I.Mozolevski and E.L.Valmorbida. Efficient Equilibrated Flux Reconstruction in High Order Raviart-Thomas Space for Discontinuous Galerkin Method. Lecture Notes in Computational Science and Engineering, v. 119, p. 467– 480, 2017.
I. Mozolevski, S. Prüdhomme. Goal-oriented error estimation based on equilibrated-flux reconstruction for finite element approximations of elliptic problems. Computer Methods in Applied Mechanics and Engineering, v. 288, p. 127–145, 2015.
I. Mozolevski, Schuh L. Numerical simulation of two-phase immiscible incompressible flows in heterogeneous porous media with capillary barriers. Journal of Computational and Applied Mathematics, v.242, p.12 - 27, 2013.
A. Ern , I.Mozolevski Discontinuous Galerkin method for two-component liquid–gas porous media flows. Computational Geosciences, June 2012, Volume 16, n.3, pp 677-690.
P. Bösing, A. Madureira and I. Mozolevski A new interior penalty discontinuous Galerkin method for the Reissner-Mindlin model. Mathematical Models and Methods in Applied Sciences, v.20, n. 8, p.1- 19, 2010.
A. Ern , I.Mozolevski and L.Schuh Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Computer Methods in Applied Mechanics and Engineering. , v.199, p.1491 - 1501, 2010.
A. Ern , I.Mozolevski and L.Schuh Accurate velocity reconstruction for Discontinuous Galerkin approximations of two-phase porous media flows. Comptes Rendus. Mathématique, v. 347, p. 551-554, 2009.
E. Burman, A. Ern, I.Mozolevski and B. Stamm. The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders $ p \geq 2 $. Comptes Rendus Mathematique, Vol.345, No. 10, p. 599-602, 2007.
I. Mozolevski, E. Süli, and P. Bösing. Discontinuous Galerkin finite element approximation of the two-dimensional Navier-Stokes equations in stream-function formulation. Communications in Numerical Methods in Engineering, Vol. 23, p. 447-459, 2007.
I. Mozolevski, E. Süli, and P. Bösing. hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. Journal of Scientific Computing. Vol. 30, No. 3, p. 465-491, 2007.
E. Süli and I. Mozolevski. hp-version interior penalty DGFEMs for the biharmonic equation. Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 13-16, p. 1851-1863, 2007.
I. Mozolevski, E. and P. Bösing. Sharp expressions for the stabilization parameters in symmetric interior-penalty discontinuous Galerkin finite element approximations of fourth-order elliptic problems. Computational Methods in Applied Mathematics, v. 7, p. 365-375, 2007.
I. Mozolevski; E. Süli. A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation Computational Methods In Applied Mathematics, v.3, n. 4, p. 596-607, 2003.
I. Mozolevski. Modeling of high energy ion implantation based on splitting of the Boltzmann transport equation. Computational Materials Science, v. 25, n. 3, p. 435-446, 2002.
P.P. Matus; V.I. Mazhukin; A.
A. Samarsky; I.
Mozolevski.
Monotone difference schemes for equations with mixed derivatives. Computers and Mathematics With Applications,
Pergamon-Elsevier Science Ltd, v. 44, n. 3-4, p. 501-510, 2002.
I. Mozolevski. High energy ion
range and deposited energy
calculation using the Boltzmann-Fokker-Planck splitting of the
Boltzmann transport equation. Nuclear
Instruments &
Methods in Physics Research, North-Holland, v. 175, p. 113-118, 2001.
P.P. Matus; V.I. Mazhukin; I. Mozolevski.
Stability of finite
difference schemes on non-uniform spatial-time-grids. Lecture
Notes in Computer Science, Berlin Heidelberg New York, v. 1988, p.
568-577, 2001.
I. Mozolevski,. Modeling the
distribution of implanted
impurities using backward Fokker-Planck equation. Mikroelectronica,
Russia, v. 29, n. 3, p. 60-67, 2000.
I.
Mozolevski; P.L. Grande. On the use
of the backward Fokker-Planck equation to calculate range profiles. Nuclear Instruments and Methods in Physics
Research,
Amsterdam, v. 170, n.170/1-2, p. 45-52, 2000.
V.I. Mazhukin; P.P. Matus; I.
I. Mozolevski. Stability of
three-level schemes on nonuniform time grids. Doklady
of
the National Academy of Sciences of Belarus, Minsk, Republic of
Belarus, v. 44, n. 6, p. 23-25, 2000.
I.
Mozolevski; L.O. Sauer. Equação de freamento
contínuo na modelagem de
problemas de transporte de íons. Vetor
Rio Grande, Brasil,
v. 8, p. 19-34, 1998.
V.I.
Belko; F.F. Komarov; I.
Mozolevski. Modeling
Ion Implantation in the Layered
Targets. Mikroelectronica.
1998, v.
, N2, p.120-124.,
Russia, v. 27, n. 2, p. 120-124, 1998.
F.F.
Komarov; I.
Mozolevski; P.P. Matus; S.E. Ananich. Distribution of implanted impurities and
deposited energy in high energy ion implantation. Nuclear
Instruments and Methods in Physics Research, North-Holland, v. B124, p.
478-483, 1997.
F.F. Komarov; I. Mozolevski;
P.P. Matus; S.E. Ananich.
Distribution of implanted impurity and energy deposited during
high-energy ion implantation. Jurnal
Technicheskoi Fisiki,
Russia, v. 67, n. 1, p. 61-67, 1997.
S.E. Ananich; P.P. Matus; I. Mozolevski.
Finite-differences
schemes for the Boltzmann-Fokker-Planck equation. Matematicheskoe
Modelirovanie, Russia, v. 9, n. 1, p.99-115, 1997.
I. Mozolevski. About
mathematical modeling of
multidimensional ion implantation problems. Matematicheskoe
Modelirovanie, Russia, v. 8, n. 1, p. 25-38, 1996.
I. Mozolevski. Angular and
Energy Distribution of
Buckscattered Ions during Tilted Ion Implantation. Mikroelectronica,
Russia, v. 24, n. 2, p. 88-94, 1995.
I.
Mozolevski. Calculation
of the
backscattered ion energy and angular distribution during grazing
implantation. Vacuum, Great Britain, v. 46,
n. 4, p.
383-388, 1995.
I. Mozolevski. Dirichlet
problem for nonlinear
quasielliptic
operators. Differ.
Equations,
Estados Unidos, v. 31, n. 5, p. 774-778, 1995.
I.
I. Mozolevski; V.I. Belko. Simulation
of high energy ion implantation using Boltzmann transport equation. Nuclear Instruments and Methods in Physics
Research,
North-Holand, v. B95, p. 17-24, 1995.
I. Mozolevski; F.F. Komarov;
V.P. Rogatch.
Two-dimensional
Boltzmann transport equation approach to simulation of local ion
implantation. Radiation Effects and Defects
in Solids,
Amsterdam, v. 133, p. 133-139, 1995.
I. Mozolevski; V.I. Belko.
Simulation of high energy ion
implantation using numerical solution of Boltzmann transport equation. Poverchnost, Russia, n. 4, p. 40-47, 1994.
F.F. Komarov; I. Mozolevski;
V.P. Rogatch. Simulation of
lateral effects during ion implantation in layered structures. Jurnal Technicheskoi Fisiki, Russia, v. 64, n. 8,
p.55-61,
1994.
A.F. Burenkov; V.I. Belko;
E.B. Bioko; I.
Mozolevski.
Angular and Energy Distribution of Ion Flux within the Target during
Ion Implantation. Poverchnost, Moscovo, n.
10-11, p.
89-94, 1992.
I. Mozolevski; A.V. Korzjuk;
V.P. Rogatch; F.F. Komarov.
Numerical Simulation of Local Ion Implantation. Mikroelectronica,
Moscovo, v. 25, n. 5, p.60-66, 1992.
I.
Mozolevski; A.F. Burenkov; V.I. Korzjuk; E.S. Cheb. Simulation of Diffusion
Processes in Thermal
Annealing Under Oxidation Conditions. Poverchnost,
n. 5,
p. 98-101, 1992.
I. Mozolevski; A.V. Korzjuk;
V.P. Rogatch. The finite
element
method for solving problems with mixed boundary conditions for the
Poisson equation in plane domains with complex geometry. Vestnik Belorusskogo
Gosudarstvennogo
Universiteta, Minsk, n. 3, p. 64-67, 1991.
I. Mozolevski; A.F. Burenkov.
Application of the Discrete
Boltzmann Equation in Ion Implantation Simulation with Regard for
Angular Scattering. Poverchnost, Moscovo, n.
3, p.
28-34,1989.
I. Mozolevski; A.F. Burenkov;
S.A. Sapolski. Numerical
Modeling of the Local Thermal Oxidation Process. Poverchnost,
Moscovo, n. 3, p. 96-103, 1989.
A.F. Burenkov; F.F.
Komarov; V.I. Korzjuk; I.
Mozolevski. Discrete
Boltzmann Equation in Ion Implantation. Doklady
An Bssr,
v. 22, n. 2, 1988.
I. Mozolevski. Dirichlet
Problem for Quasi-Linear
Quasi-Elliptic Equations. Isvestija An Bssr,
n. 2,1985.
I. Mozolevski. A conjugation
problem for degenerate
elliptic
equations. Differentsialnye Uravnenija,
Minsk, v. 18, n.
11, p. 1996-1998, 1982.
I. Mozolevski. A conjugation
problem for quasielliptic
equations. Izvestija An Bssr, MInsk, n. 5,
p.14-21, 1980.
I. Mozolevski. Problem of
conjugation for degenerating
elliptic and quasielliptic equations. Izvestija
An Bssr,
Minsk, n. 6, p. 18-24, 1980.
I. Mozolevski. Conjugation of
degenerate elliptic
equations.
Part 1. Differential Equations, v. 13, p.
1161-1169, 1977.
I. Mozolevski. Conjugation of
degenerate elliptic
equations.
Part 2. Differential Equations, v. 13, p.1284-1291,
1977.
I. Mozolevski. Dirichlet's
problem for linear
quasielliptic
differential operators with unbounded coefficients multiplying the
lower-order derivatives. Differncialnye
Uravnenija, Minsk,
v. 12, p. 785-791,1977.
I. Mozolevski. On Conjugation
of Degenerating Elliptic
Equations. Doklady An Bssr, Minsk, v. 21,
n.6, p. 488-491,
1977.