Cálculo Avançado - Terceira Lista de Exercícios

Prof. Fabio Silva Botelho

April 3, 2016

Remark 0.1. Para entregar dia 3/5/2016, os exercícios 2,3c, 7, 8, 9c,12,16,20,21,23.

1. Through the definition of partial derivative, for $(x, y) \in \mathbb{R}^{2}$ such that $3 x+2 y>0$, calculate

$$
\frac{\partial f(x, y)}{\partial x} \text { and } \frac{\partial f(x, y)}{\partial y}
$$

where

$$
f(x, y)=\frac{1}{\sqrt{3 x+2 y}}
$$

2. Through the definition of partial derivative, for $(x, y) \in \mathbb{R}^{2}$ such that $x^{2}-y \neq 0$, calculate

$$
\frac{\partial f(x, y)}{\partial y}
$$

where

$$
f(x, y)=\frac{x+2 y}{x^{2}-y}
$$

3. Through the definition of differentiability, prove that the functions below indicated are differentiable on the respective domains,
(a) $f(x, y)=3 x^{2}-2 x y+5 y^{2}$,
(b) $f(x, y)=2 x y^{2}-3 x y$,
(c) $f(x, y)=\frac{x^{2}}{y}$.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{\left(x^{3}+y^{3}\right)}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Calculate $f_{x}(0,0)$ e $f_{y}(0,0)$.
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)= \begin{cases}\frac{3 x^{2} y^{2}}{x^{4}+y^{4}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Prove that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist however f is not differentiable at $(0,0)$.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Prove that $f_{x}(0,0)$ and $f_{y}(0,0)$ exist and f is differentiable at $(0,0)$.
7. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y, z)= \begin{cases}\frac{x y z^{2}}{x^{2}+y^{2}+z^{2}}, & \text { if }(x, y, z) \neq(0,0,0) \\ 0, & \text { if }(x, y, z)=(0,0,0)\end{cases}
$$

Prove that f is differentiable at $(0,0,0)$.
8. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{\sqrt{x^{2}+y^{2}}}\right), & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

(a) Obtain $\Delta f(0,0, \Delta x, \Delta y)$.
(b) Calculate $f_{x}(0,0)$ e $f_{y}(0,0)$.
(c) Through the definition of differentiability, show that f is differentiable at $(0,0)$.
9. For the functions below indicated, obtain the respective domains and prove that they are differentiable (on the domains in question):
(a) $f(x, y)=\frac{x+y}{x^{2}+5 y}$
(b) $f(x, y)=y \ln x-x / y$,
(c) $f(x, y)=\arctan \left(x^{2}-y\right)+\frac{1}{\sqrt{x^{2}-y}}$,
10. Let $D \subset \mathbb{R}^{n}$ be an open connected set. Suppose all partial derivatives of f are zero on D.

Prove that f é constant on D.
11. Let $D \subset \mathbb{R}^{2}$ be an open rectangle and let $f: D \rightarrow \mathbb{R}$ be a function. Assume f has partial derivatives well defined on D. Let (x, y) and $(x+u, y+v) \in D$.
Prove that there exists $\lambda \in(0,1)$ such that

$$
f(x+u, y+v)-f(x, y)=f_{x}(x+\lambda u, y+v) u+f_{y}(x, y+\lambda v) v
$$

12. Let $D \subset \mathbb{R}^{n}$ be an open convex set and let $f: D \rightarrow \mathbb{R}$ be a function. Suppose there exists $K>0$ such that

$$
\left|\frac{\partial f(\mathbf{x})}{\partial x_{j}}\right| \leq K, \forall \mathbf{x} \in D, \quad j \in\{1, . ., n\}
$$

Prove that

$$
|f(\mathbf{x})-f(\mathbf{y})| \leq K n|\mathbf{x}-\mathbf{y}|, \forall \mathbf{x}, \mathbf{y} \in D
$$

13. Let $D \subset \mathbb{R}^{n}$ be an open set and let $f: D \rightarrow \mathbb{R}$ be a differentiable function at $\mathbf{x}_{\mathbf{0}} \in D$. Prove that there exist $\delta>0$ and $K>0$ such that if $|\mathbf{h}|<\delta$, then $\mathbf{x}_{\mathbf{0}}+\mathbf{h} \in D$ and

$$
\left|f\left(\mathbf{x}_{\mathbf{0}}+\mathbf{h}\right)-f\left(\mathbf{x}_{\mathbf{0}}\right)\right|<K|\mathbf{h}| .
$$

14. Let $f: \mathbb{R}^{n} \backslash\{\mathbf{0}\} \rightarrow \mathbb{R}$ be defined by $f(\mathbf{x})=|\mathbf{x}|^{c}$, where $c \in \mathbb{R}$. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right) \in \mathbb{R}^{n}$. Calculate

$$
\nabla f(\mathbf{x}) \cdot \mathbf{v}
$$

15. let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y, t)=\frac{t^{2}+y}{e^{t}+x^{2}+t^{2}}
$$

Suppose the functions $x: \mathbb{R} \rightarrow \mathbb{R}$ and $y: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
x(t)=\cos ^{2}\left(t^{3}\right)
$$

and

$$
y(t)=e^{t^{2}}
$$

Through the chain rule, calculate $g^{\prime}(t)$ where $g(t)=f(x(t), y(t), t), \quad \forall t \in \mathbb{R}$.
Finally, obtain the equation of the tangent line to the graph of g at the points $t=0$ and $t=\pi$.
16. Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by

$$
g(x, y, z)=\frac{x^{2}+y^{2}+x y}{z^{2}+e^{x}+\cos ^{2}(y)}
$$

Let $z(x, y)=\cos ^{2}\left(x^{2}+y^{2}\right)$ and define $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
h(x, y)=g(x, y, z(x, y)) .
$$

Through the chain rule, calculate $h_{x}(x, y)$ and $h_{y}(x, y)$.
Find the equation of the normal line and the equation of the tangent plane, to the graph of h at the point $(1,0)$.
17. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function. Let $u(x, y)=b x-a y$. Show that $z(x, y)=f(u(x, y))$ satisfies the equation,

$$
a \frac{\partial z}{\partial x}+b \frac{\partial z}{\partial y}=0
$$

18. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function.

Denoting $u(r, \theta)=f(x, y)$, where $x=r \cos \theta$ and $y=r \sin \theta$ show that

$$
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial r} \cos \theta-\frac{\partial u}{\partial \theta} \frac{\sin \theta}{r}
$$

and

$$
\frac{\partial u}{\partial y}=\frac{\partial u}{\partial r} \sin \theta+\frac{\partial u}{\partial \theta} \frac{\cos \theta}{r} .
$$

19. Consider the ellipsoid of equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

where $a, b, c>0$.
Find the closest points on such surface to the origin $(0,0,0)$.
20. Let A be a symmetric matrix $m \times n$. Let $\mathbf{y}_{0} \in \mathbb{R}^{m}$ and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be defined by

$$
f(\mathbf{x})=\left\langle(A \mathbf{x}), \mathbf{y}_{0}\right\rangle,
$$

where $\langle\cdot, \cdot\rangle: \mathbb{R}^{m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ denotes the usual inner product in \mathbb{R}^{m}. Through the method of Lagrange multipliers, find the points of minimum and maximum of $f(\mathbf{x})$ subject to $|\mathbf{x}|=1$.
21. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be convex if

$$
f(\lambda \mathbf{x}+(1-\lambda \mathbf{y})) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}), \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, \lambda \in[0,1]
$$

(a) Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable. Show that f is convex if, and only if,

$$
f(\mathbf{y})-f(\mathbf{x}) \geq \nabla f(\mathbf{x}) \cdot(\mathbf{y}-\mathbf{x}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

(b) Prove that if f is convex, differentiable and $\nabla f(\mathbf{x})=\mathbf{0}$ then $\mathbf{x} \in \mathbb{R}^{n}$ is a point of global minimum for f.
22. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a twice differentiable function such that

$$
H(\mathbf{x})=\left\{\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}}\right\}
$$

is a positive definite matrix. $\forall \mathbf{x} \in \mathbb{R}^{n}$.
Show that f is convex on \mathbb{R}^{n}.
23. Let $F, G: \mathbb{R}^{4} \rightarrow \mathbb{R}$ be defined by $F(x, y, u, v)=x^{2}+y^{3}-u+v^{2}$ and $G(x, y, u, v)=e^{2 x}+e^{3 y}+2 u v+3 v^{2}$. Assuming the hypotheses of the vectorial case of implicit function theorem, consider the functions $u(x, y)$ and $v(x, y)$ implicitly defined on a neighborhood of a point $(x, y, u, v) \in \mathbb{R}^{4}$ such that

$$
F(x, y, u, v)=0 \quad \text { and } \quad G(x, y, u, v)=0
$$

Find u_{x}, u_{y}, v_{x} and v_{y} on such neighborhood.

