Cálculo Avançado - Sexta Lista de Exercícios

Prof. Fabio Silva Botelho

June 6, 2016

1. Let $D \subset \mathbb{R}^{3}$ be an open non-empty set. Let $f: D \rightarrow \mathbb{R}$ be a continuous function.

Assume

$$
\int_{V} f(\mathbf{x}) d \mathbf{x}=0
$$

for each compact set $V \subset D$ such that ∂V is of C^{1} class.
Under such hypotheses, show that

$$
f(\mathbf{x})=0, \forall \mathbf{x} \in D
$$

2. Let $D \subset \mathbb{R}^{n}$ be an open, bounded, non-empty set which the boundary ∂D is such that $m(\partial D)=0$. Let $f: \bar{D} \rightarrow \mathbb{R}$ be a continuous function on D, such that

$$
f(\mathbf{x}) \geq 0, \forall \mathbf{x} \in D
$$

Suppose

$$
\int_{\bar{D}} f(\mathbf{x}) d \mathbf{x}=0
$$

Under such hypotheses, show that

$$
f(\mathbf{x})=0, \forall \mathbf{x} \in D
$$

3. Find the domain of the one variable vectorial functions \mathbf{r} below indicated.
(a)

$$
\mathbf{r}(t)=\frac{1}{t^{2}+1} \mathbf{i}+\sqrt{(t-1)(t+3)} \mathbf{j}
$$

(b)

$$
\mathbf{r}(t)=\ln \left(t^{2}-16\right) \mathbf{i}+\sqrt{t^{2}+2 t-15} \mathbf{j}+\tan (t+1) \mathbf{k}
$$

(c)

$$
\sqrt{25-t^{2}} \mathbf{i}+\sqrt{t^{2}+2 t-8} \mathbf{j}
$$

4. Through the formula

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}
$$

calculate the derivatives of the functions defined by the parametric equations indicated,
(a)

$$
\mathbf{r}(t)=\frac{e^{t}}{1+e^{t}} \mathbf{i}+t^{2} \ln (t) \mathbf{j}
$$

(b)

$$
\mathbf{r}(t)=\frac{\cos (t)}{5+\sin (t)} \mathbf{i}+\ln \left(\sqrt{t^{4}+t^{2}}\right) \mathbf{j}
$$

5. Let $\mathbf{r}: \mathbb{R} \backslash\{-1\} \rightarrow \mathbb{R}^{2}$ be defined by

$$
\mathbf{r}(t)=\frac{t}{t+1} \mathbf{i}+\ln \left(t^{2}+1\right) \mathbf{j}
$$

Find the equation of the tangent line to the graph of the curve defined by \mathbf{r} at the point corresponding to $t=1$.
6. Let $\mathbf{r}, \mathbf{s}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be defined by

$$
\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}
$$

and

$$
\mathbf{s}(t)=\left(t^{2}+t\right) \mathbf{i}+t^{3} \mathbf{j}
$$

Calculate the angle between $\mathbf{r}^{\prime}(t)$ and $\mathbf{s}^{\prime}(t)$ at the point corresponding to $t=1$.
7. Let $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be defined by

$$
\mathbf{r}(t)=\frac{2 t}{1+t^{2}} \mathbf{i}+\frac{1-t^{2}}{1+t^{2}} \mathbf{j}+\mathbf{k}
$$

Show that the angle between $\mathbf{r}(t)$ and $\mathbf{r}^{\prime}(t)$ is constant.
8. Let $\mathbf{s}:[a, b] \rightarrow \mathbb{R}^{3}$ be a three times differentiable function.

Let $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{3}$ be defined by

$$
\mathbf{r}(t)=\mathbf{s}(t) \times \mathbf{s}^{\prime}(t)
$$

Find

$$
\mathbf{r}^{\prime \prime}(t)
$$

on $[a, b]$.
9. Let $\mathbf{s}:[a, b] \rightarrow \mathbb{R}^{3}$ be a three times differentiable function.

Let $\mathbf{r}:[a, b] \rightarrow \mathbb{R}^{3}$ be defined by

$$
\mathbf{r}(t)=\mathbf{s}(t) \cdot\left(\mathbf{s}^{\prime}(t) \times \mathbf{s}^{\prime \prime}(t)\right)
$$

Find

$$
\mathbf{r}^{\prime}(t)
$$

on $[a, b]$.
10. A vectorial function \mathbf{r} satisfies the equation,

$$
t \mathbf{r}^{\prime}(t)=\mathbf{r}(t)+t \mathbf{A}, \forall t>0
$$

where

$$
\mathbf{A} \in \mathbb{R}^{3} .
$$

Suppose that $\mathbf{r}(1)=2 \mathbf{A}$. Calculate $\mathbf{r}^{\prime \prime}(1)$ and $\mathbf{r}(3)$ as functions of \mathbf{A}.
11. Find a function $\mathbf{r}:(0,+\infty) \rightarrow \mathbb{R}^{3}$ such that

$$
\mathbf{r}(x)=x e^{x} \mathbf{A}+\frac{1}{x} \int_{1}^{x} \mathbf{r}(t) d t
$$

where $\mathbf{A} \in \mathbb{R}^{3}, \mathbf{A} \neq \mathbf{0}$.
12. Calculate $I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=x^{2} \mathbf{i}+y^{2} \mathbf{j}$ and where C is the curve defined by $\mathbf{r}(t)=a \cos (t) \mathbf{i}+b \sin (t) \mathbf{j}$, $0 \leq t \leq \pi / 2$, and where $a, b \neq 0$.
13. Calculate $I=\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y)=y^{2} \mathbf{i}+x \mathbf{j}$ and where C is the curve defined by $\mathbf{r}(t)=a \cos (t) \mathbf{i}+b \sin (t) \mathbf{j}$, and where $0 \leq t \leq \pi / 2$.
14. Through the Green Theorem, calculate the areas of the regions D, where,
(a)

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1 \text { and } y \geq 1 / 2\right\} .
$$

(b)

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1 \text { and }-1 / 2 \leq y \leq \sqrt{3} / 2\right\} .
$$

(c)

$$
D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1 \text { and } 0 \leq x \leq 1 / 2\right\}
$$

15. Calculate the area of surface S, where

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1 \text { and } \frac{1}{2} \leq z \leq \frac{\sqrt{3}}{2}\right\} .
$$

16. Calculate the area of surface S, where

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1 \text { and } \frac{-\sqrt{3}}{2} \leq z \leq \frac{1}{2}\right\} .
$$

17. Caculate the area of surface S, where

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: z^{2}=x^{2}+y^{2} \text { and } x^{2}+y^{2} \leq 2 a x\right\},
$$

where $a \in \mathbb{R}$.
18. Calculate $I=\iint_{S} x d S$, where

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=R^{2} \text { and }|z| \leq 1\right\} .
$$

19. Through the Divergence Theorem, calculate $I=\iint_{S}(y \mathbf{j}+z \mathbf{k}) \cdot \mathbf{n} d S$, where

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x=\sqrt{R^{2}-y^{2}-z^{2}} \text { and } x \geq \frac{\sqrt{3} R}{2}\right\}
$$

where $R>0$.
20. Through the Divergence Theorem, calculate $I=\iint_{S} \mathbf{F} \cdot \mathbf{n} d S$ where

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=2 R_{0} x \text { and } z \geq 0\right\}
$$

and where $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+z^{2} \mathbf{k}$ e $R_{0}>0$.
21. Let $u: V \rightarrow \mathbb{R}$ be a scalar field and let $\mathbf{F}: V \rightarrow \mathbb{R}^{3}$ be a vectorial one, where $V \subset \mathbb{R}^{3}$ is open u, \mathbf{F} are of C^{1} class. Show that

$$
\operatorname{div}(u \mathbf{F})=(\nabla u) \cdot \mathbf{F}+u(\operatorname{div} \mathbf{F})
$$

22. Let $u, v: V \rightarrow \mathbb{R}$ be C^{2} class scalar fields, where $V \subset \mathbb{R}^{3}$ is open and its closure is simple. Defining

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
$$

show that $\operatorname{div}(\nabla u)=\nabla^{2} u$ and prove the Green identities,
(a)

$$
\iiint_{V}\left(v \nabla^{2} u+\nabla v \cdot \nabla u\right) d V=\iint_{S} v(\nabla u \cdot \mathbf{n}) d S
$$

where $S=\partial V$ (that is, S is the boundary of V.)
(b)

$$
\iiint_{V}\left(v \nabla^{2} u-u \nabla^{2} v\right) d V=\iint_{S}\left(v \frac{\partial u}{\partial \mathbf{n}}-u \frac{\partial v}{\partial \mathbf{n}}\right) d S
$$

where $S=\partial V$ and $\frac{\partial u}{\partial \mathbf{n}}=\nabla u \cdot \mathbf{n}$.
23. Let $u: V \rightarrow \mathbb{R}, \mathbf{F}: V \rightarrow \mathbb{R}^{3}$ be C^{2} class fields on the open set $V \subset \mathbb{R}^{3}$.

Prove that $\operatorname{curl}(\nabla u)=\mathbf{0}$ and $\operatorname{div}(\operatorname{curl}(\mathbf{F}))=0$, on V.
24. Let $M \subset \mathbb{R}^{n}$ be a 3 -dimensional C^{1} class manifold, where $n \geq 4$,

$$
M=\left\{\mathbf{r}(\mathbf{u})=X_{i}(\mathbf{u}) \mathbf{e}_{i}: \mathbf{u} \in D\right\}
$$

$D \subset \mathbb{R}^{3}$ and $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$ is the canonical basis for \mathbb{R}^{n},
Let $\omega=d X_{1} \wedge d X_{4} \wedge d X_{3}$ be a 3 -form on M, where,

$$
\begin{aligned}
& d X_{1}(\mathbf{u})=\frac{\partial X_{1}(\mathbf{u})}{\partial u_{1}} d u_{1}+\frac{\partial X_{1}(\mathbf{u})}{\partial u_{2}} d u_{2}+\frac{\partial X_{1}(\mathbf{u})}{\partial u_{3}} d u_{3} \\
& d X_{4}(\mathbf{u})=\frac{\partial X_{4}(\mathbf{u})}{\partial u_{1}} d u_{1}+\frac{\partial X_{4}(\mathbf{u})}{\partial u_{2}} d u_{2}+\frac{\partial X_{4}(\mathbf{u})}{\partial u_{3}} d u_{3}
\end{aligned}
$$

and

$$
d X_{3}(\mathbf{u})=\frac{\partial X_{3}(\mathbf{u})}{\partial u_{1}} d u_{1}+\frac{\partial X_{3}(\mathbf{u})}{\partial u_{2}} d u_{2}+\frac{\partial X_{3}(\mathbf{u})}{\partial u_{3}} d u_{3}
$$

Compute

$$
\left(d X_{1}(\mathbf{u}) \wedge d X_{4}(\mathbf{u}) \wedge d X_{3}(\mathbf{u})\right)\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}\right)
$$

where
and

$$
\begin{aligned}
& \mathbf{s}_{1}=\frac{\partial \mathbf{r}(\mathbf{u})}{\partial u_{1}} \Delta u_{1} \\
& \mathbf{s}_{2}=\frac{\partial \mathbf{r}(\mathbf{u})}{\partial u_{2}} \Delta u_{2}
\end{aligned}
$$

$$
\mathbf{s}_{3}=\frac{\partial \mathbf{r}(\mathbf{u})}{\partial u_{3}} \Delta u_{3}
$$

25. Consider the vectorial field $\mathbf{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ where $\mathbf{F}=z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$.

Through the Stokes Theorem, calculate

$$
I=\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} d S
$$

where

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: z=8-x^{2}-2 y^{2} \text { and } z \geq 2\right\}
$$

26. Consider the vectorial field $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ where $\mathbf{F}=x^{2} \mathbf{i}+y^{2} \mathbf{j}+\left(z-x^{2}\right) \mathbf{k}$.

Through the Stokes Theorem, calculate

$$
I=\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} d S
$$

where

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: z=8-x^{2}-2 y^{2} \text { and } 2 \leq z \leq 4\right\}
$$

