Cálculo Variacional - Primeiras Aulas Espaços de Banach e Variação à Gâteaux Tópicos de Análise Funcional e Convexa

Prof. Fabio Silva Botelho

May 23, 2018

1 Espaços de Banach

Começamos com a definição de norma.

Definição 1.1. Seja V um espaço vetorial. Uma norma em V é uma função denotada por $\|\cdot\|_V$: $V \to \mathbb{R}^+ = [0, +\infty)$, para a qual valem as seguintes propriedades.

1.

$$||u||_V \ge 0, \forall u \in V$$

e

$$||u||_V = 0$$
, se, e somente se $u = \mathbf{0}$.

2. Desigualdade triangular, isto é

$$||u+v||_V \le ||u||_V + ||v||_V, \ \forall u, v \in V$$

3.

$$\|\alpha u\|_V = |\alpha|\|u\|, \ \forall u \in V, \ \alpha \in \mathbb{R}.$$

Nesse caso dizemos que o espaço V é um espaço normado.

Definição 1.2 (Sequência convergente). Seja V um espaço normado e seja $\{u_n\} \subset V$ uma sequência. Dizemos que $\{u_n\}$ converge para $u_0 \in V$, quando para cada $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que se $n > n_0$, então

$$||u_n - u_0||_V < \varepsilon.$$

Nesse caso escrevemos,

$$\lim_{n\to\infty} u_n = u_0, \ em \ norma.$$

Definição 1.3 (Sequência de Cauchy). Seja V um espaço normado e seja $\{u_n\} \subset V$ uma sequência. Dizemos que $\{u_n\}$ é de Cauchy, quando para cada $\varepsilon > 0$, existe $n_0 \in \mathbb{N}$ tal que se $m, n > n_0$, então

$$||u_n - u_m||_V < \varepsilon.$$

Definição 1.4 (Espaço de Banach). Um espaço normado V é dito ser de Banach quando é completo, isto é, quando para cada sequência de Cauchy $\{u_n\} \subset V$ existe $u_0 \in V$ tal que

$$||u_n - u_0||_V \to 0$$
, quando $n \to \infty$.

Exemplo 1.5. Exemplo de Espaço de Banach:

Considere V = C([a,b]), o espaço das funções contínuas em [a,b]. Provaremos que tal espaço é de Banach com a norma,

$$||f||_V = \max\{|f(x)| : x \in [a, b]\}.$$

Exercício 1.6. Prove que

$$||f||_V = \max\{|f(x)| : x \in [a, b]\}$$

 \acute{e} uma norma para V = C([a,b]).

Solução:

1. Claramente

$$||f||_V \ge 0, \forall f \in V$$

е

$$||f||_V = 0$$
 se, e somente se $f(x) = 0$, $\forall x \in [a, b]$, isto é se, e somente se $f = \mathbf{0}$.

2. Sejam $f, g \in V$.

Assim

$$||f + g||_{V} = \max\{|f(x) + g(x)|, x \in [a, b]\}$$

$$\leq \max\{|f(x)| + |g(x)|, x \in [a, b]\}$$

$$\leq \max\{|f(x)|, x \in [a, b]\} + \max\{|g(x)| x \in [a, b]\}$$

$$= ||f||_{V} + ||g||_{V}.$$
(1)

3. Finalmente, sejam $\alpha \in \mathbb{R}$ e $f \in V$.

Logo,

$$\|\alpha f\|_{V} = \max\{|\alpha f(x)|, x \in [a, b]\}$$

$$= \max\{|\alpha||f(x)|, x \in [a, b]\}$$

$$= |\alpha|\max\{|f(x)|, x \in [a, b]\}$$

$$= |\alpha|\|f\|.$$
(2)

Disto podemos concluir que $\|\cdot\|_V$ é uma norma.

A solução está completa.

Teorema 1.7. V = C([a, b]) é um espaço de Banach com a norma

$$||f||_V = \max\{|f(x)| : x \in [a, b]\}, \forall f \in V.$$

Prova. A prova de que C([a,b]) é um espaço vetorial é deixada como exercício.

Da última proposição $\|\cdot\|_V$ é uma norma para V.

Seja $\{f_n\} \subset V$ uma sequência de Cauchy.

Provaremos que existe $f \in V$ tal que

$$||f_n - f||_V \to 0$$
, quando $n \to \infty$.

Seja $\varepsilon > 0$.

Assim existe $n_0 \in \mathbb{N}$ tal que se $m, n > n_0$, então

$$||f_n - f_m||_V < \varepsilon.$$

Logo

$$\max\{|f_n(x) - f_m(x)| : x \in [a, b]\} < \varepsilon,$$

ou seja

$$|f_n(x) - f_m(x)| < \varepsilon, \ \forall x \in [a, b], \ m, n > n_0.$$

$$\tag{3}$$

Seja $x \in [a, b]$.

De (3), $\{f_n(x)\}\$ é uma sequência de Cauchy, portanto convergente.

Defina então

$$f(x) = \lim_{n \to \infty} f_n(x), \ \forall x \in [a, b].$$

Também de (3), temos que

$$\lim_{m \to \infty} |f_n(x) - f_m(x)| = |f_n(x) - f(x)| \le \varepsilon, \ \forall n > n_0.$$

Disto conclui-se que

$$||f_n - f||_V \to 0$$
, quando $n \to \infty$.

Provaremos agora que f é contínua em [a, b].

Do exposto acima

$$f_n \to f$$

uniformemente em [a,b] quando $n \to \infty$.

Logo, existe $n_1 \in \mathbb{N}$ tal que se $n > n_1$, então

$$|f_n(x) - f(x)| < \frac{\varepsilon}{3}, \ \forall x \in [a, b].$$

Escolha $n_2 > n_1$. Seja $x \in [a, b]$. De

$$\lim_{y \to x} f_{n_2}(y) = f_{n_2}(x),$$

existe $\delta > 0$ tal que se $y \in [a,b]$ e $|y-x| < \delta$ então

$$|f_{n_2}(y) - f_{n_2}(x)| < \frac{\varepsilon}{3}.$$

Logo se $y \in [a,b]$ e $|y-x| < \delta,$ então

$$|f(y) - f(x)| = |f(y) - f_{n_2}(y) + f_{n_2}(y) - f_{n_2}(x) + f_{n_2}(x) - f(x)|$$

$$\leq |f(y) - f_{n_2}(y)| + |f_{n_2}(y) - f_{n_2}(x)| + |f_{n_2}(x) - f(x)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$$

$$= \varepsilon.$$
(4)

Podemos concluir que f é contínua em $x, \forall x \in [a, b]$, ou seja $f \in V$. A prova está completa.

Exercício 1.8. Seja $V = C^1([a,b])$ o espaço das funções cuja a derivada é contínua em [a,b]. Defina a função (de fato funcional) $\|\cdot\|_V : V \to \mathbb{R}^+$ por

$$||f||_V = \max\{|f(x)| + |f'(x)| : x \in [a, b]\}.$$

- 1. Prove que $\|\cdot\|_V$ é uma norma.
- 2. Prove que V constitui-se num espaço de Banach com tal norma.

Solução: A prova do item 1 é deixada a cargo do leitor.

Provaremos agora que V é completo.

 $Seja \{f_n\} \subset V$ uma sequência de Cauchy.

Seja $\varepsilon > 0$. Assim existe $n_0 \in \mathbb{N}$ tal que se $m, n > n_0$ então

$$||f_n - f_m||_V < \varepsilon/2.$$

Portanto,

$$|f_n(x) - f_m(x)| + |f'_n(x) - f'_m(x)| < \varepsilon/2, \ \forall x \in [a, b], \ m, n > n_0.$$
 (5)

Seja $x \in [a, b]$. Logo, $\{f_n(x)\}$ e $\{f'_n(x)\}$ são sequências reais de Cauchy, portanto convergentes. Denotemos então

$$f(x) = \lim_{n \to \infty} f_n(x)$$

e

$$g(x) = \lim_{n \to \infty} f'_n(x).$$

Disto e (5), obtemos

$$|f_n(x) - f(x)| + |f'_n(x) - g(x)| = \lim_{m \to \infty} |f_n(x) - f_m(x)| + |f'_n(x) - f'_m(x)|$$

$$\leq \varepsilon/2, \ \forall x \in [a, b], \ n > n_0.$$
(6)

Similarmente ao obtido no último exemplo, podemos obter que f e g são contínuas, e portanto uniformemente contínuas no compacto [a,b].

Logo, existe $\delta > 0$ tal que se $x, y \in [a, b]$ e $|y - x| < \delta$, então

$$|g(y) - g(x)| < \varepsilon/2. \tag{7}$$

Escolha $n_1 > n_0$. Seja $x \in (a, b)$.

Assim, se $0 < |h| < \delta$, então de (6) e (7) obtemos

$$\left| \frac{f_{n_1}(x+h) - f_{n_1}(x)}{h} - g(x) \right|$$

$$= \left| f'_{n_1}(x+th) - g(x+th) + g(x+th) - g(x) \right|$$

$$\leq \left| f'_{n_1}(x+th) - g(x+th) \right| + \left| g(x+th) - g(x) \right|$$

$$< \varepsilon/2 + \varepsilon/2$$

$$= \varepsilon,$$
(8)

onde do teorema do valor médio $t \in (0,1)$ (depende de h). Logo, fazendo $n_1 \to \infty$, obtemos

$$\left| \frac{f_{n_1}(x+h) - f_{n_1}(x)}{h} - g(x) \right|$$

$$\rightarrow \left| \frac{f(x+h) - f(x)}{h} - g(x) \right|$$

$$\leq \varepsilon, \forall 0 < |h| < \delta. \tag{9}$$

Disto podemos concluir que

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = g(x), \ \forall x \in (a,b).$$

Os casos em que x = a ou x = b são tratados similarmente com limites laterais. Disto e (6), obtemos

$$||f_n - f||_V \to 0$$
, quando $n \to \infty$

e

$$f \in C^1([a,b]).$$

A solução está completa.

Definição 1.9 (Funcional). Seja V um espaço de Banach. Um funcional F definido em V é uma função cujo contra-domínio é \mathbb{R} $(F:V\to\mathbb{R})$.

Exemplo 1.10. Seja V = C([a,b]) $e F: V \to \mathbb{R}$ onde

$$F(y) = \int_a^b (sen^3x + y(x)^2) dx, \ \forall y \in V.$$

Exemplo 1.11. Seja $V = C^1([a,b])$ e seja $J: V \to \mathbb{R}$ onde

$$J(y) = \int_a^b \sqrt{1 + y'(x)^2} \, dx, \ \forall y \in C^1([a, b]).$$

Em nosso primeiro formato de trabalho consideraremos funcionais definidos por

$$F(y) = \int_a^b f(x, y(x), y'(x)) dx,$$

onde assumiremos

$$f \in C([a,b] \times \mathbb{R} \times \mathbb{R})$$

e $V = C^1([a, b])$.

Assim, para $F: D \subset V \to \mathbb{R}$ onde

$$F(y) = \int_a^b f(x, y(x), y'(x)) dx,$$
$$V = C^1([a, b]),$$

e

$$D = \{ y \in V : y(a) = A \in y(b) = B \},$$

onde $A, B \in \mathbb{R}$.

Observe que se $y \in D$, então $y + v \in D$ se, e somente se, $v \in V$ e

$$v(a) = v(b) = 0.$$

Pois nesse caso,

$$y + v \in V$$

e

$$y(a) + v(a) = y(a) = A,$$

е

$$y(b) + v(b) = y(b) = B.$$

Definiremos o espaço das variações admissíveis para F, denotado por V_a , como,

$$V_a = \{ v \in V : v(a) = v(b) = 0 \}.$$

Definição 1.12 (Mínimo global). Seja V um espaço de Banach e seja $F: D \subset V \to \mathbb{R}$ um funcional. Dizemos que $y_0 \in D$ é um ponto de mímino global para F, quando

$$F(y_0) \le F(y), \ \forall y \in D.$$

Observe que denotando $y = y_0 + v$ onde $v \in V_a$, temos que

$$F(y_0) \le F(y_0 + v), \ \forall v \in V_a.$$

Exemplo 1.13. Considere $J: D \subset V \to \mathbb{R}$ onde $V = C^1([a,b])$,

$$D = \{ y \in V : y(a) = 0 \ e \ y(b) = 1 \}$$

e

$$J(y) = \int_a^b (y'(x))^2 dx.$$

Assim,

$$V_a = \{ v \in V : v(a) = v(b) = 0 \}.$$

Seja $y_0 \in D$ um candidato a mínimo global para F e seja $v \in V_a$ uma direção admissível. Logo, deve-se ter,

$$J(y_0 + v) - J(y_0) \ge 0, (10)$$

onde

$$J(y_0 + v) - J(y_0) = \int_a^b (y_0'(x) + v'(x))^2 dx - \int_a^b y_0'(x)^2 dx$$

$$= 2 \int_a^b y_0'(x)v'(x) dx + \int_a^b v'(x)^2 dx$$

$$\geq 2 \int_a^b y_0'(x)v'(x) dx. \tag{11}$$

Observe que se $y'_0(x) = c$ em [a, b], teremos (10) satisfeita, pois nesse caso,

$$J(y_0 + v) - J(y_0) \ge 2 \int_a^b y_0'(x)v'(x) dx$$

$$= 2c \int_a^b v'(x) dx$$

$$= 2c[v(x)]_a^b$$

$$= 2c(v(b) - v(a))$$

$$= 0.$$
(12)

Resumindo, se $y'_0(x) = c$ em [a, b], obtemos,

$$J(y_0 + v) \ge J(y_0), \ \forall v \in V_a.$$

Observe que nesse caso,

$$y_0(x) = cx + d,$$

para algum $d \in \mathbb{R}$.

Entretanto, de

$$y(a) = 0$$
, obtemos $ca + d = 0$.

 $De\ y_0(b) = 1$, $obtemos\ cb + d = 1$.

Resolvendo este último sistema em c e d obtemos,

$$c = \frac{1}{b - a},$$

e

$$d = \frac{-a}{b-a}.$$

Finalmente, disto obtemos,

$$y_0(x) = \frac{x-a}{b-a}.$$

Observe que o gráfico de y_0 é a linha reta conectando os pontos (a,0) e (b,1).

2 Variação à Gâteaux

Definição 2.1. Seja V um espaço de Banach, seja $J:D\subset V\to\mathbb{R}$ um funcional e sejam $y\in D$ e $v\in V_a$

 $Definimos\ a\ variação\ \grave{a}\ G\^{a}teaux\ de\ J\ em\ y\ na\ direç\~{a}o\ v,\ denotado\ por\ \delta J(y;v),\ como$

$$\delta J(y;v) = \lim_{\varepsilon \to 0} \frac{J(y + \varepsilon v) - J(y)}{\varepsilon}.$$

Equivalentemente,

$$\delta J(y;v) = \frac{\partial J(y + \varepsilon v)}{\partial \varepsilon}|_{\varepsilon=0}.$$

Exemplo 2.2. Seja $V = C^1([a,b])$ $e J: V \to \mathbb{R}$ onde

$$F(y) = \int_{a}^{b} (sen^{3}x + y(x)^{2}) dx.$$

 $\textit{Sejam } y,v \in V. \textit{ Vamos calcular }$

$$\delta J(y;v)$$
.

Observe que,

$$\delta J(y;v) = \lim_{\varepsilon \to 0} \frac{J(y+\varepsilon v) - J(y)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{\int_a^b (sen^3 x + (y(x) + \varepsilon v(x))^2) dx - \int_a^b (sen^3 x + y(x)^2) dx}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{\int_a^b (2\varepsilon y(x)v(x) + \varepsilon^2 v(x)) dx}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \left(\int_a^b 2y(x)v(x) dx + \varepsilon \int_a^b v(x)^2 dx\right)$$

$$= \int_a^b 2y(x)v(x) dx. \tag{13}$$

Exemplo 2.3. Seja $V = C^1([a,b])$ e seja $J: V \to \mathbb{R}$ onde

$$J(y) = \int_{a}^{b} \rho(x) \sqrt{1 + y'(x)^2} \, dx,$$

onde $\rho:[a,b]\to (0,+\infty)$ é uma função contínua fixa.

Sejam $y, v \in V$.

Assim,

$$\delta J(y;v) = \frac{\partial J(y+\varepsilon v)}{\partial \varepsilon}|_{\varepsilon=0},\tag{14}$$

onde

$$J(y + \varepsilon v) = \int_a^b \rho(x) \sqrt{1 + (y'(x) + \varepsilon v'(x))^2} \, dx.$$

Logo,

$$\frac{\partial J(y+\varepsilon v)}{\partial \varepsilon}\Big|_{\varepsilon=0} = \frac{\partial}{\partial \varepsilon} \left(\int_{a}^{b} \rho(x) \sqrt{1 + (y'(x) + \varepsilon v'(x))^{2}} \, dx \right)
=^{(*)} \int_{a}^{b} \rho(x) \frac{\partial}{\partial \varepsilon} \left(\sqrt{1 + (y'(x) + \varepsilon v'(x))^{2}} \right) \, dx
= \int_{a}^{b} \frac{\rho(x)}{2} \frac{2(y'(x) + \varepsilon v'(x))v'(x)}{\sqrt{1 + (y'(x) + \varepsilon v'(x))^{2}}} \, dx.$$
(15)

(*): A validade dessa passagem será provada futuramente.

Disto obtemos,

$$\delta J(y;v) = \frac{\partial J(y+\varepsilon v)}{\partial \varepsilon}|_{\varepsilon=0}$$

$$= \int_{a}^{b} \frac{\rho(x)y'(x)v'(x)}{\sqrt{1+y'(x)^{2}}} dx.$$
(16)

O exemplo está completo.

Exemplo 2.4. Seja $V = C^1([a,b])$ e $f \in C^1([a,b] \times \mathbb{R} \times \mathbb{R})$. Assim f é uma função de 3 variáveis, a saber, f(x,y,z).

Considere o funcional $F: V \to \mathbb{R}$, definido por

$$F(y) = \int_a^b f(x, y(x), y'(x)) dx.$$

Sejam $y, v \in V$. Logo,

$$\delta F(y; v) = \frac{\partial}{\partial \varepsilon} F(y + \varepsilon v)|_{\varepsilon = 0}.$$

Observe que

$$F(y + \varepsilon v) = \int_a^b f(x, y(x) + \varepsilon v(x), y'(x) + \varepsilon v'(x)) \ dx,$$

e portanto

$$\frac{\partial}{\partial \varepsilon} F(y + \varepsilon v) = \frac{\partial}{\partial \varepsilon} \left(\int_{a}^{b} f(x, y(x) + \varepsilon v(x), y'(x) + \varepsilon v'(x)) \, dx \right)
= \int_{a}^{b} \frac{\partial}{\partial \varepsilon} \left(f(x, y(x) + \varepsilon v(x), y'(x) + \varepsilon v'(x)) \right) \, dx
= \int_{a}^{b} \left(\frac{\partial f(x, y(x) + \varepsilon v(x), y'(x) + \varepsilon v'(x))}{\partial y} v(x) \right)
+ \frac{\partial f(x, y(x) + \varepsilon v(x), y'(x) + \varepsilon v'(x))}{\partial z} v'(x) \right) dx.$$
(17)

Assim

$$\delta F(y;v) = \frac{\partial F(y+\varepsilon v)}{\partial \varepsilon}|_{\varepsilon=0}$$

$$= \int_{a}^{b} \left(\frac{\partial f(x,y(x),y'(x))}{\partial y}v(x) + \frac{\partial f(x,y(x),y'(x))}{\partial z}v'(x)\right) dx. \tag{18}$$

3 Minimização de funcionais convexos

Definição 3.1 (Função Convexa). Uma função $f: \mathbb{R}^n \to \mathbb{R}$ é dita ser convexa quando

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \ \forall x, y \in \mathbb{R}^n, \ \lambda \in [0, 1].$$

Proposição 3.2. Seja $f: \mathbb{R}^n \to \mathbb{R}$ convexa e diferenciável.

Sob tais hipóteses,

$$f(y) - f(x) \ge \langle f'(x), y - x \rangle_{\mathbb{R}^n}, \ \forall x, y \in \mathbb{R}^n,$$

onde $\langle \cdot, \cdot \rangle_{\mathbb{R}^n} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ denota o produto interno usual em \mathbb{R}^n , isto é,

$$\langle x, y \rangle_{\mathbb{R}^n} = x_1 y_1 + \dots + x_n y_n,$$

 $\forall x = (x_1, \dots, x_n), \ y = (y_1, \dots, y_n) \in \mathbb{R}^n.$

Prova. Escolha $x, y \in \mathbb{R}^n$.

Da hipótese,

$$f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y), \ \forall \lambda \in (0,1).$$

Logo,

$$\frac{f(x+\lambda(y-x))-f(x)}{\lambda} \le f(y)-f(x), \ \forall \lambda \in (0,1).$$

Portanto,

$$\langle f'(x), y - x \rangle_{\mathbb{R}^n} = \lim_{\lambda \to 0^+} \frac{f(x + \lambda(y - x)) - f(x)}{\lambda}$$

$$\leq f(y) - f(x), \ \forall x, y \in \mathbb{R}^n.$$
(19)

A prova está completa.

Proposição 3.3. Seja $f: \mathbb{R}^n \to \mathbb{R}$ uma função diferenciável no \mathbb{R}^n .

Assuma que

$$f(y) - f(x) \ge \langle f'(x), y - x \rangle_{\mathbb{R}^n}, \ \forall x, y \in \mathbb{R}^n.$$

Sob tais hipóteses, f é convexa.

Prova. Defina $f^*: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ como

$$f^*(x^*) = \sup_{x \in \mathbb{R}^n} \{ \langle x, x^* \rangle_{\mathbb{R}^n} - f(x) \}.$$

Tal função é chamada de o conjugado de Fenchel de f.

Seja $x \in \mathbb{R}^n$. Da hipótese,

$$\langle f'(x), x \rangle_{\mathbb{R}^n} - f(x) \ge \langle f'(x), y \rangle_{\mathbb{R}^n} - f(y), \ \forall y \in \mathbb{R}^n,$$

ou seja

$$f^*(f'(x)) = \sup_{y \in \mathbb{R}^n} \{ \langle f'(x), y \rangle_{\mathbb{R}^n} - f(y) \}$$
$$= \langle f'(x), x \rangle_{\mathbb{R}^n} - f(x).$$
(20)

Por outro lado

$$f^*(x^*) \ge \langle x, x^* \rangle_{\mathbb{R}^n} - f(x), \ \forall x, x^* \in \mathbb{R}^n,$$

e assim

$$f(x) \ge \langle x, x^* \rangle_{\mathbb{R}^n} - f^*(x^*), \ \forall x^* \in \mathbb{R}^n.$$

Logo,

$$f(x) \geq \sup_{x^* \in \mathbb{R}^n} \{ \langle x, x^* \rangle_{\mathbb{R}^n} - f^*(x^*) \}$$

$$\geq \langle f'(x), x \rangle_{\mathbb{R}^n} - f^*(f'(x)).$$
 (21)

Disto e de (20), obtemos,

$$f(x) = \sup_{x^* \in \mathbb{R}^n} \{ \langle x, x^* \rangle_{\mathbb{R}^n} - f^*(x^*) \}$$

= $\langle f'(x), x \rangle_{\mathbb{R}^n} - f^*(f'(x)).$ (22)

Resumindo,

$$f(x) = \sup_{x^* \in \mathbb{R}^n} \{ \langle x, x^* \rangle_{\mathbb{R}^n} - f^*(x^*) \}, \ \forall x \in \mathbb{R}^n.$$

Escolha $x, y \in \mathbb{R}^n$ e $\lambda \in [0, 1]$.

Da última equação podemos escrever,

$$f(\lambda x + (1 - \lambda)y) = \sup_{x^* \in \mathbb{R}^n} \{ \langle \lambda x + (1 - \lambda)y, x^* \rangle_{\mathbb{R}^n} - f^*(x^*) \}$$

$$= \sup_{x^* \in \mathbb{R}^n} \{ \langle \lambda x + (1 - \lambda)y, x^* \rangle_{\mathbb{R}^n}$$

$$-\lambda f^*(x^*) - (1 - \lambda)f^*(x^*) \}$$

$$= \sup_{x^* \in \mathbb{R}^n} \{ \lambda (\langle x, x^* \rangle_{\mathbb{R}^n} - f^*(x^*))$$

$$+ (1 - \lambda)(\langle y, x^* \rangle_{\mathbb{R}^n} - f^*(x^*)) \}$$

$$\leq \lambda \sup_{x^* \in \mathbb{R}^n} \{ \langle x, x^* \rangle_{\mathbb{R}^n} - f^*(x^*) \}$$

$$+ (1 - \lambda) \sup_{x^* \in \mathbb{R}^n} \{ \langle y, x^* \rangle_{\mathbb{R}^n} - f^*(x^*) \}$$

$$= \lambda f(x) + (1 - \lambda) f(y). \tag{23}$$

Sendo $x, y \in \mathbb{R}^n$ e $\lambda \in [0, 1]$ arbitrários, conclui-se que f é convexa.

A prova está completa.

Definição 3.4 (Funcional convexo). Seja V um espaço de Banach e seja $J:D\subset V\to \mathbb{R}$ um funcional. Dizemos que J é convexo quando

$$J(y+v) - J(y) \ge \delta J(y;v), \ \forall v \in V_a(y),$$

onde

$$V_a(y) = \{ v \in V : y + v \in D \}.$$

Teorema 3.5. Seja V um espaço de Banach e seja $J:D\subset U$ um funcional convexo. Assim se $y_0\in D$ é tal que

$$\delta J(y_0; v) = 0, \ \forall v \in V_a(y_0),$$

 $ent ilde{a}o$

$$J(y_0) \le J(y), \ \forall y \in D,$$

isto \acute{e} , y_0 minimiza J em D.

Prova. Escolha $y \in D$. Seja $v = y - y_0$. Logo $y = y_0 + v \in D$ de modo que

$$v \in V_a(y_0)$$
.

Da hipótese,

$$\delta J(y_0; v) = 0,$$

e sendo J convexo, obtemos

$$J(y) - J(y_0) = J(y_0 + v) - J(y_0) \ge \delta J(y_0; v) = 0,$$

ou seja,

$$J(y_0) \le J(y), \ \forall y \in D.$$

A prova está completa.

Exemplo 3.6. Vejamos um exemplo de funcional convexo.

Seja $V = C^1([a,b])$ e $J: D \subset V \to \mathbb{R}$ definido por

$$J(y) = \int_a^b (y'(x))^2 dx,$$

onde

$$D = \{ y \in V : y(a) = 1 \ e \ y(b) = 5 \}.$$

Mostraremos que J é convexo.

De fato, sejam $y \in D$ e $v \in V_a$ onde

$$V_a = \{ v \in V : v(a) = v(b) = 0 \}.$$

Logo,

$$J(y+v) - J(y) = \int_{a}^{b} (y'(x) + v'(x))^{2} dx - \int_{a}^{b} y'(x)^{2} dx$$

$$= \int_{a}^{b} 2y'(x)v'(x) dx + \int_{a}^{b} v'(x)^{2} dx$$

$$\geq \int_{a}^{b} 2y'(x)v'(x) dx$$

$$= \delta J(y; v). \tag{24}$$

Portanto, J é convexo.

3.1 Condições suficientes de otimalidade no caso convexo

Começaremos essa sub-seção com uma observação.

Observação 3.7. Consideremos agora uma função $f:[a,b]\times\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ onde $f\in C^1([a,b]\times\mathbb{R}\times\mathbb{R})$. Assim, para $V=C^1([a,b])$, defina $F:V\to\mathbb{R}$ por

$$F(y) = \int_a^b f(x, y(x), y'(x)) dx.$$

Sejam $y, v \in V$. Já mostramos que

$$\delta F(y;v) = \int_a^b (f_y(x,y(x),y'(x))v(x) + f_z(x,y(x),y'(x))v'(x)) dx.$$

Suponha que f seja convexa em (y, z) para todo $x \in [a, b]$, o que denotaremos por $f(\underline{x}, y, z)$ ser convexa.

Da última seção, temos que

$$f(x, y + v, y' + v') - f(x, y, y') \ge \langle \underline{\nabla} f(x, y, y'), (v, v') \rangle_{\mathbb{R}^2}$$

$$= f_y(x, y, y')v + f_z(x, y, y')v', \ \forall x \in [a, b]$$
(25)

onde denotamos

$$\underline{\nabla}f(x,y,y') = (f_y(x,y,y'), f_z(x,y,y')).$$

Portanto,

$$F(y+v) - F(y) = \int_{a}^{b} [f(x,y+v,y'+v') - f(x,y,y')] dx$$

$$\geq \int_{a}^{b} [f_{y}(x,y,y')v + f_{z}(x,y,y')v'] dx$$

$$= \delta J(y;v). \tag{26}$$

Logo, F é convexo.

Teorema 3.8. Seja $V = C^1([a,b])$. Seja $f \in C^2([a,b] \times \mathbb{R} \times \mathbb{R})$ onde $f(\underline{x},y,z)$ é convexa. Defina $D = \{y \in V : y(a) = a_1 \ e \ y(b) = b_1\},$

onde $a_1, b_1 \in \mathbb{R}$.

Defina $tamb\'{e}m \ F: D \to \mathbb{R}$ por

$$F(y) = \int_a^b f(x, y(x), y'(x)) dx.$$

Sob tais hipóteses, F é convexo e se $y_0 \in D$ é tal que

$$\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))] = f_y(x, y_0(x), y_0'(x)), \ \forall x \in [a, b],$$

então y_0 minimiza F em D, isto \acute{e} ,

$$F(y_0) \le F(y), \ \forall y \in D.$$

Prova. Que F é convexo resulta da última observação. Suponha agora que $y_0 \in D$ é tal que

$$\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))] = f_y(x, y_0(x), y_0'(x)), \ \forall x \in [a, b].$$

Seja $v \in V_a = \{v \in V : v(a) = v(b) = 0\}$. Assim,

$$\delta F(y_0; v) = \int_a^b (f_y(x, y_0(x), y_0'(x))v(x) + f_z(x, y_0(x), y_0'(x))v'(x)) dx$$

$$= \int_a^b \left(\frac{d}{dx}(f_z(x, y_0(x), y_0'(x))v(x)) + f_z(x, y_0(x), y_0'(x))v'(x)\right) dx$$

$$= \int_a^b \left(\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))v(x)]\right) dx$$

$$= [f_z(x, y_0(x), y_0'(x))v(x)]_a^b$$

$$= f_z(b, y_0(b), y_0'(b))v(b) - f_z(a, y_0(a), y_0'(a))v(a)$$

$$= 0, \forall v \in V_a. \tag{27}$$

Sendo F convexo, disto e do Teorema 3.5, conclui-se que y_0 minimiza J em D.

Exemplo 3.9. Seja $V = C^{1}([a, b]) e$

$$D = \{ y \in V : y(0) = 0 \ e \ y(1) = 1 \}.$$

Defina $F: D \to \mathbb{R}$ por

$$F(y) = \int_0^1 [y'(x)^2 + 5y(x)] \, dx, \ \forall y \in D.$$

Observe que

$$F(y) = \int_0^1 f(x, y, y') dx$$

onde

$$f(x, y, z) = z^2 + 5y,$$

isto é $f(\underline{x}, y, z)$ é convexa.

Assim, do último teorema F é convexo e se $y_0 \in D$ é tal que

$$\frac{d}{dx}f_z(x, y_0(x), y_0'(x)) = f_y(x, y_0(x), y_0'(x)), \ \forall x \in [a, b],$$

então y_0 minimiza F em D.

Considerando que $f_z(x, y, z) = 2z$ e $f_y(x, y, z) = 5$ da última equação deve-se ter

$$\frac{d}{dx}(2y_0'(x)) = 5,$$

ou seja

 $y_0''(x) = \frac{5}{2}, \ \forall x \in [0, 1].$

Logo,

 $y_0'(x) = \frac{5}{2}x + c,$

e

$$y_0(x) = \frac{5}{4}x^2 + cx + d.$$

Disto e de $y_0(0) = 0$, obtemos d = 0. E disto e de $y_0(1) = 1$, obtemos,

$$\frac{5}{4} + c = 1,$$

de modo que

$$c = -1/4$$

Portanto

$$y_0(x) = \frac{5x^2}{4} - \frac{x}{4}$$

minimiza F em D

O exemplo está completo.

4 Condições naturais, problemas com extremos livres

Começamos esta seção com o seguinte teorema.

Teorema 4.1. Seja $V=C^1([a,b]).$ Seja $f\in C^2([a,b]\times \mathbb{R}\times \mathbb{R})$ onde $f(\underline{x},y,z)$ é convexa. Defina

$$D = \{ y \in V : y(a) = a_1 \},\$$

onde $a_1 \in \mathbb{R}$.

Defina $tamb\'{e}m \ F:D\to \mathbb{R}$ por

$$F(y) = \int_a^b f(x, y(x), y'(x)) dx.$$

Sob tais hipóteses, F é convexo e se $y_0 \in D$ é tal que

$$\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))] = f_y(x, y_0(x), y_0'(x)), \ \forall x \in [a, b]$$

e

$$f_z(b, y_0(b), y_0'(b)) = 0$$

então y_0 minimiza F em D, isto \acute{e} ,

$$F(y_0) \le F(y), \ \forall y \in D.$$

Prova. Que F é convexo resulta da última observação. Suponha agora que $y_0 \in D$ é tal que

$$\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))] = f_y(x, y_0(x), y_0'(x)), \ \forall x \in [a, b]$$

e

$$f_z(b, y_0(b), y_0'(b)) = 0.$$

Seja $v \in V_a = \{v \in V : v(a) = 0\}$. Assim,

$$\delta F(y_0; v) = \int_a^b (f_y(x, y_0(x), y_0'(x))v(x) + f_z(x, y_0(x), y_0'(x))v'(x)) dx$$

$$= \int_a^b \left(\frac{d}{dx}(f_z(x, y_0(x), y_0'(x))v(x)) + f_z(x, y_0(x), y_0'(x))v'(x)\right) dx$$

$$= \int_a^b \left(\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))v(x)]\right) dx$$

$$= [f_z(x, y_0(x), y_0'(x))v(x)]_a^b$$

$$= f_z(b, y_0(b), y_0'(b))v(b) - f_z(a, y_0(a), y_0'(a))v(a)$$

$$= 0v(b) - f_z(a, y_0(a), y_0'(b))0$$

$$= 0, \forall v \in V_a. \tag{28}$$

Sendo F convexo, disto e do Teorema 3.5, conclui-se que y_0 minimiza J em D.

Observação 4.2. Sobre o último teorema, a condição $y(a) = a_1$ é dita ser uma condição de contorno essencial. Por outro lado, a condição $f_z(b, y_0(b), y_0'(b)) = 0$ é dita ser uma condição de contorno natural.

Teorema 4.3. Seja $V=C^1([a,b])$. Seja $f\in C^2([a,b]\times \mathbb{R}\times \mathbb{R})$ onde $f(\underline{x},y,z)$ é convexa. Defina

$$D = V$$

 $e F: D \to \mathbb{R} \ por$

$$F(y) = \int_a^b f(x, y(x), y'(x)) \ dx.$$

Sob tais hipóteses, F é convexo e se $y_0 \in D$ é tal que

$$\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))] = f_y(x, y_0(x), y_0'(x)), \ \forall x \in [a, b],$$

$$f_z(a, y_0(a), y_0'(a)) = 0$$

e

$$f_z(b, y_0(b), y_0'(b)) = 0,$$

então y_0 minimiza F em D, isto \acute{e} ,

$$F(y_0) \le F(y), \ \forall y \in D.$$

Prova. Que F é convexo resulta do exposto no início da última seção. Suponha agora que $y_0 \in D$ é tal que

$$\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))] = f_y(x, y_0(x), y_0'(x)), \ \forall x \in [a, b]$$

е

$$f_z(a, y_0(a), y_0'(a)) = f_z(b, y_0(b), y_0'(b)) = 0.$$

Seja $v \in D = V$ Assim,

$$\delta F(y_0; v) = \int_a^b (f_y(x, y_0(x), y_0'(x))v(x) + f_z(x, y_0(x), y_0'(x))v'(x)) dx$$

$$= \int_a^b \left(\frac{d}{dx}(f_z(x, y_0(x), y_0'(x))v(x)) + f_z(x, y_0(x), y_0'(x))v'(x)\right) dx$$

$$= \int_a^b \left(\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))v(x)]\right) dx$$

$$= [f_z(x, y_0(x), y_0'(x))v(x)]_a^b$$

$$= f_z(b, y_0(b), y_0'(b))v(b) - f_z(a, y_0(a), y_0'(a))v(a)$$

$$= 0v(b) - 0v(a)$$

$$= 0, \forall v \in D. \tag{29}$$

Sendo F convexo, disto e do Teorema 3.5, conclui-se que y_0 minimiza J em D=V.

Observação 4.4. Sobre o último teorema, as condições $f_z(a, y_0(a), y'_0(a)) = f_z(b, y_0(b), y'_0(b)) = 0$ são ditas condições de contorno naturais para o problema com extremos livres.

Exercício 4.5. Mostre que F é convexo e obtenha o seu ponto de mínimo em D, D_1 e D_2 , onde

$$F(y) = \int_{1}^{2} \frac{y'(x)^{2}}{x} dx,$$

e onde

1.

$$D = \{ y \in C^1([1,2]) : y(1) = 0, y(1) = 3 \},\$$

2.

$$D_1 = \{ y \in C^1([1,2]) : y(2) = 3 \}.$$

3.

$$D_2 = C^1([1,2]).$$

Solução: Observe que

$$F(y) = \int_{1}^{2} f(x, y(x), y'(x)) \ dx,$$

onde $f(x, y, z) = z^2/x$, de modo que $f(\underline{x}, y, z)$ é convexa.

Potanto, $F \notin convexo$. Sejam $y, v \in V$, assim,

$$\delta F(y; v) = \int_{1}^{2} [f_{y}(x, y, y')v + f_{z}(x, y, y')v'] dx,$$

onde

$$f_y(x, y, z) = 0$$

e

$$f_z(x, y, z) = 2z/x.$$

Portanto,

$$\delta F(y; v) = \int_{1}^{2} 2x^{-1}y'(x)v'(x) \ dx.$$

Para D, do Teorema 6.1, condições suficientes de otimalidade são dadas por,

$$\begin{cases} \frac{d}{dx}[f_z(x,y_0(x),y_0'(x))] = f_y(x,y_0(x),y_0'(x)) \ em \ [1,2], \\ y_0(1) = 0, \\ y_0(2) = 3. \end{cases}$$
(30)

Asim, deve-se ter

$$\frac{d}{dx}[2x^{-1}y_0'(x)] = 0,$$

ou seja

$$2x^{-1}y_0'(x) = c$$

 $isto~\acute{e}$

$$y_0'(x) = \frac{cx}{2},$$

e portanto,

$$y_0(x) = \frac{cx^2}{4} + d.$$

Por outro lado, deve-se também ter

$$y_0(1) = \frac{c}{4} + d = 0,$$

e

$$y_0(2) = c + d = 3.$$

Logo, c = 4 e d = -1 de modo que $y_0(x) = x^2 - 1$ minimiza F em D.

Para D_1 , do Teorema 4.1, condições suficientes de otimalidade são dadas por,

$$\begin{cases}
\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))] = f_y(x, y_0(x), y_0'(x)) & em [1, 2], \\
y_0(2) = 3, \\
f_z(1, y_0(1), y_0'(1)) = 0.
\end{cases} (31)$$

Assim, deve-se ter

$$y_0(x) = \frac{cx^2}{4} + d.$$

Por outro lado, deve-se também ter

$$y_0(2) = c + d = 3,$$

e

$$f_z(1, y_0(1), y_0'(1)) = 2(1)^{-1}y_0'(1) = 0,$$

isto \acute{e}

$$y_0'(1) = c/2 = 0$$
,

e assim c = 0 e d = 3 de modo que $y_0(x) = 3$ minimiza F em D_1 .

Para D_2 , do Teorema 4.3, condições suficientes de otimalidade são dadas por,

$$\begin{cases}
\frac{d}{dx}[f_z(x, y_0(x), y_0'(x))] = f_y(x, y_0(x), y_0'(x)) & em [1, 2], \\
f_z(1, y_0(1), y_0'(1)) = 0 \\
f_z(2, y_0(2), y_0'(2)) = 0.
\end{cases}$$
(32)

Assim, deve-se ter

$$y_0(x) = \frac{cx^2}{4} + d.$$

Por outro lado, deve-se também ter

$$f_z(1, y_0(1), y_0'(1)) = 2(1)^{-1}y_0'(1) = 0,$$

$$f_z(2, y_0(2), y_0'(2)) = 2(2)^{-1}y_0'(2) = 0,$$

isto é

$$y_0'(1) = y_0'(2) = 0,$$

onde $y_0'(x) = cx/2$.

Logo c = 0, de modo que $y_0(x) = d$, $\forall d \in \mathbb{R}$ minimiza F em D_2 .

Exercício 4.6. Sejam $V = C^2([0,1])$ $e J : D \subset V \to \mathbb{R}$ onde

$$J(y) = \frac{EI}{2} \int_0^1 y''(x)^2 dx - \int_0^1 P(x)y(x) dx,$$

representa a energia de uma viga reta de seção transversal retangular com momento de inércia I. Aqui y(x) denota o deslocamento vertical no ponto $x \in [0,1]$ devido à ação da distribuição vertical de cargas $P(x) = \alpha x$, $\forall x \in [0,1]$, onde E > 0 é o módulo de Young e $\alpha > 0$ é uma contante real.

E tamb'em

$$D = \{ y \in V \ : \ y(0) = y(1) = 0 \}.$$

Sob tais hipóteses,

1. prove que F é convexo.

2. Prove que se $y_0 \in D$ é tal que

$$\begin{cases}
EI_{\frac{d^4}{dx^4}}[y_0(x)] = P(x), \ \forall x \in [0, 1], \\
y_0''(0) = 0, \\
y_0''(1) = 0,
\end{cases}$$
(33)

então y_0 minimiza F em D.

3. Obtenha a solução ótima $y_0 \in D$.

Solução:

Sejam
$$y \in D$$
 e $v \in V_a = \{v \in V : v(0) = v(1) = 0\}$.
Relambramos que

$$\delta J(y;v) = \lim_{\varepsilon \to 0} \frac{F(y+\varepsilon v) - F(y)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \frac{(EI/2) \int_0^1 [(y'' + \varepsilon v'')^2 - (y'')^2] dx - \int_0^1 (P(y+\varepsilon v) - P) dx}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \left(\int_0^1 (EIy''v'' - Pv) dx + \frac{\varepsilon EI}{2} \int_0^1 (v'')^2 dx \right)$$

$$= \int_0^1 (EIy''v'' - Pv) dx. \tag{34}$$

Por outro lado,

$$J(y+v) - J(v) = (EI/2) \int_0^1 [(y'' + v'')^2 - (y'')^2] dx - \int_0^1 (P(y+v) - P) dx$$

$$= \int_0^1 (EIy''v'' - Pv) dx + \frac{EI}{2} \int_0^1 (v'')^2 dx$$

$$\geq \int_0^1 (EIy''v'' - Pv) dx$$

$$= \delta J(y; v). \tag{35}$$

Sendo $y \in D$ e $v \in V_a$ arbitrários conclui-se que J é convexo.

Assuma que $y_0 \in D$ é tal que

$$\begin{cases}
EI_{\frac{d^4}{dx^4}}[y_0(x)] = P(x), \ \forall x \in [0, 1], \\
y_0''(0) = 0, \\
y_0''(1) = 0,
\end{cases}$$
(36)

Logo,

$$\delta J(y;v) = \int_{0}^{1} (EIy''v'' - Pv) dx
= \int_{0}^{1} (EIy''v'' - EIy^{(4)}v) dx
= \int_{0}^{1} (EIy''v'' + EIy'''v') dx - [EIy'''(x)v(x)]_{a}^{b}
= \int_{0}^{1} (EIy''v'' + EIy'''v') dx
= \int_{0}^{1} (EIy''v'' - EIy''v'') dx + [EIy''(x)v'(x)]_{a}^{b}
= 0$$
(37)

Resumindo

$$\delta J(y_0; v) = 0, \ \forall v \in V_a$$

portanto, sendo J convexo, conclui-se que y_0 minimiza J em D. Para obter a solução da EDO em questão, denotaremos,

$$y_0(x) = y_p(x) + y_h(x),$$

onde uma solução particular y_p e dada por $y_p(x) = \frac{\alpha x^5}{120EI}$, onde claramente

$$EI\frac{d^4}{dx^4}[y_p(x)] = P(x), \forall x \in [0, 1].$$

A equação homogênea associada

$$EI\frac{d^4}{dx^4}[y_h(x)] = 0,$$

tem a seguinte solução geral

$$y_h(x) = ax^3 + bx^2 + cx + d,$$

e assim,

$$y_0(x) = y_p(x) + y_h(x) = \frac{\alpha x^5}{120EI} + ax^3 + bx^2 + cx + d.$$

De $y_0(0) = 0$, obtemos d = 0. Observe que $y_0'(x) = \frac{5\alpha}{120EI}x^4 + 3ax^2 + 2bx + c$ e $y_0''(x) = \frac{\alpha}{6EI}x^3 + 6ax + 2b$. Disto e de $y_0''(0) = 0$, obtemos b = 0.

De $y_0''(1) = 0$, obtemos,

$$\frac{\alpha}{6EI}1^3 + 6a \ 1 = 0,$$

e assim

$$a = -\frac{\alpha}{36EI}.$$

De tais resultados e de $y_0(1) = 0$, obtemos,

$$\frac{\alpha}{120EI} + a \, 1^3 + c \, 1 = \frac{\alpha}{120EI} - \frac{\alpha}{36EI} + c = 0,$$

ou seja,

$$c = \frac{\alpha}{EI} \left(\frac{1}{36} - \frac{1}{120} \right) = \frac{7\alpha}{360EI}.$$

Finalmente, obtivemos então que

$$y_0(x) = \frac{\alpha x^5}{120EI} - \frac{\alpha x^3}{36EI} + \frac{7\alpha x}{360EI}$$

 $minimiza \ J \ em \ D.$

A solução está completa.

5 O lema de du Bois-Reymond

Lema 5.1 (du Bois-Reymond). Suponha que $h \in C([a,b])$ e

$$\int_{a}^{b} h(x)v'(x) \ dx = 0, \ \forall v \in V_{a},$$

onde

$$V_a = \{ v \in C^1([a, b]) : v(a) = v(b) = 0 \}.$$

Sob tais hipóteses, existe $c \in \mathbb{R}$ tal que

$$h(x) = c, \ \forall x \in [a, b].$$

Prova. Seja

$$c = \frac{\int_a^b h(t) \ dt}{b - a}.$$

Defina

$$v(x) = \int_{a}^{x} (h(t) - c) dt.$$

Assim

$$v'(x) = h(x) - c, \ \forall x \in [a, b],$$

de modo que $v \in C^1([a, b])$.

Além disso,

$$v(a) = \int_{a}^{a} (h(t) - c) dt = 0,$$

e

$$v(b) = \int_{a}^{b} (h(t) - c) dt = \int_{a}^{b} h(t) dt - c(b - a) = c(b - a) - c(b - a) = 0,$$

e portanto $v \in V_a$.

Observe que, disto e da hipótese,

$$0 \leq \int_{a}^{b} (h(t) - c)^{2} dt$$

$$= \int_{a}^{b} (h(t) - c)(h(t) - c) dt$$

$$= \int_{a}^{b} (h(t) - c)v'(t) dt$$

$$= \int_{a}^{b} h(t)v'(t) dt - c \int_{a}^{b} v'(t) dt$$

$$= 0 - c(v(b) - v(a))$$

$$= 0.$$
(38)

Assim,

$$\int_{a}^{b} (h(t) - c)^{2} dt = 0.$$

Sendo h contínua, conclui-se que

$$h(x) - c = 0, \ \forall x \in [a, b],$$

isto é

$$h(x) = c, \ \forall x \in [a, b].$$

A prova está completa.

Teorema 5.2. Sejam $g, h \in C([a, b])$ e suponha que

$$\int_a^b (g(x)v(x) + h(x)v'(x)) \ dx = 0, \ \forall v \in V_a,$$

onde

$$V_a = \{ v \in C^1([a, b]) : v(a) = v(b) = 0 \}.$$

Sob tais hipóteses, $h \in C^1([a,b])$ e

$$h'(x) = g(x), \ \forall x \in [a, b].$$

Prova. Defina

$$G(x) = \int_{a}^{x} g(t) dt.$$

Logo,

$$G'(x) = g(x), \ \forall x \in [a, b].$$

Seja $v \in V_a$. Das hipóteses,

$$0 = \int_{a}^{b} [g(x)v(x) + h(x)v'(x)] dx$$

$$= \int_{a}^{b} [-G(x)v'(x) + h(x)v'(x)] dx + [G(x)v(x)]_{a}^{b}$$

$$= \int_{a}^{b} [-G(x) + h(x)]v'(x) dx, \ \forall v \in V_{a}.$$
(39)

Disto e do du Bois - Reymond lema, conclui-se que

$$-G(x) + h(x) = c, \forall x \in [a, b],$$

para algum $c \in \mathbb{R}$.

Logo

$$g(x) = G'(x) = h'(x), \ \forall x \in [a, b],$$

de modo que

$$g \in C^1([a,b]).$$

A prova está completa.

Lema 5.3 (Lema fundamental do cálculo de variações para uma dimensão). Seja $g \in C([a,b]) = V$. Assuma que

$$\int_{a}^{b} g(x)v(x) \ dx = 0, \ \forall v \in V_{a},$$

onde novamente,

$$V_a = \{ v \in C^1([a, b]) : v(a) = v(b) = 0 \}.$$

Sob tais hípóteses,

$$g(x) = 0, \ \forall x \in [a, b].$$

Prova. Basta aplicar o último theorema com $h \equiv 0$.

Exercício 5.4. Seja $h \in C([a,b])$.

Suponha que

$$\int_{a}^{b} h(x)w(x) \ dx = 0, \ \forall w \in D_0,$$

onde

$$D_0 = \left\{ w \in C([a, b]) : \int_a^b w(x) \, dx = 0 \right\}.$$

Mostre que existe $c \in \mathbb{R}$ tal que

$$h(x) = c, \ \forall x \in [a, b].$$

Solução: Defina, conforme acima,

$$V_a = \{ v \in C^1([a, b]) : v(a) = v(b) = 0 \}.$$

Seja $v \in V_a$.

Seja $w \in C([a,b])$ tal que

$$w(x) = v'(x), \ \forall x \in [a, b].$$

Observe que

$$\int_{a}^{b} w(x) \ dx = \int_{a}^{b} v'(x) \ dx = [v(x)]_{a}^{b} = v(b) - v(a) = 0.$$

Da hipótese $\int_a^b h(x)w(x) dx = 0$, e assim

$$\int_a^b h(x)v'(x) \ dx = 0.$$

Sendo $v \in V_a$ arbitrário, disto e do lema de du Bois-Reymond, existe $c \in \mathbb{R}$ tal que

$$h(x) = c, \ \forall x \in [a, b].$$

A solução está completa.

6 Cálculo de variações, o caso de funções escalares no \mathbb{R}^n

Seja $\Omega \subset \mathbb{R}^n$ um conjunto aberto, limitado, conexo e com uma fronteira $\partial\Omega = S$ regular (Lipschitziana) (o que definiremos como Ω ser de classe \hat{C}^1). Seja $V = C^1(\overline{\Omega})$ e seja $F : D \subset V \to \mathbb{R}$, tal que

$$F(y) = \int_{\Omega} f(x, y(x), \nabla y(x)) \, dx, \ \forall y \in V,$$

onde denotamos

$$dx = dx_1 \cdots dx_n.$$

Assuma que $f: \overline{\Omega} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ é de classe C^2 . Suponha também que $f(x, y, \mathbf{z})$ é convexa em $(y, \mathbf{z}), \forall x \in \overline{\Omega}$, o que denotaremos por $f(\underline{x}, y, \mathbf{z})$ ser convexa.

Observe que para $y \in D$ e $v \in V_a$, onde

$$D = \{ y \in V : y = y_1 \text{ em } \partial \Omega \},\$$

e

$$V_a = \{ v \in V : v = 0 \text{ em } \partial \Omega \},$$

onde

$$y_1 \in C^1(\overline{\Omega}),$$

temos que

$$\delta F(y;v) = \frac{\partial}{\partial \varepsilon} F(y + \varepsilon v)|_{\varepsilon = 0},$$

onde

$$F(y + \varepsilon v) = \int_{\Omega} f(x, y + \varepsilon v, \nabla y + \varepsilon \nabla v) \ dx.$$

Portanto,

$$\frac{\partial}{\partial \varepsilon} F(y + \varepsilon v) = \int_{\Omega} \left(\frac{\partial}{\partial \varepsilon} (f(x, y + \varepsilon v, \nabla y + \varepsilon \nabla v)) \right) dx$$

$$= \int_{\Omega} [f_y(x, y + \varepsilon v, \nabla y + \varepsilon \nabla v)v + \sum_{i=1}^n f_{z_i}(x, y + \varepsilon v, \nabla y + \varepsilon \nabla v)v_{x_i}] dx. \quad (40)$$

Assim,

$$\delta F(y;v) = \frac{\partial}{\partial \varepsilon} F(y+\varepsilon v)|_{\varepsilon=0}$$

$$= \int_{\Omega} [f_y(x,y,\nabla y)v + \sum_{i=1}^n f_{z_i}(x,y,\nabla y)v_{x_i}] dx. \tag{41}$$

Por outro lado, sendo $f(\underline{x}, y, \mathbf{z})$ convexa, temos que

$$F(y+v) - F(y) = \int_{\Omega} [f(x,y+v,\nabla y + \nabla v) - f(x,y,\nabla y)] dx$$

$$\geq \langle \underline{\nabla} f(x,y,\nabla y), (v,\nabla v) \rangle_{R^{n+1}}$$

$$= \int_{\Omega} [f_y(x,y,\nabla y)v + \sum_{i=1}^n f_{z_i}(x,y,\nabla y)v_{x_i}] dx$$

$$= \delta F(y;v). \tag{42}$$

Sendo $y \in D$ e $v \in V_a$ arbitrários, podemos concluir que F é convexo. Aqui denotamos,

$$\underline{\nabla}f(x,y,\nabla y) = (f_y(x,y,\nabla y), f_{z_1}(x,y,\nabla y), \cdots, f_{z_n}(x,y,\nabla y)).$$

Teorema 6.1. Sejam $\Omega \subset \mathbb{R}^n$ um conjunto de classe \hat{C}^1 e $V = C^1(\overline{\Omega})$. Seja $f \in C^2(\overline{\Omega} \times \mathbb{R} \times \mathbb{R})$ onde $f(\underline{x}, y, \mathbf{z})$ é convexa. Defina

$$D = \{ y \in V : y = y_1 \ em \ \partial \Omega \},\$$

onde $y_1 \in C^1(\overline{\Omega})$

Defina também $F: D \to \mathbb{R}$ por

$$F(y) = \int_{\Omega} f(x, y(x), \nabla y(x)) \ dx.$$

Sob tais hipóteses, F é convexo e se $y_0 \in D$ é tal que

$$\sum_{i=1}^{n} \frac{d}{dx_i} [f_{z_i}(x, y_0(x), \nabla y_0(x))] = f_y(x, y_0(x), \nabla y_0(x)), \ \forall x \in \overline{\Omega},$$

então y_0 minimiza F em D, isto \acute{e} ,

$$F(y_0) \le F(y), \ \forall y \in D.$$

Prova. Que F é convexo resulta da última observação. Suponha agora que $y_0 \in D$ é tal que

$$\sum_{i=1}^{n} \frac{d}{dx_i} [f_{z_i}(x, y_0(x), \nabla y_0(x))] = f_y(x, y_0(x), \nabla y_0(x)), \ \forall x \in \overline{\Omega},$$

Seja $v \in V_a = \{v \in V : v = 0 \text{ em } \partial\Omega\}$. Assim,

$$\delta F(y_0; v) = \int_{\Omega} (f_y(x, y_0(x), \nabla y_0(x))v(x) + \sum_{i=1}^n f_{z_i}(x, y_0(x), \nabla y_0(x))v_{x_i}(x)) dx$$

$$= \int_{\Omega} \left(\sum_{i=1}^n \frac{d}{dx_i} (f_{z_i}(x, y_0(x), \nabla y_0(x)))v(x) + \sum_{i=1}^n f_{z_i}(x, y_0(x), \nabla y_0(x))v_{x_i}(x) \right) dx$$

$$= \int_{\Omega} \left(-\sum_{i=1}^n f_{z_i}(x, y_0(x), \nabla y_0(x))v_{x_i}(x) + \sum_{i=1}^n f_{z_i}(x, y_0(x), \nabla y_0(x))v_{x_i}(x) \right) dx$$

$$+ \int_{\partial\Omega} \sum_{i=1}^n f_{z_i}(x, y_0(x), \nabla y_0(x)) n_i v(x) dS$$

$$= 0, \ \forall v \in V_a, \tag{43}$$

onde $\mathbf{n} = (n_1, \dots, n_n)$ denota o campo normal unitário exterior à $\partial \Omega = S$. Sendo F convexo, disto e do Teorema 3.5, conclui-se que y_0 minimiza F em D.

7 A segunda variação à Gâteaux

Definição 7.1. Seja V um espaço de Banach. Seja $F: D \subset V \to \mathbb{R}$ um funcional tal que $\delta F(y; v)$ existe em $B_r(y_0)$, para algum $y_0 \in D$, r > 0 e para todo $v \in V_a$.

Sejam $y \in B_r(y_0)$ e $v, w \in V_a$. Definimos a segunda variação à Gâteaux de F no ponto y nas direções v e w, denotada por $\delta^2 F(y; v, w)$, como

$$\delta^2 F(y; v, w) = \lim_{\varepsilon \to 0} \frac{\delta F(y + \varepsilon w; v) - \delta F(y; v)}{\varepsilon},$$

quando tal limite existe.

Observação 7.2. Observe que no contexto da última definição, quando os limites em questão existem, temos que

$$\delta F(y; v) = \frac{\partial}{\partial \varepsilon} F(y + \varepsilon v)|_{\varepsilon = 0},$$

e

$$\delta^2 F(y; v, v) = \frac{\partial^2}{\partial \varepsilon^2} F(y + \varepsilon v)|_{\varepsilon = 0}, \forall v \in V_a.$$

Assim, por exemplo, para $V=C^1(\overline{\Omega})$ onde $\Omega\subset\mathbb{R}^n$ é de classe \hat{C}^1 e $F:V\to\mathbb{R}$ é dada por

$$F(y) = \int_{\Omega} f(x, y, \nabla y) \ dx$$

e onde

$$f \in C^2(\overline{\Omega} \times \mathbb{R} \times \mathbb{R}^n),$$

 $para y, v \in V, temos que$

$$\delta^2 F(y; v, v) = \frac{\partial^2}{\partial \varepsilon^2} F(y + \varepsilon v)|_{\varepsilon = 0},$$

onde

$$\frac{\partial^{2}}{\partial \varepsilon^{2}} F(y + \varepsilon v) = \frac{\partial^{2}}{\partial \varepsilon^{2}} \left(\int_{\Omega} f(x, y + \varepsilon v, \nabla y + \varepsilon \nabla v) \, dx \right)
= \int_{\Omega} \frac{\partial^{2}}{\partial \varepsilon^{2}} [f(x, y + \varepsilon v, \nabla y + \varepsilon \nabla v)] \, dx
= \int_{\Omega} \left[f_{yy}(x, y + \varepsilon v, \nabla y + \varepsilon \nabla v) v^{2} + \sum_{i=1}^{n} 2 f_{yz_{i}}(x, y + \varepsilon v, \nabla y + \varepsilon \nabla v) v v_{x_{i}} \right]
+ \sum_{i=1}^{n} \sum_{j=1}^{n} f_{z_{i}z_{j}}(x, y + \varepsilon v, \nabla y + \varepsilon \nabla v) v_{x_{i}} v_{x_{j}} dx$$
(44)

de modo que

$$\delta^{2}F(y;v,v) = \frac{\partial^{2}}{\partial\varepsilon^{2}}F(y+\varepsilon v)|_{\varepsilon=0}$$

$$= \int_{\Omega} \left[f_{yy}(x,y,\nabla y)v^{2} + \sum_{i=1}^{n} 2f_{yz_{i}}(x,y,\nabla y)vv_{x_{i}} + \sum_{i=1}^{n} \sum_{j=1}^{n} f_{z_{i}z_{j}}(x,y,\nabla y)v_{x_{i}}v_{x_{j}} \right] dx.$$

$$(45)$$

8 A condição necessária de primeira ordem para um mínimo local

Definição 8.1. Seja V um espaço de Banach. Seja $F:D\subset V\to\mathbb{R}$ um funcional. Dizemos que $y_0\in D$ é um ponto de mínimo local para F em D, se existe $\delta>0$ tal que

$$F(y) \ge F(y_0), \ \forall y \in B_{\delta}(y_0) \cap D.$$

Teorema 8.2 (condição necessária de primeira ordem). Seja V um espaço de Banach. Seja $F:D\subset V\to\mathbb{R}$ um funcional. Suponha que $y_0\in D$ é um ponto de mínimo local para F em D. Seja $v\in V_a$ e assuma que $\delta F(y_0;v)$ existe.

Sob tais hipóteses,

$$\delta F(y_0; v) = 0.$$

Prova. Defina $\phi(\varepsilon) = F(y_0 + \varepsilon v)$, a qual da hipótese de existência de $\delta F(y_0; v)$, está bem definida para todo ε suficientemente pequeno.

Também da hipótese, $\varepsilon=0$ é um ponto de mínimo local para função diferenciável em 0, ϕ . Assim da condição usual do cálculo de uma variável, devemos ter

$$\phi'(0) = 0,$$

e portanto,

$$\phi'(0) = \delta F(y_0; v) = 0.$$

A prova está completa.

Teorema 8.3 (condição suficiente de segunda ordem). Seja V um espaço de Banach. Seja $F:D \subset V \to \mathbb{R}$ um funcional. Suponha que $y_0 \in D$ é tal que $\delta F(y_0;v)=0$ para todo $v \in V_a$ e que existe $\delta > 0$ tal que

$$\delta^2 F(y; v, v) \ge 0, \ \forall y \in B_{\delta}(y_0) \ e \ v \in V_a.$$

Sob tais hipóteses $y_0 \in D$ é um ponto de mínimo local para F, isto é

$$F(y) \ge F(y_0), \ \forall y \in B_r(y_0) \cap D.$$

Prova. Seja $y \in B_{\delta}(y_0) \cap D$. Defina $v = y - y_0 \in V_a$.

Defina também $\phi:[0,1]\to\mathbb{R}$ como

$$\phi(\varepsilon) = F(y_0 + \varepsilon v).$$

Do teorema de Taylor para uma variável, existe $t_0 \in (0,1)$ tal que

$$\phi(1) = \phi(0) + \frac{\phi'(0)}{1!}(1-0) + \frac{1}{2!}\phi''(t_0)(1-0)^2,$$

Isto é,

$$F(y) = F(y_0 + v)$$

$$= F(y_0) + \delta F(y_0; v) + \frac{1}{2} \delta^2 F(y_0 + t_0 v; v, v)$$

$$= F(y_0) + \frac{1}{2} \delta^2 F(y_0 + t_0 v; v, v)$$

$$\geq F(y_0), \forall y \in B_{\delta}(y_0) \cap D.$$
(46)

A prova está completa.

9 Funcionais contínuos

Definição 9.1. Seja V um espaço de Banach. Seja $F: D \subset V \to \mathbb{R}$ um funcional e seja $y_0 \in D$. Dizemos que F é contínuo em $y_0 \in D$, quando para cada $\varepsilon > 0$ existe $\delta > 0$ tal que se $y \in D$ e $||y - y_0||_V < \delta$, então

$$|F(y) - F(y_0)| < \varepsilon$$
.

Exemplo 9.2. Seja $V = C^1([a,b])$ e $f \in C([a,b] \times \mathbb{R} \times \mathbb{R})$.

Considere $F: V \to \mathbb{R}$ onde

$$F(y) = \int_a^b f(x, y(x), y'(x)) dx,$$

e

$$||y||_V = \max\{|y(x)| + |y'(x)| : x \in [a, b]\}.$$

Seja $y_0 \in V$. Provaremos que F é contínuo em y_0 .

 $Seja\ y\in V\ tal\ que$

$$||y - y_0||_V < 1,$$

assim

$$||y||_V - ||y_0||_V \le ||y - y_0||_V < 1,$$

isto é,

$$||y||_V < 1 + ||y_0||_V \equiv \alpha.$$

Observe que f é uniformemente contínua no compacto

$$[a,b] \times [-\alpha,\alpha] \times [-\alpha,\alpha] \equiv A.$$

Seja $\varepsilon > 0$. Portanto existe $\delta_0 > 0$ tal que se (x, y_1, z_1) e $(x, y_2, z_2) \in A$ e

$$|y_1 - y_2| + |z_1 - z_2| < \delta_0$$

 $ent\~ao$

$$|f(x, y_1, z_1) - f(x, y_2, z_2)| < \frac{\varepsilon}{b - a}.$$
 (47)

Seja $\delta = \min\{\delta_0, 1\}.$

Assim se

$$||y - y_0||_V < \delta,$$

teremos

$$\max\{|y(x) - y_0(x)| + |y'(x) - y_0'(x)| : x \in [a, b]\} < \delta \le 1,$$

e portanto disto e (47), obtemos

$$|f(x,y(x),y'(x))-f(x,y_0(x),y_0'(x))|<\frac{\varepsilon}{b-a},\ \forall x\in[a,b].$$

Logo,

$$|F(y) - F(y_0)| = \left| \int_a^b [f(x, y(x), y'(x)) - f(x, y_0(x), y'_0(x))] dx \right|$$

$$\leq \int_a^b |f(x, y(x), y'(x)) - f(x, y_0(x), y'_0(x))| dx$$

$$< \frac{\varepsilon(b - a)}{(b - a)}$$

$$= \varepsilon. \tag{48}$$

Podemos concluir então que F é contínuo em $y_0, \forall y_0 \in V$. O exemplo está completo.

10 Variação à Gâteaux, a prova da fórmula

Nas seções anteriores utilizamos certa informalidade para calcular a fórmula da variação à Gâteaux de um funcional.

Nessa seção provaremos rigorosamente os resultados anteriormente obtidos.

Teorema 10.1. Sejam $\Omega \subset \mathbb{R}^n$ um conjunto de classe \hat{C}^1 e $V = C^1(\overline{\Omega})$.

Seja $f: \overline{\Omega} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}$ uma função de classe C^1 .

Defina $F: V \to \mathbb{R}$ por

$$F(y) = \int_{\Omega} f(x, y(x), \nabla y(x)) \ dx.$$

Sejam $y, v \in V$. Sob tais hipóteses

$$\delta F(y;v) = \int_{\Omega} \left(f_y(x,y(x),\nabla y(x))v(x) + \sum_{i=1}^n f_{z_i}(x,y(x),\nabla y(x))v_{x_i}(x) \right) dx.$$

Prova. Seja $\{\varepsilon_n\} \subset \mathbb{R} \setminus \{0\}$ uma sequência tal que

$$\varepsilon_n \to 0$$
, quando $n \to \infty$.

Defina

$$G_n(x) = \frac{f(x, y(x) + \varepsilon_n v(x), \nabla y(x) + \varepsilon_n \nabla v(x)) - f(x, y(x), \nabla y(x))}{\varepsilon_n},$$

 $\forall n \in \mathbb{N}, \ x \in \overline{\Omega}.$

Defina também

$$G(x) = f_y(x, y(x), \nabla y(x))v(x) + \sum_{i=1}^n f_{z_i}(x, y(x), \nabla y(x))v_{x_i}(x), \ \forall x \in \overline{\Omega}.$$

Observe que

$$G_n(x) \to G(x), \ \forall x \in \overline{\Omega}.$$

Provaremos agora que, para uma subsequência não re-rotulada,

$$\int_{\Omega} G_n(x) \ dx \to \int_{\Omega} G(x) \ dx, \text{ quando } n \to \infty$$

Defina

$$c_n = \max_{x \in \overline{\Omega}} \{ |G_n(x) - G(x)| \}.$$

Da continuidade das funções em questão, para cada $n \in \mathbb{N}$ existe $x_n \in \overline{\Omega}$ tal que

$$c_n = |G_n(x_n) - G(x_n)|.$$

Observe que $\{x_n\} \subset \overline{\Omega}$ e tal conjunto é compacto. Logo, existem uma subsequência $\{x_{n_j}\}$ de $\{x_n\}$ e $x_0 \in \overline{\Omega}$ tais que

$$\lim_{i \to \infty} x_{n_j} = x_0.$$

Por outro lado, do teorema do valor médio, para cada $j \in \mathbb{N}$ existe $t_j \in (0,1)$ tal que

$$G_{n}(x_{n_{j}}) = \frac{f(x_{n_{j}}, y(x_{n_{j}}) + \varepsilon_{n_{j}}v(x_{n_{j}}), \nabla y(x_{n_{j}}) + \varepsilon_{n_{j}}\nabla v(x_{n_{j}})) - f(x_{n_{j}}, y(x_{n_{j}}), \nabla y(x_{n_{j}}))}{\varepsilon_{n_{j}}}$$

$$= f_{y}(x_{n_{j}}, y(x_{n_{j}}) + t_{j}\varepsilon_{n_{j}}v(x_{n_{j}}), \nabla y(x_{n_{j}}) + t_{j}\varepsilon_{n_{j}}\nabla v(x_{n_{j}}))v(x_{n_{j}})$$

$$+ \sum_{i=1}^{n} f_{z_{i}}(x_{n_{j}}, y(x_{n_{j}}) + t_{j}\varepsilon_{n}v(x_{n_{j}}), \nabla y(x_{n_{j}}) + t_{j}\varepsilon_{n_{j}}\nabla v(x_{n_{j}}))v_{x_{i}}(x_{n_{j}})$$

$$\to G(x_{0}), \text{ quando } j \to \infty.$$

$$(49)$$

Assim,

$$c_{n_{j}} = |G_{n_{j}}(x_{n_{j}}) - G(x_{n_{j}})|$$

$$\rightarrow |G(x_{0}) - G(x_{0})|$$

$$= 0.$$
(50)

Seja $\varepsilon > 0$. Portanto, existe $j_0 \in \mathbb{N}$ tal que se $j > j_0$ então

$$0 \le c_{n_j} < \frac{\varepsilon}{m(\Omega)},$$

onde

$$m(\Omega) = \int_{\Omega} dx.$$

Logo, se $j > j_0$, então

$$\left| \int_{\Omega} [G_{n_{j}}(x) - G(x)] dx \right| \leq \int_{\Omega} |G_{n_{j}}(x) - G(x)| dx$$

$$\leq \int_{\Omega} c_{n_{j}} dx$$

$$= c_{n_{j}} m(\Omega)$$

$$< \varepsilon. \tag{51}$$

Portanto,

$$\lim_{j \to \infty} \int_{\Omega} G_{n_j}(x) \ dx = \int_{\Omega} G(x) \ dx.$$

Suponha agora, para obter contradição, que não tenhamos

$$\lim_{\varepsilon \to 0} \int_{\Omega} G_{\varepsilon}(x) \ dx = \int_{\Omega} G(x) \ dx,$$

onde

$$G_{\varepsilon}(x) = \frac{f(x, y(x) + \varepsilon v(x), \nabla y(x) + \varepsilon \nabla v(x)) - f(x, y(x), \nabla y(x))}{\varepsilon},$$

 $\forall \varepsilon \in \mathbb{R} \text{ tal que } \varepsilon \neq 0.$

Logo, existe $\varepsilon_0 > 0$ tal que para cada $n \in \mathbb{N}$ existe $\tilde{\varepsilon}_n \in \mathbb{R}$ tal que

$$0<|\tilde{\varepsilon}_n|<\frac{1}{n},$$

е

$$\left| \int_{\Omega} \tilde{G}_n(x) \, dx - \int_{\Omega} G(x) \, dx \right| \ge \varepsilon_0, \tag{52}$$

onde

$$\tilde{G}_n(x) = \frac{f(x, y(x) + \tilde{\varepsilon}_n v(x), \nabla y(x) + \tilde{\varepsilon}_n \nabla v(x)) - f(x, y(x), \nabla y(x))}{\tilde{\varepsilon}_n},$$

 $\forall n \in \mathbb{N}, \ x \in \overline{\Omega}.$

Entretanto, do exposto acima, podemos obter uma subsequência $\{\tilde{\varepsilon}_{n_j}\}$ de $\{\tilde{\varepsilon}_n\}$ tal que

$$\lim_{j \to \infty} \int_{\Omega} \tilde{G}_{n_j}(x) \ dx = \int_{\Omega} G(x) \ dx,$$

o que contradiz (52).

Portanto, necessariamente, temos que

$$\lim_{\varepsilon \to 0} \int_{\Omega} G_{\varepsilon}(x) \ dx = \int_{\Omega} G(x) \ dx,$$

isto é,

$$\delta F(y;v) = \lim_{\varepsilon \to 0} \frac{F(y+\varepsilon v) - F(y)}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \int_{\Omega} G_{\varepsilon}(x) dx$$

$$= \int_{\Omega} G(x) dx$$

$$= \int_{\Omega} \left(f_{y}(x, y(x), \nabla y(x)) v(x) + \sum_{i=1}^{n} f_{z_{i}}(x, y(x), \nabla y(x)) v_{x_{i}}(x) \right) dx.$$
 (53)

A prova está completa.

11 Tópicos de análise funcional

Nessa seção U sempre denota um espaço de Banach.

Teorema 11.1 (O teorema de Hahn-Banach). Considere um funcional $p: U \to \mathbb{R}$ tal que

$$p(\lambda u) = \lambda p(u), \forall u \in U, \lambda > 0, \tag{54}$$

e

$$p(u+v) \le p(u) + p(v), \forall u, v \in U. \tag{55}$$

Seja $V \subset U$ um sub-espaço vetorial próprio de U e seja $g: V \to \mathbb{R}$ um funcional linear tal que

$$g(u) \le p(u), \forall u \in V. \tag{56}$$

Sob tais hipóteses, existe um funcional linear $f:U\to\mathbb{R}$ tal que

$$q(u) = f(u), \forall u \in V, \tag{57}$$

e

$$f(u) \le p(u), \forall u \in U. \tag{58}$$

Prova. Escolha $z \in U \setminus V$. Denote por \tilde{V} o espaço gerado por V e z, isto é,

$$\tilde{V} = \{ v + \alpha z \mid v \in V \text{ e } \alpha \in \mathbb{R} \}. \tag{59}$$

Podemos definir uma extensão de g de V para \tilde{V} , denotada por \tilde{g} , como

$$\tilde{g}(\alpha z + v) = \alpha \tilde{g}(z) + g(v), \tag{60}$$

onde $\tilde{g}(z)$ será apropriadamente definido nas próximas linhas. Sejam $v_1, v_2 \in V, \alpha > 0, \beta > 0$. Assim

$$\beta g(v_1) + \alpha g(v_2) = g(\beta v_1 + \alpha v_2)$$

$$= (\alpha + \beta) g \left(\frac{\beta}{\alpha + \beta} v_1 + \frac{\alpha}{\alpha + \beta} v_2 \right)$$

$$\leq (\alpha + \beta) p \left(\frac{\beta}{\alpha + \beta} (v_1 - \alpha z) + \frac{\alpha}{\alpha + \beta} (v_2 + \beta z) \right)$$

$$\leq \beta p(v_1 - \alpha z) + \alpha p(v_2 + \beta z)$$
(61)

e portanto

$$\frac{1}{\alpha}[-p(v_1 - \alpha z) + g(v_1)] \le \frac{1}{\beta}[p(v_2 + \beta z) - g(v_2)],$$

 $\forall v_1, v_2 \in V, \ \alpha, \beta > 0$. Logo, existe $a \in \mathbb{R}$ tal que

$$\sup_{v \in V, \alpha > 0} \left[\frac{1}{\alpha} (-p(v - \alpha z) + g(v)) \right] \le a \le \inf_{v \in V, \alpha > 0} \left[\frac{1}{\alpha} (p(v + \alpha z) - g(v)) \right]. \tag{62}$$

Definiremos então $\tilde{g}(z) = a$. Portanto, se $\alpha > 0$ então

$$\tilde{g}(\alpha z + v) = a\alpha + g(v)
\leq \left[\frac{1}{\alpha} (p(v + \alpha z) - g(v)) \right] \alpha + g(v)
= p(v + \alpha z).$$
(63)

Por outro lado, se $\alpha < 0$, então $-\alpha > 0$. Logo,

$$a \ge \frac{1}{-\alpha}(-p(v - (-\alpha)z) + g(v)),$$

de modo que

$$\tilde{g}(\alpha z + v) = a\alpha + g(v)
\leq \left[\frac{1}{-\alpha} (-p(v + \alpha z) + g(v)) \right] \alpha + g(v)
= p(v + \alpha z)$$
(64)

e assim

$$\tilde{g}(u) \le p(u), \forall u \in \tilde{V}.$$

Defina agora por \mathcal{E} o conjunto das extensões e de g, as quais satisfazem $e(u) \leq p(u)$ no domínio de e. Definiremos também uma ordem parcial para \mathcal{E} denotando $e_1 \prec e_2$ quando o domínio de e_2 contém o domínio de e_1 e $e_1 = e_2$ no domínio de e_1 . Seja $\{e_\alpha\}_{\alpha \in A}$ um subconjunto ordenado de \mathcal{E} . Seja V_α o domínio de e_α . Defina e em $\bigcup_{\alpha \in A} V_\alpha$ por setting $e = e_\alpha$ em V_α . Claramente $e_\alpha \prec e$, $\forall \alpha \in A$ de modo que cada subconjunto ordenado de \mathcal{E} tem um limitante superior. Pelo lema de Zorn, \mathcal{E} tem um elemento maximal f definido em algum subespaço $\tilde{U} \subset U$ tal que $f(u) \leq p(u)$, $\forall u \in \tilde{U}$. Suponha,

para obter contradição, que $\tilde{U} \neq U$ e seja $z_1 \in U \setminus \tilde{U}$. Conforme o exposto acima, podemos obter uma nova extensão f_1 de \tilde{U} para o sub-espaço gerado por z_1 e \tilde{U} , o que contradiz a maximalidade de f.

A prova está completa.

Definição 11.2 (Espaços duais topológicos). Seja U um espaço de Banach. Definiremos o seu espaço dual topológico, como o conjunto de todos os funcionais lineares e contínuos definidos em U. Suporemos que tal espaço dual de U, poderá ser representado por um outro espaço denotado por U^* , mediante uma forma bi-linear $\langle \cdot, \cdot \rangle_U : U \times U^* \to \mathbb{R}$ (aqui estamos nos referindo às representações padrões de espaços duais de espaços de Lebesgue e Sobolev, a serem estudadas nos capítulos subsequentes). Assim, dado $f: U \to \mathbb{R}$ linear e contínuo, assumimos a existência de $u^* \in U^*$ tal que

$$f(u) = \langle u, u^* \rangle_U, \forall u \in U. \tag{65}$$

A norma de f, denotada por $||f||_{U^*}$, é definida como

$$||f||_{U^*} = \sup_{u \in U} \{ |\langle u, u^* \rangle_U| : ||u||_U \le 1 \}.$$
(66)

Corolário 11.3. Seja $V \subset U$ um sub-espaço próprio de U e seja $g: V \to \mathbb{R}$ um funcional linear e contínuo com norma

$$||g||_{V^*} = \sup_{u \in V} \{|g(u)| \mid ||u||_U \le 1\}.$$
(67)

Sob tais hipóteses, existe u^* in U^* tal que

$$\langle u, u^* \rangle_U = g(u), \forall u \in V,$$
 (68)

e

$$||u^*||_{U^*} = ||g||_{V^*}. (69)$$

Prova. Basta aplicar o Teoremma 11.1 com $p(u) = ||g||_{V^*} ||u||_V$. De fato, de tal teorema existe um funcional linear $f: U \to \mathbb{R}$ tal que

$$f(u) = g(u), \ \forall u \in V$$

e

$$f(u) \le p(u) = ||g||_{V^*} ||u||_U,$$

ou seja

$$|f(u)| \le p(u) = ||g||_{V^*} ||u||_U, \forall u \in U.$$

Portanto,

$$||f||_{U^*} = \sup_{u \in U} \{|f(u)| : ||u||_U \le 1\} \le ||g||_{V^*}.$$

Por outro lado,

$$||f||_{U^*} \ge \sup_{u \in V} \{|f(u)| : ||u||_U \le 1\} = ||g||_{V^*}.$$

Logo,

$$||f||_{U^*} = ||g||_{V^*}.$$

Finalmente, sendo f linear e contínuo, existe $u^* \in U^*$ tal que

$$f(u) = \langle u, u^* \rangle_U, \ \forall u \in U,$$

e assim

$$\langle u, u^* \rangle_U = f(u) = g(u), \ \forall u \in V.$$

Além disso,

$$||u^*||_{U^*} = ||f||_{U^*} = ||g||_{V^*}.$$

A prova está completa.

Corolário 11.4. Seja $u_0 \in U$. Sob tais hipóteses, existe $u_0^* \in U^*$ tal que

$$||u_0^*||_{U^*} = ||u_0||_U \ e \ \langle u_0, u_0^* \rangle_U = ||u_0||_U^2. \tag{70}$$

Prova. Basta aplicar o Corolário 11.3 com $V = \{\alpha u_0 \mid \alpha \in \mathbb{R}\}$ e $g(tu_0) = t ||u_0||_U^2$ de modo que $||g||_{V^*} = ||u_0||_U$.

De fato, do último corolário existe $u_0^* \in U^*$ tal que

$$\langle tu_0, u_0^* \rangle_U = g(tu_0), \ \forall t \in \mathbb{R},$$

e

$$||u_0^*||_{U^*} = ||g||_{V^*},$$

onde

$$||g||_{V^*} = \sup_{t \in \mathbb{R}} \{t||u_0||_U^2 : ||tu_0||_U \le 1\} = ||u_0||_U.$$

Alem disso, também do último corolário,

$$||u_0^*||_{U^*} = ||q||_{V^*} = ||u_0||_{U}.$$

Finalmente,

$$\langle tu_0, u_0^* \rangle_U = g(tu_0) = t \|u_0\|_U^2, \ \forall t \in \mathbb{R},$$

de modo que

$$\langle u_0, u_0^* \rangle_U = ||u_0||_U^2.$$

A prova está completa.

Corolário 11.5. Seja $u \in U$. Sob tais hipóteses

$$||u||_{U} = \sup_{u^* \in U^*} \{ |\langle u, u^* \rangle_{U}| \mid ||u^*||_{U^*} \le 1 \}.$$
(71)

Prova. Suponha que $u \neq \mathbf{0}$, caso contrário o resultado é imediato. Como

$$|\langle u, u^* \rangle_U| \le ||u||_U ||u^*||_{U^*}, \forall u \in U, u^* \in U^*$$

temos que

$$\sup_{u^* \in U^*} \{ |\langle u, u^* \rangle_U| \mid ||u^*||_{U^*} \le 1 \} \le ||u||_U.$$
 (72)

Entretanto, do último corolário, existe $u_0^* \in U^*$ tal que $||u_0^*||_{U^*} = ||u||_U$ e $\langle u, u_0^* \rangle_U = ||u||_U^2$. Define $u_1^* = ||u||_U^{-1} u_0^*$. Assim, $||u_1^*||_U = 1$ e $\langle u, u_1^* \rangle_U = ||u||_U$.

Definição 11.6 (Híper-plano afim). Seja U um espaço de Banach. Um híper-plano afim H \acute{e} um conjunto da forma

$$H = \{ u \in U \mid \langle u, u^* \rangle_U = \alpha \} \tag{73}$$

para algum $u^* \in U^*$ $e \alpha \in \mathbb{R}$.

Proposição 11.7. Um híper-plano afim H conforme acima definido é fechado.

Prova. O resultado seque-se diretamente da continuidade de $\langle u, u^* \rangle_U$ como um funcional definido em U.

Definição 11.8 (Separação). Sejam $A, B \subset U$. Dizemos que um híper-plano H, definido conforme acima indicado separa A e B, quando existem $\alpha \in \mathbb{R}$ e $u^* \in U^*$

$$\langle u, u^* \rangle_U \le \alpha, \forall u \in A, \ e \ \langle u, u^* \rangle_U \ge \alpha, \forall u \in B.$$
 (74)

Dizemos que H separa A e B estritamente se existe $\varepsilon > 0$ tal que

$$\langle u, u^* \rangle_U \le \alpha - \varepsilon, \forall u \in A, \ e \ \langle u, u^* \rangle_U \ge \alpha + \varepsilon, \forall u \in B,$$
 (75)

Teorema 11.9 (O teorema de Hahn-Banach, forma geométrica). Sejam $A, B \subset U$ dois conjuntos convexos, não-vazios e tais que $A \cap B = \emptyset$ e A é aberto. Sob tais hipóteses, existe um híper-plano fechado que separa A e B, isto é, existem $\alpha \in \mathbb{R}$ e $u^* \in U^*$ tais que

$$\langle u, u^* \rangle_U \le \alpha \le \langle v, u^* \rangle_U, \ \forall u \in A, \ v \in B.$$

Para provar tal teoremma, precisaremos de dois lemas, a seguir especificados.

Lema 11.10. Seja $C \subset U$ um conjunto convexo e tal que $\mathbf{0} \in C$. Para cada $u \in U$ defina

$$p(u) = \inf\{\alpha > 0, \ \alpha^{-1}u \in C\}.$$
 (76)

Sob tais hipóteses, p é tal que existe $M \in \mathbb{R}^+$ tal que

$$0 \le p(u) \le M \|u\|_U, \forall u \in U, \tag{77}$$

e

$$C = \{ u \in U \mid p(u) < 1 \}. \tag{78}$$

Além disso

$$p(u+v) \le p(u) + p(v), \forall u, v \in U.$$

Prova. Seja r > 0 tal que $B(\mathbf{0}, r) \subset C$. Seja $u \in U$ tal que $u \neq \mathbf{0}$. Logo,

$$\frac{u}{\|u\|_U}r \in \overline{B(\mathbf{0},r)} \subset \overline{C},$$

e portanto

$$p(u) \le \frac{\|u\|_U}{r}, \forall u \in U \tag{79}$$

o que prova (77). Suponha agora que $u \in C$. Como C é aberto existe $\varepsilon > 0$ sufientemente pequeno

tal que $(1+\varepsilon)u \in C$. Portanto $p(u) \leq \frac{1}{1+\varepsilon} < 1$. Reciprocamente, se p(u) < 1, existe $0 < \alpha < 1$ tal que $\alpha^{-1}u \in C$ e assim, como é C é convexo, temos que $u = \alpha(\alpha^{-1}u) + (1-\alpha)\mathbf{0} \in C$.

Finalmente, sejam $u, v \in C$ e $\varepsilon > 0$. Logo, $\frac{u}{p(u)+\varepsilon} \in C$ de modo que $\frac{tu}{p(v)+\varepsilon} + \frac{(1-t)v}{p(v)+\varepsilon} \in C$, $\forall t \in [0,1]$. Particularmente para $t = \frac{p(u)+\varepsilon}{p(u)+p(v)+2\varepsilon}$ obtemos $\frac{u+v}{p(u)+p(v)+2\varepsilon} \in C$, e assim $p(u+v) \le p(u) + p(v) + 2\varepsilon, \forall \varepsilon > 0$

Lema 11.11. Seja $C \subset U$ um conjunto aberto e convexo e seja $u_0 \in U$ tal que $u_0 \notin C$. Sob tais hipóteses, existe $u^* \in U^*$ tal que $\langle u, u^* \rangle_U < \langle u_0, u^* \rangle_U, \forall u \in C$

Prova. Por translação se necessário, sem perda de generalidade podemos assumir que $0 \in C$. Considere o funcional p definido no último lema. Defina $V = \{\alpha u_0 \mid \alpha \in \mathbb{R}\}$. Defina também q em V, por

$$g(tu_0) = t, \ \forall t \in \mathbb{R}. \tag{80}$$

Seja $t \in \mathbb{R}$ tal que $t \neq 0$. Como

$$\frac{tu_0}{t} = u_0 \not\in C,$$

temos que

$$g(tu_0) = t \le p(tu_0)$$

e portanto

$$g(u) \le p(u), \forall u \in V.$$

Do teorema de Hahn-Banach, existe um funcional linear f definido em U o qual extende g e tal que

$$f(u) \le p(u) \le M \|u\|_U. \tag{81}$$

Aqui utilizamos o lema 11.10. Em Particular, $f(u_0) = g(u_0) = g(1u_0) = 1$, e também do último lema, $f(u) < 1, \forall u \in C$. A existência de u^* satisfazendo a conclusão do lema segue-se da continuidade de f, indicada em (81).

Prova do Teorema 11.9. Defina C = A + (-B) de modo que C é convexo e $\mathbf{0} \notin C$. Do lema 11.11, existe $u^* \in U^*$ tal que $\langle w, u^* \rangle_U < 0, \forall w \in C$, e assim,

$$\langle u, u^* \rangle_U < \langle v, u^* \rangle_U, \forall u \in A, \quad v \in B.$$
 (82)

Portanto, existe $\alpha \in \mathbb{R}$ tal que

$$\sup_{u \in A} \langle u, u^* \rangle_U \le \alpha \le \inf_{v \in B} \langle v, u^* \rangle_U, \tag{83}$$

o que completa a prova.

Proposição 11.12. Seja U um espaço de Banach e sejam $A, B \subset U$ tais que A é compacto, B é fechado e $A \cap B = \emptyset$.

Sob tais hipóteses, existe $\varepsilon_1 > 0$ tal que

$$[A + B_{\varepsilon_1}(\mathbf{0})] \cap [B + B_{\varepsilon_1}(\mathbf{0})] = \emptyset.$$

Prova. Suponha, para obter contradição, que a conclusão da proposição é falsa.

Logo, para cada $n \in \mathbb{N}$ existe $u_n \in U$ tal que $d(u_n, A) < \frac{1}{n}$ e $d(u_n, B) < \frac{1}{n}$.

Portanto, existem $v_n \in A$ e $w_n \in B$ tais que

$$||u_n - v_n||_U < \frac{1}{n} \tag{84}$$

е

$$||u_n - w_n||_U < \frac{1}{n}, \ \forall n \in \mathbb{N}.$$
 (85)

Como $\{v_n\}\subset A$ e A é compacto, exitem uma subsequência $\{v_{n_j}\}$ de $\{v_n\}$ e $v_0\in A$, tais que

$$||v_{n_j} - v_0||_U \to 0$$
, quando $j \to \infty$.

Logo, disto, (84) e (85) obtemos,

$$||u_{n_i}-v_0||_U\to 0$$
, quando $j\to\infty$,

е

$$||w_{n_i} - v_0||_U \to 0$$
, quando $j \to \infty$.

Sendo A e B fechados, obtemos

$$v_0 \in A \cap B$$
,

o que contradiz $A \cap B = \emptyset$.

Portanto a conclusão da proposição é verdadeira.

A prova está completa.

Teorema 11.13 (Teorema de Hahn-Banach, segunda forma geométrica). Sejam $A, B \subset U$ dois conjuntos convexos, não-vazios e tais que $A \cap B = \emptyset$. Suponha que A é compacto e B é fechado. Sob tais hipóteses existe um híper-plano que separa A e B estritamente.

Prova. Observe que, da última proposição, existe $\varepsilon > 0$ suficientemente pequeno tal que $A_{\varepsilon} = A + B(0, \varepsilon)$ e $B_{\varepsilon} = B + B(0, \varepsilon)$ são conjuntos convexos e disjuntos. Do Teorema 11.9, existe $u^* \in U^*$ tal que $u^* \neq \mathbf{0}$ e

$$\langle u + \varepsilon w_1, u^* \rangle_U \le \langle u + \varepsilon w_2, u^* \rangle_U, \forall u \in A, \ v \in B, \ w_1, w_2 \in B(0, 1).$$
(86)

Logo, existe $\alpha \in \mathbb{R}$ tal que

$$\langle u, u^* \rangle_U + \varepsilon \|u^*\|_{U^*} \le \alpha \le \langle v, u^* \rangle_U - \varepsilon \|u^*\|_{U^*}, \forall u \in A, \ v \in B.$$
 (87)

Corolário 11.14. Suponha que $V \subset U$ é um subespaço vetorial tal que $\overline{V} \neq U$. Sob tais hipóteses, existe $u^* \in U^*$ tal que $u^* \neq \mathbf{0}$ e

$$\langle u, u^* \rangle_U = 0, \forall u \in V. \tag{88}$$

Prova. Seja $u_0 \in U$ tal que $u_0 \notin \overline{V}$. Aplicando o Teorema 11.9 a $A = \overline{V}$ e $B = \{u_0\}$ obtemos $u^* \in U^*$ e $\alpha \in \mathbb{R}$ tais que $u^* \neq \mathbf{0}$ e

$$\langle u, u^* \rangle_U < \alpha < \langle u_0, u^* \rangle_U, \forall u \in V.$$
 (89)

Como V é sub-espaço, devemos ter $\langle u, u^* \rangle_U = 0, \forall u \in V$.

12 Topologias Fracas

Definição 12.1 (Vizinhanças e topologias fracas). Seja U um espaço de Banach e seja $u_0 \in U$. Definimos uma vizinhança fraca de u_0 , denotada por $\mathcal{V}_w(u_0)$, como

$$\mathcal{V}_w(u_0) = \{ u \in U \mid |\langle u - u_0, u_i^* \rangle_U | < \varepsilon_i, \forall i \in \{1, ..., m\} \},$$
(90)

para algum $m \in \mathbb{N}$, $\varepsilon_i > 0$, and $u_i^* \in U^*$, $\forall i \in \{1, ..., m\}$.

Seja $A \subset U$. Diremos que $u_0 \in A$ é fracamente interior a A, quando existe uma vizinhança fraca $V_w(u_0)$ de u_0 contida em A.

Se todos os pontos de A são fracamente interiores, diremos que A é fracamente aberto.

Finalmente, definiremos a topologia fraca $\sigma(U, U^*)$ como o conjunto de todos os subconjuntos fracamente abertos de U.

Proposição 12.2. Um espaço de Banach U é de Hausdorff quando munido com a topologia fraca $\sigma(U, U^*)$.

Prova. Escolha $u_1, u_2 \in U$ tais que $u_1 \neq u_2$. Do Teorema de Hahn-Banach, segunda forma geométrica, existe um híper-plano separando $\{u_1\}$ e $\{u_2\}$ estritamente, isto é, existe $u^* \in U^*$ e $\alpha \in \mathbb{R}$ tais que

$$\langle u_1, u^* \rangle_U < \alpha < \langle u_2, u^* \rangle_U. \tag{91}$$

Defina

$$\mathcal{V}_{w1}(u_1) = \{ u \in U \mid |\langle u - u_1, u^* \rangle| < \alpha - \langle u_1, u^* \rangle_U \}, \tag{92}$$

e

$$\mathcal{V}_{w2}(u_2) = \{ u \in U \mid |\langle u - u_2, u^* \rangle_U | < \langle u_2, u^* \rangle_U - \alpha \}.$$
 (93)

Afirmamos que

$$V_{w_1}(u_1) \cap V_{w_2}(u_2) = \emptyset.$$

Suponha, para obter contradição, que $u \in V_{w_1}(u_1) \cap V_{w_2}(u_2)$.

Logo,

$$\langle u - u_1, u^* \rangle_U < \alpha - \langle u_1, u^* \rangle_U,$$

e portanto

$$\langle u, u^* \rangle_U < \alpha.$$

E também

$$-\langle u - u_2, u^* \rangle_U < \langle u_2, u^* \rangle_U - \alpha,$$

e portanto

$$\langle u, u^* \rangle_U > \alpha.$$

Obtivemos então

$$\langle u, u^* \rangle_U < \alpha < \langle u, u^* \rangle_U$$

uma contradição.

Resumindo, temos que $u_1 \in \mathcal{V}_{w_1}(u_1)$, $u_2 \in \mathcal{V}_{w_2}(u_2)$ e $\mathcal{V}_{w_1}(u_1) \cap \mathcal{V}_{w_2}(u_2) = \emptyset$.

A prova está completa.

Observação 12.3. Se $\{u_n\} \in U$ é tal que u_n converge para u em $\sigma(U, U^*)$, então escrevemos $u_n \rightharpoonup u$ fracamente.

Proposição 12.4. Seja U um espaço de Banach. Para uma sequência $\{u_n\} \subset U$, temos que

- 1. $u_n \rightharpoonup u$, para $\sigma(U, U^*) \Leftrightarrow \langle u_n, u^* \rangle_U \rightarrow \langle u, u^* \rangle_U, \forall u^* \in U^*$,
- 2. Se $u_n \to u$ fortemente (em norma), então $u_n \rightharpoonup u$ fracamente,
- 3. Se $u_n \rightharpoonup u$ fracamente, então $\{\|u_n\|_U\}$ é limitada e $\|u\|_U \leq \liminf_{n \to \infty} \|u_n\|_U$,
- 4. Se $u_n \rightharpoonup u$ fracamente e $u_n^* \rightarrow u^*$ fortemente em U^* , então $\langle u_n, u_n^* \rangle_U \rightarrow \langle u, u^* \rangle_U$.

Prova. 1. O resultado segue-se da definição de topologia $\sigma(U, U^*)$.

Suponha que $\{u_n\} \subset U$ e $u_n \rightharpoonup u$ fracamente.

Seja $u^* \in U^*$ e seja $\varepsilon > 0$.

Defina

$$V_w(u) = \{ v \in U : |\langle v - u, u^* \rangle_U | < \varepsilon \}.$$

Da hipótese, existe $n_0 \in \mathbb{N}$ tal que $n > n_0$, então

$$u_n \in V_w(u)$$
.

Ou seja

$$|\langle u_n - u, u^* \rangle_U| < \varepsilon,$$

se $n > n_0$.

Portanto,

$$\langle u_n, u^* \rangle_U \to \langle u, u^* \rangle_U$$
, quando $n \to \infty$

 $\forall u^* \in U^*$.

Reciprocamente, suponha que

$$\langle u_n, u^* \rangle_U \to \langle u, u^* \rangle_U$$
, quando $n \to \infty$

 $\forall u^* \in U^*$.

Seja $V(u) \in \sigma(U, U^*)$ um conjunto fracamente aberto que contém u.

Logo existe uma vizinhança fraca $V_w(u)$ tal que $u \in V_w(u) \subset V(u)$, onde existem $m \in \mathbb{N}$, $\varepsilon_i > 0$ e $u_i^* \in U^*$ tais que

$$V_w(u) = \{ v \in U : |\langle v - u, u_i^* \rangle_U | < \varepsilon_i, \ \forall i \in \{1, \dots, m\} \}.$$

Da hipótese, para cada $i \in \{1, \dots m\}$, existe $n_i \in \mathbb{N}$ tal que se $n > n_i$ então

$$|\langle u_n - u, u_i^* \rangle_U| < \varepsilon_i.$$

Defina $n_0 = \max\{n_1, \dots, n_m\}.$

Logo

$$u_n \in V_w(u) \subset V(u)$$
, se $n > n_0$.

Conclui-se então que $u_n \rightharpoonup u$ em $\sigma(U, U^*)$.

2. Isto segue-se da desigualdade

$$|\langle u_n, u^* \rangle_U - \langle u, u^* \rangle_U| < ||u^*||_{U^*} ||u_n - u||_U. \tag{94}$$

3. Para cada $u^* \in U^*$ a sequência $\{\langle u_n, u^* \rangle_U\}$ é convergente e portanto limitada. Disto e do Princípio da Limitação Uniforme, existe M > 0 tal que $||u_n||_U \leq M, \forall n \in \mathbb{N}$. Além disso, para $u^* \in U^*$, temos que

$$|\langle u_n, u^* \rangle_U| \le ||u^*||_{U^*} ||u_n||_U, \tag{95}$$

e fazendo $n \to \infty$, obtemos

$$|\langle u, u^* \rangle_U| \le \liminf_{n \to \infty} ||u^*||_{U^*} ||u_n||_U.$$
 (96)

Logo,

$$||u||_{U} = \sup_{u^* \in U^*} \{ |\langle u, u^* \rangle_{U}| : ||u||_{U^*} \le 1 \} \le \liminf_{n \to \infty} ||u_n||_{U}.$$
(97)

4. Apenas observe que

$$|\langle u_{n}, u_{n}^{*} \rangle_{U} - \langle u, u^{*} \rangle_{U}| \leq |\langle u_{n}, u_{n}^{*} - u^{*} \rangle_{U}|$$

$$+|\langle u - u_{n}, u^{*} \rangle_{U}|$$

$$\leq ||u_{n}^{*} - u^{*}||_{U^{*}} ||u_{n}||_{U}$$

$$+|\langle u_{n} - u, u^{*} \rangle_{U}|$$

$$\leq M||u_{n}^{*} - u^{*}||_{U^{*}}$$

$$+|\langle u_{n} - u, u^{*} \rangle_{U}|$$

$$\rightarrow 0, \text{ quando } n \rightarrow \infty.$$

$$(98)$$

Teorema 12.5. Seja U um espaço de Banach e seja $A \subset U$ um conjunto convexo. Sob tais hipóteses, A é fechado para a topologia $\sigma(U, U^*)$ se, e somente se, A é fechado para a topologia relativa a $\|\cdot\|_U$.

Prova. Se A = U o resultado é imediato. Assuma então $A \neq U$. Suponha que A é fortemente fechado. Seja $u_0 \notin A$. Pelo Teorema de Hahn-Banach existe um híper-plano fechado o qual separa u_0 e A estritamente, isto é, existem $\alpha \in \mathbb{R}$ e $u^* \in U^*$ tais que

$$\langle u_0, u^* \rangle_U < \alpha < \langle v, u^* \rangle_U, \forall v \in A.$$
 (99)

Defina

$$\mathcal{V} = \{ u \in U \mid \langle u, u^* \rangle_U < \alpha \}, \tag{100}$$

de modo que $u_0 \in \mathcal{V}, \mathcal{V} \subset U \setminus A$.

Seja

$$V_w(u_0) = \{v \in U : |\langle v - u_0, u^* \rangle_U| < \alpha - \langle u_0, u^* \rangle_U.$$

Seja $v \in V_w(u_0)$.

Logo,

$$\langle v, u^* \rangle_U = \langle v - u_0 + u_0, u^* \rangle_U$$

$$= \langle v - u_0, u^* \rangle_U + \langle u_0, u^* \rangle_U$$

$$\leq |\langle v - u_0, u^* \rangle_U| + \langle u_0, u^* \rangle_U$$

$$< \alpha - \langle u_0, u^* \rangle_U + \langle u_0, u^* \rangle_U$$

$$= \alpha. \tag{101}$$

Disto conclui-se que $V_w(u_0) \subset \mathcal{V} \subset U \setminus A$, ou seja u_0 é ponto interior para a topologia $\sigma(U, U^*)$ $de\ U \setminus A, \forall u_0 \in U \setminus A$

Portanto, \mathcal{V} é fracamente aberto.

Resumindo, $U \setminus A$ é aberto em $\sigma(U, U^*)$ e assim A é fechado em relação à $\sigma(U, U^*)$ (fracamente fechado).

Finalmente, a recíproca é imediata.

Teorema 12.6. Sejam (Z, σ) um espaço topológico e U um espaço de Banach. Seja $\phi: Z \to U$ uma função, considerando U com a topologia fraca $\sigma(U, U^*)$.

Sob tais hipóteses, ϕ é contínua se, e somente se, $f_{u^*}: Z \to \mathbb{R}$, onde

$$f_{u^*}(z) = \langle \phi(z), u^* \rangle_U$$

 \acute{e} contínua, $\forall u^* \in U^*$.

Prova. Assuma que ϕ é contínua. Seja $z_0 \in Z$ e seja $\{z_\alpha\}_{\alpha \in I}$ uma net tal que

$$z_{\alpha} \rightarrow z_0$$
.

Da hipótese,

$$\phi(z_{\alpha}) \rightharpoonup \phi(z_0)$$
, em $\sigma(U, U^*)$,

isto é fracamente.

Portanto

$$\langle \phi(z_{\alpha}), u^* \rangle_U \to \langle \phi(z_0), u^* \rangle_U, \ \forall u^* \in U^*.$$

Logo f_{u^*} é contínua em $z_0, \forall u^* \in U^*, \forall z_0 \in Z$.

Reciprocamente, assuma que $f_{u^*}: Z \to \mathbb{R}$, onde

$$f_{u^*}(z) = \langle \phi(z), u^* \rangle_U$$

é contínua, $\forall u^* \in U^*$.

Suponha, para obter contradição que ϕ não é contínua.

Assim, existe $z_0 \in Z$ tal que ϕ não é contínua em z_0 .

Em particular, existe uma net $\{z_{\alpha}\}_{{\alpha}\in I}$ tal que $z_{\alpha}\to z_0$ e não se tem

$$\phi(z_{\alpha}) \rightharpoonup \phi(z_0)$$
, em $\sigma(U, U^*)$.

Logo, existe $u^* \in U^*$ tal que não se tem,

$$\langle \phi(z_{\alpha}), u^* \rangle_U \to \langle \phi(z_0), u^* \rangle_U,$$

e portanto f_{u^*} não é contínua em z_0 , o que contradiz a hipótese dessa parte da prova.

Assim, ϕ é contínua.

A prova está completa.

13 A topologia estrela-fraca

Definição 13.1 (Espaços reflexivos). Seja U um espaço de Banach. Dizemos que U é reflexivo, se a injeção canônica

$$J:U\to U^{**}$$

é sobrejetiva, onde

$$\langle u, u^* \rangle_U = \langle u^*, J(u) \rangle_{U^*}, \ \forall u \in U, \ u^* \in U^*.$$

Assim se U é reflexivo podemos identificar o espaço bi-dual de U, U^{**} , com U.

A topologia fraca para U^* pode ser definida similarmente à $\sigma(U, U^*)$ e será denotada por $\sigma(U^*, U^{**})$. Definimos também a topologia estrela-fraca para U^* , denotada por $\sigma(U^*, U)$, da seguinte maneira. Primeiramente, definimos vizinhanças estrela-fracas.

Seja $u_0^* \in U^*$. Definimos uma vizinhança estrela-fraca de u_0^* , denotada por $V_w(u_0^*)$, como

$$V_w(u_0^*) = \{u^* \in U^* : |\langle u_i, u^* - u_0^* \rangle_U | < \varepsilon_i, \forall i \in \{1, \dots, m\} \},$$

onde $m \in \mathbb{N}$, $\varepsilon_i > 0$ e $u_i \in U$, $\forall i \in \{1, \dots, m\}$.

Seja $A \subset U^*$. Diremos que $u_0^* \in A$ é estrela-fracamente interior a A, quando existe uma vizinhança estrela-fraca $V_w(u_0^*)$ contida em A.

Se todos os pontos de A são estrela-fracamente interiores, diremos que A é estrela-fracamente aberto.

Finalmente, definiremos a topologia estrela-fraca $\sigma(U^*, U)$ como o conjunto de todos os subconjuntos estrela-fracamente abertos de U^* .

Observe que $\sigma(U^*, U^{**})$ e $\sigma(U^*, U)$ coincidem se U é reflexivo.

13.1 Compacidade na topologia estrela-fraca

Teorema 13.2 (Banach e Alaoglu). Seja U um espaço de Banach. Denotemos

$$B_{U^*} = \{u^* \in U^* : ||u^*||_{U^*} \le 1\}.$$

Sob tais hipóteses, B_{U^*} é compacto com U^* com a topologia estrela-fraca $\sigma(U^*, U)$.

Prova. Para cada $u \in U$, associaremos um número real ω_u e denotaremos

$$\omega = \prod_{u \in U} \omega_u \in \mathbb{R}^U,$$

e consideremos as projeções

$$P_u: \mathbb{R}^U \to \mathbb{R}$$

onde

$$P_u(\omega) = \omega_u, \ \forall \omega \in \mathbb{R}^U, \ u \in U.$$

Definiremos uma topologia para \mathbb{R}^U , a qual é gerada por vizinhanças fracas a seguir especificadas. Seja $\tilde{\omega} \in \mathbb{R}^U$. Definiremos uma vizinhança fraca $\tilde{V}(\tilde{\omega})$ de $\tilde{\omega}$ como

$$\tilde{V}(\tilde{w}) = \{ \omega \in \mathbb{R}^U : |P_{u_i}(\omega) - P_{u_i}(\tilde{\omega})| < \varepsilon_i, \ \forall \in \{1, \cdots, m\} \},$$

onde $m \in \mathbb{N}$, $\varepsilon_i > 0$ e $u_i \in U$, $\forall i \in \{1, \dots, m\}$.

Seja $A \subset \mathbb{R}^U$. Diremos que $\tilde{\omega} \in A$ é interior a A, quando existe uma vizinhança $\tilde{V}_w(\tilde{\omega})$ contida em A.

Se todos os pontos de A são interiores, diremos que A é fracamente aberto.

Finalmente, definiremos a topologia fraca σ para \mathbb{R}^U , como o conjunto de todos os subconjuntos fracamente abertos (dentro desse último contexto) de \mathbb{R}^U .

Considere agora U^* com a topologia $\sigma(U^*, U)$ e seja $\phi: U^* \to \mathbb{R}^U$ onde

$$\phi(u^*) = \prod_{u \in U} \langle u, u^* \rangle_U.$$

Mostraremos que ϕ é contínuo. Suponha, para obter contradição, que ϕ não é contínuo. Assim existe $u^* \in U^*$ tal que ϕ não é contínuo em u^* .

Logo existe uma net $\{u_{\alpha}^*\}_{\alpha\in I}$ tal que

$$u_{\alpha}^* \to u^* \text{ em } \sigma(U^*, U),$$

mas não se tem

$$\phi(u_{\alpha}^*) \to \phi(u^*) \text{ em } \sigma.$$

Portanto existe uma vizinhança fraca $\tilde{V}(\phi(u^*))$ tal que para cada $\beta \in I$ existe $\alpha_\beta \in I$ tal que $\alpha_\beta \succ \beta$ e

$$\phi(u_{\alpha_{\beta}}^*) \not\in \tilde{V}(\phi(u^*)),$$

onde sem perda de generalidade, podemos assumir

$$\tilde{V}(\phi(u^*)) = \{ \omega \in \mathbb{R}^U : |P_{u_i}(w) - P_{u_i}(\phi(u^*))| < \varepsilon_i, \ \forall i \in \{1, \dots, m\} \},$$

onde $m \in \mathbb{N}$, $\varepsilon_i > 0$ e $u_i \in U$, $\forall i \in \{1, \dots, m\}$.

Disto obtemos $j \in \{1, \dots, m\}$ e uma subnet de $\{u_{\alpha_{\beta}}^*\}$ também denotada por $\{u_{\alpha_{\beta}}^*\}$ tal que

$$|P_{u_j}(\phi(u_{\alpha_\beta}^*)) - P_{u_j}(\phi(u^*))| \ge \varepsilon_j, \forall \alpha_\beta \in I.$$

Logo,

$$|P_{u_j}(\phi(u_{\alpha_\beta}^*)) - P_{u_j}(\phi(u^*))| = |\langle u_j, u_{\alpha_\beta}^* - u^* \rangle_U|$$

$$\geq \varepsilon_j, \forall \alpha_\beta \in I.$$
 (102)

Portanto não temos,

$$\langle u_j, u_{\alpha_\beta}^* \rangle_U \to \langle u_j, u^* \rangle_U,$$

isto é, não temos,

$$u_{\alpha}^* \to u^*$$
, em $\sigma(U^*, U)$,

uma contradição.

Logo, ϕ é contínua com \mathbb{R}^U com a topologia σ acima especificada.

Provaremos agora que

$$\phi^{-1}:\phi(U^*)\to U^*$$

é também contínua.

Isto segue-se da última proposição, considerando que

$$f_u(\omega) = \langle u, \phi^{-1}(w) \rangle_U = \omega_u = P_u(\omega),$$

em $\phi(U^*)$ de modo que f_u é contínuo em $\phi(U^*)$, para todo $u \in U$.

Assim, enfatizamos que disto e da última proposição, ϕ^{-1} é contínua.

Por outro lado, observe que

$$\phi(B_{U^*}) = K$$

onde

$$K = \{ \omega \in \mathbb{R}^U : |\omega_u| \le ||u||_U, \omega_{u+v} = \omega_u + \omega_v, \omega_{\lambda u} = \lambda \omega_u, \forall u, v \in U, \lambda \in \mathbb{R} \}.$$
 (103)

Para concluir a prova, é suficiente da continuidade de ϕ^{-1} , mostrar que $K \subset \mathbb{R}^U$ é compacto com \mathbb{R}^U com a topologia σ .

Observe que $K = K_1 \cap K_2$ onde

$$K_1 = \{ \omega \in \mathbb{R}^U : |\omega_u| < ||u||_U, \forall u \in U \}, \tag{104}$$

e

$$K_2 = \{ \omega \in \mathbb{R}^U : \omega_{u+v} = \omega_u + \omega_v, \ \omega_{\lambda u} = \lambda \omega_u, \forall u, v \in U, \ \lambda \in \mathbb{R} \}.$$
 (105)

O conjunto $K_3 = \prod_{u \in U} [-\|u\|_U, \|u\|_U]$ é compacto como o produto cartesiano de intervalos reais compactos.

Como $K_1 \subset K_3$ e K_1 é fechado, temos que K_1 é compacto (para a topologia σ em questão).

Por outro lado, K_2 é fechado, pois definindo os conjuntos fechados $A_{u,v}$ e $B_{\lambda,u}$ (esses conjuntos são fechados da continuidade das projeções P_u com \mathbb{R}^U com a topologia σ , como imagens inversas de fechados em \mathbb{R}) por

$$A_{u,v} = \{ \omega \in \mathbb{R}^U : \omega_{u+v} - \omega_u - \omega_v = 0 \}, \tag{106}$$

e

$$B_{\lambda,u} = \{ \omega \in \mathbb{R}^U : \omega_{\lambda u} - \lambda \omega_u = 0 \}$$
 (107)

temos que

$$K_2 = (\bigcap_{u,v \in U} A_{u,v}) \cap (\bigcap_{(\lambda,u) \in \mathbb{R} \times U} B_{\lambda,u}). \tag{108}$$

Relembramos que K_2 é fechado pois intersecções de fechados são sempre fechados.

Finalmente, temos que $K_1 \cap K_2 \subset K_1$ é compacto, o que completa a prova.

For this chapter the most relevant reference is Ekeland and Temam, [?].

14 Conjuntos e funções convexas

Seja S um subconjunto de um espaço vetorial U. Dizemos que S é convexo quando

$$\lambda u + (1 - \lambda)v \in S, \ \forall u, v \in S, \ \lambda \in [0, 1]. \tag{109}$$

Definição 14.1 (Envelope convexo). Seja S um subconjunto de um espaço vetorial U. Definimos o envelope convexo de S, denotado por Co(S) como

$$Co(S) = \left\{ \sum_{i=1}^{n} \lambda_{i} u_{i} \mid n \in \mathbb{N}, \right.$$

$$\left. \sum_{i=1}^{n} \lambda_{i} = 1, \quad \lambda_{i} \geq 0, \ u_{i} \in S, \forall i \in \{1, ..., n\} \right\}.$$
(110)

Definição 14.2 (Funcional convexo). Seja U um espaço vetorial e seja $S \subset U$ um conjunto convexo. Um funcional $F: S \to \bar{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$ é dito ser convexo, quando

$$F(\lambda u + (1 - \lambda)v) < \lambda F(u) + (1 - \lambda)F(v), \forall u, v \in S, \lambda \in [0, 1]. \tag{111}$$

14.1 Semi-continuidade inferior fraca

Começamos com a definição de Epígrafo.

Definição 14.3 (Epígrafo). Seja U um espaço de Banach e seja $F: U \to \overline{\mathbb{R}}$ um funcional. Definimos o epígrafo de F, denotado por Epi(F) como

$$Epi(F) = \{(u, a) \in U \times \mathbb{R} \mid a \ge F(u)\}.$$

Definição 14.4. Seja U um espaço de Banach. Considre a topologia fraca $\sigma(U, U^*)$ para U e seja $F: U \to \mathbb{R} \cup \{+\infty\}$ um funcional. Seja $u \in U$. Dizemos que F é fracamente semi-contínuo inferiormente em $u \in U$ quando para cada $\lambda < F(u)$, existe uma vizinhança fraca $V_{\lambda}(u) \in \sigma(U, U^*)$ tal que

$$F(v) > \lambda, \ \forall v \in V_{\lambda}(u).$$

Se F is fracamente semi-contínuo inferiormente (f.s.c.i) em todo U, dizemos simplemente que F é f.s.c.i.

Teorema 14.5. Seja U um espaço de Banach e seja $F: U \to \mathbb{R} \cup \{+\infty\}$ um funcional. Sob tais hipóteses, as seguintes propriedades são equivalentes:

- 1. F é f.s.c.i..
- 2. Epi(F) é fechado em $U \times \mathbb{R}$ com a topologia produto entre $\sigma(U, U^*)$ e a topologia usual para \mathbb{R} .
- 3. $H_{\gamma}^F = \{ u \in U \mid F(u) \leq \gamma \} \text{ \'e fechado em } \sigma(U, U^*), \ \forall \gamma \in \mathbb{R}.$

4. O conjunto $G_{\gamma}^F = \{u \in U \mid F(u) > \gamma\}$ é aberto em $\sigma(U, U^*), \forall \gamma \in \mathbb{R}$.

5.

$$\liminf_{v \to u} F(v) \ge F(u), \forall u \in U,$$

onde

$$\liminf_{v \to u} F(v) = \sup_{V(u) \in \sigma(U, U^*)} \inf_{v \in V(u)} F(v).$$

Prova. Assuma que F is f.s.c.i.. Mostraremos que $Epi(F)^c$ é aberto em $\sigma(U, U^*) \times \mathbb{R}$. Escolha $(u,r) \in Epi(F)^c$. Assim $(u,r) \notin Epi(F)$, de modo que r < F(u). Selecione λ tal que $r < \lambda < F(u)$. Sendo F f.s.c.i em u, existe uma vizinhança fraca $V_{\lambda}(u)$ tal que

$$F(v) > \lambda, \forall v \in V_{\lambda}(u).$$

Logo

$$V_{\lambda}(u) \times (-\infty, \lambda) \subset Epi(F)^{c}$$

de modo que (u,r) é ponto interior de $Epi(F)^c$ e assim, sendo tal ponto em $Epi(F)^c$ arbitrário, podemos concluir que $Epi(F)^c$ é aberto de modo que Epi(F) é fechado em $\sigma(U, U^*) \times \mathbb{R}$.

Assuma agora (2). Observe que

$$H^F_{\gamma} \times \{\gamma\} = Epi(F) \cap (U \times \{\gamma\}).$$

Da hipótese Epi(F) é fechado, ou seja $H^F_{\gamma} \times \{\gamma\}$ é fechado e portanto H^F_{γ} é fechado. Assuma (3). Para obter (4), basta tomar o complemento de H^F_{γ} . Suponha que (4) é válida. Seja $u \in U$ e seja $\gamma \in \mathbb{R}$ tal que

$$\gamma < F(u)$$
.

Como G_{γ}^F é aberto em $\sigma(U,U^*)$ existe uma vizinhança fraca V(u) tal que

$$V(u) \subset G_{\gamma}^F$$
,

de modo que

$$F(v) > \gamma, \ \forall v \in V(u),$$

e portanto

$$\inf_{v \in V(u)} F(v) \ge \gamma.$$

Em particular teremos,

$$\liminf_{v \to u} F(v) \ge \gamma.$$

Fazendo $\gamma \to F(u)$, obtemos

$$\liminf_{v \to u} F(v) \ge F(u).$$

Finalmente assuma que

$$\liminf_{v \to u} F(v) \ge F(u).$$

Seja $\lambda < F(u)$ e seja $0 < \varepsilon < F(u) - \lambda$.

Observe que

$$\liminf_{v \to u} F(v) = \sup_{V(u) \in \sigma(U, U^*)} \inf_{v \in V(u)} F(v).$$

Assim, existe uma vizinhança fraca V(u) tal que $F(v) \geq F(u) - \varepsilon > \lambda, \forall v \in V(u)$. A prova está completa. \Box

Resultado similar é válido para a topologia forte (em norma) de um espaço de Banach U de modo que um funcional $F:U\to\mathbb{R}\cup\{+\infty\}$ é fortemente semi-contínuo inferiormente (s.c.i.) em $u\in U$, quando

$$\liminf_{v \to u} F(v) \ge F(u).$$
(112)

Corolário 14.6. Todo funcional convexo e s.c.i $F: U \to \overline{\mathbb{R}}$ é também f.s.c.i..

Prova. O resultado segue-se do último teorema e do fato que o epígrafo de F é convexo e fortemente fechado. Assim tal epígrafo é também fracamente fechado.

Definição 14.7 (Funcionais afim-contínuos). Seja U um espaço de Banach. Um funcional $F: U \to \mathbb{R}$ é dito ser afim-contínuo se existem $u^* \in U^*$ e $\alpha \in \mathbb{R}$ tais que

$$F(u) = \langle u, u^* \rangle_U + \alpha, \forall u \in U.$$
(113)

Definição 14.8 $(\Gamma(U))$. Seja U um espaço de Banach. Dizemos que $F: U \to \mathbb{R}$ pertence à $\Gamma(U)$ e escrevemos $F \in \Gamma(U)$ quando F pode ser representado pontualmente como o supremo de uma família de funcionais afim-contínuos. Se $F \in \Gamma(U)$, e $F(u) \in \mathbb{R}$ para algum $u \in U$ escrevemos $F \in \Gamma(U)$.

Definição 14.9 (Envelope convexo). Seja U um espaço de Banach. Seja $F: U \to \overline{\mathbb{R}}$, um funcional. Definimos o seu envelope convexo, denotado por $CF: U \to \overline{\mathbb{R}}$, como

$$CF(u) = \sup_{(u^*,\alpha)\in A^*} \{\langle u, u^* \rangle + \alpha\},\tag{114}$$

onde

$$A^* = \{ (u^*, \alpha) \in U^* \times \mathbb{R} \mid \langle v, u^* \rangle_U + \alpha \le F(v), \forall v \in U \}$$
(115)

Definição 14.10 (Funcional polar). Seja U um espaço de Banach e seja $F: U \to \overline{\mathbb{R}}$, um funcional. Definimos o funcional polar de F, denotado por $F^*: U^* \to \overline{\mathbb{R}}$, como

$$F^*(u^*) = \sup_{u \in U} \{ \langle u, u^* \rangle_U - F(u) \}, \forall u^* \in U^*.$$
(116)

Definição 14.11 (Funcional bipolar). Seja U um espaço de Banch e seja $F: U \to \overline{\mathbb{R}}$ um funcional. Definimos o funcional bipolar de F, denotado por $F^{**}: U \to \overline{\mathbb{R}}$, como

$$F^{**}(u) = \sup_{u^* \in U^*} \{ \langle u, u^* \rangle_U - F^*(u^*) \}, \forall u \in U.$$
 (117)

Proposição 14.12. Seja U um espaço de Banach e seja $F:U\to \mathbb{R}$ um funcional. Sob tais hipóteses $F^{**}(u)=CF(u), \ \forall u\in U\ e\ em\ particular\ se\ F\in\Gamma(U),\ então\ F^{**}(u)=F(u), \ \forall u\in U.$

 ${\it Prova}$. Por definição temos que o envelope convexo de F é o supremo de minorantes afim-contínuos de F no ponto em questão. De fato precisamos considerar apenas os minorantes maximais, istó é, na forma

$$u \mapsto \langle u, u^* \rangle_U - F^*(u^*). \tag{118}$$

Logo,

$$CF(u) = \sup_{u^* \in U^*} \{ \langle u, u^* \rangle_U - F^*(u^*) \} = F^{**}(u).$$
(119)

Corolário 14.13. Seja U um espaço de Banach e seja $F:U\to \bar{\mathbb{R}}$ um funcional. Sob tais hipóteses, $F^*=F^{***}$.

Prova. Como $F^{**} \leq F$, obtemos

$$F^* \le F^{***}.\tag{120}$$

Por outro lado,

$$F^{**}(u) \ge \langle u, u^* \rangle_U - F^*(u^*),$$
 (121)

de modo que

$$F^{***}(u^*) = \sup_{u \in U} \{ \langle u, u^* \rangle_U - F^{**}(u) \} \le F^*(u^*).$$
 (122)

De (120) e (122), obtemos
$$F^*(u^*) = F^{***}(u^*), \forall u^* \in U^*$$
.

Nesse ponto do texto, relembramos a definição de diferenciabilidade à Gâteaux.

Definição 14.14 (Diferenciabilidade à Gâteaux). Seja U um espaço de Banach. Um funcional $F: U \to \overline{\mathbb{R}}$ é dito ser diferenciável à Gâteaux em $u \in U$, quando existe $u^* \in U^*$ tal que

$$\lim_{\lambda \to 0} \frac{F(u + \lambda h) - F(u)}{\lambda} = \langle h, u^* \rangle_U, \quad \forall h \in U.$$
 (123)

O vetor u^* é dito ser o diferencial à Gâteaux de $F:U\to\mathbb{R}$ em u e pode ser denotado como se segue:

$$u^* = \frac{\partial F(u)}{\partial u} \ ou \ u^* = \delta F(u) \tag{124}$$

Definição 14.15 (Sub-gradientes). Seja U um espaço de Banach e seja $F: U \to \overline{\mathbb{R}}$ um funcional. Definimos o conjunto dos sub-gradientes de F em u, denotado por $\partial F(u)$, como

$$\partial F(u) = \{ u^* \in U^*, \text{ tal que}$$

$$\langle v - u, u^* \rangle_U + F(u) \le F(v), \forall v \in U \}.$$
(125)

Relembraremos também nesse ponto a definição de operador adjunto.

Definição 14.16 (Operador adjunto). Sejam U e Y espaços de Banach e seja $\Lambda: U \to Y$ um operador linear e contínuo. O operador adjunto de Λ , denotado por $\Lambda^*: Y^* \to U^*$ é definido pela equação:

$$\langle u, \Lambda^* v^* \rangle_U = \langle \Lambda u, v^* \rangle_Y, \ \forall u \in U, \ v^* \in Y^*.$$
 (126)

Lema 14.17 (Continuidade de funções convexas). Seja U um espaço de Banach e seja $F: U \to \mathbb{R}$ um funcional convexo.

 $Seja \ u \in U \ e \ suponha \ que \ existe \ a > 0 \ e \ uma \ vizinhança \ V \ de \ u \ tal \ que$

$$F(v) < a < +\infty, \ \forall v \in V.$$

Sob tais hipóteses, F é contínua em u.

Prova. Trabalhando com G(v) = F(v+u) - F(u) se necessário, podemos reduzir o problema ao caso em que $u = \mathbf{0}$ e F(u) = 0. Seja então \mathcal{V} uma vizinhança de $\mathbf{0}$ tal que $F(v) \leq a < +\infty, \forall v \in \mathcal{V}$. Defina $\mathcal{W} = \mathcal{V} \cap (-\mathcal{V})$. Escolha $\varepsilon \in (0,1)$. Seja $v \in \varepsilon \mathcal{W}$, logo

$$\frac{v}{\varepsilon} \in \mathcal{V} \tag{127}$$

e sendo F convexo, temos que

$$F(v) = F\left((1 - \varepsilon)\mathbf{0} + \varepsilon \frac{v}{\varepsilon}\right) \le (1 - \varepsilon)F(\mathbf{0}) + \varepsilon F(v/\varepsilon) \le \varepsilon a. \tag{128}$$

Também

$$\frac{-v}{\varepsilon} \in \mathcal{V}. \tag{129}$$

Assim,

$$F(\theta) = F\left(\frac{v}{1+\varepsilon} + \varepsilon \frac{(-v/\varepsilon)}{1+\varepsilon}\right) \le \frac{F(v)}{1+\varepsilon} + \frac{\varepsilon}{1+\varepsilon} F(-v/\varepsilon),$$

de modo que

$$F(v) \ge (1+\varepsilon)F(\theta) - \varepsilon F(-v/\varepsilon) \ge -\varepsilon a.$$
 (130)

Portanto

$$|F(v)| \le \varepsilon a, \forall v \in \varepsilon \mathcal{W},$$
 (131)

isto é, F é contínuo em $u = \mathbf{0}$.

Proposição 14.18. Seja U um espaço de Banach e seja $F:U\to \mathbb{R}$ uma funcional convexo, finito e contínuo em $u\in U$. Sob tais hipóteses, $\partial F(u)\neq\emptyset$.

Prova. Como F é convexo, Epi(F) é convexo. Sendo F contínuo em u, temos que $Epi(F)^0$ é nãovazio. Observe que (u, F(u)) pertence à fronteira de Epi(F). Portanto, denotando A = Epi(F), do teorema de Hahn-Banach existe um híper-plano H fechado o qual separa (u, F(u)) e A^0 , onde H

$$H = \{ (v, a) \in U \times \mathbb{R} \mid \langle v, u^* \rangle_U + \alpha a = \beta \}, \tag{132}$$

para alguns fixos $\alpha, \beta \in \mathbb{R}$ e $u^* \in U^*$, de modo que

$$\langle v, u^* \rangle_U + \alpha a \ge \beta, \forall (v, a) \in Epi(F),$$
 (133)

e

$$\langle u, u^* \rangle_U + \alpha F(u) = \beta, \tag{134}$$

onde $(\alpha, \beta, u^*) \neq (0, 0, \mathbf{0})$. Suponha, para obter contradição, que $\alpha = 0$. Assim,

$$\langle v - u, u^* \rangle_U \ge 0, \forall v \in U,$$
 (135)

e portanto obtemos, $u^* = \mathbf{0}$ e $\beta = 0$, uma contradição. Logo podemos assumir $\alpha > 0$ (considerando (133)) e assim $\forall v \in U$ temos que

$$\frac{\beta}{\alpha} - \langle v, u^*/\alpha \rangle_U \le F(v), \tag{136}$$

е

$$\frac{\beta}{\alpha} - \langle u, u^*/\alpha \rangle_U = F(u), \tag{137}$$

ou seja,

$$\langle v - u, -u^*/\alpha \rangle_U + F(u) \le F(v), \forall v \in U, \tag{138}$$

isto é,

$$-u^*/\alpha \in \partial F(u). \tag{139}$$

A prova está completa.

Definição 14.19 (Função de Carathéodory). Seja $S \subset \mathbb{R}^n$ um conjunto aberto. Dizemos que $g: S \times \mathbb{R}^l \to \mathbb{R}$ é uma função de Carathéodory quando

 $\forall \xi \in \mathbb{R}^l, \ x \mapsto g(x,\xi) \ \acute{e} \ uma \ função \ mensurável,$

e

para quase todo $x \in S$, $\xi \mapsto g(x,\xi)$ é uma função contínua.

Para as próximas duas proposições não apresentaremos as provas. Indicaremos a bibliografia futuramente.

Proposição 14.20. Sejam E e F dosis espaços de Banach, S um subconjunto de Borel de \mathbb{R}^n , e $g: S \times E \to F$ uma função de Carathéodory. Assim, para cada função mensurável $u: S \to E$, seja $G_1(u)$ a função mensurável $x \mapsto g(x, u(x)) \in F$.

Se G_1 mapeia $L^p(S,E)$ em $L^r(S,F)$ para $1 \leq p,r < \infty$, então G_1 é fortemente contínuo.

Para o funcional $G:U\to\mathbb{R}$, definido por $G(u)=\int_S g(x,u(x))dS$, onde $U=U^*=[L^2(S)]^l$, temos o seguinte resultado.

Proposição 14.21. Considerando o enunciado da última proposição podemos expressar $G^*: U^* \to \bar{\mathbb{R}}$ como

$$G^*(u^*) = \int_S g^*(x, u^*(x)) dx, \tag{140}$$

onde $g^*(x,y) = \sup_{\eta \in \mathbb{R}^l} (y \cdot \eta - g(x,\eta))$, para quase todo $x \in S$.

Para funcionais não convexos, em certas situações pode ser difícil expressar analiticamente condições para um extremo global.

Este fato motiva a definição da Transformada de Legendre, a qual é obtida mediante um extremo local.

Definição 14.22 (Transformada de Legendre e funcional associado). Considere a função de classe C^2 , $g: \mathbb{R}^n \to \mathbb{R}$. Sua transformada de Legendre, denotada por $g_L^*: R_L^n \to \mathbb{R}$, é expressa por

$$g_L^*(y^*) = \sum_{i=1}^n x_{0^i} \cdot y_i^* - g(x_0), \tag{141}$$

onde x_0 é solução do sistema

$$y_i^* = \frac{\partial g(x_0)}{\partial x_i},\tag{142}$$

 $e\ R_L^n = \{y^* \in \mathbb{R}^n \ tal\ que\ a\ equação\ (142)\ tem\ solução\ única\ \}.$

Além disso, considerando o funcional $G: Y \to \mathbb{R}$ definido como $G(v) = \int_S g(v) dS$, definimos o funcional de Legendre associado $G_L^*: Y_L^* \to \mathbb{R}$ como

$$G_L^*(v^*) = \int_S g_L^*(v^*) \, dx,\tag{143}$$

 $onde\ Y_L^* = \{v^* \in Y^* \mid v^*(x) \in R_L^n, \ em \ quase \ todo\ S\}.$

Sobre a transformada de Legendre, temos os seguintes resultados.

Proposição 14.23. Considerando o enunciado das últimas definições, seja $y_0^* \in R_L^n$ tal que

$$\det\left\{\frac{\partial^2 g(x_0(y_0^*))}{\partial x_i \partial x_j}\right\} \neq 0.$$

Sob tais hipóteses a função

$$x_0 = x_0(y^*) = \left[\frac{\partial g}{\partial x}\right]^{-1} (y^*),$$

está bem definida e é de classe C^1 numa vizinhança de y_0^* . Além disso, para y^* em tal vizinhança, temos que

$$y_i^* = \frac{\partial g(x_0)}{\partial x_i} \Leftrightarrow x_{0^i} = \frac{\partial g_L^*(y^*)}{\partial y_i^*}$$
(144)

Prova. A função

$$x_0 = x_0(y^*) = \left[\frac{\partial g}{\partial x}\right]^{-1} (y^*)$$

estar bem definida e ser de classe C^1 numa vizinhança de y_0^* resulta do teorema da função inversa. Por outro lado, assuma que para y^* em tal vizinhança,

$$y_i^* = \frac{\partial g(x_0)}{\partial x_i}, \ \forall \ i \in \{1, ..., n\},\tag{145}$$

assim

$$g_L^*(y^*) = \sum_{i=1}^n y_i^* x_{0^i} - g(x_0)$$
(146)

derivando em relação a y_i^* , obtemos

$$\frac{\partial g_L^*(y^*)}{\partial y_i^*} = \sum_{j=1}^n y_j^* \frac{\partial x_{0^j}}{\partial y_i^*} + x_{0^i} - \sum_{j=1}^n \frac{\partial g(x_0)}{\partial x_j} \frac{\partial x_{0^j}}{\partial y_i^*},\tag{147}$$

ou seja

$$\frac{\partial g_L^*(y^*)}{\partial y_i^*} = \sum_{i=1}^n \left(y_j^* - \frac{\partial g(x_0)}{\partial x_j} \right) \frac{\partial x_{0^j}}{\partial y_i^*} + x_{0^i}$$
(148)

o que de (145) implica que

$$\frac{\partial g_L^*(y^*)}{\partial y_i^*} = x_{0^i}, \ \forall \ i \in \{1, ..., n\}.$$
(149)

Isto completa a primeira parte da prova. Reciprocamente, suponha que, para y^* na referida vizinhança, definamos

$$x_{0^i} = \frac{\partial g_L^*(y^*)}{\partial y_i^*}, \ \forall i \in \{1, ..., n\}.$$
 (150)

Como $y^* \in R_L^n$ existe um único $\bar{x}_0 \in \mathbb{R}^n$ tal que

$$y_i^* = \frac{\partial g(\bar{x}_0)}{\partial x_i} \,\forall i \in \{1, ..., n\},\tag{151}$$

e,

$$g_L^*(y^*) = \sum_{i=1}^n y_i^* \bar{x}_{0^i} - g(\bar{x}_0)$$
(152)

e portanto derivando em relação à y_i^* , obtemos

$$\frac{\partial g_L^*(y^*)}{\partial y_i^*} = \sum_{j=1}^n y_j^* \frac{\partial \bar{x}_{0^j}}{\partial y_i^*} + \bar{x}_{0^i} - \sum_{j=1}^n \frac{\partial g(\bar{x}_0)}{\partial x_j} \frac{\partial \bar{x}_{0^j}}{\partial y_i^*},\tag{153}$$

 $\forall i \in \{1, ..., n\}, \text{ de modo que}$

$$\frac{\partial g_L^*(y^*)}{\partial y_i^*} = \sum_{j=1}^n \left(y_j^* - \frac{\partial g(\bar{x}_0)}{\partial x_j} \right) \frac{\partial \bar{x}_{0^j}}{\partial y_i^*} + \bar{x}_{0^i}$$
(154)

 $\forall i \in \{1, ..., n\}$, o que de (150) e (151), implica que

$$\bar{x}_{0^i} = \frac{\partial g_L^*(y^*)}{\partial y_i^*} = x_{0^i}, \quad \forall \quad i \in \{1, ..., n\}.$$
(155)

Disto e (151), obtemos

$$y_i^* = \frac{\partial g(\bar{x}_0)}{\partial x_i} = \frac{\partial g(x_0)}{\partial x_i} \quad \forall \quad i \in \{1, ..., n\}.$$
 (156)

A prova está completa.

Teorema 14.24. Considere o funcional $J: U \to \mathbb{R}$ definido por $J(u) = (G \circ \Lambda)(u) - \langle u, f \rangle_U$ onde $\Lambda(=\{\Lambda_i\}): U \to Y \ (i \in \{1,...,n\})$ é um operador contínuo e linear e, $G: Y \to \mathbb{R}$ é um funcional expresso por $G(v) = \int_S g(v) dx$, $\forall v \in Y$ (aqui $g: \mathbb{R}^n \to \mathbb{R}$ é uma função de classe C^2 a qual admite tranformada de Legendre denotada por $g_L^*: R_L^n \to \mathbb{R}$. Isto é, as hipóteses da Proposição 14.23 são satifeitas em R_L^n).

Sob tais hipóteses, temos que

$$\delta J(u_0) = \mathbf{0} \Leftrightarrow \delta(-G_L^*(v_0^*) + \langle u_0, \Lambda^* v_0^* - f \rangle_U) = \mathbf{0}, \tag{157}$$

onde $v_0^* = \frac{\partial G(\Lambda(u_0))}{\partial v}$ é suposto ser tal que $v_0^*(x) \in R_L^n$, em S e nesse caso

$$J(u_0) = -G_L^*(v_0^*). (158)$$

Prova. Suponha primeiramente que $\delta J(u_0) = \mathbf{0}$, isto é:

$$\Lambda^* \frac{\partial G(\Lambda u_0)}{\partial v} - f = \mathbf{0} \tag{159}$$

e assim, de $v_0^* = \frac{\partial G(\Lambda u_0)}{\partial v}$ obtemos

$$\Lambda^* v_0^* - f = \mathbf{0},\tag{160}$$

e

$$v_{0^i}^* = \frac{\partial g(\Lambda u_0)}{\partial x_i}. (161)$$

Logo, da última proposição, podemos escrever,

$$\Lambda_i(u_0) = \frac{\partial g_L^*(v_0^*)}{\partial y_i^*}, \text{ for } i \in \{1, ..., n\}$$

$$\tag{162}$$

de modo que

$$\Lambda u_0 = \frac{\partial G_L^*(v_0^*)}{\partial v^*}.\tag{163}$$

Portanto, de (160) e (163) obtemos,

$$\delta(-G_L^*(v_0^*) + \langle u_0, \Lambda^* v_0^* - f \rangle_U) = \mathbf{0}. \tag{164}$$

Isto completa a primeira parte da prova.

Reciprocamente, suponha que

$$\delta(-G_L^*(v_0^*) + \langle u_0, \Lambda^* v_0^* - f \rangle_U) = \mathbf{0}, \tag{165}$$

isto é

$$\Lambda^* v_0^* - f = \mathbf{0} \tag{166}$$

е

$$\Lambda u_0 = \frac{\partial G_L^*(v_0^*)}{\partial v^*}.\tag{167}$$

Claramente, de (167), da última proposição e de (166), podemos escrever

$$v_0^* = \frac{\partial G(\Lambda(u_0))}{\partial v} \tag{168}$$

e

$$\Lambda^* \frac{\partial G(\Lambda u_0)}{\partial v} - f = \mathbf{0},\tag{169}$$

de modo que

$$\delta J(u_0) = \mathbf{0}.\tag{170}$$

Finalmente,

$$J(u_0) = G(\Lambda u_0) - \langle u_0, f \rangle_U \tag{171}$$

e disto, (166) e (168) temos que

$$J(u_0) = G(\Lambda u_0) - \langle u_0, \Lambda^* v_0^* \rangle_U$$

= $G(\Lambda u_0) - \langle \Lambda u_0, v_0^* \rangle_Y$
= $-G_L^*(v_0^*).$ (172)

A prova está completa.

Teorema 14.25 (Toland, 1979). Seja U um espaço de Banach e sejam $F,G:U\to\mathbb{R}$ funcionais tais que

$$\inf_{u \in U} \{ G(u) - F(u) \} = \alpha \in \mathbb{R}.$$

Sob tais hipóteses

$$F^*(u^*) - G^*(u^*) \ge \alpha, \ \forall u^* \in U^*.$$

Além disso, suponha que $u_0 \in U$ seja tal que

$$G(u_0) - F(u_0) = \min_{u \in U} \{G(u) - F(u)\} = \alpha.$$

Assuma também que $u_0^* \in \partial F(u_0)$. Sob tais hipóteses,

$$F^*(u_0^*) - G^*(u_0^*) = \alpha,$$

de modo que

$$G(u_0) - F(u_0) = \min_{u \in U} \{G(u) - F(u)\}$$

$$= \min_{u^* \in U^*} \{F^*(u^*) - G^*(u^*)\}$$

$$= F^*(u_0^*) - G^*(u_0^*). \tag{173}$$

Prova. Das hipóteses,

$$\inf_{u \in U} \{ G(u) - F(u) \} = \alpha \in \mathbb{R}.$$

Logo

$$G(u) - F(u) \ge \alpha, \ \forall u \in U.$$

Portanto, para $u^* \in U^*$, temos que

$$-\langle u, u^* \rangle_U + G(u) + \langle u, u^* \rangle_U - F(u) \ge \alpha, \ \forall u \in U.$$

Thus,

$$-\langle u, u^* \rangle_U + G(u) + \sup_{u \in U} \{\langle u, u^* \rangle_U - F(u)\} \ge \alpha, \ \forall u \in U,$$

ou seja

$$-\langle u, u^* \rangle_U + G(u) + F^*(u^*) \ge \alpha, \ \forall u \in U,$$

de modo que

$$\inf_{u \in U} \{ -\langle u, u^* \rangle_U + G(u) \} + F^*(u^*) \ge \alpha,$$

isto é,

$$-G^*(u^*) + F^*(u^*) \ge \alpha, \ \forall u^* \in U^*. \tag{174}$$

Também das hipóteses,

$$G(u_0) - F(u_0) \le G(u) - F(u), \ \forall u \in U.$$
 (175)

Por outro lado de $u_0^* \in \partial F(u_0)$, obtemos

$$\langle u_0, u_0^* \rangle_U - F(u_0) \ge \langle u, u_0^* \rangle_U - F(u), \ \forall u \in U$$

de modo que

$$-F(u) \le \langle u_0 - u, u_0^* \rangle_U - F(u_0), \ \forall u \in U.$$

Disto e (175), obtemos,

$$G(u_0) - F(u_0) \le G(u) + \langle u_0 - u, u_0^* \rangle_U - F(u_0), \ \forall u \in U.$$
 (176)

de modo que,

$$\langle u_0, u_0^* \rangle_U - G(u_0) \ge \langle u, u_0^* \rangle_U - G(u), \ \forall u \in U,$$

ou seja

$$G^{*}(u_{0}^{*}) = \sup_{u \in U} \{\langle u, u_{0}^{*} \rangle_{U} - G(u)\}$$

= $\langle u_{0}, u_{0}^{*} \rangle_{U} - G(u_{0}).$ (177)

Resumindo, obtivemos

$$G^*(u_0^*) = \langle u_0, u_0^* \rangle_U - G(u_0),$$

e

$$F^*(u_0^*) = \langle u_0, u_0^* \rangle_U - F(u_0).$$

Logo,

$$F^*(u_0) - G^*(u_0^*) = G(u_0) - F(u_0) = \alpha.$$

Disto e (174), temos que

$$G(u_0) - F(u_0) = \min_{u \in U} \{G(u) - F(u)\}$$

$$= \min_{u^* \in U^*} \{F^*(u^*) - G^*(u^*)\}$$

$$= F^*(u_0^*) - G^*(u_0^*). \tag{178}$$

A prova está completa.

Exercício 14.26. Seja $\Omega \subset \mathbb{R}^2$ um conjunto de classe \hat{C}^1 . Seja $V = C^1(\overline{\Omega})$ e seja $J : D \subset V \to \mathbb{R}$ onde

 $J(u) = \frac{\gamma}{2} \int_{\Omega} \nabla u \cdot \nabla u \, dx - \int_{\Omega} fu \, dx, \ \forall u \in U$

e onde

$$D = \{ u \in V : u = 0 \text{ } em \text{ } \partial \Omega \}.$$

- 1. Prove que J é convexo.
- 2. Prove que $u_0 \in D$ tal que

$$\gamma \nabla^2 u_0 + f = 0$$
, em Ω ,

 $minimiza \ J \ em \ D.$

3. Prove que

$$\inf_{u \in U} J(u) \ge \sup_{v^* \in Y^*} \{ -G^*(v^*) - F^*(-\Lambda^* v^*) \},$$

onde

$$G(\nabla u) = \frac{1}{2} \int_{\Omega} \nabla u \cdot \nabla u \, dx,$$

e

$$G^*(v^*) = \sup_{v \in Y} \{ \langle v, v^* \rangle_Y - G(v) \},$$

onde $Y = Y^* = L^2(\Omega)$.

 $E\ tamb{\'e}m,\ definimos\ \Lambda:U o Y\ por$

$$\Lambda u = \nabla u,$$

e

$$F:D\to\mathbb{R}$$

como

$$F(u) = \int_{\Omega} fu \ dx,$$

de modo que

$$F^{*}(-\Lambda^{*}v^{*}) = \sup_{u \in D} \{ -\langle \nabla u, v^{*} \rangle_{Y} - F(u) \}$$

$$= \sup_{u \in D} \{ \langle u, \operatorname{div} v^{*} \rangle_{Y} + \int_{\Omega} f u \, dx \}$$

$$= \sup_{u \in D} \{ \int_{\Omega} (\operatorname{div} v^{*} + f) \, u \, dx \}$$

$$= \begin{cases} 0, & \operatorname{se} \operatorname{div}(v^{*}) + f = 0, \ \operatorname{em} \Omega \\ +\infty, & \operatorname{de} \operatorname{outra} \operatorname{forma.} \end{cases}$$

$$(179)$$

4. Prove que $v_0^* = \gamma \nabla u_0$ é tal que

$$J(u_0) = \min_{u \in D} J(u)$$

$$= \min_{u \in D} \{ G(\Lambda u) + F(u) \}$$

$$= \max_{v^* \in Y^*} \{ -G^*(v^*) - F^*(-\Lambda^* v^*) \}$$

$$= -G^*(v_0^*) - F^*(-\Lambda^* v_0^*). \tag{180}$$

 $Solução: Seja u \in D e$

$$v \in V_a = \{ v \in V : v = 0 \ em \ \partial \Omega \}.$$

Assim,

$$\delta J(u; v) = \lim_{\varepsilon \to 0} \frac{J(u + \varepsilon v) - J(u)}{\varepsilon}
= \lim_{\varepsilon \to 0} \frac{(\gamma/2) \int_{\Omega} (\nabla u + \varepsilon \nabla v) \cdot (\nabla u + \varepsilon \nabla v) \, dx - (\gamma/2) \int_{\Omega} \nabla u \cdot \nabla u \, dx - \int_{\Omega} (u + \varepsilon v - u) f \, dx}{\varepsilon}
= \lim_{\varepsilon \to 0} \left(\gamma \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Omega} f v \, dx + \varepsilon (\gamma/2) \int_{\Omega} \nabla v \cdot \nabla v \, dx \right)
= \gamma \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Omega} f v \, dx.$$
(181)

Logo,

$$J(u+v) - J(u) = (\gamma/2) \int_{\Omega} (\nabla u + \nabla v) \cdot (\nabla u + \nabla v) \, dx - (\gamma/2) \int_{\Omega} \nabla u \cdot \nabla u \, dx$$

$$- \int_{\Omega} (u+v-u) f \, dx$$

$$= \gamma \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Omega} f v \, dx + (\gamma/2) \int_{\Omega} \nabla v \cdot \nabla v \, dx$$

$$\geq \gamma \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Omega} f v \, dx$$

$$= \delta J(u; v)$$
(182)

 $\forall u \in D, \ v \in V_a.$

Disto podemos concluir que J é convexo.

Das hipóteses $u_0 \in D$ é tal que

$$\gamma \nabla^2 u_0 + f = 0$$
, em Ω .

Seja $v \in V_a$.

Portanto, temos que,

$$\delta J(u_0; v) = \gamma \int_{\Omega} \nabla u_0 \cdot \nabla v \, dx - \int_{\Omega} f v \, dx$$

$$= \gamma \int_{\Omega} \nabla u_0 \cdot \nabla v \, dx + \gamma \int_{\Omega} \nabla^2 u_0 v \, dx$$

$$= \gamma \int_{\Omega} \nabla u_0 \cdot \nabla v \, dx - \gamma \int_{\Omega} \nabla u_0 \cdot \nabla v \, dx + \int_{\partial \Omega} \nabla u_0 \cdot \mathbf{n} \, v \, ds$$

$$= 0$$

$$(183)$$

onde **n** denota o campo normal exterior à $\partial\Omega$.

Resumindo obtivemos, $\delta J(u_0; v) = 0, \forall v \in V_a$.

Sendo J convexo, disto concluímos que u_0 minimiza J em D.

Observe agora que,

$$J(u) = G(\nabla u) + F(u)$$

$$= -\langle \nabla u, v^* \rangle_Y + G(\nabla u) + \langle \nabla u \cdot v^* \rangle_Y + F(u)$$

$$\geq \inf_{v \in Y} \{ -\langle v, v^* \rangle_Y + G(v) \}$$

$$+ \inf_{u \in U} \{ \langle \nabla u, v^* \rangle_Y + F(u) \}$$

$$= -G^*(v^*) - F^*(-\Lambda^* v^*), \ \forall u \in U, \ v^* \in Y^*.$$
(184)

Resumindo,

$$\inf_{u \in D} J(u) \ge \sup_{v^* \in Y^*} \{ -G^*(v^*) - F^*(-\Lambda^* v^*) \}. \tag{185}$$

Também das hipóteses, temos que $v_0^* = \gamma \nabla u_0$.

 $E \ assim$

$$v_0^* = \frac{\partial G(\nabla u_0)}{\partial v},$$

de modo que

$$G^{*}(v_{0}^{*}) = \sup_{v \in Y} \{\langle v, v_{0}^{*} \rangle_{Y} - G(v)\}$$

$$= \langle \nabla u_{0}, v_{0}^{*} \rangle_{Y} - G(\nabla u_{0})$$

$$= -\langle u_{0}, \operatorname{div} v_{0}^{*} \rangle_{L^{2}} - G(\nabla u_{0}).$$
(186)

Por outro lado, de $v_0^* = \gamma \nabla u_0$, obtemos

$$div \ v_0^* = \gamma div(\nabla u_0) = \gamma \nabla^2 u_0 = -f$$

Disto e (186), obtemos,

$$G^*(v_0^*) = -\langle u_0, f \rangle_{L^2} - G(\nabla u_0),$$

e de

$$div \ v_0^* + f = 0$$

obtemos

$$F^*(-\Lambda^* v_0^*) = 0.$$

Logo

$$G(\nabla u_0) - \langle u_0, f \rangle_{L^2} = -G^*(v_0^*) - F^*(-\Lambda^* v_0^*),$$

de modo que disto e (185) temos que

$$J(u_0) = \min_{u \in D} J(u)$$

$$= \min_{u \in D} \{ G(\Lambda u) + F(u) \}$$

$$= \max_{v^* \in Y^*} \{ -G^*(v^*) - F^*(-\Lambda^* v^*) \}$$

$$= -G^*(v_0^*) - F^*(-\Lambda^* v_0^*). \tag{187}$$

A solução está completa.