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A contribution to contact problems for a class
of solids and structures

W.R. BIELSKI and J.J. TELEGA (WARSZAWA)

In THIS PAPER two dual problems are derived and discussed. Firstly, for a linear elastic body in
the presence of Signorini’s boundary conditions with friction the dual problem in the sense
of Mosco is formulated. The friction condition may be nonconvex and anisotropic, while
the subdifferential friction law is not associated with the friction condition. Secondly, a novel
dual problem expressed in the terms of static fields is proposed for the obstacle problem of a von
Kéarmén plate.

W pracy wyprowadzono i przedyskutowano dwa zagadnienia dualne. Po pierwsze, dla osrodka
liniowo-sprezystego w przypadku warunkow Signoriniego z tarciem sformulowano problem
dualny w sensie Mosco. Warunek tarcia moze by¢ niewypukly i anizotropowy, za$ subréznicz-
kowe prawo tarcia jest niestowarzyszone z tym warunkiem. Po drugie, dla plyty von Kérména,
w przypadku zagadnienia z przeszkoda, sformutowano nowe zadanie dualne w terminach p6l
statycznych.

B paGore BHIBENEHBI M OOCY)KICHBI ABE NyaJbHBIC 3a[ati. Bo-nepBbIX, IS JIAHEHHO-YII-
PYToit Cpefl, B ClIydae TDAHAUHBIX YCIIOBHA CHHBODMHM C TpEHHEM, COpPMY/IMpOBaHA Iy-
anpHAs 3aMaua B cmbicie Mocko. YciloBHe TPEHMs BO3MOXKHO HEBBIIYKIIO M AHHSOTPOIHO,
Torma Kax cyGmuddepeHIMaNbHbIA 3aKOH TPEHHUA HE ACCONMMPOBAH C OTHM ycioBuem. Bo-
BTOPBIX, /Ui IutactuHbl (o Kapmana, B ciydae npo6IIEMBbI C IPENATCTBHEM,; CHOPMYIHPO-
BaHa HOBas [yaJbHAs 3a/{aya TOJIBKO IIPY IIOMOIIM CTATHIECKHUX noneit.

. Introduction

- IN mosT cases contact problems belong to the so-called free surface problems due to the
inherent behaviour of contacting bodies. Methods of convex analysis and variational
inequalities proved to be very useful in studying such problems, cf. Refs. [9, 11, 40]. An
up-to-date and rather exhaustive survey of applications of those methods to various con-
 tact problems for solids and structures is presented in the paper by the second author [40].

The purpose of this work is twofold and, accordingly, the paper is divided into two
parts. In the first part we shall primarily derive the implicit variational inequality, being
the weak (variational) formulation of the boundary value problem for a linear elastic body
' in a friction contact with a rigid support on a part of the boundary. This implicit varia-
' tional inequality, expressed in terms of displacement, is very general since the friction
' condition can be neither convex nor isotropic and the subdifferential friction law is not
associated with this condition. In the existing literature only Signorini’s contact prob-
' lems with Coulomb’s friction have so far been investigated [5, 6, 7,9, 15-19, 22,28, 34,
35, 37]. LicHT [26] considers viscous friction but in the case of a bilateral contact only.
For all these specific cases no dual formulations seem to have been proposed. Since at
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the present state of knowledge it is not possible to derive an implicit variational inequality
from an extremum principle, the methods of the theory of duality [1, 11, 42] are not ap-
plicable. This assertion does not exclude an a priori formulation of a contact problem
in terms of stresses in the form of a quasi-variational inequality. However, such problems
will not be investigated here. Mosco [30] has proved that for an arbitrary, well-posed
variational inequality a dual formulation is always available. A generalization of Mosco’s
theory to a large class of implicit variational problems has been proposed by CApuzzo
DoLcerta and MATtzeu [3], cf. Appendix B. Applying, in Sect. 3 of Part 1, this general

duality theory to Signorini’s problem with friction, we shall obtain the quasi-variational

inequality defined on the surface of a possible contact only and expressed in terms of '3

stresses.

The second part of the present paper concerns the dual formulation of the obstacle
problem for a von Karméan plate. Various unilateral problems, including the obstacle
problem, for von K4rmén plates have already been studied from both the theoretical and
numerical point of view, cf. Refs [8, 12, 20, 23, 32, 33, 36, 38, 40]. Yet the only contri-

bution dealing with the dual problem is our paper [2] where the dual obstacle problem

has been formulated in terms of static and kinematic fields. Moreover, a linear operator
A playing an important role in Rockafellar’s theory of duality (see Ref. [11], and Appen-
dix A) depends parametrically on this kinematic field, entering into the equilibrium equa-
tion. Hence the need of further investigation of the dual formulation. In Sect. 6 we shall

propose a novel approach to the same dual obstacle problem. Now the operator A is

- different and exhibits no parametric dependence on a kinematic field. As a result, in the

dual obstacle problem a kinematic field is not explicitly present.
To facilitate the reading of this paper two appendices are attached to it. In Appendix

A we present the results of convex analysis indispensable for our considerations. Appendix
B deals with a concise presentation of the duality theory for implicit variational prob-
lems. Due to the limitation of the number of acceptable pages in the whole paper, we

shall not enter into mathematical details.

Part 1. Dual formulation, in the sense of Mosco, of a Signorini’s contact

problem with friction for a linear elastic solid

i. Formulation of the unilateral boundary value problem with friction

Let 2 < R3 be a bounded, sufficiently regular domain. Its boundary 4£2, denoted by

T, consists of three nonoverlapping parts: I'y, I'y, I, and 0Q = I' = I'yuI',ul’;. Here
I’ denotes the closure of Iy, etc. By n = (n;) we denote the outer unit normal I'. Through-

out Part 1 Latin indices run from 1 to 3.
A vector v = (v;), defined on I", decomposes as follows:

2.1) vV = oyn+Vyg,

where vy = v;n; denotes the normal component of v, while v; = v;—ovyn; are tangential

components of v.

4
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Ife = () is a stress tensor, then a similar decomposition holds for the stress vector
jny), defined on I, that is

Oy = ONNy+ 07y,

: ON = Oyhihy, Oy = Oyily— 0NNy |
‘¢ assume that the friction condition, defined on I',, is given by ; E
A flon,07) < 0. - ‘ i 1
ally, Coulomb’s friction condition has the form : ,
flow, 01) = lazrl—rlon] < 0, | ‘

! ey = »(x), x e I',, is the coefficient of friction, and |o7| = Vo om = ]/ Gr° cT
'observe that the function (2.4) is convex and isotropic, whereas in the general case
it is neither convex nor isotropic.

K(UN) = {v7lf(on, Tr) < 0}

ind assume that for each oy the set K(oy) is convex and closed. This assumption 1mp11es (
hat the set -
! K = {(on,01)f(on,01) < 0} _

necessarily convex. Several nonconvex friction conditions have been obtained in [29].

[ "ﬁnd the conditions relative to anisotropic frlctlon the reader should refer to the:

s [29, 41, 43].
e friction law is assumed in the subdifferential form

—upe ax,q, (o1

(rr—or)-ur >0 V1€ K(oy).

¢ indicator function Xk of the set K(oy) is defined as follows [39]:
0, if =re€K(oy),

X (1) = {.oo, if gy ¢ K(oy).

The support function s(oy, —uy) of K(ay) is given by

j_m) s(oy, —ur) = sup {t7* (—up)|7r € K(ow)}-

:is easy to prove that

2.1 ) XK(UN)("T)‘*'S(O'N, —ur) = o (—ug).

The function s(oy,—ur) represents the work of the friction stress o on the displacement
r. We define

) ; J(on, lir) = s(oy, —uy). v
 readily be verified that in the case of Coulomb’s friction we have [41]

J(on, up) = vlayllug|.
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‘The properties of the indicator function Xk imply that the function j is convex and
subdifferentiable with respect to the second argument. The subdifferentiability means
that .
(2.14) J(on, vr)—j(on, ur) = (—07) " (vy—ug), Vvr.

More elaborate analysis of local friction laws, presented above, is given in the paper

[41]. Here we confine ourselves to local laws only. ¢
The unilateral (Signorini) boundary value problem with friction is now formulated

as

ProBLEM 1

Find a displacement field u = u(x), x € £, such that
(2.15) 0y,;+b; =0, in 2,
(2.16) 0y;() = a5 e(0),
@17 a=0, on B
(2.18) oyn; = F;, onl}, 4
(2.19) un <0, "oy €0, “oyuy =0, onl;,
(2.20) —ur € 3xK(a~) {6;); - on 15.

Here e;;(u) = %(u,-_ j+u;;) = ug,y and the usual symmetry and ellipticity conditions
are imposed on the elasticity tensor (a;;), cf. Ref. [9]. Moreover, we assume that |
2.21) Ay €L*(Q), (b,F)eV*

‘The definitions of function spaces used in the present paper can be found in [27].
Suppose that V is a real reflexive Banach space such that u € ¥ and j(oy(u), u;) make
sense. A dependence of the function j on oy is a delicate matter even in the simpler case
of Coulomb’s friction law, cf. Refs. [6, 7, 18, 19, 34, 35, 37].
A plausible choice of the space V is the following:

222 V= {v=@v e H(Q), o,0n; € L2T%)). |

Let us set
(2.23) H ={veV,v=0on Iy; oy <0 on I},
(2.24) a@, )= [ a,ue e,

Q
2.25) Jw,v) = [ j(on(u), v)dr,
I,
(2.26) Lw) = [bodx+ [fiodl.
Q2 ry

Problem 1 can now be formulated in the variational, or weak, form as

PROBLEM (2)

Find u € & such that
(2.27) a(u,v—u)+J(u,v)—J(u,u) > L(v) VveX.
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The proof is straightforward. Multiplying Eq. (2.15) by v—u eV and integrating, we
 obtain

(228) a(u, v—u)+ f (=o7) (vp—up)dx = Liv—u)+ faN(vN—uN)dF.

Wi Iy I,

- Now, taking account of the Signorini’s conditions (2.19) and the friction law (2.20), or

 inequality (2.14), we arrive at the implicit variational inequality = 1.V 1., given by the

~ relation (2.27).

~ Existence of a solution u € & solving the problem (Z) results from the general theory
~ of implicit variational problems [31] and will not be discussed here. Such a solution is

not unique in general, even in the case of Coulomb’s friction law. For this latter case
uniqueness is assured if the coefficient of friction is sufficiently small.

3. Dual formulation of the I.V.I. (2.27)

‘.: - To adjust our L. V. I. to the theory of duality outlined in Appendix B, we set
6D g(u, w) = au, w)—L(w)

(3.2) p(4v, w) = J(v, W)+ xx(w),

‘where 4: ¥V ev — oy(v) on I',. Accordingly, the assumptions (H;)—(Hj), formulated
in Appendix B, are satisfied.

4 - Making use of Lemma A.1 we have

63 v, w) = sup (W, W=7, W)~ 1, (W)}

| =, _Sup_{Cwhs W)+ CWE, W) —J(1, W)= 2, (vn)}
W= WN, '1- :

o Zc(,,,(,,)) (W;) - Xae (Wﬁ)

0, if w*=Bv-L

34 *(v, w¥) = * W) — &t ; !

(4 g*(r,w*) = sup ((w*, wy—a(y, w)+ L(w)} {w, o) 2

iﬂere C(oy) (x) = K(oy(x)) for almost every x € I, and L can be identified with (b, F),
;;f whereas the continuous linear and invertible operator B is defined as follows:

(69 Bv,wy = [ o,(Me,(wWydx.
k. Q2

' XA'* is the polar cone of ¢, that is

06 A* = (*eV*(v*v) <0, Vvex}.

The definition (3.1) of the functional g and the assumption (Hs) imply
- G) Dg(u, u)+L = Bu.

éetting G = B~!, we arrive at

(38) : u=GZ)+u,
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where _
(3.9) u=GL=Gb,F),
(3.10) Z = (oyny) = Dg(u,u), .on [,

Obviously, G is the Green operator for the mixed boundary value problem of linear elastic-
ity. '

From Egs. (2.19)., (3.3) and (3.6) we infer that now u* = —Z, on I",. Hence we have
(Dg)~*(—u*) = u = G(Z)+u. The dual problem of (2) is eventually expressed as
PROBLEM (2%)

Find Z = (oy, 07) € [— A4 *] x C(oy) such that

(3.11) (7—Z,G(B)+u) >0, Vre[-A*xC(oy)
or
3.11) {tn—oy, [GE)]* n+uy) +{tr—07, [G(Z)]r+ur) = 0

Viye —=X*, V71 e C(oy).
Moreover, the extremality condition (B.4) yields

(3.12) J(ll, ll) = "'<cr, IIT> = - IGT' quF, <(7N, uN> = fGNuNdF = 0.
I I

We note that the relation (3.11) or the relation (3.11°) is the quasi-variational inequality = z
= Q. V.1 defined on I, only. For instance, such Q. V.I. can be useful for Hertz-like
problems with friction when it is desirable to determine the normal stresses oy and tan-
gential (frictional) stresses oy on I, . _

ReMARK 3.1. For Signorini’s problem without friction 6;= 7, = 0 and the relation
(3.11") yields

(3.13) ox:{ty—0oy, [Glon)ly+un) > 0, Viye —A*. 3
|

KikucHi [21] calls the inequality (3.13) the “reciprocal variational inequality”. He derived
this inequality by a different approach, not referring to the Mosco’s theory of duality.

REMARK 3.2. The primal problem (#) is formulated in terms of displacements. Another
pair of the dual problems in the sense of Mosco is available for the same contact problem
if the primal problem is formulated in terms of stresses. Such a primal problem results
in a quasi-variational inequality defined on £2. We shall study this Q. V. 1. and its dual
separately.

Part. 2. A novel approach to the duality of the obstacle problem for von ;
Karman plates |

THE SECOND part of the present paper is concerned with the dual formulation of the |
obstacle problem for a clamped von K4rman plate. A similar problem was already studied
in our note [2]. However, the approach we use here is different and the results obtained |
are more complete. The dual problem formulated in [2] depends explicitly on a kinematic
field — the transverse displacement of the plate. The approach we employ here overcomes
this difficulty and the results obtained are more satisfactory, at least from the viewpoint
of the theory of duality.
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ic relations

lucid account of the theory of von Karman plates can be found in [4, 13].
o be a bounded sufficiently regular domain of R2. By u = (uy, u,), w and o we
e the in-plane displacement vector, the transverse displacement of the plate and the
of an external loading, respectlvely We assume that p € L?(w), and the ugnd ob-
given by a function y € H 2(w) The set

K, = {o e Hi(w)|v > v}

ed and convex. The sense of the inequality in the deﬁmtiony(4.l) of K, is clear dué
' ‘i‘nplicatioq v € H? = v is continuous.

h gurvatur'e tensor is denoted by % = (%.5). Greek indices take the values 1 and 2
he curvature-displacement relation is given by

*w
%ap(W) = -m: —W,a-

= (&) is the strain tensor, then the strain-displacement relation reads

1
8,3(“, W) s —2- (ua,p+up,¢+w,¢w,p).
. 'g to the von Karméan theory of isotropic elastic plates, the constitutive equa-
are
Map = S“ﬂ‘#”’-l“ - or M = Sx

Nog = Zupau€au»  OF N = Ze,

Eh?

S"ﬁ‘l‘ = -1—2(1——'—)' [(1 1’) 6a;. 6ﬂ“+’l’6¢p 6;.“]

Eh
Zap,m = 1 '—'Vz [(1 —1’) 6a). dﬂu+v5¢ 6‘”].

M and N denote the bending moment tensor and the membrane force tensor, res-

ively; E is Young’s modulus, » is Poisson’s ratio, while 4 stands for the thickness of
plate.

~ We observe that the constitutive equations (4.4) and (4.5) are linear, whereas the strain-

acement relation (4.3) is nonlinear.

assume that Sy, € L®(w), hence also Zypy, € L*(w). Straightforward calculatxons

the existence of constants 4, > 0 and A, > 0 such that for all (tep), tep = tour WE

0 taﬁ taﬁ ’

Sepru(X) tagtiy = 2 : v
; for almost every X€Ew,
= Ataptag.

Zopau(taptiy
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5. Primal obstacle problem

For the sake of simplicity, we shall study the obstacle problem for a clamped plate |
only. Thus the space

G.1) X = [Hy(0))* x Hi(w),

is suitable for the primal or (%) problem.
The total potential energy is expressed as follows:

(5.2) I(u, w) = % f Zogiu Eap(m, w) £5,(u, w)dx

+—12— f Sapiu Xap(W) %3, (W)dx — f owdx.

In virtue of the inequalities (4.8), the quadratic functional
1 1
(5.3) I (e, %) = 7 f Zaﬂlp Eup al,,dx+—2— fSaml,x,px‘,, dx

is strictly convex over the space [L(w)]* x [L?(w)]*. Unfortunately, due to the nonlin-
earity of the relation (4.3), the functional I,(e(a, w), »(w)) is no longer convex over the
space X.

The primal or (2) — obstacle problem for the clamped plate means evaluating

(5.4) inf {I(u, w)| (u, w) € X, },

where X, = [H}(w)?xK,.
The existence of a solution of the problem (2) follows from the results obtained in [36].
We note that in the fundamental paper by DuvauT and LioNs [8] on unilateral problems
for von Karman plates the possibility of formulating such problems as minimization
problems is not discussed. :
The solution (u, w) of the problem (#) fulfills the following variational inequality:

(55) <Dl(ii’ W)’ (V—ﬁ, W—W)) >0 V(V, W) EXla

where DI (u, w) denotes the Géteaux derivative of the functional I at the point (u, w)
It can readily be verified that the inequality (5.5) results in the variational inequality and
the variational equation studied already in [8].

6. Dual problem and its properties

6.1. The formulation of the dual problem

The primal problem (2) given by the relation (5.4) is formulated in terms of kinematic
fields. For the purpose of deriving the dual problem in terms of static fields, we shall apply
Rockafellar’s theory of duality outlined in Appendix A.

The linear operator A playing an important role in this theory is now defined as follows:

(6.1) A, w) = (symVu, Vw, —V2w) = (exp(u), W,a, —W,qp),
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- where e, = —12—(11) (t4a, s +1p,). For later convenience we set

(62) A(u, w) = (4,0, 4,w), bOa = W,
where

?(6.3) Aju=symVu, A,w= (Vw, =V2w).
- We have

(6.4) A: X > Y =Y, x[H}w)?x Y,

‘where Y, = Y¥ is the space of symmetric matrices a = (dup), Gug = dpa € L*(w). The
operator A*, adjoint of 4, maps

Y*= Y, x[H Y (0)]*>xY, into X*= [H(w)?xH *w).
Let P* = (p*, q*) = (p¥, t¥, r¥) be an element of Y*. Then we have

'1(6.5) @, w), P = fu,,,p:pdx+ fw,at:dx— fw,upr:pdx

svhere the second integral is to be taken in the sense of duality between Hg(w) and H~' ().
Integrating in the right-hand side of Eq. (6.5) by parts, we arrive at the following form of
the operator A* = (4}, 4%): /

(66) (A1p*) = —divp* = (—pip), 2%, 1) = —18a—Thp0r

where the derivatives are to be taken in the sense of distributions.

- The functional I, given by Eq. (5.2), can be decomposed as follows:

I(n, w) = J((u, w), A(u, w)) = G(A4,u, 4, w)+F(w),

G, 4aw) = 5 [ Zew e+ 02000509 ew

+ % 0,(w) Ou(w)] dx +% wf SapauXap(W) %2, (W)dX,

6.9) Fw) = —Co, W+, W) = — [ owdx+ yx,(W)-

Obviously, yx, is the indicator function of K.
To formulate the dual problem for the problem (5.4), we take the functional @, now

6'10) d5((“9 w), (p, (l)) = G(Alu"'l’, AzW—q)+F(W),

P= (paﬁ)’ q = (tas raﬂ) and (p, QeY.
The dual problem means evaluating

(6.11) sup {—~®((0, 0), (p*, 4*))I(@*, ¢*) € Y*}
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‘The definition of the polar functional gives

‘The dual problem can be rewritten as follows:

6.12)  9*((0,0), (p*, q%)) = EUP {<p*, P> +<{q*, q>—G(A1u—p,'Azw—q5—F(W)}
(p q)eY

= G*(—p*, —q*)+ F*(A3q*) +sup {u, A*p*>lue[Hz(w)]2}

(6.13) (2% sup{—G*(—p*, —q")—F*(43q")|(p*, q*) € Y*},
subject to
(6.14) _ o dp* <

To, complete the formulation of the dual problem we must find the functionals G* and !
F*. Since q* = (12, r#5), hence from the definition of the polar functional we obtain

(6.15)  G*(p*/t*,1*) = sup {(p*, P+t 0+ 1
(@ t.r)eYy
1 1 1
-—5‘ Zaﬁlu(pﬂﬁ + i s tp) Diu + = 2 —1tit ) 2 S,M,,raprh,dxl
. 3 1 1 1
= SupXp*, P> +<t*5, ) — o | Zupy Dup + 5 tatp) (Pan + 5 22, Jdx
Pt 2 ;s ¢

+ sup {(r*, l'> —% f Saph,rh,rwdx= el
r

We set
1 1
610 otot = s Lot prce o3 [ Zau{ s+ 1)
' +%t;t,,)dx}, f
{6.17) G3(r*) = seup{(r* H—— f Sapmrapra,,dXE

where Y, = [H}(w)]?. Simple calculation leads to
) 1
'(6.18) : G?(r*) = ? fCapmr:prf#dx, C= S-l-

‘The derivation of the explicit form of the functional Gt is rather lenghty and therefore
is omitted in this paper. The ultimate form of G#% is given by

2 f Hapzypé‘ppf,,dx+—2— f Rypt¥tydx, where R = (p:)“
if p* is positive definite;
619  GiG*, 1) = f HugnuDippluds+ f 81 @8)?dx, (o not summedy, |

if rankp*=1,p,>0 and Vphts=Vphth;
0, T p*=0"and =0

©, otherwise

where H = Z1,
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ow we pass to the derivation of the functional F*, We have

) FX43q*) = sup {A4Fq*, w)+<o, WD —1xx, (W)} = sup {{A3q*+0, w)}.
' . we H3(w) wek,

mioa:

% set w = y+w,, where y determines the obstacle and w, € € = {z € H}(w)|z > 0}.
tituting into Eq. (6.20) and taking account of Lemma A. 1, we obtain

FH(A% ") = {<-’1§q*+e, v, if Aiq*+e<0,
e 0, if A%q*+p>0.

equently, the final form of the dual problem can be written as follows:

(@* t*, r*)eY*

sup {-G:(—p*, ~t)-Ge~ [ yedn+t [rippapdn— [ ewdx}

e set U = (u, w), P* = (p*, q*) = (p*, t*, r*). The primal problem can be written as
(#) inf J(U, AU) = inf ®(U, 0) = inf {G(AU)+F(w)} |
UeX UeX

UeX

eas the dual problem has the form
(#%)  sup{—J*(P*)} = sup{—D*(0, P*)} = sup{—G*(—P*)—F*(4%q*)}.
Prey* Prey* Prey*
e shall also make use of the relaxed problem, here given by the bidual problem (2*¥),
ppendix A:
inf J*¥*(U) = inf®**(U, 0) = inf {G**(AU)+F(w)}.
Uex Uex

UeX

observe that though the functional J is not convex, both J* and J** are convex func-
pose that the problem (#) has a solution (minimizer) U = (u, w). Making use
eorem A.2 we infer that

' @**(U, 0) = O(U, 0) = inf®**(U, 0).

t, applying Theorem A.1 we deduce that if @** attains a finite infimum at a point
£0), say, then

inf@*(U, 0) = sup {—D***(0, P*)}.
PreY*

UeX

4 Arch. Mech. Stos. 4-5/85
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and there exists at least one element P* ¢ Y* such that
(6.30) sup {—@***(0, P¥)} = —D***(0, P¥).

P*eY*

Since ®*** — @* hence, in virtue of Theorems A.1 and A.2 we have, cf. also Theorem

A3,
(631) inf®(U, 0) = inf®**(U, 0) = sup{—D***(0, P*)} = sup {—P*(0, P*}.
UeX UeX : PleY* Prey* .

Thus we have proved that
(6.32) inf(2) = sup(2¥).

We pass now to the discussion of extremality conditions, see Appendix A. Let U=
= (u, w) and P* = (p*, q*) be solutions of the problems (#) and (#*), respectively. Then

we have
(6.33) (U, 0)+D*(0,P*) = 0
or, since the functional @ is given by Eq. (6.10),
(6.34) G(A(, w)) +G*(—p*, —q*) = {—(p* q*), 4(u, )}
and
(6.35) F(u, w)+ F¥*(A*(*, @%) = <4*(*, q*), (W, W)).
The extremality condition (6.34) implies the following global constitutive relation:
(6.36) (—7* —1*) € 9G(4@, W)
which eventually yields
(6.37) —1:7:5 = Zupiu Eu(1, W),
(6.38) —t¥ = Zugaueu(u, w)bp(w),
(6.39) —1d = Sapsun(W).
The second extremality condition, given by Eq. (6.35), implies
"(6.40) A*(p*,q*) € dF(u, w) = dF(w).
Setting w = y+2, z € €, we have
(6.41) Ok, (W) = Oxx,(¥+2) = 9xe(2)

where the cone % has been defined in the subsection 6.1. Employing Eqgs. (6.40) and (6.41)
and Lemma A.2 we arrive at

(6.42) A%p* =0, and Afq*+o<0.

6.3. Mechanical interpretation

The extremality conditions (6.37)-(6.39) suggest that it is quite natural to assume
(6.43) Nog = —plg, Mag = —13.
Moreover, we set O, = —t¥. Then the dual problem (£*) takes on the form

64 s |-GitN.Q=GIOD - [ Qupadn- f Mg, epx — f evi |,
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chﬂ.ﬂ= 0

Mg, pa+Qa,at0 < 0.

 From the relation (6.46) we conclude that finally Q, = Nygw,p. Thus the kinematic
quantity, or the transverse displacement field, enters implicitly into the dual problem (2*).

However, it should be noted that the supremum in the problem (6.44) is taken over M,

and Q. In our contribution [2] the operator A depends parametrically on w and there-
ore is denoted by /,,. It has the following form:

4y, y,2) = (A, A,u+A3,2), where Ay = (—y,4), y€H(w),
A,() = (exp(m)), Azpz = (W,az,p),

and w is treated as a parameter. Such a choice is admissible and implies a parametric de-
pendence of the dual problem on w and taking of the supremum over M and N only.

REMARK 6.1. Above we have assumed that y € H2(w). Less smooth obstacles, such as
YEH'(w), or p € C(»), say, can likewise be considered. In the latter case we arrive at
A*q*+0 € M'(w), where M*(w) = [C(@)]* is the space of bounded measures, see [10].
- REMARK 6.2. The dual problem for von Karmén plates has also been studied by LA-
BISCH [25], but only in the case of classical boundary conditions, without taking into account
unilateral conditions. Yet some of his assumptions are stronger than ours, and the comple-
mentary energy is not convex. Our approach is rigorous and the results in the convex
mplementary energy are defined on the whole space.

i
gmendlx A. Elements of convex analysis
| This appendix is provided for a bﬁef review of ideas of convex analysis used throughout
paper. For additional details the reader should refer to [11, 39].

!uLet V be a real reflexive Banach space and V'* its topological dual. Let -, - >:V*x

xV->Rbea duality pairing and f:¥ = R = R U {— 0, o0} a functional, not necessari-
ly convex.

- The Fenchel transformation

S (w*) = Sup Ku*, up—fw)}, u*ev*

semi-continuous (s.c) ie. f*el, (V*) in the terminology used in [11]. The formula
(A1) implies

F*Ww®+f(u) = u*,ud, VueV, Vu*eV*

An element u* € V* such that

f(@) = f(u)+<{u*,v—u), VoeV



316 : W. R. BIELSKI AND J.J. TELEGA

is called a subgradient of the functional f at u. The set of all elements »* satisfying the ;
relation (A.3) is denoted by 0 f(u), and called subdifferential. We write u* € 9f(u). Particu-
larly it may happen that @ f(x) = ¢, for instance if f(u) = co; here ¢ denotes the empty .
set.

The following property is important:

(A4) F**)+f(u) = u*,u) <> u*edf(u), or uedf*u*).

Applying the Fenchel transform to f* we obtain the bipolar (bidual) functional f**
of f*, that is i

(A.5) E ol ¥ ¢ 2
Next we define the polar of f** ;
(A.6) J257 m ) SO

The functional /* maps V* into R, and due to the reflexivity of ¥ we have f**:V — R..;
The bipolar functional f** is the convex envelope of f, that is f**(u) < f(u), Vu € V. Since
f*** is convex, hence we obtain

(AL7) foue =='f *

‘Suppose that 0 f(u) # ¢, then
(A8) fw) = f**(u).

The following minimization problem, which means evaluating
(A9) . inf {fw)lu eV}, '

will be called the primal problem and is denoted by (2). :
The dual problem of (2) denoted by (2*) can be derived using Rockafellar’s approach i
which is briefly presented below. |
Let @ = ®(u, p) be a so-called perturbed functional defined on ¥'xY, such that
D(u, 0) = f(u); hence also inf f(x) = inf@(u, 0). Here Y is a Hausdorff topological space,
for instance a normed space. Then the dual problem (2*) is formulated as follows:
(A:10) ; sup {—P*(0, p*)| p* e Y*}.
In applications, for instance in the calculus of variations, the following functlonal
arises: ]

(A.11) f(u) = J(u, Au)
where 4 is a continuous linear operator A:¥ — Y. Very often g
(A.12) J(u, Au) = G(Au)+F(u), - i

where G and F are given functionals. Then the following perturbed functional @ mayx
be considered: e

(A.13) @D(u, p) = G(Au—p)+F(u).

The problem (£*) takes on the form

(A.14) sup {—G*(—p*)=F*(A*p")},
pteY*

where A*:Y* — V* is the adjoint operator of /. In virtue of the relation (A.2) we have
(A.15) D(u, 0)+D*(0, p*) = (1, 0), (0,p*)> =0, VueV, Vp*el*
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ce we obtain

A.16) inf @(u, 0) > sup {—D*(0, p*)},

in the usually assumed concise notation

inf(2) > sup(2*).

We also make use of the following theorems. A
'THEOREM A.1. Assume that the functional J is convex and let inf(P) be finite. Suppose
Uo € V exists such that J(uo, Auo) < + o, the functional p — J(uy, p) being continu-
t Auy. Then

inf(#) = sup(2*)

the problem (P*) has at least one solution p* € Y*.

EOREM A.2. (see also [14]). Let the functional J be given by Eq. (A.12). Suppose that
P)-problem has a solution u € V. Let the element u, € V exist such that the functzonal
finite in the neighbourhood of Auq. Then

J**(a, Ai) = J(a, Ai) = infJ**u, Au).

direct consequence of Theorems A.1 and A.2 is

’I‘HEOREM A.3. Let the functional J be given by Eq. (A. 12) and assume that u eV and
) € V exist such that
) J(@@, Au) = inf {J(u, Aw)lu € V},
(ii) G is finite in the neighbourhood of Aug.
Then the element p* € Y* exists such that

0) —J*(A*p*, p*) = sup {—J(A*p*, p*)Ip* € Y*} = J(u, Au).

At some points u € ¥, p* € Y* the relation (A. 15) can turn into an equality which

n called the extremality condition. If the functional J is given by Eq. (A. 12), then
r the assumptions of Theorem A.3, we obtain two extremality conditions, namely

G(Al—‘)'i-G*(_ﬁ*) = <—ﬁ*’ Al—‘>a

F(u) + F*(A*p*) = {A*p*, u),
h are equivalent to
3) —p* € 9G(Au),
24) : A*p* € OF(u),
ctively.
Finally, we recall two useful lemmas.

Lemma A.l. If V is a reflexive Banach space and € < V a closed convex cone such
at 0 € €, then

(A25) (x«)*(v*) = 1@,
_ere ©* is the polar cone of €, that is

26) @* = {v*|v* e V*, v* < 03}.
9 < 0 means that (v*,v) < 0, Vv € %.
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LEMMA A.2. Let € be a nonempty closed convex cone. Then u* e Oy%(u) if and only
if u € Oye+(u*). These conditions are equivalent to

(A.27) UE?, u*e®*, <Lu*,u)=0.

An alternative approach to the theory of duality for nonconvex problems was pro- :
posed in [1] and [42). We hope to use it in our future investigations.

Appendix B. Dual formulation of implicit variational problems

A general theory of implicit variational problems = I.V.Ps is presented in the paper
by Mosco [31]. We observe that variational and quasi-variational inequalities are specific
cases of I.V.Ps. A duality theory for I.V.Ps has been developed by CAPUZZO DOLCETTA 3
and MATZEU [3]. These authors ingeniously extended to I.V.Ps the duality theory pro-
posed by Mosco [30] for variational inequalities. Therefore, in the case of I.V.Ps the term
“duality in Mosco’s sense” will also be interchangeably used. It is interesting to note that
for, say, variational inequalities derivable from a minimum principle two quite different
dual problems are available. The first dual problem can be formulated using the theory
outlined in the previous appendix. The second dual problem is a problem in the sense of
Mosco [30].

Below we shall present essential aspects of the theory of duality for LI.V.Ps, yet in a
slightly more general setting than in [3], indispensable for our purposes.

Let us consider the following I.V.P., denoted by
find u € ¥ such that
P(Au, u)+g(u, u) < p(Au, w)+g(u,w), VwelV.

Here V is a real reflexive Banach space, and

(H,) | 4is a continuous linear operator from ¥V into another Banach space Y.

(H,) w = ¢(A4v, w)is, for every v € ¥, a convex lower semi- continuous function on %
@ # . ,
w = g(v, w) is, for every v € ¥, a real valued convex function on ¥ which
is continuous when w = v, :
(H.) w — g(v, w) has, for every v € ¥, a Gateaux derivative with respect to the

: second variable Dg(v, w) at w = v such that for every w* € V'* the set
{veV|Dg(v, v) = w*}
contains at the most one element (Dg)~1(w*).

If Y = ¥V and 4 is the identity operator, then we recover the results obtained in [3].

The Fenchel conjugate of ¢ taken with respect to the second variable is defined as
follows:

(B.2) P*(4v, w) = sup {Kw*, w)—p(4dv, w)}
weV

(B.1) @

The functional g*(v, w*) is defined similarly.

Then the dual problem of (2) given by the inequality (B.1) is formulated as
PROBLEM (2*) :
Find u* € V* such that
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3) ¢*(Al(Dg)~*(—u*)], u)—<u*, (Dg)~'(—u*)) <
*(A[(Dg) " (—u®)], w)—<w*, (Dg)~*(—u*)), Vw*eV*

oblems (2) and (2*) are interrelated by

- THEOREM B.1. Let V be a real reflexive Banach space and assume that the hypotheses
(H,), (H,) and (H;) hold. Then u €V is a solution of (P) if and only if u* = —Dg(u, u),
u* € V* is a solution of (P*). Moreover, the following extremality condition is satisfied:

4) @(Au, u)+*(Au, u*) = (u*, u) = —g(u, u)—g*(u, —u*).
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