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a b s t r a c t

We present a Tikhonov parameter choice approach for three-dimensional reconstructions
based on a maximum product criterion (MPC) which provides a regularization parameter
located in the concave part of the L-curve in log–log scale. Our method, baptized Improved
Maximum Product Criterion (IMPC), is an extension of the MPC method developed by
Bazán et al. for two-dimensional reconstructions. In the 3D framework, IMPC computes the
regularization parameter via a fast iterative algorithm and requires no a priori knowledge
of the noise level in the data. It is applied on the linear sampling method for solving the
electromagnetic inverse medium problem in the 3D framework. The effectiveness of IMPC
is illustrated with numerical examples involving more than one scatterer.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this work we shall consider the scattering of a time harmonic electromagnetic wave with frequency in the resonance
region by a finite number of three dimensional scatterers each of which is a penetrable isotropic medium. The inverse
scattering problem we are considering is related to the determination of the shape of a penetrable scatterer in R3.

The approach we shall use to solve the inverse electromagnetic scattering problem is a combination of the well known
linear sampling method originally developed in the acoustic context by Colton and Kirsch [1] and an improved version of
the maximum product criterion (MPC) developed by Bazán et al. [2] for 2D reconstructions. It is widely known that the
linear sampling method does not require a priori information about either the boundary condition or the connectivity of the
scatterer, however it does require multistatic data at a single frequency. Due to the ill-posedness of the inverse problem,
the linear sampling method yields an ill-conditioned system of linear equations whose solution requires a regularization
method in order to handle correctly the presence of noise in the data. In particular, this solution requires the use of Tikhonov
regularizationmethod equippedwithMorozov’s generalized discrepancy principle as parameter choice rule [3,1,4–8],which
generally involves the computation of the zeros of the discrepancy function at each point of the grid. In addition, the noise
level in the data should be known a priori, something that in real life applications is not the case in general.

For electromagnetism, the linear sampling method has already been analyzed for perfect conducting scatters [9],
imperfect conductors with impedance boundary data [7] and penetrable scatterers [10]. In particular, as presented in [10],
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the mathematical justification of the method is based on the formulation of an interior transmission problem for which a
weak solution is shown to exist. Then the theoretical justification follows by extending to electromagnetics methods used
for the acoustic problem.

The Maximum Product Criterion (MPC), originally developed for two dimensional reconstructions [2], employs compu-
tation of the regularized solution norm and the corresponding residual norm and selects the parameter which maximizes
the product of these norms as a function of the regularization parameter; its main virtue is that it constructs regularized
solutions of either large or small norm depending on whether a certain inclusion condition is satisfied or not. MPC however
applied to 3D reconstruction problems may fail due to the existence of several local maxima. To overcome this difficulty
the authors developed a variant of MPC, the Improved Product Criterion (IMPC), which via a fast and efficient algorithm
chooses as regularization parameter the critical point associated with the largest local maximum of the product. In addition
as with MPC, IMPC does not depend on user specified input parameters (like subspace dimension or truncating parameter)
and requires no a priori knowledge of the noise level.

Weorganize our paper as follows. Section2will be devoted to the formulation of the problemand abrief description of the
linear samplingmethod in the electromagnetic context. Subsequently, Section 3will deal with the improved version ofMPC,
the IMPC as a parameter choice rule. In particular we will be concerned with theoretical properties on which IMPC relies on
as well as with its implementation within the framework of the linear sampling method. In order to show the effectiveness
of our method, in Section 4, we will present numerical examples for the case of penetrable three dimensional scatterers
and we will compare the reconstructions obtained via IMPC with the ones obtained by means of Morozov’s generalized
discrepancy principle (GDP). We will finally list our conclusions in Section 5.

2. The linear sampling method

Webegin by considering the direct scattering problemof a timeharmonic electromagneticwave by a penetrable isotropic
medium D ⊂ R3 which can be formulated as the problem of finding an electric field E and a magnetic field H such that
E,H ∈ C1(R3) and

curlE − ikH = 0 and curlH + iknE = 0 in R3 (1)

where n ∈ C1,α(R3) is a complex valued function with 0 ≤ α ≤ 1 and n(x) = 1 outside D. The total field is given as

E = E i
+ Es and H = H i

+ Hs (2)

where Es,Hs are the scattered fields satisfying the Silver–Müller radiation condition

lim
r→∞

(Hs
× x − rEs) = 0 (3)

uniformly in x̂ =
x
|x| , where r = |x| and the incident field is the plane wave

E i(x) =
i
k
curlcurl peikx·d = ik(d × p) × deikx·d, (4)

H i(x) = curl peikx·d = ikd × peikx·d, (5)

where the wavenumber k is positive, d is a unit vector giving the direction of propagation and p is the polarization vector.
The existence and uniqueness of a solution to (1)–(3) can be found in [11]. From the second Stratton–Chu formula it follows
that

Es(x) =
eikr

r


E∞(x̂, d, p) + O


1
r


as r → ∞ (6)

where E∞ is the electric far field pattern. The inverse medium problem for electromagnetic waves is to determine D from
E∞(x̂, d, p) for x̂, d in the unit sphere Ω, p ∈ R3, and different values of k. As indicated in [10], E∞ is infinitely differentiable
as a function of its arguments and as a function of x̂ is tangential to the unit sphere Ω .

We now introduce the space

L2t (Ω) = {g : Ω → C3
| g ∈ L2(Ω), g · x̂ = 0, for x̂ ∈ Ω}

of tangential L2 fields in Ω . The electric far-field operator F : L2t (Ω) → L2t (Ω) is then defined by

(F g)(x̂) =


Ω

E∞(x̂, d, g(d)) ds(d), x̂ ∈ Ω. (7)

Now let E∞(x̂, z, q) be the electric far-field pattern of an electric dipole located in z ∈ D and oriented along q:

Ee(x, z, q) =
i
k
curlxcurlxqΦ(x, z) (8)

He(x, z, q) = curlxqΦ(x, z) (9)
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with Φ being the fundamental solution of the Helmholtz equation defined by

Φ(x, z) =
1
4π

eik|x−z|

|x − z|
. (10)

We would like to find for fixed q and z, a function g(·, z, q) ∈ L2t (Ω) through the far-field equation

(F g(·, z, q))(x̂) =


Ω

E∞(x̂, d, gz,q(d)) ds(d) = Ee,∞(x̂, z, q) (11)

where Ee,∞(x̂, d, gz,q(d)) denotes the far-field pattern of Ee which is the field scattered by the target along direction x̂when
is illuminated by a plane wave impinging from the direction d and polarized along gz,q(d) ∈ L2t (Ω) for a set of sampling
points z ∈ R3, three linear independent polarizations q ∈ R3 and

Ee,∞(x̂, z, q) =
ik
4π

(x̂ × q) × x̂e−ikx̂·z . (12)

It can be shown [10], that the existence of a solution to (11) is equivalent to the existence of a solution of an appropriate
electromagnetic interior transmission problem. In [10] it was shown that the far field equation (11) has a nearby solution
gϵ,z,q(·), where epsilon can be interpreted as the noise level in the far-field operator, such that the L2 norm of this solution
becomes unbounded as z approaches the boundary. Furthermore, if z is outside D, there exists a nearby regularized solution
gδ
ϵ,z,q(·) (which corresponds to a noise level equal to ϵ + δ) such that the L2 norm of this solution becomes unbounded as δ

approaches 0. The observations above are summarized in the following theorem whose proof can be found in [10].

Theorem 2.1. Let q be any element of R3 and the index of refraction n satisfies some regularity conditions given in Theorem 3.1
of [10]. Then we have
(a) if z ∈ D, then for every ϵ > 0 there exists a solution gϵ(·, z, q) ∈ L2(Ω) of the inequality

∥F gϵ(·, z, q) − Ee,∞(·; z, q)∥L2(Ω) ≤ ϵ (13)

such that

lim
z→∂D

∥gϵ(·, z, q)∥L2(Ω) = ∞; (14)

(b) if z ∉ D, then for every ϵ > 0 and δ > 0 there exists a solution gδ
ϵ (·, z, q) ∈ L2(Ω) of the inequality

∥F gδ
ϵ (·, z, q) − Ee,∞(·; z, q)∥L2t (Ω) ≤ ϵ + δ (15)

such that

lim
δ→0

∥gδ
ϵ (·, z, q)∥L2(Ω) = ∞; (16)

Based on Theorem 2.1 and on the fact that the far field equation is ill-posed as the far field operator is compact [7,5,10],
the linear sampling method suggests that to determine the boundary of D from the far field pattern E∞(x̂, d, g(d)), for each
point z in a grid containing the scatterer and a fixed q ∈ R3, one should solve the far field equation (11) using Tikhonov
regularization for gλ(·, z, q). After this is done, the boundary ∂D is determined by looking for those z for which the norm
∥gλ(·, z, q)∥2 is large. We emphasize that regularization is necessary when solving the far field equation as in practice the
integral operator is affected by measurement noise. As far as the choice of Tikhonov regularization parameter is concerned,
it has been done by the Generalized discrepancy principle (GDP) [7,5,10] which requires knowledge of estimates of the noise
level in the data. As an alternative to GDP, Bazán et al. [2] have developed a new criterion calledMPCwhich does not require
any knowledge of the noise level; both parameter choice rules can fail in some circumstances.

3. Improvements to the maximum product criterion algorithm for the selection of the Tikhonov parameter

In practice the far-field equation must be discretized in order to construct approximate solutions to the continuous
problem. However, the main difficulty associated to this construction process is that since the original problem is ill-posed,
its finite dimensional counterpart is ill-conditioned and characterized by numerical instability. As a result, the approximate
solution becomes less and less reliable as the quality of the discretization improves and regularization is necessary to
construct stable approximations. In what follows we assume that the unit sphere is discretized using a triangular mesh
containing N vertices (which are also used as directions for the plane incident waves) and that the far-field equation is
discretized by following the scheme described in [5]. This gives rise to a system of 2N × 2N linear equations which we refer
to as the discrete far-field equation

Fgz = rz,q, F ∈ C2N×2N (17)

where rz,q ∈ C2N is a discrete counterpart of Ee,∞(·; z, q) and F denotes the far-field matrix. In practice only a noisy far-field
matrix is available and is assumed to be of the formF = F +E, with E being introduced to denote measurement noise. Since
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the discrete far-field equation is ill-conditioned, Tikhonov regularization has been used to compute stable approximate so-
lutions with the regularization parameter being chosen by the generalized discrepancy criterion. Tikhonov regularization
applied to the discrete far-field equation yields regularized solutions defined by

gλ,z = argming∈C2N {∥rz,q −F g∥2
2 + λ2

∥g∥2
2} (18)

where λ > 0 is the regularization parameter. GDP chooses as regularization parameter the only root of the nonlinear equa-
tion

G(λ) = ∥rz,q −F gλ,z∥
2
2 − δ2

A∥gλ,z∥
2
2 = 0 (19)

where δA is an estimate for ∥E∥ such that ∥E∥ ≤ δA. GDP works well when ∥E∥ is accurately estimated but this may not
be the case in real life applications. There exist some alternative parameter selection criteria that avoid knowledge of the
noise level, referred to as heuristic parameter choice rules, which have also been used in inverse scattering; these include
L-curve [12,13] and a Fixed-point method [14,15]. Recently, Fares et al. [16] developed a new heuristic algorithm, the SVD-
tail, based on the combined presence of error in the operator and eigenvalue clusters corresponding to a singular subspace
associated with a few small singular values. SVD-tail is proven efficiently since the point-wise solution of the far-field equa-
tion is never explicitly constructed; one of its disadvantages though is that the quality of the reconstruction depends on the
chosen dimension of the singular subspace.

More recently, Bazán et al. [2] introduced the so-calledmaximumproduct criterion (MPC)which defines as regularization
parameter a solution to the problem

λ∗
= argmax{ Ψ (λ) }, Ψ (λ) = x(λ) y(λ), (20)

where

y(λ) = ∥gλ,z∥
2, x(λ) = ∥rz,q −Fgλ,z∥

2
2. (21)

Existence of maximum is always guaranteed when the far field matrix is nonsingular as Ψ is positive and
Ψ (0) = 0 = lim

λ→∞

Ψ (λ). (22)

The main virtue of MPC (illustrated on 2D reconstruction problems in [2]) is that it delivers regularized solutions of large
norm for z outside D and regularized solutions of small norm for z inside, a necessary condition for LSM to produce good
reconstructions. From the practical point of view, under the assumption that Ψ has a unique maximizer, the authors in [2]
show that such a maximizer is the only non zero root of the function

ϕ(λ) = x(λ) − λ2y(λ) = 0 (23)
and that this root can be computed by using some root finder such as the regula falsi method or other. However, we realize
when solving 3D reconstruction problems that MPC can fail when the function Ψ has several local maxima. Difficulties
arise since, depending on factors such as the chosen root finder, the chosen initial guess, etc., the regularization parameter
determined in this way may not be suitable to ensure the success of LSM.

3.1. An improved version of MPC

First of all we note that extreme points of Ψ are fixed points of the function ϑ defined by

ϑ(λ) =
∥rz,q −Fgλ,z∥

∥gλ,z∥
, λ > 0, (24)

or equivalently roots of functionϕ as seen from (23). Using the fact that the regularized solution norm and the corresponding
residual normaremonotone, see, e.g., [2], it follows thatϑ is an increasing function ofλ and therefore no localmaximumofΨ
can be computedbyusing fixedpoint iterations of the formλk+1 = ϑ(λk), k ≥ 0. This is explained by the fact that depending
on the chosen initial guess, either the iterations converge to a minimum of Ψ or to the value λ = 0, or the iterations diverge
to infinity. As an example, assume that λ0 is such that ϑ(λ0) < λ0. When this is the case, either {λk} converges to 0 if ϑ
does not have a non zero fixed point located to the left of λ0 as {λk} is a decreasing sequence, or {λk} converges to a non zero
fixed point located to the left of λ0. This can be better interpreted from the behavior of a function ϑ as seen in Fig. 1.
Another difficultywithMPCwhen the functionΨ has several localmaxima is how to choose one of them. Aiming at avoiding
these difficulties, we propose
(i) to choose as regularization parameter the largest maximum local of Ψ
(ii) a fast algorithm to compute the regularization parameter.

The following theorem provides information on the largest maximizer ofΨ in terms of the singular value decomposition
(SVD) of the far-field matrixF . For latter use, recall that the SVD ofF is of the formF = UΣV ∗ (25)
where U = [u1, . . . , u2N ], V = [v1, . . . , v2N ] are orthonormal matrices, and Σ = diag(σ1, . . . , σ2N), with σ1 ≥ σ2 ≥ · · ·

≥ σ2N .
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Theorem 3.1. Let the far-field matrixF have the SVD (25). Assume thatF is nonsingular and that its singular values are distinct.
Then the following assertions hold:

(a) function Ψ has at least one critical point inside (σ2N , σ1) and at most one critical point inside (
√
3
3 σ1, σ1);

(b) function Ψ has a maximum at λ = λ if and only if ϕ(λ) = 0 and ϑ ′(λ) > 1where ϕ and ϑ are introduced in (23) and (24),
respectively.

Proof. Using the SVD ofF and (21) we have

x(λ) =

2N
i=1

λ4αi

(σ 2
i + λ2)2

, y(λ) =

2N
i=1

σ 2
i αi

(σ 2
i + λ2)2

(26)

where αi = |u∗

i rz,q|
2. Therefore

ϕ(λ) = x(λ) − λ2y(λ) =

2N
j=1

λ2(λ2
− σ 2

i )αi

(σ 2
i + λ2)2

.

From this we see that ϕ(λ) ≥ 0 if λ ≥ σ1 and ϕ(λ) ≤ 0 if λ ≤ σ2N . We also see that σ1 (respectively σ2N ) cannot be a
root of ϕ since by assumption all singular values are distinct. This implies that ϕ must have at least a root inside the interval
(σ2N , σ1) or equivalently that Ψ has at least a critical point inside (σ2N , σ1) as the critical points of Ψ are roots of ϕ [2]. We
now see that

x′(λ) = 4λ3
2N
i=1

σ 2
i αi

(σ 2
i + λ2)3

> 0, y′(λ) = −4λ
2N
i=1

σ 2
i αi

(σ 2
i + λ2)3

< 0. (27)

Hence, the derivative of ϕ with respect to λ becomes

ϕ′(λ) = x′(λ) − 2λy(λ) − λ2y′(λ)

= −2[λy(λ) + x′(λ)] = −2
2N
j=1

λσ 2
i (3λ2

− σ 2
i )αi

(σ 2
i + λ2)3

.

This shows that ϕ′(λ) does not change sign inside (
√
3
3 σ1, σ1). Thus, if Ψ has a critical point inside this interval, this critical

point is unique and the proof of item (a) is complete. To prove assertion (b) observe from (23) thatλ is a critical point of Ψ
if and only if ϕ(λ) = 0, this being true if and only if ϑ(λ) = λ. Now a simple calculation gives

Ψ ′′(λ) = [−2λ + 2ϑ(λ)ϑ ′(λ)]y(λ)y′(λ) + [−λ2
+ ϑ2(λ)][y(λ)y′(λ)]′. (28)

This shows that at λ = λ we have Ψ ′′(λ) < 0 iff ϑ ′(λ) > 1, and assertion (b) is proved. �

The assumption that all singular values are distinct and positive is very natural when the noisy far-field matrix comes
from a random perturbation of the exact far-field matrix. When this is the case, condition (22) is satisfied and hence the
functionϑ has a fixed point thatmaximizesΨ . For a discussion regarding existence of fixed points ofϑ for the casewhere the
coefficientmatrix is singular or rank-deficient and rectangular, the reader is referred to [14,17]. Regarding the consequences
of Theorem 3.1, notice from assertion (b) that maximizers of Ψ are fixed points of ϑ such that (ϑ(λ) − λ) changes sign
from negative to positive as λ increases in a vicinity of the fixed points, see Fig. 1. In such case the largest fixed point of ϑ
corresponds to the largest local maximum ofΨ , as is illustrated for a typical function ϑ in inverse scattering, see Fig. 1 again.

The following theorem shows how to use the previous theorem in order to develop an algorithm for computing the
largest maximizer of Ψ .

Theorem 3.2. For fixed z and λ > 0 consider the function ξ : R+
→ R+ defined by

ξ(λ) =
λ2

ϑ(λ)
. (29)

Then ξ increases as λ increases and ξ(λ) ≤ σ1 ∀λ > 0. Further, consider the sequence

λk+1 = ξ(λk), k ≥ 0. (30)

Then λk converges monotonically to the largest fixed point of ξ (hence to the largest fixed point of ϑ) as long as the initial guess
λ0 is chosen in the interval [

√
3
3 σ1, σ1].

Proof. Since ξ(λ)ϑ(λ) = λ2, differentiation with respect to λ yields

ξ(λ)ϑ ′(λ) + ξ ′(λ)ϑ(λ) = 2λ,
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and therefore

ξ ′(λ)ϑ(λ) =
2λϑ(λ) − λ2ϑ ′(λ)

ϑ(λ)
. (31)

Now let x(λ) = ρ2(λ) and y(λ) = η2(λ). Then it follows that

x′(λ) = 2ρ(λ)ρ ′(λ), y′(λ) = 2η(λ)η′(λ), (32)

and thus
dy
dx

=
1
ϑ

dη
dρ

⇔
dη
dρ

= −
ϑ(λ)

λ2
,

where the last equality is because of (27). Taking derivative with respect to λ on the right equality leads to

d2η
dρ2

ρ ′(λ) =
2λϑ(λ) − λ2ϑ ′(λ)

λ4
.

Since ρ ′(λ) > 0 by (32) and (27), and since η is a convex decreasing function of ρ, see, e.g., [12, Theorem 4.6.1], combining
the last equality with (31) it follows that ξ ′(λ) > 0. This proves that ξ increases with λ. Now notice that function ξ can be
rewritten as

ξ(λ) =

 2N
i=1

σ 2
i αi

(σ 2
i + λ2)2

 2N
i=1

αi

(σ 2
i + λ2)2

(33)

from which the inequality ξ(λ) ≤ σ1 readily follows.
Proceedingwith the proof, we nownotice thatλ is a fixed point ofϑ if and only ifλ is a fixed point of ξ . Notice also that the

curve (λ, ξ(λ)) lies below the constant line z = σ1, as illustrated in Fig. 2. Hence, if ξ has a fixed point inside [

√
3
3 σ1, σ1] and

the initial guess λ0 is chosen in this interval, the sequence {λk}will converge to that fixed point of ξ as {λk} is monotone due
to ξ being an increasing function. A similar argument holds true if the largest fixed point of ξ does not belong to (

√
3
3 σ1, σ1).

This concludes the proof. �

We now transform the theoretical results of Theorem 3.2 into a practical algorithm. To this end we notice that as we
already know the sequence {λk} converges to the largest fixed point of ϑ (which hopefully maximizes Ψ ), what remains to
do is to introduce a test to ensure that the captured fixed point actually maximizes Ψ . This gives rise to a new algorithm
which we refer to as IMPC and we describe as follows.

Improved version of MPC algorithm (IMPC)

Input: σ1, tol
1. Set k = 0 and choose λ0 in the interval [

√
3
3 σ1, σ1]

2. Compute s0 = ξ(λ0)/λ0.
3. while (|sk − 1| > tol ) do

λk+1 = ξ(λk), sk = λk+1/λk
k = k + 1

end while
4. if (ϑ ′(λk) > 1) do

λ∗
= λk

elseif ( ϑ ′(λk) = 1) do
Set k = 0, λ0 = 0.9 ∗ λk, and go to step 2

end if

Remark. The improved version of MPC can also be implemented in conjunction with Kirsch’s method: it suffices to replace
σ 2
i by σi in (33).

As a consequence of the analysis above we now show that the regularization parameter chosen by the generalized dis-
crepancy principle can also be determined by a fixed point iteration algorithm. This is the subject of the following theorem.

Theorem 3.3. For fixed z and λ > 0 consider the function ζ : R+
→ R+ defined by

ζ (λ) =
λ
√

δA
√

ϑ(λ)
. (34)
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Fig. 1. Typical behavior of function ϑ with several fixed points and function Ψ with several critical points. Maximum points are marked with star.

Table 1
Time spent (in seconds) by an implementation of GPPwith regula falsi as root
finder (denoted here by RF-GDP), FP-GDP and IMPC.

RF-GDP FP-GDP IMPC

t (s) 20.3253 0.9457 1.2143

Let {λk}, k ≥ be the sequence defined by

λk+1 = ζ (λk), k ≥ 0. (35)

Assume that δA < σ1. Then {λk} converges globally andmonotonically to the regularization parameter chosen by GDP irrespective
of the initial guess chosen.

Proof. Based on the SVD ofF (25) and (26), the discrepancy equation (19) reads

G(λ) =

2N
j=1

(λ4
− δ2

Aσ
2
i )αi

(σ 2
i + λ2)2

= 0. (36)

Then function G is increasing due to (27) and has a unique root when δA < σ1. But G(λ) = 0 is equivalent to δA
ϑ(λ)

= 1, and
this implies that G(λ) = 0 has a unique root if and only if this root is a non zero fixed point of ζ . Now it is not difficult to
check that

lim
λ→0

ζ (λ) = K > 0

for appropriate constant K and that for λ > σ1 we have ζ (λ) < λ. Taking into account the results of the above analysis and
since ζ =

√
δA

√
ξ increases with λ, as ξ so does, we deduce that the sequence (35) is monotone and the assertion of the

theorem follows. �

Similar to the MPC case, we can now transform the results of Theorem 3.3 into a practical fixed point algorithm for
determining the Tikhonov regularization parameter chosen by GDP.We refer to this algorithm as FP-GDP; it can be outlined
as follows.

Fixed point approach for GDP (FP-GDP)

Input: σ1, tol
1. Set k = 0 and choose λ0 ≈ σ1
2. Compute s0 = ζ (λ0)/λ0.
3. while (|sk − 1| > tol ) do

λk+1 = ζ (λk), sk = λk+1/λk
k = k + 1

end while

Our experience in terms of computational time spent by FP-GDP and IMPC when applied to 2D reconstruction problems
is that both are efficient and fast but with a slight advantage in favor of the former. Now, when comparing them to an imple-
mentation of GDP coupled with regula falsi as root finder, our experience is that FP-GDP and IMPC are significantly faster.
As an example, Table 1 displays the time spent by these algorithms in solving a 2D reconstruction problem involving a far
field matrix of size 32 × 32 for each z in a grid of 2500 points.
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Fig. 2. Typical behavior of functions Φ(λ), ξ(λ) and the sequence {λk} when initialized as in Theorem 3.2. In this illustration the initial guess is taken to
be λ0 = σ1 . The largest fixed point of ξ is marked with star.

4. Numerical applications

In this paper we will not present details of the discretization of Eq. (11) since we used the approach presented in [7].
Instead we describe two examples in which the discrete solution is computed using the Tikhonov regularization method
where the regularization parameter is chosen by the new version of MPC designed for 3D reconstruction problems. Com-
parison with Morozov’s discrepancy principle (GDP) takes place and hence the effectiveness of the IMPC is illustrated. In
both examples we corrupt the exact far-field matrix F with noiseF = F + ϵ∥F∥N ,

where N is a random noise matrix normalized such that ∥N ∥2 = 1 and ϵ is an error parameter. The numerical experiments
use synthetic data that have been created by CESC. CESC is a solver for electromagnetic scattering problems developed at
CERFACS. In [5] it has been explained that the best reconstruction is obtained by combining three different inverse resolu-
tions corresponding to q = q1, q2 and q3 for the right hand side Eϵ,∞, where (q1, q2, q3) is an orthogonal basis of R3. Hence
as in [5,10] our algorithm is based on the evaluation of

W (z) =
1
3


∥g(·, z, q1)∥−1

+ ∥g(·, z, q2)∥−1
+ ∥g(·, z, q3)∥−1 (37)

where q1 = (1, 0, 0), q2 = (0, 1, 0) and q3 = (0, 0, 1). To this endwe consider a uniform grid in a box containing the object
and denote byZ the set of all these grid points. As discussed before ∥g(·, z, q)∥ becomes arbitrarily largewhen z approaches
the boundary from inside and remains largewhen z is outside. The reconstruction is then visualized byplotting the isosurface

S = {z ∈ Z | W (z) = τ },

for an isovalue parameter τ such that the level set S is a suitable visual representation of the unknown object. The isovalue
parameter can be selected by trial and error or based on heuristics. Among several ways to choose the isovalue parame-
ter, two parameter choices stand out. The first, very popular in the last decade (see, e.g. [6,7,5,10]), defines the isovalue
parameter as

τ1 = C max
z∈Z

W (z) (38)

with C chosen close to zero (e.g., 0.3, 0.2, etc.) or with C varying until the ‘‘best’’ reconstruction is obtained, and the second,
due to Fares et al. [16], based on elementary statistics and referred to as the global mean and standard deviation (GMSD)
heuristic, which defines the isovalue parameter as

τ2 = mean
z∈Z

[W (z)] + 2 std
z∈Z

[W (z)]. (39)

As indicated in [5,10], in practice it is difficult to know how to choose C since g is computed from noisy data. Hence,
automated reconstructions based on (38) can fail when the isovalue parameter is too small; a similar comment applies to
the GMSD heuristic. Numerical illustrations that confirm this observation are postponed to Section 4.2.

In all our numerical experiments the reconstructed object is visualized using Matlab’s isosurface function with the iso-
value parameter being defined by

τIMPC = min
z∈Z

W (z) + τ

max
z∈Z

W (z) − min
z∈Z

W (z)

, 0 < τ < 1. (40)
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Fig. 3. Isolines of W (z) for GDP (top) and IMPC (bottom).

Our proposal relies on the observation that what really matters here is to find an isosurface S associated with large values
of W (z). Based on this, we use τ ≈ 0.5, which was found to produce good reconstructions in our experiments. All the nu-
merical reconstructions are performed by using 92 uniformly distributed nodes on Ω , which means the far-field matrixf
is 184 × 184, far field uniform grid for z ∈ [−2, 2]3 with mesh step 4/60, a wavenumber k = 3 and, except for the last
example, the noise level is ϵ = 0.01. In all examples the far-field matrixF is 184 × 184 and all quantities required by the
IMPC algorithm are computed by using the SVD ofF .
4.1. Example 1

In this example the exact scatterer is an ellipsoid, centered at the origin (not shownhere)which ismadeof a homogeneous
absorbing material: n(x) = 2 + 2i. The isolines of W for different cross sections are shown in Fig. 3 and provide a good
indicator of the shape of the scatterer.

Fig. 4 shows the surface W (z), z3 = 0 and isovalue parameters defined by (38)–(40) displayed as horizontal lines. The
isovalue parameters are introduced in order to geometrically illustrate their role in the reconstruction process. Notice that
for this example the level curves determined by each isovalue parameter not only give an excellent indicator of the shape
of the object but also suggest that all the isovalue parameters will give good reconstructions in this particular case.

Fig. 5 shows the reconstruction obtained by GDP and IMPC. Both methods yield very good reconstructions, however for
GDP the exact noise level in F was used as input data.

Finally, in order to illustrate the convergence speed of IMPC algorithm, the number of iterations required for convergence
in each grid point are displayed in a comprehensive way using a 3D plot, as seen in Fig. 6 for the grid points corresponding to
the plane z3 = 0. For this example, the average number of iterations required for convergence was 29, with the observation
that the largest number of iterations correspond to grid points near the boundary of the object.

4.2. Example 2: two scatterers

We now describe numerical reconstructions of two spheres considering three cases as in [10].
(a) Reconstruction of two homogeneous spheres with index n(x) = 2 + 2i.

We present the reconstructions obtained by GDP for two choices of the isovalue parameter τ1 in order to illustrate why
certain choices may not be appropriate. As in the previous example, we show the isolines of W for different cross sections
(see Fig. 7) and see that they give a clear idea of the shape of the objects.
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Fig. 4. Top: SurfaceW (z), z3 = 0, and isovalue parameters displayed as horizontal lines. Bottom: Level curves ofW (z), z3 = 0, determined by τ1, τ2 and
τIMPC . In this example, τ1 = 2.7515 corresponds to C = 0.3, τ2 = 3.3175 and τIMPC = 3.1505.

Fig. 5. Reconstruction of an ellipsoid with index n(x) = 2+2i. The three-dimensional object and its projections on the planes (z1, z2), (z2, z3) and (z1, z3)
are also shown.

Fig. 8 shows the surface W (z), z3 = 0, isovalue parameters displayed as horizontal lines, and level curves determined
by the parameters τ1 (corresponding to C = 0.1) and τIMPC (corresponding to τ = 0.45). The behavior of the level curves is
critical to understand the role of the isovalue parameter in the reconstruction of the object. Of course, in spite of knowing that
the shape of the object is determined by the isolines, the point here is that the final result of the reconstruction depends
on the cross section determined by the isovalue parameter. Taking this observation into account, it is apparent that, as
in this case τ1 is small, the cross section captures information associated to the object and information associated to the
background, hence the reconstruction obtained by GDP with τ1 as isovalue parameter should suffer some deformation. The
same observation applies to the reconstructions obtained by GDP with τ2. This is confirmed in Fig. 9 (top), in which we
present the reconstruction obtained by GDP with τ1 corresponding to C = 0.1 as well as the reconstruction obtained by
IMPC. To clarify the role of the parameter in the reconstruction,we also display in Fig. 9 (bottom) the reconstruction obtained
by GDP with τ1 corresponding to C = 0.3. The results are now apparent. Again GDP was implemented with the exact noise
level in F . Notice also that the IMPC reconstructions seem more accurate since the isovalue parameter does not capture
information associated to the background.
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Fig. 6. Iteration number required for convergence of IMP regarded as a surface defined on the 60 × 60 grid corresponding to z3 = 0.

Fig. 7. Isolines ofW (z) for GDP and IMPC. This example uses a noise level ϵ = 1%.

(b) Reconstruction of two spheres: one is absorbing and the other is non-absorbing.
This example deals with the case where the two media are different. To describe the results we show in Fig. 10 the sur-

face W (z), z3 = 0, isovalue parameters displayed as horizontal lines, and level curves determined by the parameters τ1
corresponding to C = 0.3 and τIMPC corresponding to τ = 0.45. Looking at the level curves, it is clear that while GDP with
τ1 and IMPC will produce good reconstructions, this will not be the case for GDP with τ2. The reconstructions obtained by
GDP and IMPC are shown in Fig. 11. Another information that can be extracted from the level curves is that the volume of
the object depends on the cross section area determined by the isovalue parameter. This explains why the balls obtained by
GDP are slightly smaller than those determined by IMPC.
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Fig. 8. Surface W (z), z3 = 0, isovalue parameters displayed as horizontal lines, and level curves of W (z), z3 = 0, corresponding to the isovalue
parameters.

Fig. 9. Reconstruction of two identical homogeneous spheres with index n(x) = 2 + 2i. Top C = 0.1, bottom C = 0.3.
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Fig. 10. Surface W (z), z3 = 0, isovalue parameters displayed as horizontal lines and level curves of W (z), z3 = 0, corresponding to the isovalue
parameters τ1, τ2 and τIMPC .

Fig. 11. Reconstruction of two spheres where one is absorbing and the other one is non-absorbing.

(c) Reconstruction of two spheres: one is absorbing and the other is a perfect conductor.
In this example we consider two noise levels: ϵ = 0.01 and ϵ = 0.1. The results of the reconstructions for the low noise

level are shown in Figs. 12 and 13. As in the example anterior, motivated by the behavior of the level curves, only the results
obtained by GDP and IMPC are displayed. In this case, the GDP reconstruction corresponds to τ1 with C = 0.1 (as done in [5])
and the IMPC reconstruction corresponds to τ = 0.45. We notice that spheres reconstructed by GDP are deformed towards
each other.

Finally, the results of the reconstructions for the high noise level (ϵ = 0.1) are shown in Fig. 14 (bottom) in which the
surface W (z), z3 = 0, and the isovalue parameters displayed as horizontal lines are also included. In this case, the GDP
reconstruction corresponds to C = 0.35 and the IMPC reconstruction corresponds to τ = 0.35. The results show that LSM
also works well in the case of data with high noise level.

5. Conclusions

Wehave developed an improvedmaximumproduct criterion variant used to determine the regularization parameter for
the linear sampling method applied to three dimensional penetrable scatterers. Our method is fast and efficiently selects as
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Fig. 12. Surface W (z), z3 = 0, isovalue parameters displayed as horizontal lines. Bottom: Level curves of W (z), z3 = 0, corresponding to the isovalue
parameters τ1, τ2 and τIMPC .

Fig. 13. Reconstruction of two spheres where one is absorbing and the other is a perfect conductor.

regularization parameter the largest local maximum of an appropriate product. In addition, we discussed the selection of
the isovalue parameter for visualizing the scatter and proposed a heuristic for such selection that was numerically proved
efficient. The quality of reconstructions is comparable to the ones obtained via Morozov’s discrepancy principle where the
noise level is known a priori. The IMPC however does not require a priori knowledge of the noise level, a situation which is
very likely in real world problems.
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Fig. 14. Top: SurfaceW (z), z3 = 0, and isovalue parameters displayed as horizontal lines. Bottom: Reconstruction of two spheres where one is absorbing
and the other is a perfect conductor.
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