Cálculo Avançado - Primeira Lista de Exercícios

Prof. Fabio Silva Botelho

March 20, 2016

- 1. Assume $A \subset B \subset \mathbb{R}^n$. Show that $A' \subset B'$.
- 2. Let $A, B \subset \mathbb{R}^n$. Show that

$$A' \cup B' = (A \cup B)'$$
.

- 3. Let $E \subset \mathbb{R}^n$. Show that E' is closed.
- 4. Let $B_1, B_2, ...$ be subsets of the metric space \mathbb{R}^n .
 - (a) Show that if

$$B_n = \bigcup_{i=1}^n B_i$$
 then $\overline{B}_n = \bigcup_{i=1}^n \overline{B}_i$.

(b) Show that if

$$B = \bigcup_{i=1}^{\infty} B_i \text{ then } \overline{B} \supset \bigcup_{i=1}^{\infty} \overline{B}_i.$$

- 5. Let $E \subset \mathbb{R}^n$. Recall that the interior of E, denoted by E° , is defined as the set of all interior points of E.
 - (a) Show that E° is open.
 - (b) Show that E is open, if and only if, $E = E^{\circ}$.
 - (c) Show that if $G \subset E$ and G is open, then $G \subset E^{\circ}$.
 - (d) Prove que $(E^{\circ})^c = \overline{E^c}$.
 - (e) Do E and \overline{E} have always the same interior? If not, present a counter example.
 - (f) Do E and E^0 have always the same closure? If not, present a counter example.
- 6. Prove that \mathbb{Q} , the rational set, has empty interior.
- 7. Prove that \mathbb{I} , the set of irrationals, has empty interior.
- 8. Prove that given $x, y \in \mathbb{R}$ such that x < y, there exists $\alpha \in \mathbb{I}$, such that

$$x < \alpha < y$$
.

9. Prove that \mathbb{I} is dense in \mathbb{R} .

Hint: Prove that

$$x \in \mathbb{I}', \ \forall x \in \mathbb{R},$$

where \mathbb{I}' denotes the set of limit of points of \mathbb{I} .

10. Let $B \subset \mathbb{R}$ be an open set. Show that for all $x \in \mathbb{R}$ the set

$$x + B = \{x + y \mid y \in B\}$$

is open.

11. Let $A, B \subset \mathbb{R}$ be open sets. Show that the set

$$A + B = \{x + y : x \in A \text{ and } y \in B\},\$$

is open.

12. Let $B \subset \mathbb{R}$ be an open set. Show that for all $x \in \mathbb{R}$ such that $x \neq 0$ the set

$$x \cdot B = \{x \cdot y \mid y \in B\}$$

is open.

13. Let $A, B \subset \mathbb{R}^n$, show that

(a)

$$(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ},$$

(b)

$$(A \cup B)^{\circ} \supset A^{\circ} \cup B^{\circ},$$

and give an example in which the inclusion is proper.

- 14. Let $A \subset \mathbb{R}^n$ be an open set and $a \in A$. Prove that $A \setminus \{a\}$ is open.
- 15. Let $A, B \subset \mathbb{R}^n$. Prove that:
 - (a) $\overline{A \cup B} = \overline{A} \cup \overline{B}$,
 - (b) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$, and give an example for which the last inclusion is proper.
- 16. Show that a set A is dense in \mathbb{R} if, and only if, X^c has empty interior.
- 17. Let $F \subset \mathbb{R}$ be a closed set and let $x \in F$. Show that x is an isolated point of F if, and only if, $F \setminus \{x\}$ is closed.
- 18. Show that if $A \subset \mathbb{R}$ is uncountable, then so is A'.
- 19. Show that if $A \subset \mathbb{R}$ then $\overline{A} \setminus A'$ is countable.
- 20. Let $A \subset \mathbb{R}^n$ be an open set. Assume $a_1,...,a_n \in A$. Prove that $A \setminus \{a_1,...,a_n\}$ is open.
- 21. Let $A \subset \mathbb{R}^n$ be an open set and let $F \subset \mathbb{R}^n$ be a closed one. Show that $A \setminus F$ is open and $F \setminus A$ is closed.
- 22. Let $A \subset \mathbb{R}$ be an uncountable set. Prove that $A \cap A' \neq \emptyset$.