.3. Let V C U be a proper subspace of U and let g : V — R be a linear and continuous
functional with norm

lgllv- = sup{lg(w)l | llulle < 1} (98)
Under such hypotheses, there exists u* in U* such that
(u,u* )y = g(u),Yu €'V, (99)
and
[u* o= = llgllv-- (100)

Proof. 1t suffices to apply Theorem 20.1 with p(u) = ||g||v+||u||v. Indeed, from such a theorem, there
exists a linear functional f : U — R such that

flu)=gu), Vu e V

and
fu) < p(u) = llgllv-llullv,
that is,
|f(w)] < plw) = |lgllv-|lullv, Vu € U.
Therefore,
1o = igg{\f(U)l tlulle < 1} < {lgllv-
On the other hand,
1fllo- = ilelg{lf(U)\ Fullo <13 = {lgllv-.

Thus,
1/

Finally, since f linear and continuous, there exists u* € U* such that

f(u) = (u,u"yy, Yu e U,

v = |lgllv-

and hence
(u,u*Vy = f(u) = g(u), Yu € V.

Moreover,

[u* (o = 1171

v = |lgllv-

The proof is complete.
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Corolario 20.4. Let uy € U. Under such hypotheses, there exists ul € U* such that

v+ = lluollo and (uo, ug)y = [luollz; (101)

g

Proof. Tt suffices to apply the Corollary 20.3 with V' = {aug | o € R} and g(tug) = t||ug||? so that
lg]

v+ = [[uollu-
Indeed, from the last corollary, there exists uj € U* such that

(tug, upyy = g(tug), Vt € R,

and
lugllo= = llgllv=,
where,
lgllv+ = sup{tfluolly + [[tuoll < 1} = [luo|lv-
teR
Moreover, also from the last corollary,
lugllo= = llgllv- = lluollu-
Finally,
(tug, ug) v = g(tug) = tl|ugl|7, Vt € R,
so that

(w0, ug)v = Iluollf-
This completes the proof.
Corolario 20.5. Let uw € U. Under such hypotheses

lullo = 325*{|<u,u*>zf| | u*ffo- < 1} (102)

Proof. Suppose u # 0, otherwise the result is immediate. Since
[(w, uYu| < llullullu*|v+, Yu € U, u™ € U

we have

Sup {l{u, wol | [u*flor <1} < ullu- (103)
u*eU*

However, from the last corollary, there exists uj, € U* such that ||uj||y+ = ||ully and (u, ul)y = ||ul|?.

Define u} = ||Jul|; w. Thus, ||[uilly = 1 and (u, u})y = ||ully.
The proof is complete.

Definicao 20.6 (Affine hyperplane). Let U be a Banach space. An affine hyperplane H is a set
defined by

H={uelU]| (u,u")y = a} (104)

for some u* € U* and o € R.
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Proposicao 20.7. An affine hyperplane H defined as above indicated is closed.

Proof. The result follows directly from the continuity of (u,u*)y as functional on U.

Definigao 20.8 (Separation). Let A, B C U. We say that a hyperplane H, as above indicated
separates A and B, as there exist a € R and u* € U* such that

(u,uyy < a,Vu € A, and (u,u")y > a,Vu € B. (105)
We say that H separates A and B strictly if there exists € > 0 such that
(u,uyy <a—e,Yu € A, and (u,u*)y > a+¢,Yu € B, (106)

Teorema 20.9 (The Hahn-Banach theorem, the geometric form). Let A, B C U be two non-empty,
convex sets such that AN B = 0 and A is open. Under such hypotheses, there exists a closed
hyperplane which separates A and B, that is, there exist o € R and u* € U* such that

(u,u )y <a < (v,u")y, Yue A, v e B.
To prove such a theorem, we need two lemmas.

Lema 20.10. Let C' C U be a convex set such that 0 € C'. For each u € U define

p(u) = inf{a >0, a 'u e C}. (107)
Under such hypotheses, p is such that there exists M € R such that
0 < p(u) < Mlully, Vu € U, (108)
and
C={uel]|pu) <1} (109)
Moreover,

p(u+v) < p(u) + p(v),Vu,v € U.
Proof. Let r > 0 be such that B(0,r) C C. Let u € U such that u # 0. Thus,

——1r € B(0,r) C C,
[ullv

and therefore
o) < Wlo v e g (110)
T

which proves (108). Suppose now u € C. Since C' is open there exists € > 0 sufficiently small such
that (1 +¢)u € C. Thus, p(u) < 1—}r8 < 1. Reciprocally, if p(u) < 1, there exists 0 < a < 1 such that
alu € C and hence, since C' is convex, we get u = a(a'u) + (1 — )0 € C.

i U v tu (1—t)v
Finally, let u,v € C and ¢ > 0. Thus, owTe © C and ooyt © C' so that owre T e € C,\Vt e

: u)+ : u+v
0, 1]. Particularly, for ¢ = p(uﬁp% we obtain m € C, and thus,

p(u+v) < p(u) + p(v) + 2¢,Ve > 0.

The proof of this lemma is complete.
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Lema 20.11. Let C' C U be an non-empty, open and convex set and let ug € U such that ug & C'.
Under such hypotheses, there exists u* € U* such that (u,u*)y < (ug,u*)y,Yu € C

Proof. By translation, if necessary, there is no loos in generality in assuming 0 € C. Consider the
functional p defined in the last lema. Define V' = {aug | @ € R}. Define also g on V', by

g(tug) =t, Vt € R. (111)
Let t € R be such that ¢ # 0. Since
t
% = Up g Ca

we have
g(tug) =t < p(tuo)

and therefore
g(u) < p(u),Vu € V.

From the Hahn-Banach theorem, there exists a linear functional f defined on U which extends ¢
such that

fu) < plu) < Mjully. (112)

Here, we have applied the Lemma 20.10. In particular, f(ug) = g(uo) = g(lug) = 1, also from the
last lemma, f(u) < 1,Vu € C. The existence of u* satisfying this lemma conclusion follows from the
continuity of f, indicated in (112).

Proof of Theorem 20.9. Define C' = A + (—B) so that Cis convex and 0 ¢ C. From Lemma
20.11, there exists u* € U* such that (w,u*)y < 0,Vw € C, and thus,

(u,u")y < (v,u")y,Yue A, ve B. (113)
Therefore, there exists a € R such that

sup(u, u*)y < a < inf (v, u")y, (114)
ucA vEB

which completes the proof.

Proposicao 20.12. Let U be a Banach space and let A, B C U be such that A is compact, B is
closed and AN B = ().
Under such hypotheses, there exists €1 > 0 such that

[A+ B, (0)]N[B + B, (0)] = 0.
Proof. Suppose, to obtain contradiction, the proposition conclusion is false.
Thus, for each n € N there exists u,, € U such that d(u,, A) < + and d(u,, B) < +.
Therefore, there exist v, € A and w,, € B such that
o~ allr < (115)
Up — Up —
o0
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I — wly < % Vn e N. (116)
Since {v,} C A and A is compact, there exist a subsequence {v,,} of {v,} and vy € A, such that
|Un; = vollu — 0, as j — oo.
Thus, from this, (115) and (116) we obatin,

|%n; — vollv — 0, quando j — oo,

|wn, — vl — 0, quando j — oo.

Since A and B are closed we may infer that
Vo € A N B,

which contradicts AN B = 0.
The proof is complete.

Teorema 20.13 (The Hahn-Banach theorem, the second geometric form). Let A, B C U be two
non-empty, convex sets such that AN B = (. Suppose A is compact and B is closed. Under such
hypotheses, there exists an hyperplane which separates A and B strictly.

Proof. Observe that, from the last proposition, there exists € > 0 sufficiently small such that A, =
A+ B(0,¢) and B. = B + B(0,¢) are disjoint and convex sets. From Theorem 20.9, there exists
u* € U* such that u* # 0 and

(u~+ewy,u)y < (u+ews,u)y,Yu € A, v € B, wy,wy € B(0,1). (117)

Thus, there exists a € R such that

(u,u )y +el|u o < a < (v,u")y —el|u’||p+,Yu € A, v € B. (118)

The proof is complete.

Corolario 20.14. Suppose V. C U is a vector subspace such that V. # U. Under such hypotheses,
there exists u* € U* such that u* # 0 and

(u,u*)y =0,Yu € V. (119)

Proof. Let ug € U be such that ug € V. Applying Theorem 20.9 to A =V and B = {ug} we obtain
u* € U* and a € R such that u* #0 e

(u,uyy < a < {ug,u*)y,Yu € V. (120)

Since V' is a subspace, we must have (u,u*)y = 0,Vu € V.
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21 The weak topologies

Definigao 21.1 (Weak neighborhoods). Let U be a Banach space and let ug € U. We define a weak
neighborhood of ug, denoted by Vy,(ug), as

Vw(ug) ={u e U | |[{(u—up,uj)u| <e;,Vie{l,..,m}}, (121)

for somem € N, g; >0, and uf € U*, Vi € {1,...,m}.

Let A C U. We say that uy € A is weakly interior to A, as there exists a weak neighborhood
Viw(uo) of ug contained in A.

If all points of A are weakly interior, we say that A is weakly open.

Finally, we define the weak topology o(U,U*) for U, as the set of all subsets weakly open of U.

Proposicao 21.2. A Banach space U is Hausddorff as endowed with the weak topology o(U,U*).

Proof. Choose uy,us € U such that u; # us. From the Hahn-Banach theorem, second geometric
form, there exists an hyperplane separating {u;} e {us} strictly, thats is, there exist uv* € U* and
a € R such that

(u, u" )y < o < (ug, u*)y. (122)
Define
Vor(uy) ={u e U] [{u—up,u")| <a—(u,u )y}, (123)
and
Vo(uz) = {u € U | |{u — ug,u")y| < {ug, u™)y — a}. (124)

We claim that
le (ul) N VwQ(UQ) = @

Suppose, to obtain contradiction, there exists u € V,,, (uy) N Vi, (uz).
Thus,

(u—up,u)y <o — (u,u")y,

and therefore
(u,u)y < a.

Also
—(u — ug, u")y < (ug,u”)y — a,
and hence
(u,u"yy > a.
We have got

(u,u"Vy < a < (u,u")y,

a contradiction.
Summarizing, we have obtained u; € Vy, (u1), uz € Vi, (u2) and Vi, (u1) N Ve, (ug) = 0.
The proof is complete.
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Observacao 21.3. If {u,} € U is such that u, converges to w in o(U,U*), then we write u, — u,
weakly.

Proposicao 21.4. Let U be a Banach space. For a sequence {u,} C U, we have
1. up = u, for o(U,U*) < (up, u*)y — (u,u*)y, Yu* € U¥,
2. If u, — w strongly (in norm), then u, — u weakly,

3. If u, = u weakly, then {||u,||v} is bounded and ||u||y < liminf ||u,||v,
n—o0

4. If up, = uw weakly and u), — u* weakly in U*, then (u,, u})y — (u,u*)y.
Proof. 1. The result follows from the definition of (U, U*).
Indeed, suppose that {u,} C U and u,, — u, weakly.

Let w* € U* and let € > 0.

Define
Vo(u)={velU : [(v—u,u")y| <e}.

From the hypotheses, there exists ng € N such that if n > ng, then

Uy, € V().
That is,
|{(uy —u,u)y| <e,
if n > ny.
Therefore,
(Up, u")y = (u,u")y, as n — oo
Yu* € U*.

Reciprocally, suppose that
(Un, u")y = (u,u")y, as n — oo

Vu* € U*.
Let V(u) € o(U,U*) be a set which contains {u}.

Thus, there exists a weak neighborhood a V,,(u) such that u € V,,(u) C V(u), where there exist
m €N, g; >0 and u; € U* such that

Vo(u)={velU : [(v—uu))y| <e, Yie{l,--- ,m}}.
From the hypotheses, for each i € {1,---m}, there exists n; € N such that if n > n;, then
[, — u,ul)y| < &
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Define ng = max{ny,--- ,n,}.

Thus

Up, € Viy(u) C V(u), if n > ny.

From this we may infer that u,, — u for o(U, U*).

2. This follows from the inequality

[ (tn, u")y = (w, w)u| < lu’|

U*||Unp — u||U

(125)

3. For each u* € U* the sequence {(u,,u*)y} is convergent for some bounded sequence. From this
and the Uniform Boundedness Principle, there exists M > 0 such that |ju,| s < M,Vn € N.

Moreover, for u* € U*, we have

[ {un, w")u| < lu”]

and letting n — oo, we obtain

|{(u,u"yy| < liminf ||u*|
n— o0

Thus,

lullv = sup {|{u,w)u| = |ul

u*eU*
4. Just observe that

(U, )y — (u, u)y| <

IN

IN

%

U* unHU7

U+ unHU

v« < 1} < lminf ||u,||y.
n—oo

| {tn; u, = w")u|
H(u = up, w)y]

[

unHU
+[(un — u, u")ul
M||ug, — u”|

+|<un - u7U*>U‘

U*

U*

0, quando n — oc.

(126)

(127)

(128)

(129)

Teorema 21.5. Let U be a Banach space and let A C U be a non-empty convex set. Under such
hypotheses, A is closed for the topology o(U,U*) if, and only if, A is closed for the the topology

induced by || - ||v-

Proof. If A = U the result is immediate. Thus, assume A # U. Suppose that A is strongly closed.
Let ug € A. From the Hahn-Banach theorem there exists a closed hyperplane which separates ug
and A strictly, that is, there exist a € R and u* € U* such that

(ug, u" )y < a < (v, u")y, Vv € A.
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Define
V={uelU| (uu)y <a}l, (131)

so that ug € V, V C U \ A.
Let
V(ug) ={v el : |[(v—uy,u )| <a— (uy,u")y.

Let v € Vi, (uo).
Thus,

(v,u )y = (v —uy+ ug,u")y

(v — ug, u" )y + (ug, u™)y

|(v — ug, ™)y | + (uo, u*)yr

a — (ug, u" )y + (ug, u™)y

= . (132)

VARVAY

From this we may infer that Vi, (up) C V C U\ A, that is, v is an interior point for o(U,U*) of
U\A Yuye U\ A

Therefore, V is weakly open.

Summarizing, U \ A is open in (U, U*) and thus A is closed for o(U,U*) (weakly closed).

Finally, the reciprocal is immediate.

Teorema 21.6. Let (Z,0) be a topological space and let U be a Banach space. Let ¢ : Z — U be a
function, considering U with the weak topology o (U, U*).
Under such hypotheses, ¢ is continuous if, and only if, f.- : Z — R, where

fur (2) = ((2), u")v
s continuous, Yu* € U*.
Proof. Assume ¢ is continuous. Let zp € Z and let {z,}acr be a net such that
Za — 20

From the hypotheses,
¢(2a) = (%), in o(U,U").

Therefore,
(P(za),u" )y = (H(20), u" )y, Yu* € U™.

Thus, f,« is continuous at zy, Vu* € U*, Vzy € Z.
Reciprocally, assume f,- : Z — R, where

Jur (2) = (0(2), u")v

is continuous, Yu* € U*.
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Suppose, to obtain contradiction, that ¢ is not continuous.
Thus, there exists 2y € Z such that ¢ is not continuous at z.
In particular, there exists a net {z,}acr such that z, — 2o and we do not have

¢(2a) = ¢(20), em o(U,U").
Hence, there exists u* € U* such that we do not have

(9(2a), u")u = (&(20), u")u,

and thus f,+ is not continuous at zy, a contradiction.
Therefore, ¢ is continuous.
The proof is complete. 0

22 The weak-star topology

Definigao 22.1 (Reflexive spaces). Let U be a Banach space. We say that U is reflexive, if the

canonical injection
J:U—=>U"

18 onto, where
(u,u*Vyy = (u*, J(u))y~, Yu € U, u* € U*.
Thus, if U is reflexive, we may identify the bi-dual space of U, U**, with U.
The weak topology for U* may be defined similarly to o(U,U*) and it is denoted by o(U*,U*).
We define as well, the weak-star topology for U*, denoted by o(U*,U), as it follows.

Firstly, we define weak-star neighborhoods.
Let u§ € U*. We define a weak-star neighborhood for uf, denoted by Vi, (uy), as

V(ug) ={u* € U" : [{u, u* —ud)u| <&y Vie{l,--- ,m}},

wherem € N, g, >0 ew; € U, Vie {1,--- ,m}.

Let A C U*. We say that ufy € A is weakly-star interior to A, as there exists a weak-star neigh-
borhood V,,(uy) contained in A.

If all point of A are weakly-star interior, we say that A weakly-star open.

Finally, we define the weak-star topology o(U*,U) for U*, as the set of all subsets weakly-star
open of U*.

Observe that o(U*,U**) and o(U*,U) coincide if U is reflexive.

23 Weak-star compactness

Teorema 23.1 (Banach and Alaoglu). Let U be a Banach space. Denote
By ={u* € U" : ||Ju*||u- < 1}.

Under such hypotheses, By~ is compact for U* with the weak-star topology o(U*,U).
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Proof. For each u € U, we shall associate a real number w, and denote

w:kueRU,

uelU

and consider the projections
P,:RY R
where
P (w) = wy, Yw €RY u € U.

We shall define a topology for RY, which is induced by the weak neighborhoods specified in the
next lines. ~
Let @ € RY. We define a weak neighborhood V(@) of @ as

V() ={weRY : |P,(w) - P, (0) <&, Ve{l,---,m}},

where m € N, g; >0 and u; € U, Vi € {1,--- ,m}.
Let A C RV. We say that & € A is interior to A, as there exists a neighborhood V,,(%) contained
in A.
If all points of A are interior, we say that A is weakly open.
Finally, we define the weak topology o para RY, as the set of all subset weakly open of RY.
Now consider U* with the topology o(U*,U) and let ¢ : U* — RY where

o) = [ (w, v

uelU

We shall show that ¢ is continuous. Suppose, to obtain contradiction, that ¢ is not continuous.
Thus, there exists u* € U* such that ¢ is not continuous at u*.
Hence there exist a net {u’ },e; such that

up — u* in o(U*,U),
but we do not have
¢(ug) = ¢(u") in 0.
Therefore, there exists a weak neighborhood V (¢(u*)) such that for each 8 € I there exists ag €1
such that ag > 8 and .
P(ug,) & V(g(u)),
with with no loss of generality, we may assume

V(¢(U*>> = {w € RY ‘Puz(w) - Puz(¢(u>k))’ <&, Vi€ {1? T 7m}}a

where m € N, g; >0 and u; € U, Vi € {1,--- ,m}.
From this, we get j € {1,---,m} and a sub-net {uj } also denoted by {u } such that

[Py (8(u5,)) — Pu(6(u”))] > ;. ¥ay € 1.
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Thus,

*

[y, ug, =)ol
> ¢, Vag € 1. (133)

| Pu; (9(ug,)) = Puy (6(u?))]

Therefore, we do not have,
<uj’ uZ(B)U — <uj7 U*>Ua

that is, we do not have,

up — u*, em o(U*,U),
a contradiction.
Hence, ¢ is continuous with RY with the topology ¢ above specified.
We shall prove now that
¢t p(U*) = U*
is also continuous.
This follows from a little adaptation with of the last proposition, considering that

fulw) = {u, ¢~ (w))y = wy = Pu(w),
on ¢(U*) so that f,, is continuous on ¢(U*), for all u € U.

Thus, from the last proposition, ¢! is continuous.
On the other hand, observe that

qS(BU*) =K
where
K = {we RY . lwa| < JJully, Wuse = Wy + W,
Wiu = Awy, Vu,v € U, A € R}. (134)

To finish this proof, it suffices, from the continuity of ¢!, to show that K C RY is compact with
RY with the topology o.
Observe that K = K; N Ky where

K ={weRY : |w,| < |jully,Vu € U}, (135)
and
Ky ={weRY : wyfy=wy+w,y, Wiy = Ay, Vu,v € U, X € R} (136)

The set K3 = [[,cy[—llullv, ||ullu] is compact as a Cartesian product of compact real intervals.
Since K, C K3 and K is closed, we have that K is compact concerning the topology in question.
On the other hand, K is closed, since defining the closed sets A, , e By, (these seta are closed

from the continuity of projections P, com RY for the topology o, as inverse images of closed sets in
R) by

Ay ={we RY : Wype — Wy — wy = 0}, (137)
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and
Byru={weRY : wy, — \w, =0} (138)
we have

Ky = (NuwevAuw) N (N uwyerxt Baw)- (139)

Recall that K5 is closed as an intersection of closed sets.
Finally, we have that K; N Ky C K is compact.
This completes the proof.

Teorema 23.2 (Kakutani). Let U be a Banach space. Then U is reflexive if and only if
By ={ueU||ullv <1} (140)
is compact for the weak topology o(U,U*).

Proof. Suppose U is reflexive, then J(By) = By«. From the last theorem By is compact for the
topology o(U**,U*). Therefore it suffices to verify that J=' : U™ — U is continuous from U** with
the topology o(U**,U*) to U, with the topology o (U, U*).

From Proposition ?7 it is sufficient to show that the function u + (f, J 'u)y is continuous for
the topology o(U**, U*), for each f € U*. Since (f, J 'u)y = (u, f)y~ we have completed the first
part of the proof. For the second we need two lemmas.

Lema 23.3 (Helly). Let U be a Banach space, fi,..., fn € U* and oy, ..., € R, then 1 and 2 are
equivalent, where:

1.
Given € > 0, there exists u. € U such that ||u.||y <1 and
‘<u67 fz>U - Oéi‘ < €7Vi S {17 7n}
2.
Zﬁi@i < Zﬁifi VB, - B €R. (141)

Proof. 1 = 2: Fiz f5,...,0, € R, ¢ >0 and define S = > |8;|. From 1, we have

> Bilue, fi)u = > | < &8 (142)
i=1 i=1
and therefore
Zﬁz‘%‘ - Zﬁi<ueafi>U <ed (143)
i=1 i=1
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or

+eS (144)
U*

Z @fz

‘UE ’U+€S <

Z Bif;

n
Z ﬁioh
i=1

so that

Q| < Ji (145)

since € is arbitrary.

Now let us show that 2 = 1. Define & = (ay, ..., ;) € R™ and consider the function ¢(u) =
((f1,u) v, .y {fn,u)r). Ttem 1 is equivalent to @ belongs to the closure of ¢(By ). Let us suppose that
a does not belong to the closure of ¢(By) and obtain a contradiction. Thus we can separate @ and

the closure of ¢(By) strictly, that is there exists 5 = (0, ..., Bn) € R™" and v € R such that
o(u)-f<~y<a-B,Vue By (146)
Taking the supremum in u we contradict 2. O

Also we need the lemma.

Lema 23.4. Let U be a Banach space. Then J(By) is dense in Bys« for the topology o(U*™*,U*).

Proof. Let u™ € Bys« and consider V=« a neighborhood of u** for the topology o(U**, U*). It suffices
to show that J(By) N Vs # 0. As Ve is a weak neighborhood, there exists fi, ..., f,, € U* and
€ > 0 such that

Vs ={n € U™ | (fi,n —u™)u«| <e,Vie{l,..,n}t} (147)

Define a; = (f;, u™*)y+ and thus for any given fy, ..., 8, € R we have

| = | Si, )| < Zﬁz‘fi ; (148)
i=1 U
so that from Helly lemma, there exists u. € U such that ||u.||y < 1 and
(e, fi)u —ai| <e,Vie{l,...,n} (149)
or,
[{fi, J(ue) —u™)py| < e,Vie{l,...,n} (150)
and hence
J(ue) € Vyer. (151)
U
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Now we will complete the proof of Kakutani Theorem. Suppose By is weakly compact (that is,
compact for the topology o(U,U*)). Observe that J : U — U** is weakly continuous, that is, it is con-
tinuous with U endowed with the topology o (U, U*) and U** endowed with the topology o(U**, U*).
Thus as By is weakly compact, we have that J(By) is compact for the topology o(U**, U*). From the
last lemma, J(By) is dense By« for the topology o(U**, U*). Hence J(By) = By, or J(U) = U*,
which completes the proof. [

Proposicao 23.5. Let U be a reflevive Banach space. Let K C U be a convex closed bounded set.
Then K is weakly compact.

Proof. From Theorem 21.5, K is weakly closed (closed for the topology o(U,U*)). Since K is
bounded, there exists & € R such that K C aBy. Since K is weakly closed and K = K NaBy, we
have that it is weakly compact. O

Proposicao 23.6. Let U be a reflexive Banach space and M C U a closed subspace. Then M with
the norm induced by U 1is reflexive.

Proof. We can identify two weak topologies in M, namely:
o(M, M*) and the trace of (U, U™). (152)

It can be easily verified that these two topologies coincide (through restrictions and extensions of
linear forms). From theorem 2.4.2, it suffices to show that By is compact for the topology o (M, M*).
But By is compact for o(U,U*) and M C U is closed (strongly) and convex so that it is weakly
closed, thus from last proposition, By, is compact for the topology o(U,U*), and therefore it is
compact for (M, M*). O

24 Separable sets

Definigao 24.1 (Separable spaces). A metric space U is said to be separable if there exist a set
K C U such that K s countable and dense in U.
The next Proposition is proved in [3].

Proposicao 24.2. Let U be a separable metric space. If V- C U then V 1is separable.
Teorema 24.3. Let U be a Banach space such that U* is separable. Then U s separable.

Proof. Consider {u}} a countable dense set in U*. Observe that

[upllo = sup{[(u, wyu| | v € U and |lufly =1} (153)
so that for each n € N, there exists u, € U such that |lu,|o =1 and (u}, u,)u > ${juk]|v-.
Define Uy as the vector space on Q spanned by {u,}, and U; as the vector space on R spanned

by {u,}. It is clear that Uy is dense in U; and we will show that U is dense in U, so that Uj is a
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dense set in U. For, suppose u* is such that (u,u*)y = 0,Vu € U;. Since {u}} is dense in U*, given
e > 0, there exists n € N such that ||u} — u*||y~ < €, so that

*

Sl < Gun, )0 :

(U, up, — )y + (Up, w*)yr

[ur, = w*llo=lunllo +0
5 (154)

A A

or

[ o < s, = u*lfoe + [l

ur < €+ 2 = 3e. (155)

Therefore, since ¢ is arbitrary, ||u*||y~ = 0, that is u* = 6. By Corollary 20.14 this completes the
proof. O

Proposicao 24.4. U is reflexive if and only if U* is reflexive.

Proof. Suppose U is reflexive, as By- is compact for o(U*,U) and o(U*,U) = o(U*,U**) we have
that By« is compact for o(U*, U**), which means that U* is reflexive.

Suppose U* is reflexive, from above U** is reflexive. Since J(U) is a closed subspace of U**, from
Proposition 23.6, J(U) is reflexive. From the Kakutani Theorem J(By) is weakly compact. At this
point we shall prove that J=!: J(U) — V is continuous from J(U) with the topology o(U**, U*) to
U with the topology o (U, U*).

Let {u**}aer € J(By) be a net such that

kk kk

weakly in o(U**, U*).
Let u* € U*. Thus,
(W u g — (U ug Yo«

From this
(u, J(T ™ ug")) o = (", (T ug"))o-,

so that
(T ) u)o = (T ugh), w')o.

Since the net is question and u* € U* have been arbitrary, we may infer that J~! is weakly
continuous for the concerning topology.
Hence J~!(J(By)) is also weakly compact so that from this, from the fact that By is weakly
closed and
By ¢ J'J(By),

it follows that By is compact for the topology o (U, U*).
From such a result and from the Kakutani Theorem we may infer that U is reflexive.
The proof is complete. H

93



Proposicao 24.5. Let U be a Banach space. Then U 1is reflexive and separable if and only if U* s
reflexive and separable.

Our final result in this section refers to the metrizability of By-.

Teorema 24.6. Let U be separable Banach space. Under such hypotheses By« is metrizable with
respect to the weak-star topology o(U*,U). Conversely, if By~ is mertizable in o(U*,U) then U is
separable.

Proof. Let {u,} be a dense countable set in By;. For each u* € U* define

o0

* 1 *
[ = 227\ (tn, u")yr |-
n=1
It may be easily verified that || - ||, is @ norm in U* and

[0l < Jlulo-
So, we may define a metric in U* by
d(u™,v*) = [|[u* — v*||,.

Now we shall prove that the topology induced by d coincides with o(U*,U) in U*.
For, let u§ € By- and let V' be neighborhood of v in o(U*, U).
We need to prove that there exists r > 0 such that

Vw = {u* c BU*

d(ug,u*) <r}CV.
Observe that for V' we may assume the general format
V=A{u" eU"||{v,u" —uj)u| <e,

for some € > 0 and vy, ..., v, € U.
There is no loss in generality in assuming

HUZ'HU < ]_,VZ S {17 7k}
Since {u,} is dense in U, for each i € {1, ..., k} there exists n; € N such that

g
i, =il < 5

Choose r > 0 small enough such that
2"y < %,Vi e{l,....k}.
We are going to show that V,, C V', where

Vw = {U* € BU*

d(ug,u*) <r} CV.

94



Observe that, if u* € V,, then
d(ug,u*) <,

so that .
2—n|(un“u* —ugyy| <r,Vie{l,.., k},
so that
‘</UZ‘,U*—US>U’ S ‘<vl_un17U*_u8>U’+’<unz,u*—ug>(]‘
< (Ju o= + Nugllo)llvi = w0 + [(tn,, v — ug) v
g €
2-+5=¢ 156
< 1 + 5 £ ( )

Therefore u* € V', so that V,, C V.
Now let ug € By« and fix r > 0. We have to obtain a neighborhood V' € ¢(U*U) such that

VcV,={u" € By

d(ug, u™) <r}.
We shall define k£ € N and € > 0 in the next lines so that V' C V,,, where
V ={u" € By~ | [{(uj,u" —uy)y| <e,Vie{l,.. k}}.

For u* € V,, we have
* * 1 * *
d(u 7u0) = ji:’iﬁ‘<unvu '_’UO>U‘

1 .
£ 30 Sl — wl

n=k+1

=1
n=k+1

1
= et gy (157)

Hence, it suffices to take ¢ = r/2, and k sufficiently big such that

1
W < 7“/2
The first part of the proof is finished.
Conversely, assume By is metrizable in o(U*,U). We are going to show that U is separable.

Define,

- 1

From the first part, we may find V;, a neighborhood of zero in o(U*, U) such that

V., C V..
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Moreover, we may assume that V,, has the form

Vn = {u* € BU*

|{(u,u* — 0)y| < en,Vu € C,},

where C,, is a finite set.
Define

Thus D is countable and we are going to prove that such a set is dense in U.
For, suppose u* € U* is such that

(u,u*)y = 0,Yu € D.

Hence, .
u* €V, CV,,VneN,
so that u* = 6.
The proof is complete. O

25 Uniformly convex spaces

Definigao 25.1 (Uniformly convex spaces). A Banach space U is said to be uniformly convez if for
each € > 0, there exists 6 > 0 such that:
Ifu,veU, |lully <1, [[v]lv <1, and lu— |y > & then v <1 5,

Teorema 25.2 (Milman Pettis). Every uniformly convex Banach space is reflexive.

Proof. Let n € U™ be such that ||n||g~ = 1. It suffices to show that n € J(By). Since J(By) is closed
in U™, we have only to show that for each ¢ > 0 there exists u € U such that ||n — J(u)||p+ < e.
Thus, suppose given € > 0. Let 6 > 0 be the corresponding constant relating the uniformly

convex property.
Choose f € U* such that [|f]|y~ =1 and

(fimu->1- 2 (158)

2
9
13

Observe that V' is neighborhood of n in o(U**,U*). Since J(By) is dense in By« concerning the
topology o(U**,U*), we have that V N J(By) # 0 and thus there exists u € By such that J(u) € V.
Suppose, to obtain contradiction, that

Define

v:{cev** 1, € = o

I = J(W)llu= > e

Therefore, defining
W = (J(U) + €BU**)C,

96



we have that n € W, where W is also a weak neighborhood of n in o(U**, U*), since By« is closed
in o (U™, U*).

Hence VNW N J(By) # 0, so that there exists some v € By such that J(v) € V N W. Thus,
J(u) € V and J(v) € V, so that

o= (el < 3,

and

|<U>f>U - <f,77>U* < g

Hence,

2(f;mo- < (utw, flu+d
< u+olo+6. (159)

From this and (158) we obtain

utoly .y

and thus from the definition of uniform convexity, we obtain
lu =y <e. (160)
On the other hand, since J(v) € W, we have
17 (u) = J(v)]

which contradicts (160). The proof is complete. O

v = [lu—vlly >,

26  Topics on Linear Operators

The main references for this chapter are Reed and Simon [5] and Bachman and Narici [1].

26.1 Topologies for bounded operators

Let U, Y be Banach spaces. First we recall that the set of all bounded linear operators A : U — Y,
denoted by L(U,Y), is a Banach space with the norm

[A} = sup{[[Aully | [luflv < 1}.

The topology related to the metric induced by this norm is called the uniform operator topology.
Let us introduce now the strong operator topology, which is defined as the weakest topology for

which the functions
E,:LUY)—=Y

are continuous where

E.(A) = Au,YA € L(U,Y).
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For such a topology a base at origin is given by sets of the form
{A|Ae L(UY), |Auilly <e,Vie{l,,..,n}},

where uq,...,u, € U and € > 0.
Observe that a sequence {4, } C L(U,Y’) converges to A concerning this last topology if

|Apu — Aully — 0, as n — oo, Vu € U.

In the next lines we describe the weak operator topology in £(U,Y"). Such a topology is weakest
one such that the functions
E.,,: LUY)—C

are continuous, where
Ey.(A) = (Au,v)y, VA e LU Y),uec U, veY".
For such a topology, a base at origin is given by sets of the form
{A e LIUY) | {Au;,vy)y| <e,Vie{l,...,n}, j€{l,..,m}}.

where € > 0, uy,...,u, € U, vy,...,v,, € Y*.
A sequence {A,} C L(U,Y) converges to A € L(U,Y) if

[{(Apu,v)y — (Au,v)y| — 0,

asn — oo, Vue U, veY™

27 Adjoint operators

We start this section recalling the definition of adjoint operator.
Definicao 27.1. Let U,Y be Banach spaces. Given a bounded linear operator A : U — Y and
v* € Y*, we have that T'(u) = (Au,v*)y is such that

Y*

T (w)] < [|Aully - [[o*]| < [[A]l]lo]

UHU

Hence T(u) is a continuous linear functional on U and considering our fundamental representation
hypothesis, there exists u* € U* such that

T(u) = (u,u")y,Vu € U.
We define A* by setting u* = A*v*, so that
T(u) = (u,u")y = (u, A"v")y

that s,
(u, Av")y = (Au,v")y,Yu € U, v* € Y.

We call A* : Y* — U* the adjoint operator relating A : U — Y.
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Teorema 27.2. Let U,Y be Banach spaces and let A : U —'Y be a bounded linear operator. Then

IA]] = [|A]].
Proof. Observe that

[Al = sup{[|Au[| | [Jullv =1}
uelU

= sup{ sup {(Au,v")y | [[v*[ly~ =1}, [[uflv = 1}
uelU v*eY*

= sup {{Au, )y | [[v"]ly+ = 1 |Jullv = 1}
(u,v*)EUXY*

= sup {(u, Ay | [[o]
(u,v*)eUXY*

y» = L [Jully = 1}

= sup {sup{(uw, A"0")v | [ullv = 1}, [v*|ly~ = 1}
v*eY* uelU

= sup {[[A™", [v*|ly- =1}
v*eEY'*

= A%

In particular, if U =Y = H where H is Hilbert space, we have

Teorema 27.3. Given the bounded linear operators A, B : H — H we have
1. (AB)* = B*A*,
2. (A")* = A,
3. If A has a bounded inverse A~' then A* has a bounded inverse and
(A7) = (a7
4 |IAAT| = 1A%
Proof. 1. Observe that

(ABu,v)g = (Bu, A*v)y = (u, B*"A™v) g, Yu,v € H.
2. Observe that
(u, Av)g = (A"u,v)g = (u, Av) g, Yu,v € H.

3. We have that
I=AA1=A714,

so that

I = I* — (AA—I)* — (A—l)*A* — (A—lA)* — A*(A—l)*
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4. Observe that
[AA[| < Al A*]| = [JA]]%,

and
[A*All > Sug{(%A*AU)H\ |ully =1}
ue
= sup{(Au, Au)y | [[ully =1}
uelU
= SEB{HAUII% | Jully =1} = || A%, (162)
and hence
|A*All = | Al
O

Definigao 27.4. Given A € L(H) we say that A is self-adjoint if

A=A
Teorema 27.5. Let U and Y be Banach spaces and let A : U — Y be a bounded linear operator.
Then
[R(A)]F = N(A"),
where

[R(A)]*: = {v*" € Y* | (Au,v*)y =0, Yu € U}.
Proof. Let v* € N(A*). Choose v € R(A). Thus there exists u in U such that Au = v so that
(v,v")y = (Au,v")y = (u, A"v")y = 0.
Since v € R(A) is arbitrary we have obtained
N(A") C [R(A)]*.
Suppose v* € [R(A)]*. Choose u € U. Thus,
(Au,v")y =0,

so that
(u, A*v")y,Vu € U.

Therefore A*v* = 6, that is, v* € N(A*). Since v* € [R(A)]* is arbitrary, we get
[R(A)]F € N(AY).
This completes the proof. O

The next result is relevant for subsequent developments.
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Lema 27.6. Let U, Y be Banach spaces and let A : U — Y be a bounded linear operator. Suppose
also that R(A) = {A(u) : uw € U} is closed. Under such hypotheses, there exists K > 0 such that
for each v € R(A) there exists ug € U such that

A(ug) = v

and
[uollo < K|lvlly-

Proof. Define L = N(A) = {u € U : A(u) = 0} (the null space of A). Consider the space U/L,
where

U/L={u: ueU},
where

u={u+w : we L}

Define A : U/L — R(A), by B
Am) = A(u).

Observe that A is one-to-one, linear, onto and bounded. Moreover R(A) is closed so that it is a

Banach space. Hence by the inverse mapping theorem we have that A has a continuous inverse.
Thus, for any v € R(A) there exists w € U/L such that

A(u) = v

so that _
u=A (v),
and therefore .
[zl <A “[[llv]ly.

Recalling that
[ = int {Jju+ wllo}.

we may find ug € U such that
_ —1
Juollv < 2[ul] < 2|4 [lllv]ly

and so that

Afuo) = A(m) = A(w) = v
Taking K = 2||A || we have completed the proof. O

Teorema 2. Let U,Y be Banach spaces and let A : U — Y be a bound linear operator. Assume
R(A) is closed. Under such hypotheses

R(A") = [N(A)]".
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Proof. Let u* € R(A*). Thus there exists v* € Y* such that
ut = A*(v").
Let u € N(A). Hence,
(u,u*)y = (u, A*(v*))y = (A(u),v")y =0.
Since u € N(A) is arbitrary, we get u* € [N(A)]*, so that

R(A") C [N(A)].
Now suppose u* € [N(A)]*. Thus
(u,u")y =0, Yu € N(A).

Fix v € R(A). From the Lemma 27.6, there exists K > 0 (which does not depend on v) and
u, € U such that
Alu,) =v
and
[l < KJvly-
Define f : R(A) — R by
f(v) = {uy, u")u.
Observe that
[f )] < Nlululju’]

so that f is a bounded linear functional. Hence by a Hahn-Banach theorem corollary, there exists
v* € Y* such that

v- < Kfvlly[lu|

U*,

f() = (v,v")y = F(v), Yv € R(A),

that is, F' is an extension of f from R(A) to Y.
In particular

f(0) = (uy,u )y = (v,0)y = (A(u,),v*)y Yv € R(A),

where A(u,) = v, so that
(Uy, u" )y = (A(uy), v")y Yv € R(A).

Now let u € U and define A(u) = vy. Observe that
U= (u - uvo) + Uy,

and
Alu — uyy) = A(u) — Aty,) = v — vg = 0.

Since u* € [N(A)]* we get
(U — Uy, u")y =0
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so that

u),v)y. (163)
Hence,
(u,u")y = (A(u),v")y, Yu € U.
We may conclude that u* = A*(v*) € R(A*). Since u* € [N(A)]* is arbitrary we obtain

[N(A)]F € R(AY).
The proof is complete. O

We finish this section with the following result.

Definicao 27.7. Let U be a Banach space and S C U. We define the positive conjugate cone of S,
denoted by S® by
C={u eU" : (u,u"y >0, Vue S}

Similarly, we define the the negative cone of S, denoted by denoted by S© by
C={u €U : (u,u)y <0, Vu € S}.

Teorema 27.8. Let U,Y be Banach spaces and A : U — Y be a bounded linear operator. Let S C U.
Then
[A(S)]® = (A7) 71(59),

where
(AP ={v" e Y™ . A e SO}
Proof. Let v* € [A(S)]® and u € S. Thus,

(A(u), v)y =0,

so that
(u, A*(v*))y > 0.

Since u € S is arbitrary, we get

vt e (A%)L(S®).

From this

[A(9))® = (A)7(59).
Reciprocally, let v* € (A*)71(S®). Hence A*(v*) € S so that, for u € S we obtain

<u7 A*(U*»U > 07
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and therefore
(A(u),v")y > 0.

Since u € S is arbitrary, we get v* € [A(S)]?, that is,
(A7) 71(S®) C [A(9))*.

The proof is complete. H

28 Compact operators

We start this section defining compact operators.

Definicao 28.1. Let U and Y be Banach spaces. An operator A € L(U,Y) (linear and bounded)
is said to compact if A takes bounded sets into pre-compact sets. Summarizing, A is compact if for
each bounded sequence {u,} C U, {Au,} has a convergent subsequence in'Y .

Teorema 28.2. A compact operator maps weakly convergent sequences into norm convergent Se-
quences.

Proof. Let A:U — Y be a compact operator. Suppose
u, — u weakly in U.
By the uniform boundedness theorem, {||u,||} is bounded. Thus, given v* € Y* we have

(Aup, vy = (u,, A"y
= (u, A"y
= (Au,v")y. (164)

Being v* € Y* arbitrary, we get that
Au,, — Au weakly in Y. (165)

Suppose Au,, does not converge in norm to Au. Thus there exists € > 0 and a subsequence {Au,, }
such that
|Aw,, — Aully > ¢,Vk € N.

As {u,, } is bounded and A is compact, { Au,, } has a subsequence converging para v # Au. But then
such a sequence converges weakly to © # Au, which contradicts (165). The proof is complete. 0

Teorema 28.3. Let H be a separable Hilbert space. Thus each compact operator in L(H) is the limit
i norm of a sequence of finite rank operators.
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Proof. Let A be a compact operator in H. Let {¢;} an orthonormal basis in H. For each n € N

define

A = sup{[|AY i | ¥ € [b1,.., $u]" and [[¢] i = 1}.

It is clear that {\,} is a non-increasing sequence that converges to a limit A > 0. We will show that

A = 0. Choose a sequence {1} such that

¢%/€[¢1w”7¢ny%
|Unllg = 1 and || Aty ||z > A/2. Now we will show that

Vv, — 0, weakly in H.

Let ¢* € H* = H, thus there exists a sequence {a;} C C such that

vt=) a0;
j=1
Suppose given € > 0. We may find ng € N such that

00
j{:\ajF <e.

Jj=no

Choose n > ng. Hence there exists {b;};>, such that

Un= > bioy,

j=n+1
and -
Z 1;* = 1.
j=n+1
Therefore
(@n, )| = | D (.05 ma; - b,
j=n+1
= | D b
j=n+1
< D> a1l
j=n+1 j=n+1
< W,

105

(166)



if n > ng. Since € > 0 is arbitrary,
(Y, 0" )y — 0, as n — 0.

Since ¥* € H is arbitrary, we get
¥, — 0, weakly in H.

Hence, as A is compact, we have
A, — 6 in norm ,

so that A = 0. Finally, we may define {A,} by

An(u) = A (Z(u, ¢j)H¢j> =Y (u,,)uAd,

J=1 J=1

for each w € H. Thus
|A—A,|l =\, — 0, as n — 0.

The proof is complete. H

29 The square root of a positive operator

Definicao 29.1. Let H be a Hilbert space. A mapping E : H — H is said to be a projection on
M C H if for each z € H we have
Ez=zx

where z=x+y, x € M andy € M*.
Observe that
1. F is linear,
2. F is idempotent, that is £? = E,
3. R(E) = M,
4. N(E) = M*,

Also observe that from
Ez==x

we have
1Ez|17 = llzll7 < llll7 + llyllz = 217,

so that
|E] <1.
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Definicao 29.2. Let A,B € L(H). We write

A>0
if
(Au,u)g > 0,Yu € H,

and in this case we say that A is positive. Finally, we denote

A>B
if
A—B>9.

Teorema 29.3. Let A and B be bounded self-adjoint operators such that A > 6 and B > 0. If
AB = BA then
AB > 6.

Proof. If A = 0 the result is obvious. Assume A # 6 and define the sequence

A

Al TR
Al

App1 = A, — A2, ¥n € N,

We claim that
0<A,<IVneN.

We prove the claim by induction.
For n =1, it is clear that A; > 6. And since ||A;]| = 1, we get

(Avu, w)g < [ Asllllullmllulle = (Tu, u)m, Vu € H,

so that
A <.

Thus
<A <I.

Now suppose 6 < A,, < I. Since A, is self adjoint we have,

(A2(1 — A)u,u)g = (I — Ap)Anu, Apu) g
(I —Ap)v,v)g > 0,Yue H (167)

where v = A,,u. Therefore

Similarly, we may obtain
An(I - An)2 Z ‘97
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so that
g < Ai([ —A,)+ A (I - An)2 =A, — Ai = A,

So, also we have,
0<I—-A, +A2=1—A,,1,

that is,
0 S An+1 S ]7

so that
0<A,<I VYneN.

Observe that,

Al - A%-‘-AQ
= Aj+ A+ A;

= Al + ..+ A+ A (168)
Since A, 11 > 0, we obtain

From this, for a fixed u € H, we have

SolAullP = > (A, Aju)g
j=1

I
} <.
S

£

=

(170)
Since n € N is arbitrary, we get,

o
> Al
j=1

is a converging series, so that
[ Anul| =0,

that is,
A u— 60, asn — oo.
From this and (169), we get

ZA?u = (A; — Ay 1)u — Aju, as n — oo.
=1
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Finally, we may write,

(ABu,u)y = ||A||(A1Bu,u)y
= [A|(BAw, u)n

IANI(B Tim Atu,u)q
j=1

— y\A\yggoZ(BA§u,u)H
j=1

= Al lim Y (BAju, Aju)y
j=1

0. (171)

v

Hence
(ABu,u)g > 0,Vu € H.

The proof is complete. H

Teorema 29.4. Let {A,} be a sequence of self-adjoint commuting operators in L(H). Let B € L(H)
be a self adjoint operator such that

Suppose also that
A <A <A3< ... <A, <..<B.

Under such hypotheses there exists a self adjoint, bounded, linear operator A such that
A, — A in norm ,

and

A< B.
Proof. Consider the sequence {C,,} where
C,=B—A,>0VYneN.
Fix u € H. First, we show that {C,,u} converges. Observe that
C,C; = C;C, Vi, j € N

Also, if n > m then
A, — A, >0

so that
Chn=B—-A,>B—-A,=0C,.
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Therefore from C,, > 0 and C,,, — C,, > 6 we obtain
(Cpn — C)Crpy >0, if n>m

and also
Co(Cy — Cp) > 0.

Thus,

and we may conclude that
(0721“7 u)H
is a monotone non-increasing sequence of real numbers, bounded below by 0, so that there exists

o € R such that

lim (Clu,u)y = a.
n—oo

Since each C), is self adjoint we obtain

I(Ch = Cr)ully = (Co— Cu)u, (Co = Ci)u)n
= ((Ch = Gn)(Cn = C, ) u)m
= (02u u)H —2(C,Cryu, u) + (CRu,u)g
- a—2a0+a=0, (172)
" m,n — oo.

Therefore {C,u} is a Cauchy sequence in norm, so that there exists the limit

lim Chu = lim (B — A,)u,
n—oo n—oo

and hence there exists
lim A,u,Vu € H.

n—oo

Now define A by
Au = lim A,u.

n—oo

Since the limit
lim A,u,Vu € H

n—0o0

exists we have that
sup{[|Anullm}
neN

is finite for all v € H. By the principle of uniform boundedness

sup{|[| A, |} < o0
neN
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so that there exists K > 0 such that
|A,| < K,Vn eN.

Therefore
[Anullg < Klull,

so that
[Aull = lim {|Ayulm} < Kljulg, Yu e H

which means that A is bounded. Fixing u,v € H, we have

(Au,v)y = lim (A, u,v)y = lim (u, A,0)g = (u, Av) gy,

and thus A is self adjoint. Finally

(Apu,u)g < (Bu,u)p,¥n € N,

so that
(Au,u) = lim (A,u,u)g < (Bu,u)g,Vu € H.
n—oo
Hence A < B.
The proof is complete. O

Definicao 29.5. Let A € L(A) be a positive operator. The self adjoint operator B € L(H) such that
B*=A
is called the square root of A. If B > 0 we denote
B=VA
Teorema 29.6. Suppose A € L(H) is positive. Then there exists B > 6 such that
B? = A.
Furthermore B commutes with any C' € L(H) such that commutes with A.
Proof. There is no loss of generality in considering
[Al <1,

which means 6 < A < I, because we may replace A by

A4
A
so that if
A

o=
1A]
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then
B = ||A|"2C.

Let

and consider the sequence of operators given by
1
Bny1 = B, + §(A — B?),vn € NU{0}.

Since each B, is polynomial in A, we have that B, is self adjoint and commute with any operator
with commutes with A. In particular

First we show that
B, < 1,¥n € NU{0}.
Since By = #, and B, = %A, the statement holds for n = 1. Suppose B,, < I. Thus
1 1
+1 2 + 2 n
1 1
= SU=B) 45 -A) 20 (173)

so that
BnJrl S I.

The induction is complete, that is,
B, <I,VYneN.

Now we prove the monotonicity also by induction. Observe that
BO S Bh
and supposing
anl S Bna

we have

1 1
Boi1— B, = B,+ 5(A — B3~ B, — 5(A ~ B2 )

= Bu-Baa— 3B~ BLY)

B, B, - %(Bn + By 1) (B — By 1)
- %(Bn + By1))(By — Buy)

= ST = Bu) + (I = B)(Bu — Ba) 2 6.
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The induction is complete, that is
0=By<B <B,<..<B,<..<I
By the last theorem there exists a self adjoint operator B such that
B,, — B in norm.

Fixing uw € H we have
1
Bpi1u = Buu + 5(A — B)u,

so that taking the limit in norm as n — oo, we get

0 = (A — B*)u.
Being u € H arbitrary we obtain
A= B%
It is also clear that
B >4
The proof is complete. O

30 Spectral Analysis, a General Approach in Normed spaces

31 Introduction

In this section we present some results about the spectrum and resolvent sets for a bounded
operator defined on a normed space.
We start with the following definition.

Definicao 31.1. Let V' be a complex normed vector space and let A : D C V. — V be a linear
operator, where D is dense on V. We say that A~' : R(A) — D is the inverse operator related to A,
as A is a bigection from D to R(A) and

A~y =w if, and only if, Au=y, Yu € D,y € R(A),

where R(A) = {Au: wu € D}, is the range of A.
In such case we have,
A7 "Au=u, Yue D

and
AA Yy =y, Yy € R(A).

Let A\ € C.

1. If RIA — A) is dense in'V and NI — A has a bounded inverse, we write A € p(A), where p(A)

denotes the resolvent set of A.
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(M — A)~! | Boundedness of (A — A)~! R(M\ — A) Set
exists bounded dense in V p(A)
exists unbounded dense in V Co(A)
exists bounded or not not dense in V. | Ro(A)

not exists — dense or not in V | Po(A)

Table 1: About the spectrum and resolvent sets of A

2. If RO — A) is dense in V and (A — A)~! exists but it is not bounded, we write A € Co(A),
where Co(A) denotes the continuous spectrum of A.

3. If RIN — A) is not dense in V and A\ — A has an inverse either bounded or unbounded, we
write A € Ro(A), where Ro(A) denotes the residual spectrum of A.

4. If (N[ — A)~! does not exist, we write \ € Po(A) where Po(A) denotes the point spectrum of
A.

Table 1 summarizes such results.

Observacao 31.2. Observe that
C=p(A)uCo(A)URo(A)U Po(A)

and such union s disjoint.
The spectrum of A, denoted by o(A), is defined by

0(A) =Co(A)U Ro(A) U Po(A).

Teorema 31.3 (Riesz). Let V' be a normed vector space and let 0 < o < 1. Let M be a proper closed
vector subspace of V.
Under such hypotheses, there exists u, € V such that

[ually =1

and
|lu — ually > «, Yu € M.

Proof. Since M C V is a proper closed subspace of V', we may select a v € V'\ M.
Define
d = inf [|ju— )
Jnf flu—wvlv

Observe that, since M is closed, we have d > 0, otherwise if we had d = 0 we had v € M = M,
which contradicts v € M.
Also,
d/a > d.
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Hence, there exists ug € M such that
0<d<||up—v|ly <d/a.

Define
UV — Ug
lv — uollv

Thus, ||ua|v =1 and also for v € M we have

U =

v u
lu — gy u— b
lv —uollv — flv—uollv ]y
1
= [u(||lv—u +ug —v . 174
H (H OHV) 0 HV H,U — UOHV ( )
From this, since u|lv — ug||y + up € M, we have
|lu — ually > > a, Yu € M.
[ = wollv
The proof is complete. O

Teorema 31.4. Let V be a complex normed vector space and let A: D CV — V be a linear compact
operator.
Under such hypotheses, Po(A) is countable and 0 is its unique possible limit point.

Proof. Let ¢ > 0. We shall prove that there exists at most a finite number of points in P. where
P.={\€ Po(A) : |\ >c¢}.
Observe that in such a case
Po(A)\{0} = UL, Py

and such a set is countable and has 0 as the unique possible limit point.
Suppose, to obtain contradiction, there exists € > 0 such that P. has infinite points. Hence, there
exists a sequence {\, }neny C P- and a sequence of linearly independent eigenvectors {u,} such that

Au,, = Ay, Vn € N.

Define
M, = Span{uy, ..., u,},

so that
Mnfl C Mn

and M, is finite dimensional, Vn € N. Observe that M, _; C M, properly.
From the Riesz theorem, there exists y,, € M, such that ||y,|ly = 1 and

||yn - UH > 1/27 Vu € Mn—lu Vn > 1.
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Let

n

u = Z%‘Ui e M,.

=1

Thus,
Au = i o Au; = i QAU

i=1 i=1

Therefore,
Ay —Au = Mu—Au
= ”Z_l a;( Ay — N)u; € My, . (175)
i=1
Therefore

(A — A)(M,,) C M,,—4

and from this
A(M,) C M,,Vn € N.
Let 1 <m < n. Thus,
w= Ay — A)yn + Ay € M,,_1,
so that
Ayn - Aym = \Yn — W = /\n(yn - /\rjlw)'

Since, A, 'w € M,,_; we get

[Anl

HAyn - AymH = ‘)‘n’”yn - )\,leH > 9

>

Y

N ™

Vi<m<ne&N.

Therefore, {y,} is a bounded sequence and such that { Ay, } has no Cauchy subsequence, that is,
{Ay,} has no convergent subsequence, which contradicts A be compact.

The proof is complete. O

Definicao 31.5. Let V' be a normed vector space and let A: D CV — V be a linear operator, where
D 1is dense in V.

We say that A € C is an proper approzimate value of A if for each € > 0 there exists w € D such
that

lully =1 and ||(AM — A)u|ly < e.
In such a case we denote \ € w(A), where w(A) is the approzimate spectrum of A.

Teorema 31.6. Considering the statements of the last definition, we have that A € w(A) if, and only
if, \I — A has no a bounded inverse.
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Proof. Suppose A € m(A). Thus, for each n € N, there exists u,, € D such that |lu,|y =1 and
|(A — A)uy|lv < 1/n. (176)
Suppose, to obtain contradiction, there exists K > 0 such that
(A = A)ully > Kully, Yu € D.

In particular we have

| — A)uy|ly > 1, ¥n €N,

which contradicts (176).
Reciprocally, suppose A\ — A has no bounded inverse.
Thus, there is no K > 0 such that

(M = A)ully > Klullv, Yu € D.
Hence, for each € > 0 we may find v € D such that
(A = A)ully < ellully.
From this, for each € > 0 we may find v € D such that
lu|ly =1 and ||(A — A)u|ly < e.

Therefore A € w(A). O

32 Sesquilinear functionals

Definigao 32.1. Let V' be a complex vector space. A functional f : V xV — C is said to be a
sesquilinear functional, as

1. f(uy +ug,v) = fug,v) + flug,v), Yuy,us,v € V.
2. flau,v) = af(u,v), Yu,v € V, Va € C.

3. flu,v1 4+ vg) = fu,vr) + f(u,ve), Yu,vy,v9 € V.
4. flu,av) = af(u,v), Yu,v €V, a e C.

Observacao 32.2. Let H be a complex Hilbert space and let A : H — H be a linear operator. Hence
f+HxH— C defined by
f(u,v) = (Au,v) g, Yu,v € H

1s a sequilinear functional.
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Observacao 32.3. Given a sesquilinear functional

f:HxH—C

we shall define f :H — C by R
flu) = f(u,u), Yu € H.

Exercicio 32.4. In the context of the last definitions, prove that

fuo) = 7 (540) < (5-0)
+if (%(u + w)) —if (%(u - w)) . Vu,v € H. (177)

Conclude that if f1 = fg, then f1 = fs.

Teorema 32.5. Let V' be a complex vector space and let f : V XV — C be a symmetric sesquilinear
functional, that is, assume f is such that f(u,v) = f(v,u), Yu,v € V, where f(v,u) denotes the
complex conjugate of f(v,u).

Under such hypotheses,

~

f(u) eR, Yu e V.

Proof. Suppose
g(u,v) = f(U,U), VU,U eV.

Thus,

so that

~

f(u) e R,Vu e V.

Reciprocally, suppose f is real.
Define

g(u,v) = f(v,u), Yu,v € V.

Hence,

~

9(w) = g(u,u) = fu,u) = f(u,u) = f(u), VueV.

From this and the last exercise, we obtain g = f, so that

f(u,v) = f(v,u), Yu,v € V.

Observacao 32.6. Let A: D C V — V be a symmetric operator, that is, such that
(Au,v)y = (u, Av)y, Yu,v €V,
where V' 1s a space with inner product.
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Thus,

f(u, v)

Il
—~| —~ —~
RS
i
<
~—| —

<

= f(v,u), Yu,v €V, (178)

so that f is symmetric.

Definigao 32.7. Let V' be a normed vector space. A sesquilinear functional f :V xV — C is said
to be bounded if there exists K > 0 such that

[f(u, 0)] < Kjullv[[vllv, Yu,veV. (179)

Defining
B = {K > 0 such that (179) is satisfied }

we also define the norm of f, denoted by || f|| as
|f|| =inf{K : K € B}.
Moreover, defining
C={K>0: suchthat |f(u)| < K|ul|ly, Vu eV},
we define also the norm of f, denoted by || f|, as
If| =inf{K >0 : KeC}.
Proposicao 32.8. Considering the context of the last definition,

Ifll= s {lf(w o)l = fulv =lvlv =1}

(u,v)EV %
and R R
If1] = sup{|f(w)] : [luly =1}.
ueV
Proof. We firstly denote

a= sup A{[f(w,0)] : |lully = |vllv =1}
(u,0)eV XV

Observe that
|f(w, )| < [ fl[lullvlvllv, Yu,v €V,

so that
a<|fl. (180)
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On the other hand,
)] = 'f( Jully UHUHV)'

[lullv” " Tollv
u v
= | (o ) Jalele
< allullvlvllv, Vu#0,v # 0. (181)
Hence oo € B so that
a>inf B = ||f]|. (182)
From (180) and (182) we may infer that
a = [|f]l
Similarly, the second result may be proven.
The proof is complete. O

Teorema 32.9. Let V' be complex normed vector space e let ' : 'V x V. — C be a sesquilinear,
bounded and symmetric functional. Under such hypotheses,

LT = 1A
Proof. Observe that

fun) = 7 (540) - (3-0)

+Zf(1(u+w))—zf< (u—w)),Vu,vEH. (183)

Since f(u) € R, Yu € V, we have that

|Re[f(u,0)]] = <

()| eo)]

1 1
< 1M+ oIl + 207 1Hlle = vl

1 .
= I @Il +2[0l7) , Vu,0 € V. (184)
Thus, if ||ullv = ||v]v = 1, we get

| Relf (u, v)]| < [ f]]-
Observe that in its polar form, we have

fu,v) =re”.
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Denoting a = e, we obtain

flau,v) = af(u,v) = r = |f(u,0)| = |Re[f(au, v)]| <||f|
Thus, R
[f1] = sup{|f(w, 0)| : [[ully = [[vllvy =1} < [If]].

However, from the definitions, || f|| > || f]-
From these last two lines, we may infer that

171 = 171

The proof is complete. H

Definicao 32.10 (Normal operator). Let H be a complex Hilbert space. We say that a bounded
linear operator A : H — H is normal as

A*A = AA™.

Teorema 32.11. Let H be a complex Hilbert space. and let A : H — H be a bounded linear operator.
Under such hypotheses, A is normal if, and only if,

|A*ully = || Aull, Vu € H.
Proof. Suppose A is normal. Thus,
(A*Au,u)y = (AAu,u) gy
so that
lAullfy = (Au, Au) = (A", A"u) = || A"ul,

that is,
|Au|lg = ||A%u||g, Yu € H.

Reciprocally, suppose that
|Au|lg = ||A%u|| g, Yu € H.

Hence
(AU, AU)H = (A*U, A*U)H
so that
(A*Au,u)y = (A" A*u,u)yg = (AA u, u)y, Yu € H.

From this, denoting
fi(u,v) = (A" Au,v)y

and
fo(u,v) = (AA™u,v)y

we obtain

~ ~

fi(u) = folu), Yu € H.
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Thus, f; = f, so that
(A*Au,v)yg = (AA*u,v) g, Yu,v € H.

From this, we may infer that
AAT = AA*.
O

Teorema 32.12. Let H be a complex Hilbert space and let A € L(H). Under such hypotheses the
following proprieties are equivalent.

1. There exists A € w(A) such that |\ = ||A]|.
2.
[ ANl = sup{|(Au,w)u| : [lullz =1}.
ueH
Proof. e 1 implies 2: Suppose A\ € 7w(A) is such that
Al = [ Al

We shall prove that

A€ {(Au,u)g : vwe H, ||ullgp =1}.

From this we may obtain

[Al = Al
< sup{|(Auw, w)u| : [lullun =1}
ueH
< s A{|(Aw,v)u] = lulla =1, fvlla =1}
(u,v)eHxH

= [IA]l. (185)
which would complete the first part of the proof.
From \ € 7(A), there exists {u, }neny C H such that

[tn]lm =1

and
| At — M|l — 0.

Thus,

= (At — M, 1) 1

< | Au, = Mg || p||unll g

— 0, asn — oo. (186)
Thus,

A€ {(Au,u)g : u € H, |u|lg =1}

The first part of the proof is complete.
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e 2 implies 1:

Reciprocally, suppose
[All = sup{[(Au, w)u| : |lullaz =1}
ueH

Hence, there exists a sequence {u,} C H such that ||u,| gz =1, Vn € N, and

| (A, un) | = [|All -

Thus {(Auy, u,)g} C Cisabounded sequence. From this there exists a subsequence {(Au,, , un, )u}

of {(Auy, u,)g} and A € C such that

(Atp,, Un, )g — A, as k — oo.

Therefore,
S AP =M= AN A2 =0,
Summarizing,

| Aw,, — Mg, ||z — 0, as k — oo,
so that A € m(A).

The proof is complete.

Teorema 32.13. Let H be a Hilbert space and let A € L(H) be an self-adjoint operator.

Define
M = sup{(Au,u)y : ||ullg =1}
ueH

and
m = inf {(Au,u)y : ully = 1.

Under such hypotheses, m € o(A) and M € o(A).

Proof. Choose a € R such that
M—-—a>m-—a>0.

DefineM = M —a and A= A — al. Since A is self-adjoint, we have that
[A[l = M.
Thus there exists a subsequence {u,} C H such that ||u,|z =1 and

(A, un) g — M, as n — co.
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Thus, R )
(Aup, — Mup,u,)g — 0, as n — oo.

Hence,
|Au, — Mu,|?, = (Au, — Muy,, Au, — Mu,) g
1 Awn |7 = 2M (Au, wn) i + M

< AN Nunllzy — 2M (Aug, wn) i + M

— M?* —2M?* + M?

= 0. (188)
Summarizing, A A

|Au, — Muy,||gp — 0, as n — oo,

so that

|Au, — Muy||p — 0, as n — oo.

From this we may infer that
M e n(A) C a(A).

Similarly, select 8 € R such that
—-m+p3>-M+p3>0.

Define A = —A + B1. The remaining parts of the proof are similar to those of the previous case.
This completes the proof. O

Teorema 32.14. Let H be a complex Hilbert space. Let U : H — H be a linear bounded operator.
Under such hypotheses, U is a isometry if, and only if,

UU =1,
where I denotes the identity operator.

Proof. Observe that
(Uu,Uv)y = (u,v)y, Yu,v € H,

if, and only if,
(U Uu,v)g = (u,v), Yu,v € H,

if, and only if,
Uu=1.

The proof is complete. O

Teorema 32.15. Let H be a complex Hilbert space. Under such hypothesis, U : H — H is a bijective
isometry if, and only if,
U'U=U0U"=1, in H.
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Proof. Assume U : H — H is a bijective isometry.

From the last theorem U*U = I, and U is a bijection, we obtain U~ = U* so that UU* = [ in
H.

On the other hand, if U*U = UU* = I in H, we have that U* = U~! and the domain of U* = U~!
is H, so that the range of U is also H.

From this U is a bijection.

Moreover, (u,v)g = (U*Uu,v)y = (Uu,Uv)g,Yu,v € H, and thus U is a bijective isometry. [

Teorema 32.16. Let H be a complex Hilbert space. Suppose U : H — H is a linear operator such
that
Uullg = [Jullu, Yue H

(in such a case we say that U is unitary).
Under such hypotheses, U is a isometry.

Proof. From the hypotheses,
(Uu,Uu)yg = (u,u)g, Yu € H.

Thus,
(U'Uu,u)yg = (u,u)g, Yu € H,

so that
(U'U — Nu,u)y =0, Yu € H.

Since U*U — I is self adjoint, it follows that

U0 = I = sup{[(U"V = Du,w)n| + [Julla =1} =0,
ue

so that U*U = 1.
From this and Theorem 32.14, we have that U is a isometry.

O
Corolario 32.17. Let U : H — H be a unitary operator.
Under such hypotheses, if A € C is an eigenvalue of U then
|A| = 1.
Proof. Suppose Uu = Au and ||u|| g = 1. Thus,
1= (u,u)y = (Uu,Uu)g = (Mu, M) = M\ (u, u) g = | M.
The proof is complete. H

Teorema 32.18. Let H be a complex Hilbert space. Let A: Dy C H — H be a linear self-adjoint
operator but not necessarily bounded, where D 4 is dense in H, that is, D4 = H. Let U be the Cayley
transform of A, that is U = (A —i)(A+ 1)L

Under such hypotheses, U is unitary.
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Proof. Firstly, we shall prove that A 4 i is injective, so that its inverse is well defined on R(A + ).
Since A is self-adjoint, we have that

I(A£iully = (Axiu, (A£i)y
= (Au, Au)y + (Au,iu) g £ (iu, Au) g + (iu, iu) g
= [[Aullf + (£ F i) (u, Au)y + ||ullf
= [ Aullf; + lullf = llullh (189)
Thus, if (A +4)u = 0 then u = 0, so that (A % 1) is injective.

Now, we are going to show that
R(A+i)=H.

Let z L R(A+1). Hence,

(A+d)u, 2)g = (Au, 2)g + i(u, 2)g = 0,Yu € Dy.

From this
(Au, 2)g = ((u,iz), Yu € H,
so that
Az = Az =iz,
that is,
(A—i)z=0.
Thus, z = 0.

Summarizing these last results, if z 1 R(A + i) then z = 0, so that
R(A+1)=H.

Now we are going to show that R(A+i) = R(A+ i) = H. Let v € H. Thus there exists a
sequence {v,} C R(A+ i) such that

VU, — U, in norm, as n — oo.
Therefore there exists a sequence {u,} C D4 such that
Au,, + 1u, = v, — v, as n — 0.
Similarly as above, we may obtain,
vn — Ui l|5r = || At + ity — Aty — it |5 = || A, — w13 + [tn — |7, ¥Ym,n € N.

From this, since {v,} is a Cauchy sequence, we may infer that {u,} and {Au,} are Cauchy
sequences, so that there exists u € H, and w € H such that

Au, = w
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and
Uy —> U, aS N — OO.

Since A = A* is closed, we may infer that w = Au and
Au, + iu, — Au+ iu.

Again, since A is closed we get (u, Au) € Gr(A) where Gr(A) denotes the graph of A, so that
Au+iu=v € R(A+1).

Summarizing, if v € H then v € R(A +1), so that R(A+1i) = H = R(A +1).

A similar result we may obtain for A — i, that is

R(A—1i)=H.
Observe that
U=(A-i)A+i)™?
and
R((A+i)7") = Da = D(a+y),
and R(A—1) = H.
Thus R(U) = H, that is U : H — H is linear and onto (recalling that D4 ;-1 = H).

At this point, we shall prove that U is unitary.
Let v € H. Since R(A + i) = H, there exists u € D4 such that

(A+1)u=v.
Hence
Uv=(A—-i)(A+i)v=(A—1i)u,
so that
1UvllE = (A= dullk

= [l AullF + llull;

= [I(A +d)ully

= |wllF, Yve H. (190)
Summarizing,

|Uv]la = (o], Yo € H,

so that U is unitary.
The proof is complete. H

Observacgao 32.19. Let v € H. Since R(A+1) = H, we may obtain u € H such that v = (A+i)u.
From this we have

Uv=(A—-i)(A+i) " v=(A—1i)u,

so that
(I +U)v=2Au
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and

(I —U)v = 2iu.

Thus, if (I —U)v =0, then u =0 so that v = (A +i)u = 0.
Therefore, I — U is injective and its inverse exists on R(I — U).
Moreover, for u € R(I —U) as above, we have,

I+ -U)Q2iu) =T+ -U)I -Uw=(I+U)v=2Au,

so that
Au=i(I+U)I - U)u, Yu € R(I - U).

In the next lines we shall show that R(I —U) = Da.
Indeed, let v € H. Thus, from the last lines above, there exists u € Dy such that

(I —U)v =2iu

so that R(I — U) C Da.
Reciprocally, let uw € Dy and define v = (A + i)u.

Therefore,
2iu= (I —-U)v
so that u € R(I —U), Yu € Dy. Thus,
Dy CR(I-VU)
so that
R(I —U) = Dy.

From such last results, we may infer that
A=i(I+U) (I -U),

m DA.

33 Alguns resultados sobre operadores compactos e normais

Teorema 33.1. Seja H um espaco de Hilbert complexo e seja A : H — H um operador linear,
limitado e normal.
Sejam A\ € C e X € C tais que \y # Ag.
Sejam uy,us € H tais que
Au1 = )\1’&1,

AUQ = )\2’&2.

Sob tais hipdteses,
(ul, UQ)H = 0
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Proof. Sem perda de generalidade assuma A; # 0.
Logo,

(Mug, Aaug) = (Aug, Aug)y

= (A"Auq,us)y
(A" (Mwr), u2)m

= M(A"up,ue)g

= )\1(X1U1, UQ)H

= M (ur, u2) . (191)

Resumindo, obtivemos B B
)\1/\2(U1, UQ)H = /\1/\1(U1, UQ)Ha

e como \; # 0, disto obtemos L
()\2 - )\1)(U17 U2)H =0,

Por outro lado, das hipoteses _
- )\1 7é 07

de modo que
(Ul, UQ)H = 0

A prova esta completa. O

Teorema 33.2. Seja H um espaco de Hilbert complexo e seja A : H — H wm operador linear e
compacto.

Sob tais hipoteses,
N(A-=))

é finito-dimensional, V) € C tal que \ # 0.

Proof. Suponha, para obter contradi¢ao, que exista A € C, A\ # 0, tal que N(A — \) é infinito-
dimensional.

Assim existe uma sequéncia {u,} C N(A — \) de vetores linearmente independentes (por Gram-
Schimidt podemos considera-los ortonormais).

Sejam m,n € N tais que m # n.

Logo

|Au, — Aup|lg = |Aun — Ay
= [Alllun = umlla
= 2/} (192)

Assim {Au,} ndo possui qualquer subsequéncia de Cauchy, o que contradiz A ser compacto.
A prova esta completa.

129



Teorema 33.3. Seja H um espaco de Hilbert complexo e seja A : H — H um operador linear e
compacto.
Sob tais hipoteses, se X # 0 e XA € w(A), entdo

A€ Po(A).

Proof. Seja A # 0 tal que A € w(A).
Seja {u,} C H tal que
|unllg =1, Yn € N

| Au,, — Aup|lg — 0, quando n — oo.

Sendo A compacto, existem uma subsequéncia {u,, } de {u,} e u € H tais que
Au,, — u, quando k — oo.

Portanto

Hu - )\unkHH Hu - Aunk + Aunk - )‘uﬂkHH
lu — Aup, [l + [[ Aty — M, || 1

0, quando k — oc. (193)

LA

Disto obtemos,

Au = A(lim )\unk>
k—o0
= Alim Au,,
k—o0
= \u. (194)
Além disso,
luller = lim [|Aup, [ = |A] # 0,
— 00

de modo que
u # 0.
Disto concluimos que

A€ Po(A).

A prova esta completa.

Teorema 33.4. Seja H um espaco de Hilbert complexo e seja A: H — H um operador normal.
Mostre que

ro(A) = [|A].
Mostre também que existe A € o(A) tal que

Al = [l1A]-
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Proof. Exercicio. O

Teorema 33.5. Seja H um espaco de Hilbert complexo e seja A : H — H um operador normal.
Mostre que

Mostre também que

Proof. Exercicio. O

Teorema 33.6. Seja H um espaco de Hilbert complexo e seja A : H — H um operador compacto.
Seja A # 0.
Mostre que se A\ € w(A), entao A\ € Po(A).

Conclua que nesse caso
m(A)\ {0} = Po(A)\ {0}.
Proof. Exercicio. O

Teorema 33.7. Seja H um espaco de Hilbert complexo e seja A : H — H um operador compacto e
normal.
Mostre que Po(A) # () e que existe A € Pa(A) tal que

Al = [IA]l.
Proof. Exercicio. O

Teorema 33.8. Seja H um espaco de Hilbert complexo e seja A € L(H, H) um operador compacto
e normal. Assuma que
ul N(A=X), VA eC.

Sob tais hipoteses,
u=0.

Proof. Denotemos

Assim
Lt = [Unee N(A = M) = MaeeN(4A = AL

Mostraremos que
L+ = {0}.

Seja A € C. Observe que sendo A normal, A e A* comutam com
A=\

Mostraremos agora que
AN(A—= X)) C N(A-=\),
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A (N(A—=)\) C N(A—N).

De fato, seja u € A(N(A —N)).
Assim, existe v € N(A — \) tal que
u = Av.

Observe que
Av = lv

de modo que
u=Mve NA—-N),Yue A(N(A—-DN)).

Resumindo,

AN(A—=)) C N(A—\).

Por outro lado, seja u € A*(N(A — ).
Assim, existe v € N(A — \) tal que
u= A"v.

Observe que sendo A normal,

A*v = M

de modo que B
u=Av € N(A—-\),Vue A"(N(A-N)).

Resumindo,

A*(N(A—)\) € N(A—N).

Podemos entao concluir que

A(L)C L
e
A*(L) C L.
Agora, sejam z € Ley € L*.
Assim
Az e L

de modo que
(z, Ay)g = (A"z,y)g = 0.
Como z € L e y € L+ foram arbitrarios, podemos concluir que
A(LY) c L+,
Similarmente, de

(2, A"y = (Az,y)p =0, Vz € Ley € L*,

132



concluimos que
A*(L*Y) C L.

Suponha, para obter contradi¢ao que

L+ # {0}.

Defina B = A|;1 (A restrito a Lt). Assim B* = A*|;1 de modo que B é normal.
Mostraremos agora que B é compacto.
Seja {u,} C L* tal que

|unllg < M, Vn € N

para algum M € R*.
Sendo A compacto, existe uma subsequéncia {u,, } de {u,} e v € L* tais que

Bu,, = Au,, — v, as k — oc.

Portanto B é compacto.
Assim B é compacto e normal, de modo que B possui um auto-valor A # 0 e correspondente
auto-vetor o qual denotaremos por u # 0, (u € L*) de modo que

Au = Bu = \u.
Assim
we LNL*
o que contradiz
u # 0.
Resumindo, deve-se ter
L+ = {0}.

A prova esta completa.
]

Teorema 33.9. Seja H um espago de Hilbert complexo. Seja A € L(H,H) um operador normal.
Sob tais hipoteses

1. Se Im(A) tem dimensdo finita, entdo Po(A) € finito.

2. Se A € compacto e tem espectro pontual finito, entao Im(A) tem dimensao finita. Nesse caso,
denotando
Po(A) = {1, , A\t

temos que

(a)

k

A=>"\E;

j=1

onde E; € a projegao ortogonal sobre N(A — ;).
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(b) E; L E,Vj#1.
(c)

Proof. Para A linear, limitado e normal, assuma que I'm(A) tem dimensao finita.

Suponha, para obter contradigdo, que {\,},en seja uma sequéncia de elementos distintos de
auto-valores de A com correpondentes auto-vetores {uy, }nen.

Observe que sendo A normal, os vetores u,, sao ortogonais.

Observe também que
Au,, = Ay,

de modo que
AN uy) = uy, Vo€ N

Portanto {u,} C Im(A) o que contradiz I'm(A) ser de dimensao finita.
A prova deste primeiro item esta completa.

Suponha agora que
PU(A) = {Ah Tt 7)\16}7

onde A é normal e compacto.
Como A é normal, autovetores associados a distintos autovalores sao ortogonais.
Logo {N(A—X;)} : je€{l,---,k}} é uma familia de espagos ortogonais.
Denotemos M = [UF_ N(A—);)] .
Assim
M=NA-X\N)® - dNA- ).

Mostraremos que M = H.
Observe que M é fechado e mostraremos agora que

M+ = {0}.
Seja A ¢ Po(A).
Logo,
N(A = X) ={0}.
Assim
M = [UF_ N(A = X))] = [UrecN(A = N)].
Defina

L=U_N(A- X)) =UyecN(A— )

Sendo A normal e compacto, do Teorema 33.8, temos que
L+ = {0}.

Portanto M = H.
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Seja u € H.
Assim

onde

u; € N(A—N\;), Vjed{L,---

U:E Uj

j=1

Sendo A normal, para i # j, se u; € N(A — )\;), entdo

Logo

Disto temos que

Portanto,

Disto podemos escrever,

de modo que

Finalmente,

Assim

k

u; € N(A—)\j)*

Eju; =0, sei#j.

EZ'_LEJ‘, SGZ%‘]

k
Eju = Ej E U; = Eju]' = Uy.
i=1

k k
u:ZEju:Zuj: (ZEJ> u, Yu € H

=1

=1

k

j=1
k

= D> Ny
j=1

k
= Y M\Eju, Vu€ H.

J=1

k).

(195)



Finalmente, disto temos que

k
dim(I,(A)) = > dim(N - \;)
J=1,0;#0
de modo que dim(1,,(A)) é finita.

A prova esta completa.
]

Teorema 33.10 (Teorema espectral para operadores compactos e normais). Seja H um espaco de
Hilbert complezo. Seja A € L(H, H) um operador compacto e normal.
Sob tais hipoteses,

1.

H = NAa® Y  ©ONA-))
AEP(A) A0

= > @N(A-))

AeC

= Y eN@A -2, (196)

AeC

onde Ey é a projecao ortogonal sobre N(A — \).
Proof. Como A é compacto, apenas para uma quantidade enumeravel de As, temos que
N(A - \) # {0}.

Sendo A normal, {N(A — X) : A € C} é uma familia de espagos fechados e ortogomais.
Como A é compacto e normal, do Teorema 33.8, se

ul N(A—)), VA eC,

entao
u=0.



Logo
H=[UecNA-N]= > GONA-N).
AEPo(A)

Sendo A normal temos que
e assim

Observe que

= NA)@ ) @N(A-N), (197)

de modo que
R(A) =) @®N(A-)\).
A£0

Portanto, sendo A* compacto e normal, obtemos,
R(A7) =Y "oN(A" =)
A0
Como A — X\ é normal, obtemos
N(A=X)=N(A"=)),
de modo que

H = NAa Y  aNA-N
AEP(A) A0

= > @N(A-))

AeC

= Y eN@Ar X, (198)

AeC

A£0
Portanto,
d Ev=1
AeC
Além disso para u € H temos que
u = Z Uy,
AEPo(A)
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onde

Podemos entao escrever,

Au = A Zu)\

= Y ABEw, VueH. (199)

AEPG(A)

Finalmente, disto podemos denotar

A= Z AE,.

AEPG(A)

A prova estd completa. O

34 About the spectrum of a linear operator defined on a
Banach space

Definigao 34.1. Let U be a Banach space and let A € L(U). We recall that a complex number X is
said to be in the resolvent set p(A) of A, if

M —A
s a bijection with a bounded inverse. As previously indicated, we call
Ry(A) = (M - A)~!

the resolvent of A in .
If AN & p(A), we write
A€ a(A)=C—p(A),

where 0(A) is said to be the spectrum of A.
Definigao 34.2. Let A € L(U).

1. If u # 0 and Au = Mu for some A € C then u is said to be an eigenvector of A and X\ the
corresponding eigenvalue. If X is an eigenvalue, then (A — A) is not injective and therefore

A€ o(A).

The set of eigenvalues is said to be the point spectrum of A.
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2. If X\ is not an eigenvalue but

RO — A)

is not dense in U and therefore A\I — A is not a bijection, we have that A € o(A). In this case
we say that X is in the residual spectrum of A, or briefly A € Res[o(A)].

Teorema 34.3. Let U be a Banach space and suppose that A € L(U). Then p(A) is an open subset
of C and
F(A) = Rx(4)

is an analytic function with values in L(U) on each connected component of p(A). For A\, u € o(A),

Ry\(A) and R,(A) commute and
RA(A) = Ru(A) = (1 — A Ru(A)Rx(A).

Proof. Let Ao € p(A). We will show that )¢ is an interior point of p(A).
Observe that symbolically we may write

1 1
A—A A= do+(h-A4)

| |
)
_ Aol_A f: o )) (200)

Define,
Ra(A) = Rag (AT + D (A= 20)"(Ra,)"}- (201)

Observe that
[ (Fxo)"[| < (IR ™

Thus, the series indicated in (201) will converge in norm if
A= Xo| < IR |17 (202)
Hence, for \ satisfying (202), R(A) is well defined and we can easily check that
(M — A)R\(A) = T = Ry(A)(M — A).

Therefore
RA(A) = Rx(A), if [A = Xo| < [|Rx [,

139



so that ¢ is an interior point. Since \g € p(A) is arbitrary, we have that p(A) is open. Finally,
observe that

Ra(A) = Ru(A) = RA(A)(ul — A)R,(A) = RA(A)M — A)R, (A)
= RA(A)(ul)Ru(A) = RA(A) (M) R (A)
(1 = N RA(A)R,(A) (203)
Interchanging the roles of A and y we may conclude that Ry and R, commute. O

Corolario 34.4. Let U be a Banach space and A € L(U). Then the spectrum of A is non-empty.

Proof. Observe that if

1Al
<
R

we have

M —=A)"" = I -A/N]
= A=A/

= ! (I + i (;)n> : (204)
Ra(A) = A~ (1 N i (é)”) .

|RA(A)|| — 0, as |\| = oo. (205)

Therefore we may obtain

In particular

Suppose, to obtain contradiction, that

a(A)=10.
In such a case R)(A) would be a entire bounded analytic function. From Liouville’s theorem, R, (A)
would be constant, so that from (205) we would have

Ry(A) =60,YA € C,

which is a contradiction.

Proposicao 34.5. Let H be a Hilbert space and A € L(H).
1. If A € Res[o(A)] then X € Po(A*).
2. If \ € Po(A) then X\ € Po(A*) U Res[o(A*)].
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Proof. 1. If A € Res[o(A)] then
R(A— ) # H.

Therefore there exists v € (R(A — AI))*, v # 6 such that

(v,(A=X)u)g =0,Yu € H

that is B
(A" = M)v,u)g =0,Yu € H
so that B
(A" = N)v =0,
which means that A € Po(A*).
2. Suppose there exists v # 6 such that
(A= M)v =90,
and B
A& Po(AY).
Thus
(u, (A= A)v))g =0,Yu € H,
so that B
((A* = XN)u,v)y,Yu € H.
Since

(A* = XDu #0,Yu € H,u # 0,
we get v € (R(A* — NI))*, so that R(A* — \I) # H.
Hence \ € Res[o(A%)].

Teorema 34.6. Let A € L(H) be a self-adjoint operator. then
1. o(A) C R
2. Figenvectors corresponding to distinct eigenvalues of A are orthogonal.
Proof. Let pu, A € R. Thus, given u € H we have
1A = (A + pa)Jull* = [[(A = Nl + [l

so that
(A = (A + pa))ul|* > p?[|ul|®.
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Therefore if © # 0, A—(A+pu1) has a bounded inverse on its range, which is closed. If R(A—(A4pui)) #
H then by the last result (A — pi) would be in the point spectrum of A, which contradicts the last
inequality. Hence, if p # 0 then A + ui € p(A). To complete the proof, suppose

Auy = A,
and
Auy = Agug,
where
Al, /\2 € R, )\1 7é )\2 and Uy, U 7é 0.
Thus

()\1 - )\2)(U1, U2)H = /\1(U1,U2)H - )\2(U1,U2)H
()\1U1,U2)H - (U1> )\2U2)H
(Aub U2)H - (Uh AU2)H
= (u1, Aug)g — (u1, Aug)y
= 0. (206)

Since A\ — Ay # 0 we get
(ul, ’LLQ)H = 0

We finish this section with an exercise and its solution.

Exercicio 34.7. Let H be a complex Hilbert space e let A € L(H) be a self-adjoint operator. Prove
that X € o(A) if, and only if, there exists a sequence {u,} C H such that ||u,||gz =1, Yn € N and

|Aw, — Auy||g — 0, as n — oco.

Solution: Suppose X € C is such that there exists {u,} C H such that ||u,|| =1, Vn € N and
|Aw,, — Aup||lg — 0, as n — oo. (207)

Suppose, to obtain contradiction, that X\ € p(A). Thus, (A — X))~ exists and it is bounded, so
that there exists K > 0 such that

|Au — MMu||lg > K||u||g,Vu € H.

From this we obtain
|Aw, — Auy||g > K, Yn € N

which contradicts (207).
Thus X\ & p(A) so that A € o(A).
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Reciprocally, suppose X\ € o(A). Suppose, to obtain contradiction, that there exists K > 0 such
that
|Au — Aul|lg > K||u||g, Yu € H. (208)

Thus (A — XI)™! exists and it is bounded. Since A\ € o(A), we must have that R(A — \I) is not
dense, so that \ € Res[o(A)].

From Proposition 84.5, we have A € Pa(A*).

Since A = A*, from this we obtain A\ = X € P(a(A)) which contradicts (A — IN)™" to exist.

Thus, we may infer that it does not exist K > 0 such that (208) holds.

From this, for each n € N there exists u, € H such that

”un”H =1

and
| Aw,, — Augllg < 1/n

so that
| Aw, — Auy || — 0.

The solution is complete.

35 The spectral theorem for bounded self-adjoint operators

Let H be a complex Hilbert space. Consider A : H — H a linear bounded operator, that is
A € L(H), and suppose also that such an operator is self-adjoint. Define

m = inf {(Au, w)pr | [lullr =1},

and
M = sup{ (Au, u)y | Julli = 1}.
ueH

Observacao 35.1. [t is possible to prove that for a linear self-adjoint operator A : H — H we have
[A]l = sup{|(Au, u)u| | v € H, |ullm = 1}.

This propriety, which prove in the next lines, is crucial for the subsequent results, since for example
for A, B linear and self adjoint and € > 0 we have

—el < A—-—B<e¢l,

we also would have

|A— B|| < e.

So, we present the following basic result.
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Teorema 35.2. Let H be a real Hilbert space and let A : H — H be a bounded linear self adjoint
operator. Define
a = max{|m|, | M|},

where
m = inf {(Au, u)i |l =1,

and
M = sup{(Au,u)y | ||u||lg = 1}.
ueH

Then
Al = .

Proof. Observe that

(Alu +v),u+v)g = (Au,u)g + (Av,v)g + 2(Au,v) g,

and
(A(u —v),u —v)g = (Au,u) g + (Av,v) g — 2(Au,v)g.
Thus,
4(Au,v) = (A(u +v),u+v)g — (Alu —v),u—v)g < M|lu+v||f — m|u—v|7,
so that

4(Au, )y < alllu+ollf + lu —vllf).
Hence, replacing v by —v we obtain
—4(Au,v)r < a(flu+vllf + [Ju = v]7),

and therefore
4 (Au,v)g] < a(llu+ollF + llu —vl|7).

Replacing v by pBv, we get

4|(A(w), v)ul < 2a((lully /B + BlvllT)-

Minimizing the last expression in 8 > 0, for the optimal

B = llullv/llvllo,

we obtain
|(Au, v)r| < allullvl|v]lv, Vu, v € U.

Thus
1A]| < a.
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On the other hand,
|(Au, w)| < |A] [z,

so that
|M] < || Al
and
Im| < [|All,
so that
o < |IAlL
The proof is complete. O

Observacao 35.3. A similar result is valid as H is a complex Hilbert space.

At this point we start to develop the spectral theory. Define by P the set of all real polynomials
defined in R. Define
o, P— L(H),

by
®1(p(A) = p(A),Vp € P.

Thus we have
L ®y(p1+ p2) = pi(A) + pa(A),
Py (p1 - p2) = p1(A)pa(A),
O (ap) = ap(A),Ya e R, pe P

- W

if p(A) > 0, on [m, M], then p(4) > 0,

We will prove (4):

Consider p € P. Denote the real roots of p(\) less or equal to m by «y, s, ..., a, and denote
those that are greater or equal to M by (1, 5s, ..., 5;. Finally denote all the remaining roots, real or
complex by

U1 + 7;,&1, vy Up + z,uk

Observe that if y; = 0 then v; € (m, M). The assumption that p(A) > 0 on [m, M| implies that any
real root in (m, M) must be of even multiplicity.
Since complex roots must occur in conjugate pairs, we have the following representation for p(\)

n l

pN) =a A=) TTB = ) T = vi)? + 1),

i=1 i=1 i=1
where a > 0. Observe that
A— Oéi] Z ‘9,

since,
(Au,u)g > m(u,u)y > a;(u,u)y,Yu € H,
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and by analogy
Gil—A>6.

On the other hand, since A — v, 1 is self-adjoint, its square is positive and hence since the sum of
positive operators is positive, we obtain

(A=) + pil > 0.

Therefore
p(A) = 6.

The idea is now to extend de domain of ®; to the set of upper semi-continuous functions, and
such set we will denote by C*P.
Observe that if f € C", there exists a sequence of continuous functions {g,} such that

gn | f, pointwise ,

that is
gn(N) L f(N), VX €R.

Considering the Weierstrass Theorem, since g, € C'([m, M]) we may obtain a sequence of polynomials

{pn} such that
1
H (gn + 2_77,) — Pn

where the norm || - ||« refers to [m, M]. Thus

Pa(A) L f(A), on [m, M].

- 1
o’

o0

Therefore
pi(A) > pa(A) > pa(A) > ... > pa(A) > ..

Since p,(A) is self-adjoint for all n € N, we have

pj(A)pi(A) = pi(A)p;(A),Vj, k € N.

Then the lim p,(A) (in norm) exists, and we denote
n— o0

lim p,(A) = f(A).

n—oo

Now recall the Dini’s Theorem:

Teorema 35.4 (Dini). Let {g,} be a sequence of continuous functions defined on a compact set K C
R. Suppose g, — g point-wise and monotonically on K. Under such assumptions the convergence
i question is also uniform.
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Now suppose that {p,} and {g,} are sequences of polynomial such that

pnd f, and g, | f,

we will show that
lim p,(A) = lim ¢,(A).
n—o0

n—oo

First observe that being {p,} and {¢,} sequences of continuous functions we have that
hae(X) = max{p,(X), gx(\) }, VA € [m, M]
is also continuous, Vn, k € N. Now fix n € N and define

hie(N) = max{pp(\), ga(N)}.
observe that
he(A) 4 @u(A), VA € R,

so that by Dini’s theorem
h, = qn, uniformly on [m, M].

It follows that for each n € N there exists k,, € N such that if £ > k,, then

1
Be(N) = 4u(X) < VA € [m, M]
Since
pk()\) < hk()\),V)\ - [m, M],
we obtain

From above we obtain |
lim py(A) < g, (A) + ~

k—o0

Since the self adjoint ¢,(A) + 1/n commutes with the

lim py,(A)

k—o0

we obtain

k—o0 n— 00

< lim a(4) (209

lim py(A) < lim (qn(A) +%)
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Similarly we may obtain
lim ¢x(A) < lim p,(A),
n— o0

k—oo
so that
lim ¢,(A) = lim p,(A4) = f(A).
n—oo

n—oo

Hence, we may extend ®; : P — L(H) to &y : C"? — L(H) where C" as earlier indicated, denotes
the set of upper semi-continuous functions, where

Dy(f) = f(A).
Observe that ®5 has the following properties
L @y(f1+ f2) = ©2(f1) + 2(/f2),
2. ©a(f1- f2) = fi(A) f2(A),
3. Oo(af) = ady(f),YVa e R, a > 0.

4. if fi(A) = fo(A), VA € [m, M], then
[i(A) > fo(A).

The next step is to extend @y to @3 : C** — L(H), where
C¥={f-glfgeC?}
For h = f — g € C"" we define
®5(h) = f(A) — g(A).
Now we will show that ®5 is well defined. Suppose that h € C*? and
h=fi—g1and h = f3 — go.

Thus

Ji=91= f2— 9o,
that is

Ji+g92= fot g1,

so that from the definition of ®5 we obtain
fi(A) + g2(A) = fo(A) + g1(A),
that is
f1(A4) — g1(A) = f2(A) — g2(A).
Therefore @3 is well defined. Finally observe that for a < 0
a(f —g) = —ag — (—a)f,
where —ag € C*? and —af € C"P. Thus

O3(af) = af(A) = a®s(f),Va € R.
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35.1 The spectral theorem

Consider the upper semi-continuous function

(1 ifA<y,
huu(A) = { 0, if A > p. (210)

Denote
E(p) = ®3(hy,) = hyu(A).

Observe that
h“()\)h“()\) = hﬂ(/\),V/\ € R,

so that
[E(w)* = E(n),Vu € R.

Therefore
{E(n) | pe R}

is a family of orthogonal projections. Also observe that if v > p we have

so that
EW)E(p) = E(u)E(v) = E(p), Vv = p.

If ;1 < m, then h,(\) =0, on [m, M], so that
E(p) =0, if p < m.
Similarly, if g > M them h,(X) =1, on [m, M], so that
E(p) =1, if p> M.

Next we show that the family {E(u)} is strongly continuous from the right. First we will establish
a sequence of polynomials {p,} such that

Pn b hy,

and
() > hw%()\), on [m, M].

Observe that for any fixed n there exists a sequence of polynomials {p}} such that
Pi 4 hysi/m, point-wise .

Consider the monotone sequence

gn(A) =min{pi(A) | r,s € {1,....,n}}.
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Thus

gn()\) > hqu ()\),V)\ € R,

and we obtain
lim g,(A) > lim A, 1 () = hu(A).

n—oo n—oo n

On the other hand
gn(N) < pr(N),YA e R Vr € {1,...,n},

so that
lim g, (A) < lim py,(M).
n—oo n—oo
Therefore
lim g,(A) < lim lim p!())
n—oo r—00 N—00
= hu(N). (211)
Thus

lim g, () = hu(A).

Observe that g, are not necessarily polynomials. To set a sequence of polynomials, observe that
we may obtain a sequence {p,} of polynomials such that

1
lgn(AN) +1/n — p, (V)] < Q—n,V)\ € [m, M], n € N.

so that
Pn(A) 2 ga(A) +1/n = 1/2" 2 gu(A) 2 hysam(A)-
Thus
pn(A) = E(p),
and

Pa(A) > b1 (A) = E(u+1/n) > B(p).

Therefore we may write

E(p) = lim p,(4) > lim E(u+ 1/n) > E().

n—oo

Thus
ILm E(n+1/n) = E(p).

From this we may easily obtain the strong continuity from the right.
For 1 < v we have

plhu(X) = hu(N)
v(hy(A) = hu(A))- (212)
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To verify this observe that if A < g or A > v then all terms involved in the above inequalities are
zero. On the other hand if
p<A<v

then
hu()‘) - hu(/\) =1,

so that in any case (212) holds. From the monotonicity property we have

v(E(v) — E(u)). (213)
Now choose a,b € R such that
a<mandb> M.

Suppose given € > 0. Choose a partition Py of [a, b], that is
P() = {CL = )\0, Al, ceey )\n = b},

such that

max {‘)\k — A 1‘} < E.
ke{l,...,

Hence

A1 (E(A) — E(Ag-1)) A(E(\r) — E(A\r-1))

Ae(E(Ae) = E(Ae-1))- (214)

IA A

Summing up on k and recalling that

3

EO) — EQv_y) =1,

3
I

we obtain

ZAk ) —E(Ma1) < A

< 3 M(EOD — Bvr). (215)
k=1

Let A € [Ag_1, \x]. Since (Mg — A?) < (Mg — A1) from (214) we obtain

A— Z/\O E(M\i—1)) < 52 E(A-1))

= 5]. (216)
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By analogy

—el < A-— ZAO E(N\_1)). (217)
Since
A- Z AU(E E(\1))
is self-adjoint we obtain
A - ZAO Ee-1))| <e.

Being € > 0 arbitrary, we may write

A= /ab)\dE()\),

A= /m M AE(\)

Observacao 35.5. Consider again the function h, : R — R where

that is

wov-{ 5 s )

Let H be a complex Hilbert space and let A € L(H), where A is a self-adjoint opertaor.
Suppose f € C([m, M]) where

and
M = sup{ (Au, w)yr : [fully = 1}.
ueH

Let € > 0. Since f is uniformly continuous on the compact set [m, M|, there exists 6 > 0 such
that if x,y € [m, M| and |z — y| < 9, then

[f(z) = f)l <e. (219)

Let P ={Xo =m,A1,..., A\, = M} be a partition of [m, M|, such that ||P|| = max{\y — A\p_1 :
ke{l,....n}} <o.
Choose
M€ (Ne_1, M), VE € {1,...,n}
and observe that

1, Z'f)\k—l <A< A\

h’\’“()\) N h’\’“l()\) - { 0, otherwise. (220)
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From this and (219), we may obtain

<e, YA€ |m,M].

FO) =D FOD A A) = ha (V)]

Therefore, for the corresponding operators, we have got

l

Since € > 0, the partition P and {\)} have been arbitrary, we may denote

<eE.

FA) = S FODIEN) — E(hey)]

fA) = [ FONEW)

m

36 The spectral decomposition of unitary transformations
Definicao 36.1. Let H be a Hilbert space. A transformation U : H — H 1is said to be unitary if
(Uu,Uu)yg = (u,u)g,Yu,u € H.

Observe that in this case
Uu=0U0"=1,

so that
Ul =u*.

Teorema 36.2. Every Unitary transformation U has a spectral decomposition

21
U:/‘é%mm,

where {E(¢)} is a spectral family on [0, 27]. Furthermore E(¢) is continuous at 0 and it is the limit
of polynomials in U and U™!.

We present just a sketch of the proof. For the trigonometric polynomials

P(eid)) = Z Ckeikd),

k=—n

consider the transformation
where ¢, € C,Vk € {—n,...,0,...,n}.
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Observe that

k=—n
so that the corresponding operator is
pU) => U r=> Ut
k=—n k=—n
Also if .
p(e’?) >0

there exists a polynomial ¢ such that
p(e'?) = |g(e?)]* = q(e?)q(e™),

so that
Therefore

which means

Define the function h,(¢) by

1, if 2km < ¢ < 2km + p,

for each k € {0,£1,£2,£3,...}. Define E(u) = h,(U). Observe that the family {E£(u)} are projec-
tions and in particular

and if p < v, since
h#(¢) S hl/(¢)7

we have

E(p) < E(v).
Suppose given € > 0. Let Fy be a partition of [0, 27| that is,
PO = {0 = ¢0a ¢17 >¢n = 27T}
such that
max }{W)j — ¢jl} <e

J€{l,..,n
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For fixed ¢ € [0,27], let j € {1,...,n} be such that

¢ € [¢j-1, 9]

[ =D € (ho (0) = ho, (9))] = | — e
k=1

IN

Thus,

n

0< e = € (hg,(9) = ho_, (9) < &°

k=1

so that, for the corresponding operators

n n

0 < [U=) () — B¢ )]'[U =) e (E(¢r) — E(¢x)]

k=1 k=1
g2

IN

and hence

U =S~ e (B(n) — B(dn) < =
k=1

Being ¢ > 0 arbitrary, we may infer that
2m )
U= / edE(¢).
0

37 Unbounded operators

37.1 Introduction

|¢—¢)j| < €.

(222)

(223)

Let H be a Hilbert space. Let A : D(A) — H be an operator, where unless indicated D(A) is a

dense subset of H. We consider in this section the special case where A is unbounded.

Definigao 37.1. Given A: D — H we define the graph of A, denoted by I'(A) by,

I'(A) = {(u, Au) | u € D}.

Definigao 37.2. An operator A: D — H s said to be closed if I'(A) is closed.

Definicao 37.3. Let Ay : D1 — H and Ay : Dy — H operators. We write Ay D Ay if Dy D Dy and

Agu = Alu,Vu € Dl-

In this case we say that Ay is an extension of A;.
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Definigao 37.4. A linear operator A : D — H is said to be closable if it has a linear closed extension.
The smallest closed extension of A is denote by A and is called the closure of A.

Proposicao 37.5. Let A: D — H be a linear operator. If A is closable then

T(A) = T(A).

Proof. Suppose B is a closed extension of A. Then

['(A) CcT(B) =T(B),
so that if (0, ¢) € I'(A) then (0, ¢) € I'(B), and hence ¢ = . Define the operator C' by

D(C) = {¢ [ (¢, ¢) € I'(A) for some ¢},

and C(v) = ¢, where ¢ is the unique point such that (¢, ¢) € I'(A). Hence

[(C) =T(A) CT(B),

so that
AccC.

However C' C B and since B is an arbitrary closed extension of A we have
C=A

so that

[(C) = D(4) = T(A).

Definicao 37.6. Let A: D — H be a linear operator where D is dense in H. Define D(A*) by
D(A") = {¢ € H | (A, d)rr = (o, m)u, Y € D for some 1 € H}.

In this case we denote
A*p =n.
A* defined in this way is called the adjoint operator related to A.
Observe that by the Riesz lemma, ¢ € D(A*) if and only if there exists K > 0 such that

(A, )| < K[|,V € D.

Also note that if
A C B then B* C A*.

Finally, as D is dense in H then
n=A%9)
is uniquely defined. However the domain of A* may not be dense, and in some situations we may
have D(A*) = {6}.
If D(A*) is dense we define
A** — (A*)*.
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Teorema 37.7. Let A: D — H a linear operator, being D dense in H. Then
1. A* is closed,

2. A is closable if and only if D(A*) is dense and in this case

A= A",

3. If A is closable then (A)* = A*.
Proof. 1. We define the operator V : H x H — H x H by

Let E C H x H be a subspace. Thus if (¢1,11) € V(E*) then there exists (¢,v) € E+ such
that

V(¢a¢) = (_wa ¢) = (¢1,¢1)-
Hence

Y= —¢1 and ¢ = 1y,
so that for (¢, —¢1) € B+ and (w;,ws) € E we have

(Y1, =), (w1, w2)) axr = 0= (Y1, w1) g + (—P1, w2) .
Thus
(61, —w2) g + (Y1, w1) g = 0,

and therefore

((¢1, ¢1), (_w2>w1))H><H =0,

that is
((¢17¢1)7 V(wlaw2))H><H = O,V(wl,wg) e F.

This means that
(¢1,91) € (V(E))lv

so that
V(EY) C (V(E)™

It is easily verified that the implications from which the last inclusion results are in fact equiv-

alences, so that
V(EY) = (V(E)"

Suppose (¢,n) € H x H. Thus (¢,n) € V(I'(A))* if and only if

((¢7 77)? (_Aw>w))H><H = 0>V¢ € Da

which holds if and only if
(¢, AY)m = (0,¢)m, V¢ € D,
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that is, if and only if
(¢,n) € T(AY).
Thus
(A" = V(T(A)*.

Since (V(I'(A))* is closed, A* is closed.

2. Observe that I'(A) is a linear subset of H x H so that

L(4) = [P(A)]*

(224)
so that from the proof of item 1, if A* is densely defined we get
T(A) = T[4,

Conversely, suppose D(A*) is not dense. Thus there exists ¢ € [D(A*)]* such that ¢ # 6. Let
(¢, A*¢) € T'(A*). Hence

((77Z)7 0)7 (¢7 A*¢))HXH = (¢, d))H = 0,

so that
(¥,0) € [L(A")]*.

Therefore V[['(A*)]* is not the graph of a linear operator. Since I'(4) = V[I'(A*)]* A is not
closable.

3. Observe that if A is closable then

N

38 Symmetric and self-adjoint operators

Definicao 38.1. Let A : D — H be a linear operator, where D is dense in H. A is said to be
symmetric if A C A*, that is if D C D(A*) and

A*p = Ap,Vop € D.
Equivalently, A is symmetric if and only if

(Ag, ) = (¢, AY)u, Yo, p € D.
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Definicao 38.2. Let A: D — H be a linear operator. We say that A is self-adjoint if A = A*, that
is if A is symmetric and D = D(A*).

Definicao 38.3. Let A: D — H be a symmetric operator. We say that A is essentially self-adjoint
if its closure A is self-adjoint. If A is closed, a subset E C D is said to be a core for A if Alp = A

Teorema 38.4. Let A : D — H be a symmetric operator. Then the following statements are
equivalent

1. A is self-adjoint.
2. A is closed and N(A* £il) = {0}.
3. R(A=+il)=H.

Proof. e 1 implies 2:
Suppose A is self-adjoint let ¢ € D = D(A*) be such that

Ap =1i¢
so that
A*p = ig.
Observe that
—i(¢,0)n = (ip,9)n
= (A¢,9)n
= (¢, Ad)n
= (¢,i9)m
= (¢, 9)m, (225)
so that (¢, ¢)g = 0, that is ¢ = 6. Thus
N(A—il) = {0}.

Similarly we prove that N(A +il) = {0}. Finally, since A* = A* = A, we get that A = A* is
closed.
e 2 implies 3:
Suppose 2 holds. Thus the equation
A%p = —ig
has no non trivial solution. We will prove that R(A —iI) is dense in H. If » € R(A —il)*
then

so that ¢ € D(A*) and
(A—il)*p = (A" +il)p =0,
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and hence by above ¢ = 6. Now we will prove that R(A — i) is closed and conclude that
R(A—il)=H.

Given ¢ € D we have
I(A = iD)gllz = |AdlE + 16117 (226)
Let ¢y € H be a limit point of R(A —il). Thus we may find {¢,} C D such that

From (226)
H¢n - ¢mHH < H(A - ZI)(¢n - Qsm)HHavman €N

so that {¢,} is a Cauchy sequence, therefore converging to some ¢g € H. Also from (226)

so that {A¢,} is a Cauchy sequence, hence also a converging one. Since A is closed, we get

¢0 € D and

(A —iI)go = .
Therefore R(A —il) is closed, so that

R(A—il)=H
Similarly

R(A+il)=H.

e 3 implies 1: Let ¢ € D(A*). Since R(A —il) = H, there is an € D such that
(A—ilyy = (4" —i)o,
and since D C D(A*) we obtain ¢ —n € D(A*), and
(A" —il)(¢ —n) = 0.

Since R(A +iI) = H we have N(A* —iI) = {6}. Therefore ¢ = 7, so that D(A*) = D. The
proof is complete.
U

38.1 The spectral theorem using Cayley transform

In this section H is a complex Hilbert space. We suppose A is defined on a dense subspace of H,
being A self-adjoint but possibly unbounded. We have shown that (A + i) and (A — i) are onto H
and it is possible to prove that

U= (A—i)(A+i),
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exists on all H and it is unitary. Furthermore on the domain of A,
A=i(I+U)I-U)""

The operator U is called the Cayley transform of A. We have already proven that

2
U /O e'?dF (),

where {F(¢)} is a monotone family of orthogonal projections, strongly continuous from the right

and we may consider it such that

[0, ife<o0,
F(¢)_{ I, if ¢ > 2.

Since F'(¢) =0, for all ¢ <0 and
F(0) = F(0")

we obtain

F(0Y) =0 = F(07),

that is, F'(¢) is continuous at ¢ = 0. We claim that F' is continuous at ¢ = 2.

F(2r) = F(2r") so that we need only to show that
F(2n™) = F(2m).

Suppose
FQ2rm)— F(2n™) #6.

Thus there exists some u,v € H such that
(F(2m) — F2((r7))u=v #6.

Therefore

so that

|0, if ¢ < 2m,
F(¢)“_{ v, if ¢ > 2.

Observe that .
U—-1= / (e" — 1)dF (o),
0

and

Us—1= /O%(e“f’ — 1)dF ().
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Let {¢n} be a partition of [0, 27]. From the monotonicity of [0, 27] and pairwise orthogonality of

{F(¢n) - F(d)n—l)}

we can show that (this is not proved in details here)

U - DU 1) = / "7 — 1) — 1)dF(4),

so that, given z € H we have

27
(O =D =Dz = [ 1= 1Pd|F@)IP,
0
thus, for v defined above

I(U =Dl = (U=, (U-1v)u
= (U-D"U = Dv,v)u

27
- / € — 12d|[F(6)o]

2w
- / €~ 1Pd|F($)]
=0 (229)

The last two equalities results from e*™ — 1 = 0 and d||F(¢)v]| = 6 on [0, 27). Since v # 6 the last
equation implies that 1 € Po(U), which contradicts the existence of

(I-0U)"

Thus, F' is continuous at ¢ = 2.
Now choose a sequence of real numbers {¢,} such that ¢, € (0,27), n = 0,41, £2,+3, ... such
that

Now define T,, = F(¢,) — F(¢n_1). Since U commutes with F'(¢), U commutes with 7,,. since
A=i(I+U)(I-U)",

this implies that the range of T), is invariant under U and A. Observe that

ST = S(F6.) ~ F(bao)

n

= [Jim F(¢) - lim F(¢)

¢—27

= I—-60=1 (230)
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Hence

> R(T,) = H.

n

Also, for u € H we have that

{ 0, if ¢ < dn1,
F(d)n) - F(¢n—1))ua lf ¢ > d)na

so that
2
(I-U)Twu = / (1 —€e)dF(¢)T,u
0

oo
_ /¢ (1 e)dF(d)u.

Therefore

" ) AR()(] — UV Tou

A bn A
(P#W%ﬂ@/ (1 - 69)dF ($)u

/
/
_ /¢ (1— ¢ "Y1 — e4)dF(¢)u
/
/

Hence y o |
W—mmm}:/'a—WWﬁwy

From this, from above and as
A=i(I+U)I-U)"!
we obtain

AT u = /% i(1+ ) (1 — e) 'dF (¢)u.

A= —cot <?) ,
2

E(\) = F(—2cot™')\),

Therefore defining

and
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we get

Hence,

Finally, from

we can obtain

= i AT, u

= ) /:1 AdE(\)u.

Being the convergence in question in norm, we may write

Au = /_OO AE(MN)u.

o0

Since u € H is arbitrary, we may denote

A /_Oo ME(N).

References

[1] G. Bachman and L. Narici, Functional Analysis, Dover Publications, Reprint (2000).

(234)

(235)

[2] F.S. Botelho, Functional Analysis and Applied Optimization in Banach Spaces, Springer Switzer-

land, 2014.

[3] H.Brezis, Analyse Fonctionnelle, Masson (1987).

[4] E. Kreyszig, Introductory Functional Analysis and Applications, John Wiley and Sons. Inc., 1989.

[5] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Volume I, Functional Analysis,

Reprint Elsevier (Singapore, 2003).

164



(6] W. Rudin, Functional Analysis, second edition, McGraw-Hill (1991).
[7] W. Rudin, Real and Complex Analysis, third edition, McGraw-Hill (1987).

165



