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Abstract We describe an algorithm for large-scale discrete ill-posed problems,
called GKB-FP, which combines the Golub-Kahan bidiagonalization algorithm with
Tikhonov regularization in the generated Krylov subspace, with the regularization pa-
rameter for the projected problem being chosen by the fixed-point method by Bazán
(Inverse Probl. 24(3), 2008). The fixed-point method selects as regularization para-
meter a fixed-point of the function ‖rλ‖2/‖fλ‖2, where fλ is the regularized solution
and rλ is the corresponding residual. GKB-FP determines the sought fixed-point by
computing a finite sequence of fixed-points of functions ‖r(k)

λ ‖2/‖f (k)
λ ‖2, where f

(k)
λ

approximates fλ in a k-dimensional Krylov subspace and r
(k)
λ is the corresponding

residual. Based on this and provided the sought fixed-point is reached, we prove that
the regularized solutions f

(k)
λ remain unchanged and therefore completely insensitive

to the number of iterations. This and the performance of the method when applied to
well-known test problems are illustrated numerically.
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1 Introduction

We are concerned with the solution of large-scale discrete ill-posed problems of the
form

min
f ∈Rn

‖g − Af ‖2, A ∈ R
m×n (m ≥ n), g ∈ R

m, (1.1)

where A is ill-conditioned and has singular values decaying to zero without partic-
ular gap in the singular value spectrum. These problems arise, for instance, when
discretizing Fredholm integral equations of the first kind with smooth kernel. In ap-
plications the right-hand side contains noise arising from measurements or approx-
imation error, and we assume that g = gexact + e, where e denotes random noise,
gexact = Af exact denotes the unperturbed data and f exact the noise-free solution.
A consequence of this is that the naive least squares (LS) solution fls = A†g (where
A† denotes the pseudoinverse of A) is dominated by inaccuracies, and some sort of
regularization must be used in order to compute stable approximations to the noise-
free solution. Perhaps the earliest and most well-known method to deal with this
class of problems is due to Tikhonov [38]. In its simplest form, Tikhonov’s method
amounts to replacing the least squares problem (1.1) by

min
f ∈Rn

{‖g − Af ‖2
2 + λ2‖f ‖2

2

}
(1.2)

where λ > 0 is the regularization parameter. Solving (1.2) is equivalent to solving the
regularized normal equations

(
AT A + λ2In

)
f = AT g, (1.3)

whose solution is fλ = (AT A + λ2In)
−1AT g, where In is the n × n identity matrix,

and the problem is how to select the parameter λ such that fλ becomes as close as
possible to the noise-free solution.

Many parameter-choice rules for Tikhonov regularization have been proposed in
the literature. These can roughly be organized into two classes: rules that exploit
knowledge of the norm of the error e (or some estimate), with the discrepancy princi-
ple (DP) of Morozov [31] as its most known representant, and heuristic rules that do
not exploit this information. Rules of the second class include the L-curve criterion of
Hansen and O‘Leary [20], generalized cross-validation (GCV) of Heath, Golub and
Wabba [14], weighted-GCV (W-GCV) of Chung et al. [10], and a fixed-point method
(FP-method) by Bazán [1]; for a survey on Tikhonov parameter-choice rules see [21]
and references therein, and for more recent contributions, see [3, 17, 18, 25, 26, 28,
37, 39]. An interesting motivation for the use of heuristics rules can be found in [12].

If the singular value decomposition (SVD) of the coefficient matrix is available,
parameter-choice rules are simple to implement and several routines that exploit the
SVD are now available, see, e.g., the Regularization Tools of Hansen [22]. The major
drawback of SVD-based approaches is that they are unpractical for large-scale prob-
lems. Another way to construct stable approximations to the noise-free solution of
(1.1) is by projections methods based on Lanczos/Arnoldi procedures. These include
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CGLS and its analytical equivalent LSQR [34], GMRES [9], and other Krylov sub-
space methods such as MINRES [29]; it is well-known that each of these methods
provides an iterative regularization algorithm as long as the iterations are stopped af-
ter the optimal number of steps, where optimality is with respect to the relative errors.
Among the most well-known stopping criteria for iterative regularization are the dis-
crepancy principle [7] and the L-curve method [19, 22]. In practice the norm of the
noise ‖e‖2 is rarely available and so the discrepancy principle is of little use. As for
the L-curve method, it is not always reliable to follow since in iterative regularization
the L-curve is piecewise linear, in which case the extraction of good regularization
parameters is not as simple as one might wish; for illuminating examples about this,
the reader is referred to Morigi et al. [30]. Related work is also done by Frommer and
Maass [13] and Golub and von Matt [16].

The difficulty in determining reliable stopping rules for Krylov subspace projec-
tion methods can be partially alleviated by combining them with an inner regulariza-
tion algorithm at each iteration. This gives rise to the so-called hybrid methods [4, 24,
27, 28, 33]. These are attractive because the iterates tend to stabilize when optimal
regularization parameters are chosen at each iteration. To the best of our knowledge
the stabilization phenomenon was first observed by Hanke and Hansen [19, p. 302];
for an example in connection with a LSQR-Tikhonov hybrid method with the regu-
larization parameter for the projected problem chosen by GCV, see [10, 28]. We also
note that a great deal of work has been done on the determination of Tikhonov regu-
larization parameters for large-scale problems through the so-called ribbon method-
ologies. These include the L-curve ribbon and corresponding curvature-ribbon, and
the discrepancy-ribbon [6–8]. In the former case, the regularization parameter is de-
termined by using approximations of the L-curve and its curvature, computed for
several values of λ by partial Lanczos bidiagonalization and by the application of
Gauss-type quadrature rules; a similar principle applies to the discrepancy method.
However, our computational experience with the L-curve method using the exact L-
curve and its curvature has been unsatisfactory, specially when the L-curve displays
several convex L-corners, see the numerical examples in [1, 2]. For this reason our
interest in the L-curve method is from the theoretical point of view only. In what
follows the L-curve method will be denoted by LC and the fixed-point method by FP.

In this paper we are interested in problems for which the norm of the noise ‖e‖2
is not available, and concentrate on an algorithm, called GKB-FP, which can be re-
garded as an implementation of FP for large-scale problems. Our interest for devel-
oping GKB-FP was motivated by the excellent performance of an SVD-based imple-
mentation of FP on small problems reported in [1, 2], where FP is compared with LC,
GCV and DP. The conclusion drawn in these references is that in a noisy environment
FP is more robust than LC and GCV in the sense that the former determines regular-
ization parameters more consistently than both LC and GCV. More specifically, while
FP is shown to construct accurate regularized solutions, LC and GCV fail many times,
this occurring mostly when the L-curve displays several convex L-corners [2].

GKB-FP combines a partial Golub-Kahan bidiagonalization (GKB) algorithm,
see, e.g., [4, 15, 23] with Tikhonov regularization in the generated Krylov sub-
space, with the regularization parameter for the projected problem being chosen
by FP. We recall that FP selects as regularization parameter a fixed-point of the
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function ‖rλ‖2/‖fλ‖2, where fλ is the regularized solution and rλ = g − Afλ is
the corresponding residual. Practically, GKB-FP determines an approximation to
the sought fixed-point by computing a finite sequence of fixed-points of functions
‖r(k)

λ ‖2/‖f (k)
λ ‖2, where f

(k)
λ approaches fλ in a k-dimensional Krylov subspace and

r
(k)
λ is the corresponding residual.

The rest of the paper is organized as follows. Since GKB-FP relies on a combi-
nation of a partial Lanczos bidiagonalization algorithm with Tikhonov regularization
in the generated Krylov subspace and properties of LSQR, these ideas are described
in Sect. 2. After a brief review of FP, the main steps of our algorithm are described
in Sect. 3. In Sect. 4 a convergence analysis that supports GKB-FP is presented and
illustrated numerically. The paper ends with numerical results that illustrate the ef-
ficiency of GKB-FP on a variety of well-known test problems and some concluding
remarks.

2 Golub–Kahan bidiagonalization and LSQR

The basis for our algorithm is the GKB algorithm. Application of k < n GKB steps
to A with initial vector g/‖g‖2 yields three matrices: a lower bidiagonal matrix
Bk ∈ R

(k+1)×k and two matrices Uk+1 ∈ R
m×(k+1) and Vk ∈ R

n×k with orthonormal
columns, such that

β1Uk+1e1 = g = β1u1, (2.1)

AVk = Uk+1Bk, (2.2)

AT Uk+1 = VkB
T
k + αk+1vk+1e

T
k+1, (2.3)

where ek denotes the k-th unit vector of appropriate dimension. LSQR produces a
(finite) sequence of approximate solutions to (1.1) of the form f (k) = Vky

(k), where
y(k) solves the projected least squares problem

min
y∈Rk

‖Bky − β1e1‖2, (2.4)

with

Bk =

⎛

⎜⎜⎜⎜⎜⎜
⎝

α1
β2 α2

β3
. . .

. . . αk

βk+1

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (2.5)

In practice, f (k) is computed via a QR factorization of Bk which allows for an effi-
cient updating of the LSQR iterates; the reader is referred to [34] for details. Theo-
retically, f (k) solves the problem

min
f ∈Kk

‖g − Af ‖2 (2.6)
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where Kk = span{AT g, (AT A)AT g, . . . , (AT A)k−1AT g}, and mathematically
LSQR produces the same sequence as the well-known CGLS method. A by-product
of this is that while ‖f (k)‖2 increases monotonically with k, the norms of the residual
vectors r(k) = g − Af (k) decreases monotonically with k.

LSQR is also well suited for solving the “damped least squares problem” [34]

fλ = arg min
f ∈Rn

∥∥∥∥

(
g

0

)
−

(
A

λIn

)
f

∥∥∥∥
2
, (2.7)

which is equivalent to (1.3), where λ is a fixed regularization parameter. In this case,
the kth approximate solution is taken to be

f
(k)
λ = Vky

(k)
λ , (2.8)

where y
(k)
λ solves the regularized projected problem

y
(k)
λ = arg min

y∈Rk

∥∥∥∥

(
β1e1

0

)
−

(
Bk

λIk

)
y

∥∥∥∥
2
, (2.9)

which is solved efficiently using the QR factorization of
(

Bk

λIk

)
,

Qk

(
Bk

λIk

)
=

⎛

⎝
Rk

0
0

⎞

⎠ , Qk(β1e1) =
⎛

⎝
bk

ϕ̄k+1
ck

⎞

⎠ , (2.10)

where Rk is upper bidiagonal,

bk =
⎛

⎜
⎝

ϕ1
...

ϕk

⎞

⎟
⎠ , ck =

⎛

⎜
⎝

ψ1
...

ψk

⎞

⎟
⎠ , (2.11)

and Qk (of order 2k + 1) is a product of two sequences of plane rotations, Qk =
JkGk · · ·J2G2J1G1, where Gj and Jj are chosen to eliminate elements in positions

(k + j, j) and (j + 1, j), j = 1, . . . , k, respectively. The solution y
(k)
λ can then be

obtained from the triangular system Rky = bk . As for f
(k)
λ , it can be computed using

(2.8). Alternatively, as shown by Paige and Saunders [34], for fixed λ the regularized
solution f

(k)
λ can be computed through the updating formula

f
(k)
λ = f

(k−1)
λ + ϕkdk, (2.12)

where dk , which is the last column of Dk = VkR
−1
k , can be computed without requir-

ing storage of Vk . Note that due to (2.1) and (2.2), the residual vector r
(k)
λ = g−Af

(k)
λ

and f
(k)
λ satisfy

∥∥r
(k)
λ

∥∥ = ∥∥g − Af
(k)
λ

∥∥ = ∥∥UT
k+1

(
β1e1 − Bky

(k)
λ

)∥∥ = ∥∥β1e1 − Bky
(k)
λ

∥∥, (2.13)
∥∥f

(k)
λ

∥∥ = ∥∥y
(k)
λ

∥∥. (2.14)
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We end the section with a technical result.

Theorem 2.1 For fixed λ > 0 the norm of the solution f
(k)
λ and corresponding norm

of the residual vector r
(k)
λ satisfy

∥∥f
(k+1)
λ

∥∥ ≥ ∥∥f
(k)
λ

∥∥,
∥∥r

(k+1)
λ

∥∥ ≤ ∥∥r
(k)
λ

∥∥, k = 0, . . . , n − 1. (2.15)

Proof The first inequality follows from the monotonic properties of the LSQR iter-
ates. To prove the second inequality note that like the LSQR iterate f (k), the regular-
ized solution f

(k)
λ satisfies

f
(k)
λ = arg min

f ∈Kk

{‖g − Af ‖2 + λ2‖f ‖2}. (2.16)

Now since f
(k)
λ ∈ Kk+1 it follows that

λ2
∥∥f

(k+1)
λ

∥∥2
2 + ∥∥r

(k+1)
λ

∥∥2
2 ≤ λ2

∥∥f
(k)
λ

∥∥2
2 + ∥∥r

(k)
λ

∥∥2
2,

which implies the second inequality in (2.15). �

3 Our algorithm

In order to describe the main ideas underlying GKB-FP, we shall start with a brief
review of the fixed-point method.

3.1 Brief review of FP-method

FP can be regarded as a realization of a parameter choice rule devised by Regińska
[36], who proposed as regularization parameter a local minimum of the function

Ψμ(λ) = x(λ)yμ(λ), (3.1)

for proper μ > 0, where y(λ) = ‖fλ‖2
2 and x(λ) = ‖g − Afλ‖2

2. The motivation for
using this rule can be supported heuristically noting that when λ is small, the squared
solution norm y(λ) gets large while x(λ) gets small, and Ψ1(λ) is not minimized.
Conversely, when λ is large, y(λ) gets small while x(λ) gets large, and once again
Ψ1(λ) is not minimized. This suggests that the minimizer of Ψ1(λ) corresponds to
a good balance between the size of the solution norm and the size of the residual
norm. A similar result is expected when μ �= 1. Regińska proved that if the curva-
ture of the L-curve is maximized at λ = λ∗, and if the tangent to the L-curve at
(logx(λ∗), logy(λ∗)) has slope −1/μ, then Ψμ(λ) is minimized at λ = λ∗. Bazán [1]
investigated the properties of Ψμ(λ) and concluded that its minimizers are converging
values of a sequence defined by

λj+1 = φμ(λj ), j ≥ 0, φμ(λ) = √
μ

‖rλ‖2

‖fλ‖2
, λ > 0, (3.2)
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Fig. 1 Curves for test problem heat with n = 128. The right hand side g satisfies ‖e‖2/‖gexact‖2 = 0.05.
Noise is generated by the randn Matlab function with the seed value set to zero

Table 1 Numerical results for
test problem heat L-curve FP

λ 0.7607e–2 0.9783e–2

RE 0.2609e–0 0.2434e–0

which gave rise to the FP-method. A little difficulty with FP is that it strongly depends
on the initial guess: a wrong choice of the initial guess may lead either to a very small
fixed-point of φμ or to a maximizer of Ψμ. Although this poses no problem when the
L-curve is well-behaved (i.e., when it displays a unique and sharp convex L-corner),
in which case there is a unique convex fixed-point that is easy to reach, this may not
be the case when the L-curve displays several convex corners; we recall from [2] that
a fixed-point of φμ is said to be convex when the L-curve is locally convex at such
point. A multiple convex corner case is illustrated in Fig. 1 where the curvature of
the L-curve and the curve of function φ1 are also displayed. In this figure, the symbol
“o” corresponds to the regularization parameter determined by L-curve, as done by
function l−curve from [22], and the symbol ∗ corresponds to a convex-fixed point of
φ1. Note that in this case the parameters determined by L-curve and FP fall far away.
To make matters worse, one can verify that the sharper L-corner and the smallest
convex fixed-point, respectively, lead to severely undersmoothed solutions.

To circumvent the difficulties mentioned above, Bazán and Francisco [2] sug-
gested that instead of looking for a specific L-corner such as the sharper one, for
instance, one should look for the largest convex fixed-point of φμ. Regularization pa-
rameters determined by the rightmost L-corner and the largest convex-fixed point, as
well as the relative errors (denoted by RE) of the corresponding regularized solutions
for the test problem heat with data mentioned above are displayed in Table 1.

Further numerical results that illustrate the effectiveness of this rule can be found
in [2].

We close this section by pointing out two of the main steps of FP.

– Given a proper initial guess, FP starts with μ = 1 as a default value, and then
proceeds with the iterates (3.2) until the largest-fixed point of φ1 is reached. The
choice μ = 1 is because in most problems this value yields a regularization para-
meter that leads to a point on the L-curve near the corner of maximum curvature
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(geometrically, μ = 1 means that the tangent line to the L-curve at the L-corner
forms an angle of 135 degrees with the horizontal axis).

– If μ = 1 does not work, μ is adjusted and the iterations restart; see [1, 2] for
details.

3.2 Proposed method

We start by introducing the finite sequence of functions φ
(k)
μ : R

+ → R, k = 2, . . . , n,
defined by

φ(k)
μ (λ) = √

μ
‖β1e1 − Bky

(k)
λ ‖2

‖y(k)
λ ‖2

, μ > 0.

Let the singular value decomposition of Bk be

Bk = Pk

(
Σk

0

)
QT

k =
k∑

i=1

σ
(k)
i piq

T
i , (3.3)

where Pk and Qk are square orthogonal matrices, and Σk = diag(σ
(k)
1 , . . . , σ

(k)
k ) with

σ
(k)
1 ≥ σ

(k)
2 ≥ · · · ≥ σ

(k)
k > 0. Then it is immediate to verify that

∥∥y
(k)
λ

∥∥2
2 = β2

1

k∑

i=1

[σ (k)
i ]2ξ2

1i

([σ (k)
i ]2 + λ2)2

,

∥∥r
(k)
λ

∥∥2
2 = β2

1

(
k∑

i=1

λ4ξ2
1i

([σ (k)
i ]2 + λ2)2

+ δ
(k)
0

2
)

,

(3.4)

where we have put ξ1i = Pk(1, i), and where δ
(k)
0 is the 2-norm of the incompati-

ble part of β1e1 that lies outside R(Bk), the column space of Bk . Straightforward
computations show that

φμ
(k)′(λ) > 0, for λ > 0, (3.5)

where ′ denotes differentiation with respect to λ, and so φ
(k)
μ strictly increases with λ.

Now for given λ
(k)
0 consider the sequence

λ
(k)
j+1 = φ

(k)
1

(
λ

(k)
j

)
, j ≥ 0, (3.6)

and assume it converges to a fixed point λ(k)∗ of φ
(k)
1 ; when this is true and the

incompatible part of g that lies outside R(A) is nonzero, i.e., δ0
(n) �= 0, we shall

prove that the function φ1 of the original problem always has a fixed-point λ∗ that
minimizes Ψ1, that the sequence λ(k)∗ converges to λ∗ in at most n steps, and that λ∗
is the largest convex fixed-point of φ1.

GKB-FP constructs an approximation to λ∗ using a nonincreasing finite sequence
of fixed-points λ(k)∗. This requires solving the projected problem (2.9) for several
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Table 2 GKB-FP

Input: A, g, p > 1, kmax, ε.

Output: Regularized solution f
(k)
λ∗

1. Apply p GKB steps to A with starting vector b and form the matrix Bp .

2. Set k = p. Compute the fixed point λ(k)∗ of φ
(k)
1 and set

λ0 = λ(k)∗, λold = λ0 , k ← k + 1.

3. Perform one more GKB step and compute the fixed point λ(k)∗

of φ
(k)
1 taking λ0 as starting value.

Set λold = λ0, λ0 = λ(k)∗.

4. If stopping criterion is satisfied do

λ∗ = λold

else do

k ← k + 1

Go to step 3.

end if

5. Compute the regularized solution f
(k)
λ∗

values of λ for fixed k (but increasing), and our proposal is to do this following the
ideas of the LSQR algorithm as described in the previous section. The main steps of
GKB-FP are summarized in Table 2.

We refer to each GKB iteration as an outer iteration and to iterations during fixed-
point computations for each k as inner iterations. Computation of fixed-points re-
quires for each k, the evaluation of φ

(k)
1 for several values of λ and for increasing

values of k. The number of evaluations depends on the desired precision and our ex-
perience is that the largest number of evaluations corresponds to step 2. Obviously,
such an evaluation requires computing both ‖r(k)

λ ‖2 and ‖y(k)
λ ‖2. This can be made by

using the QR factorization of the augmented matrix in (2.10) and the residual norm
of the regularized projected problem (2.9) which we denote here by ‖r(k)

λ ‖2. In fact,
since by (2.9) and (2.10) we have

∥∥r
(k)
λ

∥∥2
2 + λ2

∥∥y
(k)
λ

∥∥2
2 = ∥∥r

(k)
λ

∥∥2
2 = |ϕk+1|2 + ‖ck‖2

2,

then it follows that
∥∥r

(k)
λ

∥∥2
2 = |ϕk+1|2 + ‖ck‖2

2 − λ2
∥∥y

(k)
λ

∥∥2
2. (3.7)

This shows that the evaluation of φ
(k)
1 (λ) for each λ can be made approximately in

O(k) arithmetic operations, which is the cost of solving the regularized projected
problem (2.9), see Eldén [11] and Paige and Saunders [35].

There are probably many ways of introducing savings for GKB-FP to be efficient
and competitive. We mention two ways. The first one, already incorporated at step 3,
is by taking λ(k)∗ as initial guess for computing the fixed-point of φ

(k+1)
1 . This is not

only computationally practical, but also theoretically correct since, as commented
above, the sequence of fixed points λ(k)∗ is a nonincreasing one; we shall return to
this point later. The second one is by choosing a tolerance parameter for stopping
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computation of fixed-points not too stringent in order to keep the number of evalu-
ations of φ

(k)
1 small. Our computational experience is that from k = p + 1 on, the

number of evaluations of φ
(k)
1 remains within moderate numbers such as 2 or 3, as

we shall illustrate in the numerical results section.
Thus, if we assume that a good approximation to the largest fixed-point of φ1 is

reached at step k∗, the computation of fλ via (2.8) roughly requires the evaluation of
k∗ matrix-vector products with each one of the matrices A and AT , the computation
of (k∗ − p + 1) fixed-points, and the evaluation one matrix-vector product with the
matrix Vk∗ . Since the computation of each fixed-point, from step k = p + 1 on, re-
quires the evaluation of φ

(k)
1 very few times, each being at the cost of O(k) arithmetic

operations, the overall cost of the computation of fλ should not exceed significantly
the cost of the k∗ Lanczos iterations, as long as k∗ remains within moderate bounds.
Taking as basis this discussion, the analysis of the cost of fλ via the updating formula
(2.12) is straightforward.

3.2.1 Stopping criteria

We first note that because the Lanczos process captures the dominant part of the sin-
gular spectrum of the coefficient matrix in a relatively small number of steps, φ

(k)
1 (λ)

should approximate φ1(λ) relatively well, at least for λ in some interval [ak, σ
(k)
1 ]

with ak larger than σ
(k)
k and close to some singular value dominant of A already cap-

tured at step k. Let λ∗ denote the sought fixed-point associated with the large-scale
problem. Then, if for certain k, one has λ∗ close to but smaller than ak , it is rea-
sonable that the sequence of fixed-points λ(k)∗ stabilize near λ∗ in a few additional
GKB steps. This heuristic is supported by the fact that φ

(k)
1 (λ) approximates φ1(λ)

from above and that the sequence of fixed-points λ(k)∗ is nonincreasing. These prop-
erties shall be proved and numerically illustrated in the next section. Based on this
we choose to stop the iterations when the relative change of consecutive fixed points
is small,

∣∣λ(k+1)∗ − λ(k)∗∣∣ < ε1
∣∣λ(k)∗∣∣, (3.8)

where ε1 is a small tolerance parameter. A disadvantage of the stopping criterion (3.8)
is that it can delay convergence when the sequence λ(k)∗ decreases very slowly. To
circumvent this difficulty we introduce another stopping criterion defined by

∣∣λ(k+1)∗ − λ(k)∗∣∣ < ε2
∣∣λ(0)∗∣∣, (3.9)

where λ(0)∗ is the fixed-point computed at step 2 and ε2 is another tolerance parame-
ter. The stopping criterion used by GKB-FP is to accept as regularization parameter
of the large scale-problem, the first fixed-point λ(k)∗ satisfying either (3.8) or (3.9).

4 Convergence analysis

It is important to stress that because we shall deal with mathematical properties of our
algorithm, in this section we shall assume exact arithmetic. We start by discussing the
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question about existence of fixed-points of the function φ
(k)
1 . The key idea is to exploit

an existing close relationship between the L-curve of the projected problem and the
function φ

(k)
1 . Let the L-curve in log-log scale of the projected problem be denoted

by L(k), i.e.,

L(k)(λ) = {
(a, b) | a = log‖r(k)

λ ‖2, b = log‖y(k)
λ ‖2, λ > 0

}
,

and let the slope of L(k) be denoted by m
(k)
L . It is straightforward to verify that (see

[1])

m
(k)
L (λ) = −[φ(k)

1 (λ)]2

λ2
.

Usually, m
(k)
L (λ) ≈ −1 for λ near the L-corner and |m(k)

L (λ)| is small for λ associated

with the flat part of the L-curve. We are going to show that for the function φ
(k)
1 to

have convex fixed-points it is required that the associated L-curve L(k)(λ) have a flat
part with |m(k)

L (λ)| sufficiently small. Before proceeding we recall from [2] that a

fixed-point λ(k)∗ of φ
(k)
1 is said to be a convex fixed-point (resp. concave) if L(k) is

locally convex (resp. concave) in a vicinity of λ(k)∗.
The theorem below provides conditions in terms of m

(k)
L (λ) that guarantee exis-

tence of convex fixed-points of φ
(k)
1 .

Theorem 4.1 Assume βk+1 �= 0, k ≥ 2. A sufficient condition for φ
(k)
1 to have a con-

vex fixed-point, and hence, a concave fixed-point, in the interval (0, σ
(k)
1 ), is that

|m(k)
L (λ)| < 1 in some interval I ⊂ (0, σ

(k)
1 ).

Proof Introduce the function h : R
+ → R defined by h(λ) = ‖r(k)

λ ‖2 − λ2‖y(k)
λ ‖2.

It is clear that h is continuous on R
+ and that λ̄ is a fixed-point of φ

(k)
1 if and only

if λ̄ is a zero of h. Note that the assumption βk+1 �= 0 means that β1e1 does not
belong to R(Bk) (i.e., the system Bky = β1e1 in (2.4) is inconsistent) and so δ

(k)
0 > 0.

This implies that ‖r(k)
λ ‖2 → δ

(k)
0 > 0 as λ → 0+, and therefore h(λ) → δ

(k)
0 > 0 as

λ → 0+. Invoking Lemma 1 in [1] it follows that

[
φ

(k)
1 (λ)

]2
> λ2 for λ > σ

(k)
1

and hence h(λ) > 0 for λ > σ
(k)
1 . These inequalities together with assumption

|m(k)
L (λ)| < 1 imply that h(λ) changes sign at least twice. This guarantees that h

has at least two zeros which are, respectively, a convex and a concave fixed-point of
φ

(k)
1 . �

The following theorem shows how the function φ1 of the original problem relates
to the sequence of functions φ

(k)
1 of the projected problems.
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Fig. 2 Function φ1(λ) corresponding to the “large” problem (1.2) (left). Some functions φ
(k)
1 (λ) corre-

sponding to the projected problem (2.4) (right). In this case we consider the test problem heat of size
n = 800 and data satisfying ‖e‖2/‖gexact‖2 = 0.1. The small circle denotes the largest convex fixed-point
of φ1

Theorem 4.2 For all λ > 0 there holds

φ
(k+1)
1 (λ) ≤ φ

(k)
1 (λ), k = 2, . . . , n − 1, (4.1)

and therefore

φ1(λ) ≤ φ
(k)
1 (λ), k = 2, . . . , n − 1. (4.2)

Proof The first inequality is straightforward from Theorem 2.1. The second inequal-
ity follows upon taking k = n − 1 in (4.1). �

Perhaps the most important consequence of Theorem 4.2 is that due to the approx-
imation properties of the Lanczos process, the sequence φ

(k)
1 (λ) quickly converges to

φ1(λ) at least for the values of λ near the part of the singular spectrum of A that
contains the largest convex fixed-point of φ1(λ). This is illustrated in Fig. 2 where
are depicted some functions φ

(k)
1 as well as its limiting value φ1(λ) for the heat test

problem. Notice that excellent approximations to φ1 are obtained in a few GKB steps.
Another consequence of Theorem 4.2 is that if the assumptions of Theorem 4.1

hold, then the sequence {λ(k)∗} converges to a convex fixed-point of φ in a finite
number of GKB steps. This is the subject of the following theorem.

Theorem 4.3 Provided that the assumptions of Theorem 4.1 hold, the sequence of
convex fixed-points λ(k)∗ is nonincreasing, and if δ

(n)
0 �= 0, then λ(k)∗ converges to a

convex fixed-point of φ1 that is closest to λ(p)∗ in at most n GKB steps.

Proof Let λ(k)∗, k ≥ p, be a convex fixed-point of φ
(k)
1 (λ). Due to Theorem 4.2 we

have

φ
(k+1)
1

(
λ(k)∗) ≤ φ

(k)
1

(
λ(k)∗) = λ(k)∗. (4.3)
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If λ(k)∗ is a fixed-point of φ
(k+1)
1 there is nothing to prove. Assume then that

φ
(k+1)
1 (λ(k)∗) < λ(k)∗, and consider the sequence λj+1 = φ

(k+1)
1 (λj ), j ≥ 0, with

starting value λ0 = λ(k)∗. Based on the fact that φ
(k+1)
1 increases with λ, see (3.5), it

follows that λj forms a non increasing sequence, and since δk+1
0 > 0 by assumption,

it turns out that {λj } converges to a fixed point of φ
(k+1)
1 , i.e.,

lim
j→∞λj = λ(k+1)∗ = φ1

(
λ(k+1)∗),

with λ(k+1)∗ ≤ λ(k)∗. Now notice that according to (4.3) and the continuity of
m

(k+1)
L (λ), it follows that |m(k+1)

L (λ)| < 1 in some vicinity of λ(k)∗, and convexity
of λ(k+1)∗ is a consequence of Theorem 4.1.

Finally, note that combining the assumption δ
(n)
0 �= 0 with the property (4.2), be-

cause after n GKB steps the Krylov space equals R
n, it follows that φ

(n)
1 equals φ1

and so {λ(k)∗} must converge to the largest convex fixed-point of φ1 in at most n GKB
steps, and the proof concludes. �

A remarkable property of GKB-FP is that from a certain k on, the error in the
regularized solution f

(k)

λ(k)∗ with respect to f exact remains essentially constant provided

that λ(k)∗ is sufficiently close to λ∗. More precisely, we have the following result.

Theorem 4.4 Assume that the largest convex fixed-point of φ1 is reached in k GKB
steps, i.e., λ∗ = φ

(k)
1 (λ∗). Then f

(k)
λ∗ = f

(k+1)
λ∗ = · · · = f

(n)
λ∗ = fλ∗ and as a conse-

quence, the error norm ‖f exact − f
(j)
λ∗ ‖2 remains constant for k ≤ j ≤ n.

Proof We first note that according to the LSQR algorithm, at step k we have f
(k)
λ∗ =

Vky
(k)
λ∗ , and that y

(k)
λ∗ solves the system Rky = bk , with Rk and bk obtained from the

transformation

Qk

[
Bk β1e1

λ∗Ik 0

]
=

⎡

⎣
Rk bk

0 ϕ̄k+1
0 ck

⎤

⎦ , bk =
⎡

⎢
⎣

ϕ1
...

ϕk

⎤

⎥
⎦ , ck =

⎡

⎢
⎣

ψ1
...

ψk

⎤

⎥
⎦ (4.4)

where Qk ∈ R
(2k+1)×(2k+1) is a product of Givens rotations. It is worthwhile to men-

tion that only three new quantities are to be computed at step k + 1: ϕk+1 (replacing
ϕ̄k+1), ϕ̄k+2, and ψk+1; the quantities in bk and ck remain unchanged and form part
of bk+1 and ck+1, respectively. We also mention that f

(k+1)
λ∗ can be obtained through

the updating formula

f
(k+1)
λ∗ = f

(k)
λ∗ + ϕk+1dk+1,

see (2.12), where dk+1 is the (k + 1)th column of Dk+1 = Vk+1R
−1
k+1. We shall prove

that ϕk+1 = 0. In fact, since λ∗ is a fixed-point of φ
(j)

1 for j = k, . . . , n (which holds
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because of Theorem 4.2), we have
∥∥β1e1 − Bky

(k)
λ∗

∥∥
2 = λ∗∥∥f

(k)
λ∗

∥∥
2, and

∥∥β1e1 − Bk+1y
(k+1)
λ∗

∥∥
2 = λ∗∥∥f

(k+1)
λ∗

∥∥
2,

(4.5)
and hence

∥
∥f

(k+1)
λ∗

∥
∥

2 ≤ ∥
∥f

(k)
λ∗

∥
∥

2,

where we have used the fact that ‖β1e1 − Bk+1y
(k+1)
λ∗ ‖ ≤ ‖β1e1 − Bky

(k)
λ∗ ‖ (see

(2.15)). But since the solution norms form a nondecreasing sequence (see (2.15)
again), it follows that ‖f (k+1)

λ∗ ‖2 = ‖f (k)
λ∗ ‖2, and substitution of this result into (4.5)

yields
∥
∥β1e1 − Bky

(k)
λ∗

∥
∥

2 = ∥
∥β1e1 − Bk+1y

(k+1)
λ∗

∥
∥

2. (4.6)

On the other hand, using (4.4) it follows that

∥
∥β1e1 − Bky

(k)
λ∗

∥
∥2

2 = |ϕ̄k+1|2 + ‖ck‖2
2 − λ∗∥∥f

(k)
λ∗

∥
∥2

,

and
∥∥β1e1 − Bk+1y

(k+1)
λ∗

∥∥2
2 = |ϕ̄k+2|2 + ‖ck+1‖2

2 − λ∗∥∥f
(k+1)
λ∗

∥∥2
.

Substituting these results into (4.6) yields

|ϕ̄k+1|2 + ‖ck‖2
2 = |ϕ̄k+2|2 + ‖ck+1‖2

2. (4.7)

But since the 2-norm of

Qk

[
β1e1

0

]
=

⎡

⎣
bk

ϕ̄k+1
ck

⎤

⎦ ,

in (4.4) equals β1 and does not depend on k, it follows that

|ϕ1|2 + · · · + |ϕk|2 + |ϕ̄k+1|2 + ‖ck‖2
2

= (|ϕ1|2 + · · · + |ϕk|2
) + |ϕk+1|2 + |ϕ̄k+2|2 + ‖ck+1‖2

2.

Using (4.7) into this last equation we conclude that ϕk+1 = 0, as claimed. �

In practice the condition λ∗ = φ
(k)
1 (λ∗) in Theorem 4.4 may not be satisfied after

some number of GKB steps. For this, it seems useful to bound the error ‖f (k)

λ(k)∗ −
f exact‖2 and to assess the behavior of the bound as the iterations proceed. This can
be addressed as follows. For each GKB step consider the (finite) sequence of positive
numbers εk defined by

(
λ(k)∗2 − λ∗2) = εk λ∗2

. (4.8)

Let the regularized solution of the large problem corresponding to λ(k)∗, fλ(k)∗ , be
decomposed as

fλ(k)∗ = f
(k)

λ(k)∗ + ηk. (4.9)
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Fig. 3 Verification of Theorem 4.4 using test problem phillips of size n = 1024 with
‖e‖2 = 0.05‖gexact‖2. Note that the relative error stabilizes at the same time as the sequence λ(k)∗ does

Then from the triangular inequality and the decomposition above we have that

∥∥f
(k)

λ(k)∗ − f exact
∥∥

2 ≤ ∥∥f exact − fλ∗
∥∥

2 + ‖fλ∗ − fλ(k)∗‖2 + ‖ηk‖2. (4.10)

The second term on the right hand side depends on the closeness between λ(k)∗ and
λ∗ and can readily be bounded using the regularized normal equations and the fact
that λ(k)∗ approximates λ∗ from above. More specifically, it is easy to prove that

‖fλ(k)∗ − fλ∗‖2 ≤ εk‖fλ∗‖2.

Using this inequality in (4.10) we can deduce that

‖f (k)

λ(k)∗ − f exact‖2

‖f exact‖2
≤ ‖f exact − fλ∗‖2

‖f exact‖2
+ εk

‖fλ∗‖2

‖f exact‖2
+ ‖ηk‖2

‖f exact‖2
. (4.11)

Hence, since both εk and ‖ηk‖2 approximate zero as the number of GKB steps grows,
which is easy to check from (4.8) and (4.9), it follows that the bound in (4.11) ap-
proximates the relative error in f ∗

λ from above. This suggests that for εk small enough

the absolute error in f
(k)

λ(k)∗ should stabilize close to ‖f exact −f ∗
λ ‖2, which is the error

in f
(k)

λ(k)∗ if λ∗ is reached in k GKB steps; see Theorem 4.4.

Our computational experience is that both the regularization parameter λ(k)∗ and
the corresponding regularized solution stabilize in a relatively small number of steps.
This is illustrated in Fig. 3. The spike in this figure simply means that the relative
error in f

(k)

λ(k)∗ is unpredictable at the beginning of the GKB iterations even if the
regularization parameters are nonincreasing. Further numerical results are presented
in the next section.

The stabilization phenomenon illustrated above was first noticed by Hanke and
Hansen [19, p. 302] and more recently numerically demonstrated by Hansen [21,
pp. 172–173] in connection with a Lanczos-based method combined with TSVD.
A similar numerical illustration can also be found in [10]. In all cases however, no
mathematical proof is provided. Our contribution here is a theoretical proof of the
stabilization phenomenon for GKB-FP.
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We emphasize that the theoretical results described in this section hold in exact
arithmetic and that in practice, numerical difficulties may arise due to the fact that the
Lanczos vectors (the columns of Uk and Vk) lose orthogonality. The cure is to use
partial or complete reorthogonalization but extra work is needed. We note, however,
that, if the number of GKB steps remains within reasonable bounds, numerical expe-
rience shows that the extra work spent with reorthogonalization is not substantial, as
we illustrate in the numerical results section. For a discussion on the use of reorthog-
onalization in connection with a Lanczos-based hybrid algorithm for ill-posed prob-
lems, see [5]. A thorough discussion on the issue can be found in Hansen‘s Book [21,
Sect. 6.5, p. 157ff.]; the reader is also referred to the references therein.

Finally, it is worth remarking that the analysis of this section can also be car-
ried out for GKB-FP using Tikhonov regularization in general form. In this case, the
bidiagonalization step must be replaced by a joint bidiagonalization step, as done
e.g., in [27], which allows one to construct regularized approximate solutions using
suitable Krylov subspaces. Implementation details of GKB-FP in this more general
version, as well as the corresponding convergence analysis are the subject of future
research.

5 Numerical results

The purpose of this section is to illustrate the performance of GKB-FP when ap-
plied to typical linear discrete-ill posed problems of moderate to large dimension.
For this purpose we choose eight test problems from the Regularization Tools [22]
and one problem from the iterative image deblurring package RestoreTools [32]. In
each case we generated triples A,f exact, gexact so that Af exact = gexact and then sim-
ulated distinct noisy vectors g, g = gexact + e, where e was generated by the Matlab
randn function with the seed value set to zero. In our implementation of GKB-FP,
the regularized solution fλ is computed in some cases via (2.8) and in others via the
updating formula (2.12); all computations were carried out using Matlab with about
16 significant decimal digits on a PC.

5.1 Test problems from Hansen’s toolbox

We consider the test problems

(a) foxgood, (b) heat, (c) shaw, (d) baart,
(e) deriv2(example1), (f) phillips, (g) gravity, (h) tomo.

These involve n × n linear systems with severely ill-conditioned coefficient matri-
ces with both gexact and f exact known. For the 7 first problems we choose n = 1200
and for the eighth one we take n = 35, which leads to a linear system of 1225 vari-
ables, with the observation that for problem tomo we always use the same data matrix
(we recall that for this problem the data matrix depends on random numbers). In all
cases the GKB procedure was implemented with complete reorthogonalization; we
use noisy vectors g with six distinct noise levels:

∥∥gexact − g
∥∥

2/
∥∥gexact

∥∥
2 = 10−6,10−5, . . . ,10−2, and 5 × 10−2.
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5.1.1 Behavior of selected regularization parameter at each GKB iteration

In order to give an idea of what can be expected from GKB-FP in terms of accu-
racy and speed, we shall compare the regularization parameters that are selected at
each GKB step by FP, L-curve, GCV and W-GCV, with the optimal regularization
parameter of the large problem. The latter is denoted by λOP and determined by an
exhaustive search using the SVD of the coefficient matrix; a very brief description of
W-GCV is given in the next section; see Chung et al. [10] for details.

The result of the comparison for four problems with noise level of 1% is displayed
in Fig. 4, where for convenience the optimal regularization parameter is displayed as
a constant at each step. Observe that only a few parameters selected by W-GCV are
displayed. This is because these parameters are the only to be returned by HyBR, a
routine from RestoreTools which implements W-GCV and decides when to stop the
GKB procedure. Observe that with the exception of FP, L-curve, GCV and W-GCV
select parameters that are not monotonic.

Observe also that the regularization parameters selected by L-curve and GCV may
stabilize too late compared with FP, which explains why GKB-FP will not be com-
pared with hybrid methods that use GCV or L-curve to choose regularization parame-

Fig. 4 Regularization parameters selected at each GKB iterations, 2 ≤ k ≤ 100, for foxgood (top left),
heat (top right), shaw (bottom left), and baart (bottom right). For completeness the optimal regularization
parameter of the original problem is denoted here by λOP and plotted as a constant function along the
iterations
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ters for the projected problem. A comparison of GKB-FP with a hybrid method that
uses W-GCV as selection parameter method at each GKB step is done in Sect. 5.2.

5.1.2 Performance of GKB-FP

In our computations the solution fλ was computed by using (2.8), and fixed-point
computations started with p = 5 taking λ

(5)
0 = 10−4 as initial guess. Tolerance pa-

rameters ε1, ε2 in (3.8), (3.9) were set to 10−4 and, in order to accelerate conver-
gence, computation of fixed-points for each k > p was implemented at low preci-
sion with

√
ε1 as tolerance parameter. To illustrate the performance of GKB-FP on

the above test problems we ran 50 realizations and then computed average values of
regularization parameters, average relative errors, as well as other informative quan-
tities. For comparison purposes, we also compute results associated with the optimal
regularization parameter.

In order to illustrate the quality of the computed solutions for distinct noise levels
and distinct test problems in a simple and comprehensive way, the attained errors for
the first four test problems are displayed in Fig. 5.

For a complete description of the results, computed quantities are labeled accord-
ing to the following list.

Symbol Description
NL Noise level in g.
λFP Average value of regularization parameters computed by GKB-FP.
λOP Average value of optimal regularization parameters.
E Average relative error in fλ.
OE Average relative error in fλOP .
ρ Ratio E/OE.
stdλ Standard deviation of computed regularization parameters.
kM Maximum stopping iteration of 50 runs.
kφ Maximum number of evaluations of φ

(k)
1 along inner iterations.

The results for the first five noise levels are organized in Tables 3, 4, 5, 6, and 7.
As we can observe, the most important features of the SVD-based implementation

described in [1, 2], namely the consistent determination of regularization parameters

Fig. 5 Relative errors versus NL = 10−i , i = 2, . . . ,6, for the first four test problems of the list for noise
data such that ‖b − bexact‖2 = NL‖bexact‖2. Errors associated with the optimal regularization parameter
are denoted here by OP
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Table 3 Numerical results for
noise level NL = 0.0001% foxgood heat shaw baart

λFP 0.7755e–6 0.2856e–4 0.4106e–4 0.2308e–5

λOP 0.4624e–4 0.9045e–5 0.7660e–5 0.2568e–5

E 0.8025e–3 0.2605e–1 0.4414e–1 0.4869e–1

OE 0.4263e–3 0.3886e–2 0.1418e–1 0.3863e–1

ρ 2.2512 6.7129 3.7022 1.3311

stdλ 0.1763e–8 0.2679e–8 0.6402e–7 0.3223e–8

kM (kφ) 5(3) 19(5) 8(5) 6(4)

deriv2 phillips gravity tomo

λFP 0.5440e–5 0.4382e–3 0.2914e–4 0.3499e–1

λOP 0.1050e–5 0.1333e–2 0.2399e–3 0.7020e–4

E 0.1255 0.8476e–2 0.5373e–2 0.1269

OE 0.4362e–1 0.4318e–3 0.9342e–3 0.4821e–2

ρ 2.8778 19.8021 6.12394 26.4382

stdλ 0.1793e–8 0.4195e–5 0.1092e–6 0.3292e–6

kM (kφ) 17(4) 8(4) 11(4) 47(6)

Table 4 Numerical results for
noise level NL = 0.001% foxgood heat shaw baart

λFP 0.7734e–5 0.2862e–4 0.4703e–4 0.2310e–4

λOP 0.1473e–3 0.3960e–4 0.3345e–4 0.5497e–5

E 0.1197e–2 0.2605e–1 0.4415e–1 0.5262e–1

OE 0.1172e–2 0.6445e–2 0.2019e–1 0.4731e–1

ρ 1.0385 4.0586 2.3672 1.1384

stdλ 0.9569e–8 0.2681e–7 0.5556e–6 0.3553e–7

kM (kφ) 5(3) 19(5) 8(5) 5(4)

deriv2 phillips gravity tomo

λFP 0.5497e–5 0.2233e–2 0.9833e–4 0.3499e–1

λOP 0.4156e–2 0.1273e–1 0.1134e–2 0.1104e–2

E 0.1255 0.2086e–1 0.7660e–2 0.1269

OE 0.6572e–1 0.1097e–2 0.2024e–2 0.7070e–2

ρ 1.9106 19.0954 4.0100 18.6534

stdλ 0.1780e–7 0.9037e–4 0.9131e–6 0.4133e–5

kM (kφ) 17(4) 8(4) 10(4) 47(6)

(as explained by the small standard deviation) and the accuracy of computed solu-
tions, are preserved in GKB-FP. Note that in general both the maximum dimension
of the Krylov subspace (as described by kM ) in which the computed solution lives
and the maximum number of evaluations of function φ

(k)
1 (as described by the value

of kφ) are relatively small.
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Table 5 Numerical results for
noise level NL = 0.01% foxgood heat shaw baart

λFP 0.7737e–4 0.3413e–4 0.2362e–3 0.2322e–3

λOP 0.5675e–3 0.2145e–3 0.3297e–3 0.8667e–4

E 0.3467e–2 0.2610e–1 0.4396e–1 0.7187e–1

OE 0.3193e–2 0.1230e–1 0.2881e–1 0.5510e–1

ρ 1.3316 2.1311 1.5919 1.3132

stdλ 0.9183e–7 0.2328e–6 0.1080e–5 0.3160e–6

kM (kφ) 5(3) 19(5) 8(5) 5(4)

deriv2 phillips gravity tomo

λFP 0.1037e–4 0.2744e–2 0.5938e–3 0.3500e–1

λOP 0.2453e–4 0.1273e–1 0.4545e–2 0.5835e–2

E 0.1310 0.2430e–1 0.7758e–2 0.1270

OE 0.9659e–1 0.2794e–2 0.4237e–2 0.2005e–1

ρ 1.3575 8.8564 1.9525 6.4924

stdλ 0.1237e–6 0.1628e–4 0.1958e–5 0.4346e–4

kM (kφ) 16(4) 5(4) 10 (4) 46(5)

Table 6 Numerical results for
noise level NL = 0.1% foxgood heat shaw baart

λFP 0.7737e–3 0.1945e–3 0.2330e–2 0.2332e–2

λOP 0.2182e–2 0.7385e–3 0.3606e–2 0.8914e–3

E 0.1511e–1 0.3600e–1 0.4787e–1 0.1165

OE 0.7249e–2 0.2472e–1 0.4221e–1 0.8220e–1

ρ 2.2130 1.4761 1.1574 1.6036

stdλ 0.8981e–6 0.1096e–5 0.3990e–5 0.3206e–5

kM (kφ) 5(3) 17(5) 8(5) 5(4)

deriv2 phillips gravity tomo

λFP 0.8109e–4 0.5533e–2 0.5896e–2 0.3560e–1

λOP 0.1131e–3 0.3944e–1 0.2265e–1 0.5682e–1

E 0.1541 0.2430e–1 0.1138e–1 0.1275

OE 0.1423 0.7389e–2 0.9769e–2 0.6232e–1

ρ 1.0843 3.3664 1.2356 2.0516

stdλ 0.3718e–6 0.7794e–4 0.1181e–4 0.4248e–3

kM (kφ) 13(4) 6(4) 9(4) 46(6)

Since the computed errors for NL = 0.05 (i.e. 5% noise) remained within bounds
that do not exceed 30% (except for heat, baart and tomo which are known to be
difficult), the numerical results for this noise level are not reported here. Note that the
number of GKB steps decreases as the noise level grows. This is in accordance with
the regularizing effects of Krylov methods in that at high noise levels more singular
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Table 7 Numerical results for
noise level NL = 1% foxgood heat shaw baart

λFP 0.7753e–2 0.1907e–2 0.2355e–1 0.2375e–1

λOP 0.6688e–2 0.2251e–2 0.1155e–1 0.6247e–2

E 0.2113e–1 0.7311e–1 0.7834e–1 0.1622

OE 0.1740e–1 0.6767e–1 0.6099e–1 0.1244

ρ 1.3724 1.0877 1.3021 1.4735

stdλ 0.9208e–5 0.6817e–5 0.3919e–4 0.5568e–4

kM (kφ) 4(3) 14(5) 7(5) 4(4)

deriv2 phillips gravity tomo

λFP 0.8301e–3 0.5089e–1 0.5897e–1 0.7630e–1

λOP 0.5285e–3 0.1376 0.9389e–1 0.4799

E 0.2208 0.2453e–1 0.2431e–1 0.1712

OE 0.2087 0.1986e–1 0.2203e–1 0.1658

ρ 1.0604 1.2908 1.1190 1.0320

stdλ 0.2462e–5 0.1124e–3 0.1093e–3 0.3942e–2

kM (kφ) 10(4) 7(4) 9(4) 46(6)

values are swamped and thus the iteration must be stopped earlier (see, e.g., Hanke
and Hansen [19]).

Finally, observing the computed relative errors for the various noise levels and
the dimension of the Krylov subspace being used, we conclude that GKB-FP is very
effective for realistic noise levels (e.g., 0.1% and 0.01% ) and therefore competitive .

5.2 Image restoration from RestoreTools: test problem satellite

To test our algorithm on a large-scale problem we choose a deblurring problem from
the RestoreTools by Nagy and co-workers [32], where the matrix A plays the role of
blur operator. The noisy free data is a “satellite” image in space of 256 × 256 pixels
and stored in a vector f exact ∈ R

65536. The blur operator is thus of size 65536×65536
and the blurred, but noisy free, image associated with f exact is gexact = Af exact. The
“right-hand” side g, i.e., the blurred and noisy image, is thus g = gexact + e where e

is generated by the Matlab function randn with the seed value set to zero. The goal
here is to compare the performance of our method against a hybrid Lanczos-based
method by Chung et al. [10] that selects the regularization parameter by W-GCV at
each GKB step. W-GCV was designed so as to overcome well-known difficulties of
standard GCV. The basis for W-GCV is the weighted-GCV function

GA,g(ω,λ) = n‖(I − AA
†
λ)g‖2

2

(trace(I − ωAA
†
λ))

2
, (5.1)

where A
†
λ = (AT A + λ2I )−1AT and ω is a positive parameter to be determined. In

the hybrid method we are interested in, the choice of the regularization parameter is
based on the W-GCV function associated with the projected problem (2.4) and on an
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Table 8 Results for noise level
NL = 0.1% FP⊥

p W-GCV⊥
p FPp W-GCVp

λ 0.15850e–3 0.3161e–2 0.6590e–3 0.1032e–1

stdλ 0.2834e–4 0.4470e–3 0.6784e–3 0.2219e–2

E 0.2820 0.2787 0.2823 0.2822

TM 40.3537 21.5221 59.2169 46.3883

kM (kφ) 54(3) 38(–) 90(3) 90(–)

FP⊥ W-GCV⊥ FP W-GCV

λ 0.1153e–2 0.4476e–2 0.1218e–2 0.4798e–2

stdλ 0.8082e–6 0.5482e–5 0.2207e–4 0.2851e–4

E 0.3095 0.2867 0.2999 0.2957

TM 55.6790 54.8228 56.5264 69.9674

kM (kφ) 81(3) 84(–) 103(3) 128(–)

adaptive choice of ω. For simplicity, from here on this hybrid method will be referred
to as W-GCV.

Except for quantities associated with λOP, which is difficult to determine in large-
scale problems, we compute the same quantities as in the previous section consid-
ering 50 runs as well. W-GCV-based solutions are computed by using the routine
HyBR from RestoreTools taking advantage of particular features that allow efficient
computation of matrix-vector products; the reader is referred to Chung et al. [10]
and Nagy et al. [32] for details. As the satellite problem is a much larger problem
than those tested before, to accelerate convergence we also compute W-GCV-based
solutions using a preconditioned technique available in RestoreTools, and the same
preconditioner is also used to compute GKB-FP-based solutions; for details of the
preconditioner, the reader is referred to [32] and references therein. Summarizing, we
use four versions of W-GCV and four versions of GKB-FP. The W-GCV versions in-
clude one with preconditioning denoted by W-GCVp, one with preconditioning plus
reorthonormalization denoted by W-GCV⊥

p , one without preconditioning but with re-

orthonormalization denoted by W-GCV⊥, and one without reorthonormalization and
without preconditioning denoted simply by W-GCV. The GKB-FP versions consider
the same variants as W-GCV; for simplicity they are denoted by FP⊥

p , FPp, FP⊥ and
FP. When GKB-FP is used without reorthonormalization, the solution fλ is computed
by using the updating formula (2.12). For this problem we consider vectors g with
three distinct noise levels:

∥∥gexact − g
∥∥

2/
∥∥gexact

∥∥
2 = 0.001,0.01, and 0.05.

In order to better evaluate the performance of both GKB-FP and W-GCV, in ad-
dition to the quantities computed in the experiment of the previous section, we also
compute the maximum time spent by the algorithms along the runs which we denote
by TM (measured in seconds). Computed quantities are summarized in Tables 8, 9,
and 10; quantities that help the interpretation of results appear in boldface.

We first note that in the low noise case all versions of the methods behave similarly,
with a slight advantage in favor of the preconditioned versions for which the relative
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Table 9 Results for noise level
NL = 1% FP⊥

p W-GCV⊥
p FPp W-GCVp

λ 0.53440e–2 0.1876e–1 0.5345e–2 0.1876e–1

stdλ 0.5290e–4 0.7887e–3 0.5172e–4 0.7923e–3

E 0.2984 0.2984 0.2984 0.2984

TM 8.5525 7.7174 8.3127 6.8226

kM (kφ) 12(2) 11(–) 12(2) 11(–)

FP⊥ W-GCV⊥ FP W-GCV

λ 0.5730e–2 0.3119e–1 0.6353e–2 0.3119e–2

stdλ 0.3800e–5 0.7439e–4 0.3230e–4 0.6430e–4

E 0.3266 0.3971 0.3201 0.3975

TM 41.5397 20.6554 39.3188 21.3298

kM (kφ) 62(3) 11(–) 74(3) 45(–)

Table 10 Results for noise
level NL = 5% FP⊥

p W-GCV⊥
p FPp W-GCVp

λ 0.27690e–1 0.5487e–1 0.2769e–1 0.5487e–1

stdλ 0.1730e–3 0.5837e–3 0.1730e–3 0.5837e–3

E 0.3773 0.3772 0.3773 0.3772

TM 3.7735 3.840 3.7823 3.8044

kM (kφ) 5(2) 4(-) 5(2) 4(-)

FP⊥ W-GCV⊥ FP W-GCV

λ 0.3221e–1 0.1010 0.3250e–1 0.8735e–1

stdλ 0.2443e–4 0.5895e–1 0.2707e–4 0.6835e–1

E 0.4065 0.4864 0.4032 0.4864

TM 24.6873 72.7300 25.6511 162.9850

kM (kφ) 41(3) 101(-) 49(3) 234(-)

error approaches 28%, see Table 8. Regarding these results, note that although the
relative error is much larger than the noise to signal ratio (0.1%), the computed solu-
tions yield images that resemble the true and noise free image relatively well. This is
shown in Fig. 6 where we have depicted some results of the first run. Unfortunately,
the behavior of the methods changes when the noise level is increased: while the ac-
curacy of W-GCV starts to deteriorate more or less significantly in the higher noise
cases, the quality of solutions produced by the other tested versions (as illustrated by
the average relative errors) remain comparable, see Tables 9 and 10.

We continue our analysis of the results by examining the computed regularization
parameters. The conclusion in this case is that W-GCV determines parameters that
can vary very much from one run to another (as explained by the values of stdλ),
while GKB-FP yields parameters (and corresponding solutions) with small varia-
tions. A consequence of this fact is that the time spent by the GKB-FP versions (as
illustrated by the time spent by the methods) does not vary so much from a run to
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Fig. 6 Satellite data and reconstructed images for noise level 0.1% obtained in the first run

another, whereas the time spent by the W-GCV versions can vary from small, which
also holds for GKB-FP, to too large when compared to the time spent by GKB-FP.
A similar comment applies to the dimension of the Krylov subspace being used.

Note that at high noise levels the subspace dimension, the computational work and
the quality of computed solutions by the preconditioned versions of both W-GCV
and GKB-FP are all comparable. However, the performance of the GKB-FP versions
without preconditioning in terms of accuracy is superior, see Tables 9 and 10, and
Fig. 7.

Another observation in connection with GKB-FP, which is in accordance with reg-
ularization theory, is that the number of outer iterations in GKB-FP that can reliably
be performed decreases when the noise level increases, and a similar comment ap-
plies to the time spent by GKB-FP. However, this no longer holds for kM and TM in
connection with W-GCV; compare the values of kM and TM in Tables 9 and 10.

The stabilization phenomenon attributed to GKB-FP is illustrated in Fig. 8, where
are displayed both the regularization parameters and error histories for GKB-FP and
LSQR. Finally, observe that the maximum number of evaluations of φ

(k)
1 (as indicated
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Fig. 7 Reconstructed images for noise level 5% obtained in the last run

Fig. 8 Stabilization of regularization parameter determined by GKB-FP and relative error for GKB-FP
and LSQR. Displayed results correspond to FP⊥ for noise level of 1%

by kφ) along inner iterations does not exceed 3; this confirms what we commented in
Sect. 3 and indicates again that GKB-FP is competitive.

Based on the theory of the previous section and the analysis above we conclude
that theoretically GKB-FP is much more robust than W-GCV, that the preconditioned
versions of W-GCV for the tested problems perform similarly as their GKB-FP coun-
terparts, and that GKB-FP can in some circumstances yield more accurate regularized
solutions than those produced by W-GCV (see Tables 9 and 10 again).
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6 Conclusions

We have reviewed the fixed-point algorithm for Tikhonov regularization of Bazán [1]
and discussed/analyzed an implementation of it for large scale problems, which re-
sulted in a new method called GKB-FP. The method combines Lanczos iterations
with Tikhonov regularization in the generated Krylov subspace with the regulariza-
tion parameter for the projected problem chosen by the FP-algorithm. Additionally,
we compared the performance of GKB-FP against a hybrid Lanczos-based method
that selects the regularization parameter by W-GCV at each GKB step, and concluded
that in terms of accuracy, consistency, and computational effort, the preconditioned
versions of the latter are as robust as their GKB-FP counterparts, with the observa-
tion that the GKB-FP can in some circumstances produce more accurate results than
W-GCV. Furthermore, we proved that GKB-FP is able to completely stabilize the it-
erations, a property already seen in the literature in connection with hybrid methods
but not theoretically proved so far.

It is clear that continued experience with GKB-FP is necessary to fully assess
its potential. In particular, experience is needed with large problems from distinct
application areas requiring the use of general-form Tikhonov regularization. This is
the subject of ongoing research.
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