Cálculo 1 - Terceira Aula Produto Cartesiano e Relações

Prof. Fabio Silva Botelho

August 2, 2017

1 Produto cartesiano

Definition 1.1. Sejam $A, B \subset \mathbb{R}$. Definition o produto cartesiano entre A e B, denotado por $A \times B$, por

$$A \times B = \{(x, y) : x \in A \ e \ y \in B\}.$$

Aqui genericamente $(a, b) \in \mathbb{R}^2$ denota o par ordenado de abscissa a e ordenada b.

Exemplo:

Sejam

$$A = \{1, 2, 3\}$$

е

$$B = \{1, 2\}.$$

Assim,

$$A \times B = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)\},\$$

e

$$B \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)\}.$$

Exercício: Dados os conjuntos

$$A = \{ x \in \mathbb{R} : 1 \le x \le 3 \},$$

е

$$B = \{ x \in \mathbb{R} : -2 \le x \le 2 \},$$

represente no plano catesiano $A \times B$ e $B \times A$.

Exercício: Sejam $A=\{1,2,3\}$ e $B=\{x\in\mathbb{R}: -1\leq x<3\}$. Represente no plano cartesiano $A\times B$ e $B\times A$.

Definition 1.2 (Relação binária). Sejam A e B conjuntos. Dizemos que um conjunto R é uma relação binária de A em B quando

$$R \subset A \times B$$
.

Denotamos também,

$$xRy \Leftrightarrow (x,y) \in R$$
.

Exemplo: Considere os conjuntos

$$A = \{1, 2, 3, 4, 5\},\$$

е

$$B = \{1, 2, 3, 4\}.$$

Seja

$$R = \{(x, y) \in A \times B : x < y\}.$$

Obtenha os elementos de R.

$$R = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}.$$

Exemplo: Seja $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 2, 3, 4, 5, 6\}$. Obtenha os elementos de R, onde

$$R = \{(x, y) \in A \times B : y = x + 2\}.$$

$$R = \{(1,3), (2,4), (3,5), (4,6)\}.$$

Exercício: Sejam

$$A = \{x \in \mathbb{R} \ : \ 1 \le x \le 3\}$$

е

$$B = \{ x \in \mathbb{R} : 1 \le x \le 2 \}.$$

Represente no plano cartesiano R, onde

$$R = \{(x, y) \in A \times B : y = x\}.$$

2 Domínio e imagem de uma relação

Definition 2.1. Sejam A, B conjuntos e $R \subset A \times B$ uma relação.

Definimos o domínio de R, denotado por D(R), por

$$D(R) = \{x \in A : existe \ y \in B \ tal \ que \ (x,y) \in R\}.$$

Assim $D(R) \subset A$.

Definimos a imagem de f, denotada por $I_m(R)$, por

$$I_m(R) = \{ y \in B : existe \ x \in A \ tal \ que \ (x, y) \in R \}.$$

Logo $I_m(R) \subset B$.

Exercício: Sejam

$$A = \{ x \in \mathbb{R} : 1 \le x \le 3 \}$$

е

$$B = \{ x \in \mathbb{R} : 1 \le x \le 4 \}.$$

Represente R no plano cartesiano e obtenha seu domínio e sua imagem, onde

$$R = \{(x, y) \in A \times B : y = 2x\}.$$

3 Relação inversa

Definition 3.1. Sejam A e B conjuntos e seja $R \subset A \times B$ uma relação binária. Definimos a relação binária inversa de R, denotada por $R^{-1}: B \to A$, por

$$R^{-1} = \{(y, x) \in B \times A : (x, y) \in R\}.$$

Exemplo: Sejam $A = \{2, 3, 4, 5\}$ e $B = \{1, 3, 5, 7\}$. Obtenha os elementos de

$$R = \{(x, y) \in A \times B : x < y - 1\}$$

e R^{-1} . Obtenha também os domínios e as imagens de R e R^{-1} .

$$R = \{(2,5), (2,7), (3,5), (3,7), (4,7), (5,7)\},\$$

$$R^{-1} = \{(5,2), (7,2), (5,3), (7,3), (7,4), (7,5)\},\$$

$$D(R) = \{2, 3, 4, 5\} = I_m(R^{-1}),$$

$$I_m(R) = \{5, 7\} = D(R^{-1}).$$

Exercício:

Sejam

$$A = \{ x \in \mathbb{R} : 1 \le x \le 4 \}$$

е

$$B = \{ x \in \mathbb{R} : 2 < y < 8 \}.$$

Represente no plano cartesiano $R \in \mathbb{R}^{-1}$, onde

$$R = \{(x, y) \in A \times B : y = 2x\}.$$