Cálculo Avançado - Segunda Lista de Exercícios

Prof. Fabio Silva Botelho

March 26, 2016

Remark 0.1. Para entregar dia 11/Abril: 4(b), 4(c),5(e), 6(c),6(d), 7(b), 9, 14, 15,17.

1. Let $A, B \subset \mathbb{R}^{n}$ be open sets.

Prove that $A \cup B$ and $A \cap B$ are open.
2. Let $A, B \subset \mathbb{R}^{n}$ be closed sets.

Prove that $A \cup B$ and $A \cap B$ are closed.
3. Calculate the limits:
(a)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x-y}{\sqrt{x}-\sqrt{y}},
$$

(b)

$$
\lim _{(x, y) \rightarrow(2,2)} \frac{x+y-4}{\sqrt{x+y}-2}
$$

4. Prove formally that:
(a) $\lim _{(x, y) \rightarrow(1,3)} 3 x-5 y+7=-5$,
(b) $\lim _{(x, y) \rightarrow(-2,1)}-x+4 y+4=10$,
(c) $\lim _{(x, y) \rightarrow(1,3)} x^{2}+y^{2}-2 x+1=9$,
(d) $\lim _{(x, y) \rightarrow(-1,2)} 3 x^{2}-2 y^{2}-2 x+3 y+5=8$.
5. For the functions below indicated, show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ does not exist, where
(a)

$$
f(x, y)=\frac{x}{\sqrt{x^{2}+y^{2}}}
$$

(b)

$$
f(x, y)=\frac{x y}{|x y|}
$$

(c)

$$
f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}
$$

(d)

$$
f(x, y)=\frac{x^{4}+3 x^{2} y^{2}+2 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}}
$$

(e)

$$
f(x, y)=\frac{x^{9} y}{\left(x^{6}+y^{2}\right)^{2}}
$$

6. For the functions $f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$ below indicated, show that $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ exists and calculate its value, where,
(a)

$$
f(x, y)=x \cos \left(\frac{1}{x^{2}+y^{2}}\right)
$$

(b)

$$
f(x, y)=\frac{x^{2}+3 x y}{\sqrt{x^{2}+y^{2}}},
$$

(c)

$$
f(x, y)=\frac{x^{2} y+x y^{2}}{x^{2}+y^{2}}
$$

(d)

$$
f(x, y)=\cos \left(\frac{x^{3}-y^{3}}{x^{2}+y^{2}}\right)
$$

7. For the functions $f: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}$ below indicated, calculate, if they exist, the limits $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ and discuss about the possibility or not of such functions to be continuously extended to (0,0), by appropriately defining $f(0,0)$, where
(a)

$$
f(x, y)=\ln \left(\frac{3 x^{4}-x^{2} y^{2}+3 y^{4}}{x^{2}+y^{2}}+2\right)
$$

(b)

$$
f(x, y)=\ln \left(x^{2} \cos ^{2}\left(\frac{1}{x^{2}+y^{2}}\right)+3\right) .
$$

8. Let $a, b, c \in \mathbb{R}$, where $a \neq 0$ or $b \neq 0$.

Prove formally that,

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} a x+b y+c=a x_{0}+b y_{0}+c .
$$

9. Let $a, b, c, d, e, f \in \mathbb{R}$ where $a \neq 0, b \neq 0$ or $c \neq 0$.

Prove formally that,

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} a x^{2}+b y^{2}+c x y+d x+e y+f=a x_{0}^{2}+b y_{0}^{2}+c x_{0} y_{0}+d x_{0}+e y_{0}+f .
$$

10. Let $D \subset \mathbb{R}^{n}$ be an open set, let $f, g: D \rightarrow \mathbb{R}$ be real functions and let $\mathbf{x}_{\mathbf{0}} \in D$.

Suppose there exists $K>0$ and $\delta>0$ such that $|g(\mathbf{x})|<K$, if $0<\left|\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right|<\delta$.
Assume

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} f(\mathbf{x})=0
$$

Under such hypotheses, prove that

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{\mathbf{0}}} f(\mathbf{x}) g(\mathbf{x})=0
$$

11. Use the item ?? to prove that

$$
\lim _{(x, y) \rightarrow(0,0)} f(x, y)=0
$$

where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}+x-y\right) \sin \left(\frac{1}{x^{2}+y^{2}}\right), & \text { if }(x, y) \neq(0,0) \\ 5, & \text { if }(x, y)=(0,0)\end{cases}
$$

12. Let $D \subset \mathbb{R}^{n}$ be an open set and let $\mathbf{x}_{\mathbf{0}} \in D$.

Assume $f, g: D \rightarrow \mathbb{R}$ are such that

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} f(\mathbf{x})=L \in \mathbb{R}
$$

and

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} g(\mathbf{x})=M \in \mathbb{R}
$$

where $L<M$.
Prove that there exists delta >0 such that if $0<\left|\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right|<\delta$, then

$$
f(\mathbf{x})<\frac{L+M}{2}<g(\mathbf{x})
$$

Hint: Define $\varepsilon=\frac{M-L}{2}$.
13. Let $D \subset \mathbb{R}^{n}$ be an open set and let $f: D \rightarrow \mathbb{R}$ be a continuous function. Assume $A \subset \mathbb{R}$ is open. Prove that $f^{-1}(A)$ is open, where,

$$
f^{-1}(A)=\{\mathbf{x} \in D: f(\mathbf{x}) \in A\}
$$

14. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function and let $c \in \mathbb{R}$.

Prove that the sets B and C are closed, where,
(a) $B=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x}) \leq c\right\}$.
(b) $C=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x})=c\right\}$.
15. Let $A, F \subset \mathbb{R}^{n}$ be such that A is open and F is closed. Prove that $A \backslash F$ is open and $F \backslash A$ is closed.
16. Let $D \subset \mathbb{R}^{n}$ be an open set and let $f: D \rightarrow \mathbb{R}$ be a continuous function.

Assume $F \subset \mathbb{R}$ is closed. Prove that there exists a closed set $F_{1} \subset \mathbb{R}^{n}$ such that $f^{-1}(F)=D \cap F_{1}$, where

$$
f^{-1}(F)=\{\mathbf{x} \in D: f(\mathbf{x}) \in F\}
$$

17. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that

$$
f(x, y)= \begin{cases}\frac{\sin (x+y)}{x+y}, & \text { if } x+y \neq 0 \\ 1, & \text { if } x+y=0\end{cases}
$$

Prove that f is continuous on \mathbb{R}^{2}.
18. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be such that

$$
f(x, y)= \begin{cases}\frac{x y}{|x|+|y|}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Prove that f is continuous on \mathbb{R}^{2}.

