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Abstract

This article develops a variational formulation for the relativistic Klein-Gordon equation.
The main results are obtained through a connection between classical and quantum mechanics.
Such a connection is established through the definition of normal field and its relation with the
wave function concept.

1 Introduction

In this work we propose a variational formulation for the Klein-Gordon relativistic equation
obtained through an extension of the classical mechanics approach to a more general context,
which may include in some sense the quantum mechanics one. The main results are developed
through the introduction of the normal field definition and concerning wave function concept.

The aim of introducing the energy part related to the normal field is to minimize and
control, in a specific appropriate sense to be described in the next sections, the curvature field
distribution along the concerned mechanical system.

About the references, this work is based on the book ”A Classical Description of Variational
Quantum Mechanics and Related Models” [5], published by Nova Science Publishers. In the first
two sections we present a summary of the main introductory results presented in [5]. In the final
section we develop in details the main result, namely, the establishment of the Klein-Gordon
relativistic equation resulted from the respective variational formulation.

At this point we remark that details on the Sobolev Spaces involved may be found in [1, 4].
For standard references in quantum mechanics, we refer to [3, 6, 7] and the non-standard [2].

Finally, we emphasize this article is not about Bohmian mechanics, even though the David
Bohm work has been always inspiring.

2 The Newtonian approach

In this section, specifically for a free particle context, we shall obtain a close relationship
between classical and quantum mechanics.

Let Ω ⊂ R
3 be an open, bounded and connected set set with a regular (Lipschitzian)

boundary denoted by ∂Ω, on which we define a position field, in a free volume context, denoted
by r : Ω× [0, T ] → R

3, where [0, T ] is a time interval.
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Suppose also an associated density distribution scalar field is given by (ρ ◦ r) : Ω× [0, T ] →
[0,+∞), so that the kinetics energy for such a system, denoted by J : U × V → R, is defined as

J(r, ρ) =
1

2

∫ T

0

∫

Ω
ρ(r(x, t))

∂r(x, t)

∂t
· ∂r(x, t)

∂t

√
g dxdt,

subject to
∫

Ω
ρ(r(x, t))

√
g dx = m, on [0, T ],

where m is the total system mass, t denotes time and dx = dx1 dx2 dx3.
Here,

U = {r ∈ W 1,2(Ω× [0, T ]) : r(x, 0) = r0(x)

and r(x, T ) = r1(x), in Ω}, (1)

and
V = {ρ(r) ∈ L2([0, T ];W 1,2(Ω)) : r ∈ U}.

Also

gk =
∂r(x, t)

∂xk
,

gjk = gj · gk,
and

g = det{gjk}.
For such a standard Newtonian formulation, the kinetics energy takes into account just the

tangential field given by the time derivative

∂r(x, t)

∂t
.

At this point, the idea is to complement such an energy with a new term which would
consider also the variation of a normal field n and concerning distribution of curvature, such
that

n · ∂r(x, t)
∂t

= 0, in Ω× [0, T ].

So, with such statements in mind, we redefine the concerning energy, denoting it again by
J : U × V × V1 → R, as

J(r,n, ρ) = −1

2

∫ T

0

∫

Ω
ρ(r(x, t))

∂r(x, t)

∂t
· ∂r(x, t)

∂t

√
g dxdt

+
γ

2

∫ T

0

∫

Ω
R̂
√
g dxdt, (2)

where γ > 0 is an appropriate constant,

R̂ = gijR̂ij ,

R̂jk = R̂i
jik,
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R̂i
jkl = bli bjk,

bij = − 1√
m

∂
(

√

ρ(r)n(r)
)

∂xj
· gi,

bij = gilblj ,

and,
{gij} = {gij}−1,

∀i, j, k, l ∈ {1, 2, 3}.
subject to

n(r) · n(r) = 1, in Ω× [0, T ],

n(r) · ∂r
∂t

= 0, in Ω× [0, T ],

and
∫

Ω
ρ(r(x, t))

√
g dx = m, on [0, T ].

Here
V1 = {n(r) ∈ L2(Ω× [0, T ]) : r ∈ U}.

Thus, defining φ such that

|φ| =
√

ρ

m

and already including the Lagrange multipliers concerning the restrictions, the final expression
for the energy, denoted by J : U × V × V1 × V2 × [V3]

2 → R, would be given by

J(r,n, φ,E, λ1, λ2) = −1

2

∫ T

0

∫

Ω
m|φ(r(x, t))|2 ∂r(x, t)

∂t
· ∂r(x, t)

∂t

√
g dxdt

+
γ

2

∫ T

0

∫

Ω
R̂
√
g dxdt

−m

∫ T

0
E(t)

(
∫

Ω
|φ(r)|2 √

g dx− 1

)

dt

+〈λ1,n · n− 1〉L2

+

〈

λ2,n · ∂r
∂t

〉

L2

, (3)

where,

U = {r ∈ W 1,2(Ω× [0, T ]) : r(x, 0) = r0(x)

and r(x, T ) = r1(x), in Ω}, (4)

V = {φ(r) ∈ L2([0, T ];W 1,2(Ω;C)) : r ∈ U},
V1 = {n(r) ∈ L2(Ω× [0, T ]) : r ∈ U},

V2 = L2([0, T ]),
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V3 = L2(Ω× [0, T ]),

and generically

〈f, h〉L2 =

∫ T

0

∫

Ω
fh

√
g dx dt,∀f, h ∈ L2(Ω × [0, T ]).

Moreover,
R̂ = gijR̂ij ,

R̂jk = R̂i
jik,

R̂i
jkl = bli b

∗

jk,

bij = −∂ (φ(r)n(r))

∂xj
· gi,

bij = gilblj ,

∀i, j, k, l ∈ {1, 2, 3}.
Finally, in particular for the special case in which

r(x, t) ≈ x,

so that
∂r(x, t)

∂t
≈ 0,

and

n · ∂r
∂t

≈ 0,

we may set
n = c,

where c ∈ R
3 is a constant such that

c · c = 1,

and obtain
gk ≈ ek,

where
{e1, e2, e3}

is the canonical basis of R3.
Therefore, in such a case,

γ

2

∫ T

0

∫

Ω
R̂

√
g dxdt ≈ γT

2

3
∑

k=1

∫

Ω

∂φ

∂xk

∂φ∗

∂xk
dx.

Hence, we would also obtain

J(r,n, φ,E, λ1 , λ2)/T ≈ J̃(φ,E)

=
γ

2

3
∑

k=1

∫

Ω

∂φ

∂xk

∂φ∗

∂xk
dx

−E

(
∫

Ω
|φ|2dx− 1

)

. (5)

This last energy is just the standard Schrödinger one in a free particle context.
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3 A brief note on the relativistic context, the Klein-

Gordon equation

Denoting by c the speed of light and

dt
2
= c2dt2 − dX2

1 − dX2
2 − dX2

3 ,

in a relativistic free particle context, the Hilbert variational formulation could be extended, for
a motion in a pseudo Riemannian relativistic C1 class manifold M , where locally

M = {r(u) : u ∈ Ω},

u = (u1, u2, u3, u4) ∈ R
4,

and
r : Ω ⊂ R

4 → R
4

point-wise stands for,
r(u) = (ct(u),X1(u),X2(u),X3(u)),

to a functional J1 where denoting ρ(r) = |R(r)|2, the mass differential is given by

dm =
ρ(r)

√

1− v2/c2

√

|g| du =
|R(r)|2

√

1− v2/c2

√

|g| du,

the semi-classical kinetics energy differential is given by

dEc =
∂r(u)

∂t
· ∂r(u)

∂t
dm

= −
(

dt

dt

)2

dm

= −(c2 − v2) dm, (6)

so that
dEc = −c2(

√

1− v2/c2)|R(r)|2
√

|g| du,
and

J1(r, R,n) = −
∫

Ω
dEc +

γ

2

∫

Ω
R̂
√

|g| du

= c2
∫

Ω
|R(r)|2

√

1− v2/c2
√

|g| du

+
γ

2

∫

Ω
R̂
√

|g| du, (7)

subject to
∫

Ω
|R(r)|2

√

|g| du = m,

where m is the particle mass at rest.
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Moreover,

n(r) · ∂r
∂t

= 0, in Ω,

where

∂r

∂t
=

∂r

∂t

∂t

∂t

=
∂r
∂t

∂t
∂t

=
∂r

c∂t

1
√

1− v2/c2
, (8)

and
n(r) · n(r) = 1, in Ω.

Where γ is an appropriate positive constant to be specified.
Also,

gk =
∂r(u)

∂uk
,

g = det{gij},
gij = gi · gj ,

where here, in this subsection, such a product is given by

y · z = −y0z0 +

3
∑

i=1

yizi, ∀y = (y0, y1, y2, y3), z = (z0, z1, z2, z3) ∈ R
4,

R̂ = gijR̂ij ,

R̂jk = R̂i
jik,

R̂i
jkl = bli b

∗

jk,

bij = − 1√
m

∂ (R(r)n(r))

∂uj
· gi,

bij = gilblj ,

and,
{gij} = {gij}−1,

∀i, j, k, l ∈ {1, 2, 3, 4}.
Finally,

v =

√

(

∂X1

∂t

)2

+

(

∂X2

∂t

)2

+

(

∂X3

∂t

)2

,
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where,

∂Xk(u)

∂t
=

∂Xk(u)

∂uj

∂uj
∂t

=

4
∑

j=1

∂Xk(u)
∂uj

∂t(u)
∂uj

, ∀k ∈ {1, 2, 3}. (9)

Here the Einstein sum convention holds.

Remark 3.1. The role of the variable u concerns the idea of establishing a relation between

t,X1,X2 and X3. The dimension of M may vary with the problem in question.

3.1 Obtaining the Klein-Gordon equation

Of particular interest is the case in which

u = (t, x1, x2, x3) = (t,x) ∈ R
4,

where x = (x1, x2, x3) ∈ R
3.

In such a case we could have, point-wise,

r(x, t) = (ct,X1(t,x),X2(t,x),X3(t,x)),

and
M = {r(x, t) : (x, t) ∈ Ω× [0, T ]},

for an appropriate Ω ⊂ R
3.

Also, denoting dx = dx1dx2dx3, the mass differential would be given by

dm =
ρ(r)

√

1− v2/c2

√−g dx =
|R(r)|2

√

1− v2/c2

√−g dx,

the semi-classical kinetics energy differential would be expressed by

dEc =
∂r(t,x)

∂t
· ∂r(t,x)

∂t
dm

= −
(

dt

dt

)2

dm

= −(c2 − v2) dm, (10)

so that
dEc = −c2(

√

1− v2/c2)|R(r)|2√−g dx,

where
dt

2
= c2dt2 − dX1(t,x)

2 − dX2(t,x)
2 − dX3(t,x)

2,

and
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J1(r, R,n) = −
∫ T

0

∫

Ω
dEc dt+

γ

2

∫ T

0

∫

Ω
R̂
√−g dx dt

= c2
∫ T

0

∫

Ω
|R(r)|2

√

1− v2/c2
√−g dx dt

+
γ

2

∫ T

0

∫

Ω
R̂
√−g dx dt, (11)

subject to
R(r(x, 0)) = R0(x)

R(r(x, T )) = R1(x)

and
R(r(x, t)) = 0, on ∂Ω× [0, T ],

∫

Ω
|R(r)|2 √−g dx = m, on [0, T ],

n(r) · ∂r
∂t

= 0, in Ω× [0, T ],

where

∂r

∂t
=

∂r

∂t

∂t

∂t

=
∂r
∂t

∂t
∂t

=
∂r

c∂t

1
√

1− v2/c2
, (12)

and
n(r) · n(r) = 1, in Ω× [0, T ].

Also, we have denoted
x0 = ct,

(x0,x) = (x0, x1, x2, x3),

gk =
∂r(t,x)

∂xk
,

g = det{gij},
gij = gi · gj ,

where here again, such a product is given by

y · z = −y0z0 +

3
∑

i=1

yizi, ∀y = (y0, y1, y2, y3), z = (z0, z1, z2, z3) ∈ R
4,
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R̂ = gijR̂ij ,

R̂jk = R̂i
jik,

R̂i
jkl = bli b

∗

jk,

bij = − 1√
m

∂ (R(r)n(r))

∂xj
· gi,

bij = gilblj ,

and,
{gij} = {gij}−1,

∀i, j, k, l ∈ {0, 1, 2, 3}.
Finally, we would also have

v =

√

(

∂X1

∂t

)2

+

(

∂X2

∂t

)2

+

(

∂X3

∂t

)2

.

In particular for the special case in which

r(x, t) ≈ (ct,x),

so that
∂r(x, t)

∂t
≈ (c, 0, 0, 0),

and

n · ∂r
∂t

≈ 0,

where we have set
n = c = (0, c1, c2, c3).

Here c ∈ R
4 is a constant such that

c · c = 1,

and thus we would obtain

g0 ≈ (1, 0, 0, 0), g1 ≈ (0, 1, 0, 0), g2 ≈ (0, 0, 1, 0) and g3 ≈ (0, 0, 0, 1) ∈ R
4.

Therefore, defining φ ∈ W 1,2(Ω× [0, T ];C) as

φ(x, t) =
R(ct,x)√

m
,

we have

γ

2

∫ T

0

∫

Ω
R̂

√
g dxdt ≈ γ

2

∫ T

0

∫

Ω

(

− 1

c2
∂φ(x, t)

∂t

∂φ∗(x, t)

∂t

+
3
∑

k=1

∂φ(x, t)

∂xk

∂φ∗(x, t)

∂xk

)

dxdt, (13)
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and

c2
∫ T

0

∫

Ω
|R(r)|2

√

1− v2/c2
√
−g dx dt ≈ mc2

∫ T

0

∫

Ω
|φ(x, t)|2 dxdt.

Hence, we would also obtain

J(r,n, φ,E, λ1, λ2) ≈ γ

2

(
∫ T

0

∫

Ω
− 1

c2
∂φ(x, t)

∂t

∂φ∗(x, t)

∂t
dxdt

+

3
∑

k=1

∫

Ω

∫ T

0

∂φ(x, t)

∂xk

∂φ∗(x, t)

∂xk
dxdt

)

+mc2
∫ T

0

∫

Ω
|φ(x, t)|2 dxdt

−m

∫ T

0
E(t)

(
∫

Ω
|φ(x, t)|2dx− 1

)

dt. (14)

The Euler Lagrange equations for such an energy are given by

γ

2

(

1

c2
∂2φ(x, t)

∂t2
−

3
∑

k=1

∂2φ(x, t)

∂x2k

)

+mc2φ(x, t) − E1(t)φ(x, t) = 0, in Ω, (15)

where,
φ(x, 0) = φ0(x), in Ω,

φ(x, T ) = φ1(x), in Ω,

φ(x, t) = 0, on ∂Ω× [0, T ]

and E1(t) = mE(t).
Equation (15) is the relativistic Klein-Gordon one.
For E1(t) = E1 ∈ R (not time dependent), at this point we suggest a solution (and implicitly

related time boundary conditions) φ(x, t) = e−
iE1t

~ φ2(x), where

φ2(x) = 0, on ∂Ω.

Therefore, replacing this solution into equation (15), we would obtain

(

γ

2

(

− E2
1

c2~2
φ2(x)−

3
∑

k=1

∂2φ2(x)

∂x2k

)

+mc2φ2(x)− E1φ2(x)

)

e−
iE1t

~ = 0,

in Ω.
Denoting

E2 = − γE2
1

2c2~2
+mc2 − E1,

the final eigenvalue problem would stand for

−γ

2

3
∑

k=1

∂2φ2(x)

∂x2k
+ E2φ2(x) = 0, in Ω
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where E1 is such that
∫

Ω
|φ2(x)|2 dx = 1.

Moreover, from (15), such a solution φ(x, t) = e−
iE1t

~ φ2(x) is also such that

γ

2

(

1

c2
∂2φ(x, t)

∂t2
−

3
∑

k=1

∂2φ(x, t)

∂x2k

)

+mc2φ(x, t) = i~
∂φ(x, t)

∂t
, in Ω. (16)

At this point, we recall that in quantum mechanics,

γ = ~
2/m.

Finally, we remark this last equation (16) is a kind of relativistic Schrödinger-Klein-Gordon
equation.

4 Conclusion

In this article we have developed a variational formulation for the relativistic Klein-Gordon
equation by extending the standard classical mechanics energy to a more general functional,
obtained thorough the introduction of the normal field concept.

We believe the results here presented may be applied and extended to other models in me-
chanics, including the quantum and relativistic approaches for the study of atoms and molecules.

Finally, we have the objective and interest in applying such results also for the case in
which electromagnetic fields are included, however we postpone such developments for a future
research.
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