Papers 
  1. I.Mozolevski and E.L.Valmorbida.  Efficient Equilibrated Flux Reconstruction in High Order Raviart-Thomas Space for Discontinuous Galerkin Method.  Lecture Notes in Computational Science and Engineering, v. 119, p. 467– 480, 2017.

  2. I. Mozolevski, S. Prüdhomme.  Goal-oriented error estimation based on equilibrated-flux reconstruction for finite element approximations of elliptic problems. Computer Methods in Applied Mechanics and Engineering, v. 288, p. 127–145, 2015.

  3. I. Mozolevski, Schuh L. Numerical simulation of two-phase immiscible incompressible flows in heterogeneous porous media with  capillary barriers. Journal of Computational and Applied Mathematics, v.242, p.12 - 27, 2013.

  4. A. Ern ,  I.Mozolevski   Discontinuous Galerkin method for two-component liquid–gas porous media flows. Computational Geosciences, June 2012, Volume 16, n.3, pp 677-690.

  5. P. Bösing,  A. Madureira  and  I. Mozolevski    A new interior penalty discontinuous Galerkin method  for the Reissner-Mindlin model.  Mathematical Models and Methods in Applied  Sciences, v.20,  n. 8, p.1- 19, 2010.

  6. A. Ern ,  I.Mozolevski  and L.Schuh  Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Computer Methods in Applied Mechanics and Engineering. , v.199, p.1491 - 1501, 2010.

  7. A. Ern ,  I.Mozolevski  and L.Schuh  Accurate velocity reconstruction for Discontinuous Galerkin approximations of two-phase porous media flows. Comptes Rendus. Mathématique, v. 347, p. 551-554, 2009.

  8. E. Burman, A. Ern, I.Mozolevski and B. Stamm. The symmetric discontinuous Galerkin method does not need stabilization in 1D for polynomial orders $ p \geq 2 $. Comptes Rendus Mathematique, Vol.345, No. 10, p. 599-602, 2007.

  9. I.  Mozolevski, E.  Süli, and P. Bösing. Discontinuous Galerkin finite element approximation of the two-dimensional Navier-Stokes equations in stream-function formulation. Communications in Numerical Methods in Engineering, Vol. 23, p. 447-459, 2007.

  10. I.  Mozolevski, E.  Süli, and P. Bösing. hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation. Journal of Scientific Computing. Vol. 30, No. 3, p. 465-491, 2007.

  11. E. Süli and I. Mozolevski. hp-version interior penalty DGFEMs for the biharmonic equation. Computer Methods in Applied Mechanics and Engineering, Vol. 196, No. 13-16, p. 1851-1863, 2007.

  12. I.  Mozolevski, E. and P. Bösing. Sharp expressions for the stabilization parameters in symmetric interior-penalty discontinuous Galerkin finite element approximations of fourth-order elliptic problems. Computational Methods in Applied Mathematics, v. 7, p. 365-375, 2007.

  13. I. Mozolevski; E. Süli. A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation  Computational Methods In Applied Mathematics, v.3, n. 4, p. 596-607, 2003.

  14. I. Mozolevski. Modeling of high energy ion implantation based on splitting of the Boltzmann transport equation. Computational Materials Science, v. 25, n. 3, p. 435-446, 2002.

  15. P.P. Matus; V.I. Mazhukin; A. A. Samarsky; I. Mozolevski. Monotone difference schemes for equations with mixed derivatives. Computers and Mathematics With Applications, Pergamon-Elsevier Science Ltd, v. 44, n. 3-4, p. 501-510, 2002.

  16. I. Mozolevski. High energy ion range and deposited energy calculation using the Boltzmann-Fokker-Planck splitting of the Boltzmann transport equation. Nuclear Instruments & Methods in Physics Research, North-Holland, v. 175, p. 113-118, 2001.

  17. P.P. Matus; V.I. Mazhukin; I. Mozolevski. Stability of finite difference schemes on non-uniform spatial-time-grids. Lecture Notes in Computer Science, Berlin Heidelberg New York, v. 1988, p. 568-577, 2001.  

  18. I. Mozolevski,. Modeling the distribution of implanted impurities using backward Fokker-Planck equation. Mikroelectronica, Russia, v. 29, n. 3, p. 60-67, 2000.

  19. I. Mozolevski; P.L. Grande. On the use of the backward Fokker-Planck equation to calculate range profiles. Nuclear Instruments and Methods in Physics Research, Amsterdam, v. 170, n.170/1-2, p. 45-52, 2000.

  20. V.I. Mazhukin; P.P. Matus; I. I. Mozolevski. Stability of three-level schemes on nonuniform time grids. Doklady of the National Academy of Sciences of Belarus, Minsk, Republic of Belarus, v. 44, n. 6, p. 23-25, 2000.

  21. I. Mozolevski; L.O. Sauer. Equação de freamento contínuo na modelagem de problemas de transporte de íons. Vetor Rio Grande, Brasil, v. 8, p. 19-34, 1998.

  22. V.I. Belko; F.F. Komarov; I. Mozolevski. Modeling Ion Implantation in the Layered Targets. Mikroelectronica. 1998, v. , N2, p.120-124., Russia, v. 27, n. 2, p. 120-124, 1998.

  23. F.F. Komarov; I. Mozolevski; P.P. Matus; S.E. Ananich. Distribution of implanted impurities and deposited energy in high energy ion implantation. Nuclear Instruments and Methods in Physics Research, North-Holland, v. B124, p. 478-483, 1997.

  24. F.F. Komarov; I. Mozolevski; P.P. Matus; S.E. Ananich. Distribution of implanted impurity and energy deposited during high-energy ion implantation. Jurnal Technicheskoi Fisiki, Russia, v. 67, n. 1, p. 61-67, 1997.

  25. S.E. Ananich; P.P. Matus; I. Mozolevski. Finite-differences schemes for the Boltzmann-Fokker-Planck equation. Matematicheskoe Modelirovanie, Russia, v. 9, n. 1, p.99-115, 1997.

  26. I. Mozolevski. About mathematical modeling of multidimensional ion implantation problems. Matematicheskoe Modelirovanie, Russia, v. 8, n. 1, p. 25-38, 1996.

  27. I. Mozolevski. Angular and Energy Distribution of Buckscattered Ions during Tilted Ion Implantation. Mikroelectronica, Russia, v. 24, n. 2, p. 88-94, 1995.

  28. I. Mozolevski. Calculation of the backscattered ion energy and angular distribution during grazing implantation. Vacuum, Great Britain, v. 46, n. 4, p. 383-388, 1995.

  29. I. Mozolevski. Dirichlet problem for nonlinear quasielliptic operators. Differ. Equations, Estados Unidos, v. 31, n. 5, p. 774-778, 1995.

  30. I. I. Mozolevski; V.I. Belko. Simulation of high energy ion implantation using Boltzmann transport equation. Nuclear Instruments and Methods in Physics Research, North-Holand, v. B95, p. 17-24,    1995.

  31. I. Mozolevski; F.F. Komarov; V.P. Rogatch. Two-dimensional Boltzmann transport equation approach to simulation of local ion implantation. Radiation Effects and Defects in Solids, Amsterdam, v. 133, p. 133-139, 1995.

  32. I. Mozolevski; V.I. Belko. Simulation of high energy ion implantation using numerical solution of Boltzmann transport equation. Poverchnost, Russia, n. 4, p. 40-47, 1994.

  33. F.F. Komarov; I. Mozolevski; V.P. Rogatch. Simulation of lateral effects during ion implantation in layered structures. Jurnal Technicheskoi Fisiki, Russia, v. 64, n. 8, p.55-61, 1994.

  34. A.F. Burenkov; V.I. Belko; E.B. Bioko; I. Mozolevski. Angular and Energy Distribution of Ion Flux within the Target during Ion Implantation. Poverchnost, Moscovo, n. 10-11, p. 89-94, 1992.

  35. I. Mozolevski; A.V. Korzjuk; V.P. Rogatch; F.F. Komarov. Numerical Simulation of Local Ion Implantation. Mikroelectronica, Moscovo, v. 25, n. 5, p.60-66, 1992.

  36. I. Mozolevski; A.F. Burenkov; V.I. Korzjuk; E.S. Cheb. Simulation of Diffusion Processes in Thermal Annealing Under Oxidation Conditions. Poverchnost, n. 5, p. 98-101, 1992.

  37. I. Mozolevski; A.V. Korzjuk; V.P. Rogatch. The finite element method for solving problems with mixed boundary conditions for the Poisson equation in plane domains with complex geometry. Vestnik Belorusskogo Gosudarstvennogo Universiteta, Minsk, n. 3, p. 64-67, 1991.  

  38. I. Mozolevski; A.F. Burenkov. Application of the Discrete Boltzmann Equation in Ion Implantation Simulation with Regard for Angular Scattering. Poverchnost, Moscovo, n. 3, p. 28-34,1989.

  39. I. Mozolevski; A.F. Burenkov; S.A. Sapolski. Numerical Modeling of the Local Thermal Oxidation Process. Poverchnost, Moscovo, n. 3, p. 96-103, 1989.

  40.  A.F. Burenkov; F.F. Komarov; V.I. Korzjuk; I. Mozolevski. Discrete Boltzmann Equation in Ion Implantation. Doklady An Bssr, v. 22, n. 2, 1988.

  41. I. Mozolevski. Dirichlet Problem for Quasi-Linear Quasi-Elliptic Equations. Isvestija An Bssr, n. 2,1985.

  42. I. Mozolevski. A conjugation problem for degenerate elliptic equations. Differentsialnye Uravnenija, Minsk, v. 18, n. 11, p. 1996-1998, 1982.

  43. I. Mozolevski. A conjugation problem for quasielliptic equations. Izvestija An Bssr, MInsk, n. 5, p.14-21, 1980.

  44. I. Mozolevski. Problem of conjugation for degenerating elliptic and quasielliptic equations. Izvestija An Bssr, Minsk, n. 6, p. 18-24, 1980.

  45. I. Mozolevski. Conjugation of degenerate elliptic equations. Part 1. Differential Equations, v. 13, p.  1161-1169, 1977.

  46. I. Mozolevski. Conjugation of degenerate elliptic equations. Part 2. Differential Equations, v. 13, p.1284-1291, 1977.

  47. I. Mozolevski. Dirichlet's problem for linear quasielliptic differential operators with unbounded coefficients multiplying the lower-order derivatives. Differncialnye Uravnenija, Minsk, v. 12, p. 785-791,1977.

  48. I. Mozolevski. On Conjugation of Degenerating Elliptic Equations. Doklady An Bssr, Minsk, v. 21, n.6, p. 488-491, 1977.

                

           Top                             


LLast update:  October 22, 2014
Igor Mozolevski