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a b s t r a c t

We derive a novel method to determine the parameters for regularized super-resolution

problems, addressing both the traditional regularized super-resolution problem with

single- and multiple-parameters and the simultaneous super-resolution problem with

two parameters. The proposal relies on the joint maximum a posteriori (JMAP)

estimation technique. The classical JMAP technique provides solutions at low

computational cost, but it may be unstable and presents multiple local minima. We

propose to stabilize the JMAP estimation, while achieving a cost function with a unique

global solution, by assuming a gamma prior distribution for the hyperparameters. The

resulting fidelity is similar to the quality provided by classical methods such as GCV,

L-curve and Evidence, which are computationally expensive. Experimental results

illustrate the low complexity and stability of the proposed method.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

In many applications it is desirable that the acquisition
system provides an image with the best possible resolu-
tion while introducing minimum distortions due to
imperfections of the image sensor and the optical system.
However, the cost of image acquisition systems, like
digital cameras, camcorders and scanners, increases with
the resolution of the sensor and with the quality of the
optical system. An alternative to improve the resolution
and the quality of captured images, without increasing the
cost of the system, is to employ digital processing
techniques to achieve super-resolution (SR).

Research on SR methods dates back to the 90’s when
the authors in [1,2] employed Fourier domain methods.
Since then, many approaches have been proposed,
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including projections onto convex sets (POCS) [3,4], non-
uniform interpolation [5] and iterative back-projection
[6,7]. Regularized SR approaches based on maximum a
posteriori (MAP) and regularized least squares appeared
in [8–11]. In general, regularized approaches are based on
the minimization of a cost function composed by a term
associated with the residual between the estimated high-
resolution (HR) frame and the low-resolution (LR) frames,
plus another term, called the prior term, used to
regularize the problem. The regularization parameter
controls the influence of the prior term in the resulting
solution. In many works, the regularization parameter is
assumed to be known a priori, but in most cases it is
unknown and needs to be determined from the data.

Since regularized SR methods rely on inverse problems
theory [12,13], many methods for inverse problems have
been used to find the regularization parameter in SR. For
instance, the generalized cross validation (GCV), a widely
used method for inverse problems [13], was applied to SR
in [14]. In [15], the L-curve based method [12], in which
the chosen parameter is the one that produces the point of
maximum curvature (L-MC) in the L-curve, was proposed
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1 An ill-posed problem is a mathematical problem that has, at least,

one of the following features: it has no solution; it has an infinite

number of solutions; or the solution is not stable due to small

perturbations in the data [12,13].
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for SR problems. GCV and L-MC provide high quality
solutions, however their computational cost is high.
Alternative faster methods are proposed in [16–18]. Other
possible methods are those developed for image restora-
tion problems such as [18–20].

One of the difficulties in SR is the existence of motion
error between frames. The motion error, caused by
imprecise motion estimation or by the occlusion of objects
moving in the scene, reduces the effectiveness of SR
methods and generates some artifacts in the estimated
HR image [21,22]. To overcome this problem, [9,23,24]
propose to weight the equations associated to the LR
frames independently. However, the choice of proper
weighting values to reduce the influence of the frames
corrupted by motion errors without completely excluding
them from the estimation is a difficult problem. In practice,
the weighting values as well as the regularization para-
meter have to be estimated from the data, which increases
the complexity of the problem. The joint determination of
the weights and the regularization parameter, simply called
multi-parameter problem in this paper, is addressed in
[21,22]. In [25], a multi-parameter version of [26], called
Evidence, is proposed to solve the problem. The method is
stable and provides good quality results. However, it is
computationally demanding for general SR problems since,
like GCV, it requires computing the trace of the inverse of a
matrix. In [25], the method is applied only to block-
circulant matrices. Methods based on the gradient, as in
[21,22], estimate the HR frame and the parameters at each
iteration. These methods have been shown to be stable and
are, in general, faster than Evidence but the quality of the
estimated frames is inferior.

More recently, simultaneous SR methods have been
proposed in [27–30]. These methods estimate all frames
of an image sequence in a single process. Two different
kinds of prior are employed, one to achieve spatial
smoothness and other to achieve higher similarity of the
HR frames in the motion trajectory. That is, at least two
parameters are necessary, and to the best of our knowl-
edge, a proper method to find the regularization para-
meters for these techniques has not been proposed yet.

This paper addresses the parameters determination
for both the traditional regularized SR problem with
single- and multiple-parameters and the simultaneous
SR problem with two parameters. These regularized SR
algorithms are reviewed in Section 2. In Section 3, the
problem of parameters estimation is addressed using the
joint maximum a posteriori (JMAP) estimation technique
[31,32]. The classical JMAP approach, which assumes
uniform density for the hyperparameters is, in general,
unstable [32]. This work assumes a gamma probability
density for the hyperparameters in order to produce a
stable algorithm with a unique global solution. The
proposed method is also closely related to the L-curve
method in [16] where the chosen parameter produces a
point in the L-curve tangent to a line with negative slope.
Section 4 presents experiments to illustrate the low
computational cost of the proposed method, while
producing estimations with the same quality as classical
methods such as GCV [14], L-curve [12] and Evidence
[25,26]. Section 5 concludes this paper.
2. Review of regularized SR methods and models

In this section, the traditional regularized SR problem
and the simultaneous SR problem are reviewed, consider-
ing the single- and multi-parameter case for the former
and the two-parameter case for the latter.

2.1. Single- and multi-parameter traditional SR

Traditional regularized SR algorithms [33,34] exploit
the entire sequence of LR frames to produce a single HR
frame. The equation that describes the single-parameter
traditional SR method is

f̂k ¼ arg min
fk

XL

j¼1

kgj � Cj;kfkk
2
2 þ lkkRkfkk

2
2. (1)

In Eq. (1), gj is a vector of size N � 1 that represents the LR
frame captured at the time instant j. The elements of the
vector correspond to the pixels of the respective frame,
lexicographically ordered. The vector fk, of size M � 1,
represents the HR image at instant k, where NpM. The
matrix Cj;k ¼ DjMj;k combines the acquisition matrix Dj

and the motion matrix Mj;k. The matrix Dj, of size N �M,
represents the acquisition process applied to the motion
transformed HR image f j. It models the blurring, caused in
the lens and in the image sensor, and the subsampling,
which implies the reduction of the number of pixels from
the HR frame to the LR frame. The matrix Mj;k, of size
M �M, represents the motion transformation, or warping.
It can be created either from a discretized continuous
motion operator [31,35], where a parametric motion is
assumed, or from a discrete motion vector field [36,37].

In general, SR is an ill-posed1 problem [12,13,34,38]. An
alternative to achieve a unique and stable solution is to
employ a regularization or prior term, represented by
kRkfkk

2
2 in (1). The matrix Rk, of size P �M, is usually a

discrete differential operator, obtained by either employ-
ing a finite difference operator (in the horizontal, vertical
and diagonals directions) or a Laplacian operator. The
regularization parameter, lk, which varies according to the
temporal position k of the HR frame being estimated,
dictates the influence of the prior term in the solution. In
this method it is assumed that the data error has the same
variance for all frames. Eq. (1) can be represented in
condensed form as

f̂k ¼ arg min
fk

kg� Ckfkk
2
2 þ lkkRkfkk

2
2 (2)

where the data g ¼ ½gT
1; . . . ;g

T
L �

T is an LN � 1 vector and

Ck ¼ ½C
T
1;k . . .C

T
L;k�

T is an LN �M matrix.

Multi-parameter traditional SR algorithms also employ
the entire sequence of LR frames to produce one HR frame
[9,10,24]. However, in these algorithms it is assumed that
the noise level on the data is different for each frame
specially due to different levels of motion error in each
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frame. Thus, the equations related to the LR frames are
weighted individually. The multi-parameter traditional
methods are described by

f̂k ¼ arg min
fk

XL

j¼1

aj;kkgj � Cj;kfkk
2
2 þ lkkRkfkk

2
2 (3)

where aj;k is the weighting applied to each frame. The
parameter aj;k tends to be small with the temporal
distance between the frames, jk� jj, mainly because of
the decreasing of the similarity of the frames.

2.2. Simultaneous SR

The simultaneous algorithms estimate the entire
sequence of HR frames in a single process. This approach
allows the inclusion of the motion matrix in the prior
term, improving the quality of the estimated image
sequence. The simultaneous approach was originally
proposed in [27], and then improved in [28,29], where
the computational cost was reduced by removing the
terms with the combined acquisition and motion matrix
from the data term. The minimization problem, according
to [28], is

f̂ 1; :::; f̂L ¼ arg min
f1 ;:::;fL

XL

k¼1

kgk �Dkfkk
2
2 þ lR

XL

k¼1

kRkfkk
2
2

þ lM

XL�1

k¼1

kfk �Mk;kþ1fkþ1k
2
2 (4)

where kfk �Mk;kþ1fkþ1k
2
2 models the motion difference in

the motion trajectory. Eq. (4) uses a first-order finite
difference model however second- or arbitrary-order
models can also be used [28–30]. Note that the entire
HR sequence is estimated simultaneously and that only
the acquisition matrix Dk is utilized in the data term
[28–30]. In these methods at least two parameters are
necessary. The parameter lR controls the spatial smooth-
ness of the images, while lM controls the similarity of the
estimated images in the motion trajectory. Eq. (4) can be
expressed as

f̂ ¼ ½f̂
T

1 . . . f̂
T

L �
T ¼ arg min

f
kg�Df k2

2 þ lRkRf k2
2

þ lMkMf k2
2 (5)

where g ¼ ½gT
1 . . .g

T
L �

T is the LR sequence, f ¼ ½fT
1 . . . f

T
L �

T is

the HR sequence, D, R are block diagonals defined by D ¼

diagðD1; . . . ;DLÞ and R ¼ diagðR1; . . . ;RLÞ, and

M ¼

I �M1;2 � � � 0

..

. . .
. . .

. ..
.

0 � � � I �ML�1;L

2
664

3
775 (6)

for the first-order motion difference, as used in (4), where
I is the identity matrix.

3. Proposed method to estimate the parameters

This section describes the novel approach to estimate
the parameters based on the JMAP estimation. A brief
review of the classical JMAP for single-parameter problems
is provided, followed by the development of the proposed
method, optimization schemes, and the extension of the
method for problems with multiple-parameters.

3.1. Review of the JMAP estimation

JMAP is a Bayesian estimator that jointly estimates the
HR images and the parameters [32,39]. The classical JMAP
is presented for single-parameter SR methods according to
(2). The time index k of the image, as in fk, is omitted for
clarity. The JMAP estimative is

f̂; ŷ; b̂ ¼ arg max
f;y;b

rðf; y;bjgÞ

¼ arg min
f;y;b
½� lnrðgjf; yÞ � lnrðfjbÞ

� lnrðyÞ � lnrðbÞ� (7)

where rðf; y;bjgÞ is the posterior density, g is the data
vector, or the LR image sequence, f is a vector representing
the HR image, y is the hyperparameter of the data density
rðgjf; yÞ and b is the hyperparameter of the image prior
density rðfkbÞ. The functions rðyÞ and rðbÞ are the prior
densities assigned to the hyperparameters, also known as
hyperpriors [26,39]. The data density and the image prior
density are the same used in the MAP estimations. Let us
assume the following Gaussian densities

rðgjf; yÞ ¼ 1

ð2pyÞLN=2
e�ðkg�Cfk22=2yÞ (8)

where y, in this case, is the variance of the data error, and

rðfjbÞ ¼ 1

ð2pbÞM=2
e�ðkRfk22=2bÞ. (9)

In this work we assume that y and b are independent of
each other. This assumption implies that the hyperpara-
meter for a class of images of interest is not statistically
related to the noise variance of the acquisition system.

In the MAP estimation, the hyperparameters are
assumed to have fixed values [39]. Thus, it is not required
to estimate them. In this case the regularization para-
meter is l ¼ y=b. On the other hand, in the JMAP
estimation, both the HR images as well as the hyperpara-
meters are random values that need to be estimated from
the data. Thus, in the same way that an image prior is
needed for the estimation of the HR image, the hyper-
priors are needed for the estimation of the hyperpara-
meters.

The approaches in [26,32] assume uniform density
for the hyperpriors, so the values are equiprobable,
therefore rðyÞ / cte and rðbÞ / cte, for 0oy;bo1. The
JMAP estimation with these hyperpriors becomes:

f̂; ŷ; b̂ ¼ arg min
f;y;b

kg� Cfk2
2

2y
þ

LN

2
ln yþ

kRfk2
2

2b

þ
M

2
lnbþ cte. (10)

From Eq. (10), it is possible to find the hyperparameters
for a fixed f, by differentiating Eq. (10) with respect to the
hyperparameters and setting it to zero. This leads to the
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following closed form solutions:

ŷ ¼
kg� Cfk2

2

LN
; b̂ ¼

kRfk2
2

M
(11)

for the data hyperparameter and for the image hyper-
parameter, respectively. One can observe that the JMAP
estimation of the parameters, with uniform density, is
similar to the maximum likelihood (ML) estimation of the
parameters [32].

Upon substituting (11) into Eq. (10), results in the
following optimization problem:

f̂ ¼ arg min
f

lnðkg� Cfk2
2Þ þ

M

LN
lnðkRfk2

2Þ. (12)

By determining the gradient of the cost function in (12)
the resulting minimizer f̂ is the solution of

CTC þ lRTRf ¼ CTg (13)

where l is

l ¼
y
b
¼

M

LN

kg� Cfk2
2

kRfk2
2

(14)

This statistical method has great similarity with the
deterministic L-Curve method proposed in [16]. An
analysis in [16] shows that L-Curve in log–log scale is
non-convex. Moreover, the constraining of l is required to
find a proper local minimum. In the Bayesian statistical
sense, constrains on l can be expressed by defining proper
hyperparameter priors [26,39]. When employing uniform
densities, as done in the classical JMAP, l is not
constrained properly and may result in unstable esti-
mates. More restrictive hyperpriors, on the other hand,
may produce a stable estimative and a globally convex
problem with a unique minimum.

3.2. Proposed method

The instability of the classical JMAP estimative,
according to (12), is reported in [21,26]. An approach to
stabilize JMAP by employing a proper hyperprior for
general inverse problems is reported in [39]. This work
proposes an alternative hyperprior which is able to lead
the JMAP to a unique and stable estimative of the
parameters. In the JMAP method, the density of the data
or the prior density of the images are connected with the
density of its respective hyperparameter. For example, the
image prior, rðfjbÞ, may enforce that the HR image is
smooth, constraining the estimative to smooth images.
The associated hyperparameter, b, defines ‘‘how smooth’’
is the resulting image. However, when a uniform density
is assigned to the hyperparameter, as rðbÞ / cte, then it is
implicitly assumed that an oversmooth image, like a
constant intensity value image, when b! 0, is as likely to
occur as a noisy image, like the one produced by a
completely unregulated estimation, when b!1. There-
fore, a more adequate prior density to the hyperpara-
meters is desirable.

A better hyperprior should prevent the hyperpara-
meter to reach very extreme values. The desired prior
density for the hyperparameters needs to enforce positive
values and provides low probability for very low or very
high values. Several candidate densities which present
these desirable properties were evaluated for this pro-
blem, including gamma, inverse-gamma, log-normal,
Maxwell, Rayleigh and Weibull densities. The gamma
density, with specific parameters that makes it similar to
the chi-squared density, has been shown to have practical
and theoretical advantages over the alternatives.

The gamma density provides the constraining neces-
sary to stabilize the problem, making the cost function
convex in the entire domain and the solution unique.
Besides, the resulting estimation process is quite simple
and cheaper, making the analysis less complex. Concep-
tually, it is shown in [40] that the sum of squared
Gaussian random values, as observed in (11), leads to
random values with chi-squared density [40], which is a
particular case of the gamma density. This point suggests
that the gamma is an adequate density to the problem.
Thus, the gamma density is proposed for the hyperpara-
meters, with specific parameters that makes it similar to
the chi-squared density.

The gamma densities for the hyperparameters are
given by

rðyÞ ¼ ya�1b�a

GðaÞ
e�ðy=bÞ; rðbÞ ¼ bc�1d�c

GðcÞ
e�ðb=dÞ (15)

where a and c are the scale factors, b and d are the
shape factors, and GðxÞ is the gamma function [40]. Also,
Efyg ¼ ab, varfyg ¼ ab2, Efbg ¼ cd and varfbg ¼ cd2.

Substituting the gamma densities in Eq. (7) leads to

f̂; ŷ; b̂ ¼ arg min
f;y;b

kg� Cfk2
2

2y
þ

LN

2
lny� ða� 1Þ ln y

þ
y
b
þ
kRfk2

2

2b
þ

M

2
lnb� ðc � 1Þ lnbþ

b
d
þ cte (16)

Note that when a ¼ LN=2þ 1 and c ¼ M=2þ 1,
the gamma density has nearly the same shape as the
chi-squared density. These values for a and c provide a
necessary condition to achieve a globally convex problem.
The b and d will be replaced by expressions involving the
expected values of the hyperparameters, namely b ¼

Efyg=a ¼ my=a and d ¼ Efbg=c ¼ mb=c. Assigning the men-
tioned values for a, c, b and d, and applying some algebra,
Eq. (16) reduces to

f̂; ŷ; b̂ ¼ arg min
f;y;b

kg� Cfk2
2

2y
þ
yðLN þ 2Þ

2my
þ
kRfk2

2

2b

þ
bðM þ 2Þ

2mb
(17)

Differentiating Eq. (17) with respect to the hyperpara-
meters, for fixed f, leads to the following estimative

ŷ ¼
ffiffiffiffiffiffiffi
my
p kg� Cfk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LN þ 2
p ; b̂ ¼

ffiffiffiffiffiffiffi
mb

p kRfk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 2
p . (18)

Substituting the results of (18) into (17), gives

f̂ ¼ arg min
f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LN þ 2
p

ffiffiffiffiffiffiffi
my
p kg� Cfk2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ 2
p

ffiffiffiffiffiffiffi
mb
p kRfk2 (19)
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which reduces to

f̂ ¼ arg min
f
kg� Cfk2 þ mkRfk2 (20)

where

m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
myðM þ 2Þ

mbðLN þ 2Þ

s
¼

ffiffiffiffiffiffiffi
ml
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM þ 2Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLN þ 2Þ

p (21)

with ml being an average value for l. Considering the
gradient of the cost function in (20) we see that the
solution of this optimization problem is found when

CTC þ lRTR ¼ CTg (22)

where the l enters as regularization parameter defined by

l ¼ mkg� Cfk2

kRfk2
. (23)

In Eq. (23) the value of m is required. One can determine
it by exploiting knowledge about the problem from
the average values my and mb, as shown in Eq. (21).
Alternatively, this work proposes to determine m by
performing an analysis of the estimation error. This
analysis is provided in Appendix A.1. The experiments
presented in Section 4 illustrate the performance of this
choice.

The proposed method can also be expressed as the
L-curve method, similar to the method proposed in [16],
however considering the L-curve in sqrt–sqrt scale. The
analysis of the L-curve, also provided in [16], demon-
strates that the L-curve in sqrt–sqrt scale is convex.

3.3. Proposed optimization method

This work proposes two optimization methods to find
the parameters and the HR images. The first method
provides an alternated procedure. Given an initial value
l0, for n40 the HR image is estimated by

fn ¼ arg min
f
kg� Cfk2

2 þ lnkRfk2
2 (24)

and the minimization process is performed, until conver-
gence, using the iterative linear conjugated gradient (CG)
[13,41]. The parameter is updated using

lnþ1 ¼ mkg� Cfnk2

kRfnk2
(25)

and the HR image is re-estimated with the new parameter.
This alternated procedure stops when jlnþ1 � lnj=ln is a
sufficiently small value. Observe that convergence of the
iterative procedure (24) requires the convergence of (25)
which is represented by a fixed-point sequence of the
form

lnþ1 ¼ mFðlnÞ with FðlnÞ ¼
kg� Cfnk2

kRfnk2
(26)

The convergence properties of the fixed-point sequence
relies on the fact that FðlÞ increases with l. For details,
the reader is referred to [42].
The second method provides a direct minimization of
the optimization problem (20) using non-linear conju-
gated gradient (NL-CG), where the parameters and the HR
images are updated at each iteration. This procedure is
described in Appendix A.2. Convexity of the cost function
assures that, at the convergence point, both procedures
satisfy (23), indicating that both the optimization pro-
blems provide the same solution.
3.4. Extension to multi-parameter problems

The proposed method can be extended to the multi-
parameter problems. For the traditional multi-parameter
SR in (3), the proposed estimation problem is

f̂k ¼ arg min
fk

XL

j¼1

gj;kkgj � Cj;kfkk2 þ mkkRkfkk2 (27)

Observe that only the norm, not the squared norm, is
considered in Eq. (27). The associated cost function is also
convex. It is obtained by applying similar assumptions
used on the single-parameter problem [43]. The equiva-
lent parameters of the proposed method are

aj;k ¼ gj;k

kgk � Dkfkk2

kgj � Cj;kfkk2
(28)

for the weighting and

lk ¼ mk

kgk �Dkfkk2

kRkfkk2
(29)

for the regularization parameter. In the Experiments
section we illustrate the performance of the method with
gj;k and mk derived in Appendix A.1.

For the simultaneous SR method, from Eq. (5), the
proposed optimization problem to be solved is

f̂ ¼ arg min
f
kg�Df k2 þ mRkRf k2 þ mMkMf k2 (30)

Similar assumptions about the density of hyperpara-
meters in the JMAP development for the simultaneous
problem leads to this proposed method, which also
preserves the convexity of the associated cost function.
Comparing the solutions of (5) and (30) one can see that
the equivalent regularization parameters of the proposed
method are

lR ¼ mR

kg�Df k2

kRf k2
(31)

for the spatial smoothness term and

lM ¼ mM

kg�Df k2

kMf k2
(32)

for the term responsible for the similarity of the HR
frames in the motion trajectory. The proposed mR and mM ,
used in the experiments of Section 4, are presented in
Appendix A.1. The two optimization procedures proposed
in Section 3.3 can be employed to solve the problems (27)
and (30).
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Table 1
Average of the SNR, in dB, the standard deviation (STD) and the relative

computational time (CT) for the single-parameter traditional SR

algorithm

Method R ¼ 2; SNRA ¼ 20 dB R ¼ 2; SNRA ¼ 40 dB R ¼ 3; SNRA ¼ 30 dB

SNR STD CT SNR STD CT SNR STD CT

GCV 20.8 1.8 63.9 22.7 2.6 77.6 18.0 1.1 141.1

L-MC 20.3 1.6 58.0 23.3 1.4 84.9 19.1 1.7 243.2

M.V.W. Zibetti et al. / Signal Processing 88 (2008) 2890–2901 2895
4. Experiments

The following experiment evaluates the performance
of the methods in finding the parameters for the SR
algorithms discussed in this paper. Given an HR image
sequence, with known or previously estimated motion,
the simulated acquisition process was performed, employ-
ing the average of a squared area of R� R pixels with
subsampling factor of R, where R can be 2 and 3, and an
additive white Gaussian noise with variance adjusted to
achieve a fixed SNR.2 Three situations were considered:
high acquisition noise, with SNRA ¼ 20 dB; medium noise,
with SNRA ¼ 30 dB; low noise, with SNRA ¼ 40 dB. These
noise levels are the typical levels found in commercial
image sensors3 [44].

The three SR algorithms reviewed in Section 2 were
utilized to recover the HR sequence. For each SR algorithm
several available methods were used to determine the
parameters. The quality of the HR sequence recovered with
the parameters found by a particular method is measured
in terms of SNR [19]. Computational effort of each method
was evaluated by considering the time it takes for
convergence, where convergence is assumed to be reached
when the improvement in quality is less than 10�2 dB. This
procedure was repeated using 20 random realizations of
the noise, for each noise level. The entire experiment was
repeated for each image sequence of a total of six different
image sequences. In some of the sequences, the motion was
artificially generated without considering occlusions in the
scene, whereas in other sequences, which are from real
video sequences, the motion was estimated using the
optical flow method [45]. In this case, linear interpolated
versions of the LR images were employed. The estimated
motion vectors are not completely reliable in this case,
therefore, occlusions and motion errors occur in several
places in the sequence. In this evaluation, the procedure of
detection and removal of the occlusion regions was not
considered in order to evaluate the performance of the
methods in finding the proper parameters to reduce the
distortions caused by these errors.

At the end of this section, some visual experiments
applying SR in real video sequences are performed,
without simulated acquisition. In this case, a procedure
of detection and removal of the occlusion regions was
considered [46] to achieve the best visual quality.

The methods used to find the parameters are men-
tioned below. All of them are used in the single-parameter
traditional SR and some of them in conjunction with
multi-parameters traditional SR. Concerning the para-
meter method for simultaneous SR, only the classical
JMAP and the proposed method are utilized. The im-
plemented methods are:

GCV: Generalized cross validation, as described in [14].
L-MC: An L-curve method, where the parameter provides

the point of maximum curvature as proposed in [15].
2 The acquisition SNR is defined as SNRA ¼ 10 log10ðs2
Df =s2

gÞ, where

s2
Df is an LR noise-free sequence variance and s2

g is the noise variance.
3 Typical acquisition SNR may vary from 10 to 40 dB, depending on

the exposure [44].
K-HE: A deterministic method proposed in [22].
EVID: The statistical method Evidence, proposed in

[25]. To apply this method to non block-circulant
matrices, the trace of the inverse matrix is statistically
estimated using the same procedure as in [14].

JMAP: The classical JMAP approach [26,32] as Eq. (12),
using CG to find the HR images with (11) to update the
parameters.

PROP-1: Proposed method using the alternated proce-
dure with CG to find the HR images and with (25) to
update the parameters.

PROP-2: Proposed method with direct minimization
using NL-CG as presented in Appendix A.2.

All these methods are iterative. The CG method is used
in GCV, L-MC, EVID, JMAP and in the proposed method to
find the HR images. K-HE is limited to the gradient
method. The same initial conditions are considered: the
initial HR image is a null image, and the initial parameters
is randomly chosen from 10�6 to 106. Beside these
methods, the results obtained by the following pre-
determined parameters were also compared:

KNOWN: Employs the MAP estimative where the
parameters are known a priori. Since the noise and
the original HR images are known in the experiments,
the hyperparameters are computed without difficulties.
This method is used as reference only, since it cannot be
used in practice.

INTERP: Estimative with the parameters obtained
from applying the maximum likelihood in Eq. (11),
employing an interpolated version of the LR images. This
approach assumes that the interpolated image is a good
substitute for the original HR image in order to find the
hyperparameters.

4.1. Experiments with single-parameter traditional SR

algorithm

Average quality, measured by SNR, standard deviation
(STD) and relative computational cost of estimated images
and its parameters using each method are shown in
Table 1. Relative computational cost, denoted by CT, is
expressed in terms of the ratio of the cost (in time) of each
method to that required by KNOWN. Visual results are
presented in Figs. 1 and 2.
K-HE 18.7 0.9 21.3 20.9 1.0 35.5 16.8 0.9 53.2

EVID 20.2 1.1 52.1 23.1 1.5 51.5 18.9 1.2 231.7

JMAP 10.9 10.1 7.2 7.9 12.2 11.4 13.3 4.9 47.1

KNOWN 19.8 0.9 1.0 23.4 0.9 1.0 18.3 1.0 1.0

INTERP 18.1 1.0 1.2 20.2 1.1 1.6 17.4 1.6 5.1

PROP-1 20.8 1.0 6.9 23.3 1.3 10.1 20.0 1.8 31.2

PROP-2 20.8 1.0 1.1 23.3 1.3 1.2 20.0 1.8 2.7
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Fig. 1. Visual results of an image of the sequence Boat, (a) JMAP ðSNR ¼

18:1 dBÞ and (b) PROP-1 ðSNR ¼ 23:4 dBÞ from one realization and and (c)

JMAP ðSNR ¼ 7:4 dBÞ and (d) PROP-1 ðSNR ¼ 23:8 dBÞ from a different

realization, with R ¼ 2 and SNRA ¼ 20 dB.

Fig. 2. Visual result of an image of the sequence Flower Garden, with R ¼ 2 an

ðSNR ¼ 16:2 dBÞ, (d) K-HE ðSNR ¼ 14:6 dBÞ, (e) EVID ðSNR ¼ 16:1 dBÞ, (f) KNOWN
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Table 1 shows average quality results (SNR) and
corresponding STD for six different sequences and 20
realizations. One can observe that the quality of the
proposed method is as good as the quality obtained by
the best classical methods, such as GCV, L-MC and EVID.
The high STD illustrates that the JMAP method is unstable,
as reported in [21,26]; during the experiments it diverged
many times.

Fig. 1 illustrates the instability problem of the classical
JMAP approach. Note that the JMAP result depicted in
Fig. 1(a) seems reasonable, but in Fig. 1(c), that shows the
results for another realization, it is seen that JMAP
diverges producing a constant intensity image, which is
unacceptable for a SR method. The proposed method, on
the other hand, is very stable. The visual results present
the same level of smoothness in Figs. 1(b) and (d).

Fig. 2 presents the results for a sequence with real
video, which presents motion errors. In this case, the
regularization parameter needs to provide enough
smoothness in the image to avoid the amplification of
noise and the motion errors. The distortions caused by the
motion errors occur, mainly, around the tree in this scene.
Note that all parameter determination methods enforce
smoothness around the tree which results in blurring of
this region. One way to reduce the problem caused by
the motion errors in the traditional SR method is by the
proper weighting of the LR frames. This is done in the
multi-parameter traditional SR method.
d SNRA ¼ 40 dB. (a) Captured image, (b) GCV ðSNR ¼ 15:8 dBÞ, (c) L-MC

ðSNR ¼ 15:5 dBÞ, (g) PROP-1 ðSNR ¼ 16:0 dBÞ and (h) original image.
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Table 1 also illustrates the computational cost of each
method. The results illustrate that the proposed method
PROP-1 provides lower computational cost than the
existing methods, with cost similar to the one provided
by the classical JMAP approach. Moreover, the proposed
method PROP-2, that utilizes direct minimization through
NL-CG, provides even lower computational cost. The cost
of the proposed method PROP-2 is similar to the cost of a
CG minimization with fixed parameters.
4.2. Experiments with multi-parameter traditional SR

algorithm

The average quality of the estimated images, its STD
and the relative computational time together with the
parameters found by the respective method are shown in
Table 2. Some visual results are shown in the Fig. 3.

Table 2 shows that the quality obtained by the
proposed method is satisfactory and similar to the results
of KNOWN. Also, the computational cost results illustrate
the low computational cost provided by the proposed
method. The performance of the proposed method was
Table 2
Average of the SNR, in dB, the standard deviation (STD) and the relative

computational time (CT) for multi-parameter traditional SR algorithm

Method R ¼ 2, SNRA ¼ 20 dB R ¼ 2; SNRA ¼ 40 dB R ¼ 3; SNRA ¼ 30 dB

SNR STD CT SNR STD CT SNR STD CT

K-HE 16.5 1.9 20.6 17.8 2.2 21.6 14.0 2.4 46.0

EVID 20.8 1.6 90.2 23.7 2.5 190.0 19.3 1.1 466.1

JMAP 15.3 6.1 66.5 18.4 6.2 58.6 11.6 3.6 84.3

KNOWN 22.0 0.6 1.0 26.6 0.5 1.0 20.9 1.1 1.0

INTERP 14.7 0.6 3.1 14.5 0.6 3.0 14.5 1.3 12.1

PROP-1 22.7 0.9 15.1 26.1 1.6 16.7 21.2 1.9 31.2

PROP-2 22.7 0.9 1.8 26.1 1.6 4.3 21.2 1.9 2.7

Fig. 3. Visual results from an image of the sequence Flower Garden, with R ¼ 3

ðSNR ¼ 16:2 dBÞ, (d) KNOWN ðSNR ¼ 17:1 dBÞ, (e) PROP-1 ðSNR ¼ 17:2 dBÞ and (
superior than the K-HE, recently developed for the multi-
parameter traditional SR.

Fig. 3 illustrates the performance of the methods
in controlling the weighting in order to avoid the
distortions caused by the large motion errors. One can
see that the results of the proposed method were very
similar to the results of KNOWN. Also, in this example,
one can see that the distortions caused by the occlusions
were not completely removed, but they were significantly
attenuated. The complete removal of these distortions
requires the use of a robust SR method [47], or an
occlusion and motion error detection and removal
procedure [46].
4.3. Experiments with two-parameter simultaneous SR

algorithm

The average quality of the estimated images with the
parameters found by the respective method, its STD, and
the relative computational time are shown in Table 3. One
can observe in Table 3 that the quality obtained by the
proposed method was superior to the obtained by
KNOWN. As far as the authors know, besides the JMAP
method, there is no other method to determine the
parameters for the simultaneous SR methods in order to
compare with the proposed method. Note that the JMAP
method was more stable with the simultaneous SR
method than with the traditional SR methods, showing
lower STD.

The results from Table 3 also illustrate the computa-
tional cost of the methods. The classical JMAP approach
was very fast with the simultaneous SR methods and
faster than PROP-1. However, the proposed method PROP-
2 was even faster. The computational cost of PROP-2 is
comparable with the cost taken by the CG with fixed
parameters, such as KNOWN or INTERP.
and SNRA ¼ 30 dB. (a) Captured image, (b) K-HE ðSNR ¼ 14:7 dBÞ, (c) EVID

f) original image.
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Table 3
Average of the SNR, in dB, the standard deviation (STD) and the relative

computational time (CT) for the two-parameter simultaneous SR

algorithm

Method R ¼ 2; SNRA ¼ 20 dB R ¼ 2; SNRA ¼ 40 dB R ¼ 3; SNRA ¼ 30 dB

SNR STD CT SNR STD CT SNR STD CT

JMAP 22.6 1.1 5.8 24.0 1.2 3.9 20.0 2.0 8.1

KNOWN 22.1 0.4 1.0 26.4 0.5 1.0 20.8 1.2 1.0

INTERP 18.3 0.4 0.7 19.2 0.6 0.6 16.6 1.4 1.3

PROP-1 23.1 0.4 13.0 26.8 0.6 12.0 21.2 2.0 25.7

PROP-2 23.1 0.4 1.3 26.8 0.6 2.0 21.2 2.0 3.1

Fig. 4. Visual results comparing the original frame of the sequence

Flower Garden with the same frame, where a resolution improvement

factor of R ¼ 3 was applied. (a) Image at original resolution and (b) SR

over the original.
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4.4. Example with practical SR algorithm

Fig. 4 shows a result without artificial degradation and
recovering, using R ¼ 3. For this visual experiment, the
original sequence is assumed to be the captured sequence
and used as test problem for the simultaneous SR method
with occlusion and motion error detection and removal
[46] procedures. The enhancement of the resolution of the
SR method over the original image can be clearly noticed.
The regularization parameter was determined by the
proposed method.

5. Conclusions

In this paper, a technique to determine the parameters
for super-resolution methods is proposed. The proposed
technique can be applied to the traditional regularized
super-resolution problem with single parameter and with
multiple parameters, and also to the simultaneous super-
resolution problem with two parameters. The problem of
parameters estimation has been addressed with the
Bayesian theory, using joint maximum a posteriori (JMAP)
estimation. A gamma density is proposed for the hyper-
parameters in order to provide a globally convex cost
function, resulting in a unique solution. The proposed
method is also similar to the L-curve methods in [16],
however with sqrt–sqrt scale, which is a convex function.
The proposed method provides very low computational
cost and produces estimated images with the same
quality as the ones provided by classical methods. We
provide a set of experiments to illustrate the superior
efficiency and stability of the proposed technique when
compared with other competing methods.

Appendix A

A.1. Alternative choice of parameter m

This section presents an alternative choice of m based
on the analysis of the estimation error. The advantage of
this choice is that it does not depend on the knowledge of
my and mb, as described in Eq. (21).

According to inverse problems theory [12,13], the
estimation error, el, can be split into three components

el ¼ f � fl ¼ ecte þ eZðlÞ þ esðlÞ (A.1)

Here ecte is an error vector that does not depend on l,
eZðlÞ is the error caused by the amplification of the noise,
which is significant when l is very small (smaller than the
optimal value) and esðlÞ is the error caused by excessive
regularization (oversmoothing), which becomes dominant
when l is very large (larger than the optimal value). The
estimation error satisfies kelk2pkectek2 þ keZðlÞk2þ

kesðlÞk2, and the assumption used through the analysis
is that the minimizer of kelk2 is rather close to the
minimizer of keZðlÞk2 þ kesðlÞk2, as illustrated further in
the Fig. A1(c). The choice of m will then result as a
consequence of relating keZðlÞk2 to kRflk2 and kesðlÞk2 to
kg� Cflk2. The key tool for the analysis is the generalized
singular value decomposition (GSVD).

Given the matrices C of size LN �M, and R of size P �

M with LNXMXP, the GSVD of the pair ðC ;RÞ reads

C ¼
XM
i¼1

uisix
T
i ; R ¼

XP

i¼1

vinix
T
i (A.2)

where the ui and vi are column vectors of orthonormal
matrices, and xT

i are the rows of a non singular matrix X
with inverse Y ¼ ½y1; y2; . . . ; yM �. The scalars ni are ordered
so that 14n1Xn2X � � �XnP40 and the scalars si are
ordered so that 0os1p � � �psPosPþ1 ¼ � � � ¼ sM ¼ 1.
The generalized singular values are gi ¼ si=ni, for
i ¼ 1; . . . ; P. Further details about the GSVD can be found
in [12].

Based on the GSVD, the vectors that compose the error
can be expressed as

esðlÞ ¼
XP

i¼1

l
g2

i þ l

 !
ðxT

i fÞyi (A.3)

and

eZðlÞ ¼ �
XP

i¼1

g2
i

g2
i þ l

 !
Zi

si

� �
yi (A.4)

where g stands for noise on the data and Zi ¼ uT
i g.

Additionally, if dðlÞ ¼ g� Cfl and wðlÞ ¼ Rfl, using the
GSVD it follows that

dðlÞ ¼
XP

i¼1

l
g2

i þ l

 !
ðsiðx

T
i fÞ þ ZiÞui þ Z? (A.5)
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Fig. A1. Graphic illustration of analysis concerning the choice of m. (a) Behavior of kdðlÞk2=kesðlÞk2, (b) behavior of kwðlÞk2=keZðlÞk2, and (c) behavior of

kelk2 and kg� Cflk2 þ mkRflk2 with m according to (A.16), also kesðlÞk2 and keZðlÞk2.
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Table A1
Non-linear conjugate gradient

n:¼0;

f0:¼ initial HR image guess

l0:¼ initial parameter guess

r0:¼CT
ðCf0 � gÞ þ l0RTRf0

Initial gradient

p0:¼� r0 Initial search direction

e0:¼kr0k
2

CG iterations

hn:¼CTCpn þ lnRTRpn
Step search A

tn:¼pT
nrn=pT

nhn Step search B

fnþ1:¼fn þ tnpn HR image update

rC
nþ1:¼Cfnþ1 � g Gradient part update A

rR
nþ1:¼Rfnþ1 Gradient part update B

lnþ1:¼mkrC
nþ1k2=kr

R
nþ1k2 New l

rnþ1:¼CTrC
nþ1 þ lnþ1RTrR

nþ1
Final gradient update

enþ1:¼krnþ1k
2

bn:¼enþ1=en

pnþ1:¼� rnþ1 þ bnpn Search direction update

n:¼nþ 1

End CG iteration
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and

wðlÞ ¼
XP

i¼1

g2
i

g2
i þ l

 !
niðx

T
i fÞ þ

niZi

si

� �
vi (A.6)

Comparison of (A.3) with (A.5), and (A.4) with (A.6)
leads to

dðlÞ ¼ CesðlÞ þ ZFILTðlÞ þ Z? (A.7)

where ZFILTðlÞ ¼
PP

i¼1ðl=ðg2
i þ lÞÞðZiÞui and

wðlÞ ¼ �ReZðlÞ þ RfFILTðlÞ (A.8)

where fFILTðlÞ ¼
PP

i¼1ðg2
i =ðg

2
i þ lÞÞðxT

i fÞyi.
In order to relate kesðlÞk2 to kg� Cflk2 the following

approximation is used

kdðlÞk2 � kCesðlÞk2 þ kZFILTðlÞk2 þ kZ?k2 (A.9)

From this it follows that

kdðlÞk2=kesðlÞk2 � cðlÞ þ NSðlÞ (A.10)

where NSðlÞ ¼ ðkZFILTðlÞk2 þ kZ?k2Þ=kesðlÞk2 and cðlÞ ¼
kCesðlÞk2=kesðlÞk2. Observe that the Rayleigh quotient of
CTC guarantees that cðlÞ2 is necessarily between the
smallest and the largest eigenvalue of CTC . The approx-
imation considered in (A.10) is not good in general, but
it is quite acceptable in SR problems, as illustrated in
Fig. A1(a). Further, since the excessive regularization error
becomes dominant for large l, NSðlÞ gets small and (A.10)
reduces approximately to

kdðlÞk2=kesðlÞk2 � cðlÞ (A.11)

Concerning this approximation, exhaustive numerical

simulations showed that cðlÞ2 behaves nearly as a
constant which can be roughly approximated by the mean

of the eigenvalues of CTC , obtained through
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCTCÞ=M

q
,

where trðCTCÞ is the trace of the matrix CTC , see Fig.

A1(a). Thus for large l the approximation (A.11) can be
rewritten as

kesðlÞk2 �
ffiffiffiffiffi
M
p
kg� Cflk2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCTCÞ

q
. (A.12)

Proceeding as before one can see that for small l

kwðlÞk2=keZðlÞk2 � rðlÞ þ DAðlÞ (A.13)

where rðlÞ ¼ kReZðlÞk2=keZðlÞk2, with rðlÞ2 ranging
between the smallest and the largest eigenvalue of RTR,
and DAðlÞ ¼ kRfFILTðlÞk2=keZðlÞk2. Since the amplified
noise error keZðlÞk2 is predominant when l is very
small, thereby implying that DAðlÞ gets small, the
above approximation can also be simplified to yield
kwðlÞk2=keZðlÞk2 � rðlÞ. Numerical simulations showed
that for small l, rðlÞ behaves approximately as a constant
which can be roughly approximated by the mean of the
eigenvalues of RTR, see Fig. A1(b). This results in:

keZðlÞk2 �
ffiffiffiffiffi
M
p
kRflk2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðRTRÞ

q
(A.14)

Finally, since kesðlÞk2 dominates keZðlÞk2 for large l, and
keZðlÞk2 dominates kesðlÞk2 for small l, taking into
account (A.12) and (A.14) it is reasonable to expect that
for all l

kesðlÞk2 þ keZðlÞk2 � cteðkg� Cflk2 þ mkRflk2Þ (A.15)

with

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðCTCÞ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðRTRÞ

q
(A.16)

The effect of m is illustrated in Fig. A1(c). Observe that,
with the proposed m, the curve ðl; kg� Cflk2 þ mkRflk2Þ

reaches its minimum (black diamond mark) at a point
very close to the minimum (small circle) of the error
curve ðl; kelk2), which justifies the choice of m according
to (A.16).

A.1.1. Extension for multi-parameter problems

Following the ideas of the single-parameter problem,
the parameters gj;k and mk used in (27) can be chosen as

gj;k ¼ 1=ð1þ jj� kjÞ (A.17)

to reduce the influence of the LR frames far apart in time,
and

mk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðDT

kDkÞ

q
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðRT

kRkÞ

q
(A.18)

Parameters mR and mM used in (30) can be chosen as

mR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðDTDÞ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðRTRÞ

q
(A.19)

and

mM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðDTDÞ

q
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2trðMTMÞ

q
(A.20)

These suggestions are used in the experiments of
Section 4.

A.2. Non-linear conjugate gradient

The direct minimization of Eq. (20) can be performed
efficiently using NL-CG [13,41], presented in Table A1

The method stops when a specified number of
iterations n is reached or when enþ1 becomes lower than
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a specified tolerance, values lower than 10�6 are reason-
able for images.
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