
The TEXPower bundle

Creating dynamic online presentations with LATEX

Full demo and documentation for TEXPower

v0.0.8f of Jun 27, 2000 (pre-alpha)

Stephan Lehmke

mailto:Stephan.Lehmke@cs.uni-dortmund.de

July 3, 2000

mailto:Stephan.Lehmke@cs.uni-dortmund.de

This document is a demonstration and preliminary

manual for the TEXPower bundle which allows to

create dynamic presentations in a very flexible way.

The heart of the bundle is the package texpower

which implements some commands for presentation

effects. This includes setting page transitions, color

highlighting and displaying pages incrementally.

All features of texpower are implemented entirely

using TEX and LATEX; they are meant for ‘online’

presentation with Adobe Acrobat r© Reader and work

with all ways of pdf creation. The combination of

LATEX + dvips + Acrobat Distiller is possible as well

as pdfLATEX and other pdf creation methods.

Disclaimer

This is a pre-alpha release of the TEXPower bundle.

During the subsequent error correction and extension

of the functionality, the syntax and implementation of

the macros described here are liable to change.

So far, the texpower package itself contains only

scarce inline documentation, as the code is too much

of a moving target to make rigorous documentation a

sensible endeavour. As soon as the texpower package

is ready for beta release, it will be made into a fully

documented dtx file.

Credits

I am indepted to Klaus Guntermann. His package

texpause from the Pdf Presentation Post Processor

PPower4 bundle is the basis for the code of texpower.

Further thanks go to Marc van Dongen for allowing

me to include his code for page transitions and to

Martin Schröder for permission to use his everyshi

code.

Useful hints for error corrections and improvements of

code have been provided by Marc van Dongen,

Friedrich Eisenbrand, Ross Moore, Heiko Oberdiek,

heiner richter, and Robert J. Vanderbei.

Files in the contrib directory have been provided by

Berthold Crysmann.

mailto:guntermann@iti.informatik.tu-darmstadt.de
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/pp4sty.zip
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/
mailto:dongen@cs.ucc.ie
mailto:Martin.Schroeder@ACM.org

Contents

1 Examples 7

1.1 Some examples for \pause 8

1.2 \stepwise Example: A Picture 9

1.3 \stepwise Example: A Tabular 10

1.4 \stepwise Example: An Aligned Equation 11

1.5 \stepwise Example: Inside A Paragraph 12

1.6 \stepwise Example: Writing Backwards 14

1.7 \stepwise Example: Highlighting Text . 15

1.8 \stepwise Example: Fooling Around . . 17

2 (Preliminary) Documentation 18

2.1 Usage and general options 21

2.2 The \pause command 41

2.3 The \stepwise command 45

2.4 Page transitions and automatic advancing 77

2.5 Color emphasis and highlighting 86

1 Examples

First, two simple examples for the \pause command.

All other examples are meant to illustrate the

expressive power of the \stepwise command.

Looking at the code for the examples will probably be

the best way of understanding how certain effects can

be achieved.

1.1 Some examples for \pause

a

1.1 Some examples for \pause

a

b

1.1 Some examples for \pause

a

b

c

1.1 Some examples for \pause

a

b

c

• foo

1.1 Some examples for \pause

a

b

c

• foo

• bar

1.1 Some examples for \pause

a

b

c

• foo

• bar

• baz

1.2 \stepwise Example: A Picture

x[t] y(t)

1.2 \stepwise Example: A Picture

x[t] y(t)V +I-Block
x[t]

1.2 \stepwise Example: A Picture

x[t] y(t)V +I-Block
x[t]

b ·

1.2 \stepwise Example: A Picture

x[t] y(t)V +I-Block
x[t]

b ·
t∫
0

x(τ) dτ

1.2 \stepwise Example: A Picture

x[t] y(t)V +I-Block
x[t]

b ·
t∫
0

x(τ) dτ

P-Block
x(t) a · x(t)

1.2 \stepwise Example: A Picture

x[t] y(t)V +I-Block
x[t]

b ·
t∫
0

x(τ) dτ

P-Block
x(t) a · x(t)

D-Block
x(t)

c ·
(
dx

dτ

)
(t)

1.3 \stepwise Example: A Tabular

1.3 \stepwise Example: A Tabular

They can be built line by line

1.3 \stepwise Example: A Tabular

They can be built line by line

or cell

1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by

1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or

1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or like

1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or like this.

1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or like this.

But

1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or like this.

But beware

1.3 \stepwise Example: A Tabular

They can be built line by line

or cell by cell

or like this.

But beware of cells growing horizontally!

1.4 \stepwise Example: An Aligned Equation

min

 ,

 (1)

1.4 \stepwise Example: An Aligned Equation

min

max

 ,...

 ,
 (1)

1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x),min

(
F1(x), G1(y)

))
,...

 ,
 (1)

1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x),min

(
F1(x), G1(y)

))
,...

min
(
F ′(x),min

(
Fn(x), Gn(y)

))
 ,

 (1)

1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x),min

(
F1(x), G1(y)

))
,...

min
(
F ′(x),min

(
Fn(x), Gn(y)

))
 ,min

(
Gi(y), Hi(z)

)
 (1)

1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x),min

(
F1(x), G1(y)

))
,...

min
(
F ′(x),min

(
Fn(x), Gn(y)

))
 ,min

(
Gi(y), Hi(z)

)
 (1)

= max


min

(
min

(
,min

())
,min

(
Gi(y), Hi(z)

))
,

...
min

(
min

(
,min

())
,min

(
Gi(y), Hi(z)

))
 (2)

= max


min

(
min

(
,min

(
,min

(
, Gi(y)

)))
, Hi(z)

)
,

...
min

(
min

(
,min

(
,min

(
, Gi(y)

)))
, Hi(z)

)
 (3)

1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x),min

(
F1(x), G1(y)

))
,...

min
(
F ′(x),min

(
Fn(x), Gn(y)

))
 ,min

(
Gi(y), Hi(z)

)
 (1)

= max


min

(
min

(
F ′(x),min

(
F1(x), G1(y)

))
,min

(
Gi(y), Hi(z)

))
,

...
min

(
min

(
F ′(x),min

(
Fn(x), Gn(y)

))
,min

(
Gi(y), Hi(z)

))
 (2)

= max


min

(
min

(
F ′(x),min

(
F1(x),min

(
G1(y), Gi(y)

)))
, Hi(z)

)
,

...
min

(
min

(
F ′(x),min

(
Fn(x),min

(
Gn(y), Gi(y)

)))
, Hi(z)

)
 (3)

1.4 \stepwise Example: An Aligned Equation

min

max

min
(
F ′(x),min

(
F1(x), G1(y)

))
,...

min
(
F ′(x),min

(
Fn(x), Gn(y)

))
 ,min

(
Gi(y), Hi(z)

)
 (1)

= max


min

(
min

(
F ′(x),min

(
F1(x), G1(y)

))
,min

(
Gi(y), Hi(z)

))
,

...
min

(
min

(
F ′(x),min

(
Fn(x), Gn(y)

))
,min

(
Gi(y), Hi(z)

))
 (2)

= max


min

(
min

(
F ′(x),min

(
F1(x),min

(
G1(y), Gi(y)

)))
, Hi(z)

)
,

...
min

(
min

(
F ′(x),min

(
Fn(x),min

(
Gn(y), Gi(y)

)))
, Hi(z)

)
 (3)

= min

F ′(x),min

max

min
(
F1(x),min

(
G1(y), Gi(y)

))
,

...
min

(
Fn(x),min

(
Gn(y), Gi(y)

))
 , Hi(z)


 (4)

1.5 \stepwise Example: Inside A Paragraph

We can a

which is then

in in

order!

1.5 \stepwise Example: Inside A Paragraph

We can create a

which is then

in in

order!

1.5 \stepwise Example: Inside A Paragraph

We can create a

fill-in-the-blanks

which is then

in in

order!

1.5 \stepwise Example: Inside A Paragraph

We can create a

fill-in-the-blanks

which is then

in in any

order!

1.5 \stepwise Example: Inside A Paragraph

We can create a

fill-in-the-blanks

which is then

filled in in any

order!

1.5 \stepwise Example: Inside A Paragraph

We can create a

fill-in-the-blanks

text which is then

filled in in any

order!

We can step through

a of

line breaks!

We can step through

a paragraph of

line breaks!

We can step through

a paragraph of free

text

line breaks!

We can step through

a paragraph of free

text without disturb-

ing line breaks!

1.6 \stepwise Example: Writing Backwards

1.6 \stepwise Example: Writing Backwards

possible !

1.6 \stepwise Example: Writing Backwards

to possible !

1.6 \stepwise Example: Writing Backwards

write to possible !

1.6 \stepwise Example: Writing Backwards

backwards

write to possible !

1.6 \stepwise Example: Writing Backwards

it backwards

write to possible !

1.6 \stepwise Example: Writing Backwards

now it backwards

write to possible !

1.6 \stepwise Example: Writing Backwards

Is now it backwards

write to possible !

1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.

1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.

1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.

1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.

1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.

1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.

1.7 \stepwise Example: Highlighting Text

Instead of making things appear

out of ‘thin air’, we can also make

them appear ‘out of the

background’ by incrementally

changing color from inactive to

active. This also works with color

emphasis and math coloring:

a = b2.

Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Inside a paragraph, we can high-

light text without influencing line

breaks.

Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Inside a paragraph, we can high-

light text without influencing line

breaks.

Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Inside a paragraph, we can high-

light text without influencing line

breaks.

Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Inside a paragraph, we can high-

light text without influencing line

breaks.

Instead of displaying incrementally, we can just ‘flip

through’ some items by highlighting them:

• Item 1

• Item 2

• Item 3

Inside a paragraph, we can high-

light text without influencing line

breaks.

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 5

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 6

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 7

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 8

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3 9

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 5 10

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 11

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 4 6 12

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

13

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 7

14

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3 5

15

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 8

16

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

17

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 6 9

18

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

19

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 5 10

20

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3 7

21

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 11

22

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

23

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 4 6 8 12

24

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 5

25

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2

13

26

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3 9

27

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 7

14

28

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

29

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 5 6 10

15

30

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

31

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 8

16

32

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3 11

33

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2

17

34

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 5 7

35

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 3 4 6 9 12

18

36

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1

37

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2

19

38

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 3

13

39

1.8 \stepwise Example: Fooling Around

‘Tweaking’ the hooks a little allows some truly bizarre

applications. . .

Divisibility demo:

1 2 4 5 8 10

20

40

2 (Preliminary) Documentation

The TEXPower bundle contains style and class files for

creating dynamic online presentations with LATEX.

The heart of the bundle is the package texpower.sty

which implements some commands for presentation

effects. This includes setting page transitions, color

highlighting and displaying pages incrementally.

For this pre-alpha release, the documentation does not

yet provide a full manual. For finding out how to

achieve special effects (as shown in the Examples),

please look at the comments inside the .tex files in

the doc directory and inside the file texpower.sty to

find out what’s going on.

For your own first steps with TEXPower, the simple

demo file doc/simpledemo.tex is the best starting

place. There, some basic applications of the dynamic

features provided by the texpower package are

demonstrated. You can make your own dynamic

presentations by modifying that demo to your

convenience.

doc/simpledemo.tex uses the article document class

for maximum compatibility. There are other simple

demos named slidesdemo, foilsdemo, seminardemo,

pp4sldemo, pdfslidemo, pdfscrdemo, ifmslidemo which

demonstrate how to combine TEXPower with the most

popular presentation-making document classes and

packages.

The other, more sophisticated examples in the doc

directory are to demonstrate the expressive power of

the texpower package. Look at the commented code

of these examples to find out how to achieve special

effects and create your own presentation effects with

TEXPower.

For the first alpha release, this documentation will be

completed. For the first beta release, when the code is

a little more stable, the texpower package will be

made into a properly documented .dtx file.

2.1 Usage and general options

The texpower package is loaded by putting

\usepackage{texpower}

into the preamble of a document.

There are no specific restrictions as to which

document classes can be used.

It should be stressed that TEXPower is not (currently)

a complete presentation package. It just adds dynamic

presentation effects (and some other gimmicks

specifically interesting for dynamic presentations) and

should always be combined with a document class

dedicated to designing presentations (or a package like

pdfslide).

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/pdfslide.html

Some of the presentation effects created by texpower

require special capabilities of the viewer which is used

for presenting the resulting document. The target for

the development of texpower has so far been Adobe

Acrobat r© Reader, which means the document should

(finally) be produced in pdf format.

There are no specific restrictions as to which way the

pdf format is produced. All documents from the doc

directory have been tested with pdfLATEX and standard

LATEX, using dvips and Adobe Acrobat r© Distiller for

generating pdf.

2.1.1 General options

option: display . Enable ‘dynamic’ features. If not

set, it is assumed that the document is to be

printed, and all commands for dynamic

presentations, like \pause or \stepwise have no

effect.

option: printout (default) . Disable ‘dynamic’

features. As this is the default behaviour, setting

this option explicitly is useful only if the option

display is set by default for instance in the

tpoptions.cfg file (see section 2.1.5).

option: verbose . Output some administrative info.

2.1.2 Side effects of page contents duplication

In the implementation of the \pause and \stepwise

commands, it is neccessary to duplicate some material

on the page.

This way, not only ‘visible’ page contents will be

duplicated, but also some ‘invisible’ control code

stored in whatsits (see the TEXbook for an explanation

of this concept). Duplicating whatsits can lead to

undesirable side effects.

For instance, a \section command creates a whatsit

for writing the table of contents entry. Duplicating

this whatsit will also duplicate the toc entry.

So, whatsit items effecting file access are inhibited

when duplicating page material.

A second type of whatsits is created by TEX’s

\special command which is used for instance for color

management. Some drivers, like dvips and textures,

use a color stack which is controlled by \special items

included in the dvi file. When page contents are

duplicated, then these \specials are also duplicated,

which can seriously mess up the color stack.

texpower implements a ‘color stack correction’

method by maintaining a stack of color corrections,

which should counteract this effect. Owing to

potential performance problems, this method is turned

off by default.

option: fixcolorstack switches on color stack

correction. Use it if you experience strange color

switches in your document.

2.1.3 Setting the base font

texpower offers two options for setting the base font

of the document to one that is ‘bolder’ than the

default computer modern roman (cmr). This might be

neccessary if readability is reduced by using e. g.

colored backgrounds.

Note that the support offered by texpower is rather

primitive. If you’re using a document class or package

which offers more sophisticated support for this kind

of thing, use that by all means.

Further, there are packages like cmbright or beton

which change the whole set of fonts to something less

fragile than cmr.

option: sans Make the sans serif font the basic text

font. By default, this is computer modern sans

serif (cmss). If you are using the package

pslatex, this is Helvetica. For other packages

changing the complete set of text fonts, this may

be a different font.

option: slifonts Change the the text and math

fonts to use the “slifonts” collection by

L. Lamport. The main text font is then lcmss.

2.1.4 Switches

There are some boolean registers provided and set

automatically by texpower.

boolean: psspecialsallowed True if PostScript r©

specials may be used.

texpower tries to find out whether or not

PostScript r© specials may be used in the current

document. For instance, pdfLATEX can’t interpret

arbitrary specials. This switch is set automatically

and can be used inside a document to

enable/disable parts which need PostScript r©

specials.

boolean: display True if display option was given.

This switch indicates whether ‘dynamic’ features

of texpower are enabled. Use it inside your

document to distinguish between the ‘presented’

and the printed version of your document.

boolean: TPcolor True if any of the color

highlighting options (see section 2.5) were given,

or if the color package was loaded before

texpower.

This switch indicates whether ‘color’ features of

texpower are enabled (compare section 2.5). You

can use it inside your document to distinguish

between a ‘colored’ and a ‘monochrome’ version

of your document.

2.1.5 Configuration files

texpower loads two configuration files (if present):

file: tpoptions.cfg is loaded before options are

processed. Can be used to set default options in a

system-specific way. See the comments inside the

file tpoptions.cfg which is part of the TEXPower

bundle for instructions.

file: tpsettings.cfg is loaded at the end of

texpower. Here, you can do some system-specific

settings of e. g. standard colors (see section 2.5).

See the comments inside the file tpsettings.cfg

which is part of the TEXPower bundle for

instructions.

2.1.6 Dependencies on other packages

textpower always loads the packages ifthen and calc,

as the extended command syntax provided by these is

indispensable for the macros to work. They are in the

base and tools area of the LATEX distribution,

respectively, so I hope they are available on all systems.

Furthermore, texpower loads the package color if any

color-specific options are set (see section 2.5).

Further packages are not loaded automatically by

texpower to avoid incompatibilities, although some

features of texpower are enabled only if a certain

package is loaded. If you wish to use these features,

you are responsible for loading the respective package

yourself.

If some necessary package is not loaded, texpower will

issue a warning and disable the respective features.

The following packages are neccessary for certain

features of texpower:

package: hyperref is neccessary for page transition

effects to work (see section 2.4).

In particular, the \pageDuration (see section

2.4.2) command only works if the version of

hyperref loaded is at least v6.70a (where the

pdfpageduration key was introduced).

Commands which work only when hyperref is

loaded are marked with h in the description.

package: soul is neccessary for the implementation

of the commands \hidetext and \highlighttext

(see section 2.3.5).

Commands which work only when soul is loaded

are marked with s in the description.

2.1.7 What else is part of the TEXPower

bundle?

Besides the package texpower (which is described

here), there is one more package and one document

class in the TEXPower bundle which so far have no

documentation of their own. They are quite trivial at

the moment and will be described in this section until

they are turned into dtx files producing their own

documentation.

There is a doc directory in the TEXPower bundle which

contains (besides this documentation) some examples

and demos for TEXPower. See the file 00readme.txt

which is part of the TEXPower bundle for a short

description of all files.

The document class powersem

This is planned to provide a more ‘modern’ version of

seminar which can be used for creating dynamic

presentations.

Currently, this document class doesn’t do much more

than load seminar and apply some fixes, but it is

planned to add some presentation-specific features

(like navigation panels).

There are three new options which are specific for

powersem, all other options are passed to seminar:

option: display Turns off all features of seminar

(notes, vertical centering of slides) which can

disturb dynamic presentations.

option: KOMA Makes seminar load scrartcl (from

the KOMA-Script bundle) instead of article as

its base class. All new features of scrartcl are

then available also for slides.

option: calcdimensions seminar automatically

calculates the slide dimensions \slidewidth and

\slideheight only for the default letter and for

its own option a4. For all the other paper sizes

which are possible with the KOMA option, the slide

dimensions are not calculated automatically.

The calcdimensions option makes powersem

calculate the slide dimensions automatically from

paper size and margins.

There is one change in powersem which will lead to

incompatibilities with seminar. seminar has the

unfortunate custom of not exchanging \paperwidth

and \paperheight when making landscape slides, as

for instance typearea and geometry do.

This leads to problems with setting the paper size for

pdf files, as done for instance by the hyperref

package.

powersem effectively turns off seminar’s papersize

management and leaves this to the base class (with

the pleasant side effect that you can use e. g.

\documentclass[KOMA,a0paper]{powersem} for making

posters).

In consequence, the portrait option of seminar is

turned on by powersem to avoid confusing seminar.

You have to explicitly use the landscape option (and a

base class or package which understands this option)

to get landscape slides with powersem.

The package fixseminar

Unfortunately, there are some fixes to seminar which

can not be applied in powersem because they have to

be applied after hyperref is loaded (if this package

should be loaded).

The package fixseminar applies these fixes, so this

package should be loaded after hyperref (if hyperref

is loaded at all, otherwise fixseminar can be loaded

anywhere in the preamble).

It applies two fixes:

• In case pdflatex is being run, the lengths

\pdfpageheight and \pdfpagewidth have to be

set in a ‘magnification-sensitive’ way.

• hyperref introduces some code at the beginning

of every page which can produce spurious vertical

space, which in turn disturbs building dynamic

pages. This code is ‘fixed’ so it cannot produce

vertical space.

2.2 The \pause command

\pause is derived from the \pause command from the

package texpause which is part of the PPower4 suite

by Klaus Guntermann.

It will ship out the current page, start a new page and

copy whatever was on the current page onto the new

page, where typesetting is resumed.

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/pp4sty.zip
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/
mailto:guntermann@iti.informatik.tu-darmstadt.de

2.2 The \pause command

\pause is derived from the \pause command from the

package texpause which is part of the PPower4 suite

by Klaus Guntermann.

It will ship out the current page, start a new page and

copy whatever was on the current page onto the new

page, where typesetting is resumed.

This will create the effect of a pause in the

presentation, i. e. the presentation stops because the

current page ends at the point where the \pause

command occurred and is resumed at this point when

the presenter switches to the next page.

http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/pp4sty.zip
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/
mailto:guntermann@iti.informatik.tu-darmstadt.de

Things to pay attention to

1. \pause should appear in vertical mode only, i. e.

between paragraphs or at places where ending the

current paragraph doesn’t hurt.

2. This means \pause is forbidden in all boxed

material (including tabular), headers/footers, and

floats.

3. \pause shouldn’t appear either in environments

which have to be closed to work properly, like

picture, tabbing, and (unfortunately)

environments for aligned math formulas.

4. \pause does work in all environments which

mainly influence paragraph formatting, like

center, quote or all list environments.

5. \pause doesn’t really have problems with

automatic page breaking, but beware of overfull

pages/slides. In this case, it may occur that only

the last page(s)/slide(s) of a sequence are

overfull, which changes vertical spacing, making

lines ‘wobble’ when switching to the last

page/slide of a sequence.

6. The duplication of page material done by \pause

can lead to unwanted side effects. See section

2.1.2 for further explanations. In particular, if you

should experience strange color switches when

using \pause (and you are not using pdftex), turn

on color stack correction with the option

fixcolorstack.

A lot of the restrictions for the use of pause can be

avoided by using \stepwise (see next section).

2.3 The \stepwise command

\stepwise{〈contents〉} is a command for displaying

some part of a LATEX document (which is contained in

〈contents〉) ‘step by step’. As of itself, \stepwise

doesn’t do very much. If 〈contents〉 contains one or

more constructs of the form \step{〈stepcontents〉} ,

the following happens:

1. The current contents of the page are saved (as

with \pause).

2. As many pages as there are \step commands in

〈contents〉 are produced.

Every page starts with what was on the current

page when \stepwise started.

The first page also contains everything in

〈contents〉 which is not in 〈stepcontents〉 for any

\step command.

The second page additionally contains the

〈stepcontents〉 for the first \step command, and

so on, until all 〈stepcontents〉 are displayed.

3. When all 〈stepcontents〉 are displayed, \stepwise

ends and typesetting is resumed (still on the

current page).

This will create the effect that the \step commands

are executed ‘ ’.

The first page also contains everything in

〈contents〉 which is not in 〈stepcontents〉 for any

\step command.

The second page additionally contains the

〈stepcontents〉 for the first \step command, and

so on, until all 〈stepcontents〉 are displayed.

3. When all 〈stepcontents〉 are displayed, \stepwise

ends and typesetting is resumed (still on the

current page).

This will create the effect that the \step commands

are executed ‘step ’.

The first page also contains everything in

〈contents〉 which is not in 〈stepcontents〉 for any

\step command.

The second page additionally contains the

〈stepcontents〉 for the first \step command, and

so on, until all 〈stepcontents〉 are displayed.

3. When all 〈stepcontents〉 are displayed, \stepwise

ends and typesetting is resumed (still on the

current page).

This will create the effect that the \step commands

are executed ‘step by ’.

The first page also contains everything in

〈contents〉 which is not in 〈stepcontents〉 for any

\step command.

The second page additionally contains the

〈stepcontents〉 for the first \step command, and

so on, until all 〈stepcontents〉 are displayed.

3. When all 〈stepcontents〉 are displayed, \stepwise

ends and typesetting is resumed (still on the

current page).

This will create the effect that the \step commands

are executed ‘step by step’.

Things to pay attention to

1. \stepwise should appear in vertical mode only,

i. e. between paragraphs, just like \pause.

2. Don’t put \pause or nested occurrences of

\stepwise into 〈contents〉.

3. Structures where \pause does not work (like

tabular or aligned equations) can go completely

into 〈contents〉, where \step can be used freely

(see Examples).

4. As 〈contents〉 is read as a macro argument,

constructs involving catcode changes (like \verb

or language switches) won’t work in 〈contents〉.
Using a suggestion by Ross Moore, I hope to

remedy this until the alpha release.

5. Several instances of \stepwise may occur on one

page, also combined with \pause (outside of

〈contents〉).
But beware of page breaks in 〈contents〉. This

will really mess things up.

Overfull pages/slides are also a problem, just like

with \pause. See the description of \pause

(section 2.2) concerning this and also concerning

side effects of duplicating page material.

6. \step can go in 〈stepcontents〉. The order of

execution of \step commands is just the order in

which they appear in 〈contents〉, independent of

nesting within each other.

7. As 〈contents〉 is executed several times, LATEX

constructs changing global counters, accessing

files etc. are problematic. This concerns sections,

numbered equations, labels, hyperlinks and the

like.

Counters are taken care of explicitly by \stepwise,

so equation numbers are no problem.

Commands accessing toc files and such (like

\section) are taken care of by the whatsit

suppression mechanism (compare section 2.1.2).

Labels and hyperlinks work sort of (giving a lot of

warnings though).

I will try to remedy remaining problems until the

first alpha release.

2.3.1 \boxedsteps and \nonboxedsteps

By default, 〈stepcontents〉 belonging to a \step which

is not yet ‘active’ are ignored altogether. This makes

it possible to include e. g. tabulators & or line breaks

into 〈stepcontents〉 without breaking anything.

Sometimes, however, this behaviour is undesirable, for

instance when stepping through an equation ‘from

outer to inner’, or when filling in blanks in a

paragraph. Then, the desired behaviour of a \step

which is not yet ‘active’ is to create an appropriate

amount of blank space where 〈stepcontents〉 can go

as soon as it is activated.

The simplest and most robust way of doing this is to

create an empty box (aka \phantom) with the same

dimensions as the text to be hidden.

This behaviour is toggled by the following commands.

See section 2.3.5 for more sophisticated (albeit more

fragile) variants.

\boxedsteps makes \step create a blank box the size

of 〈stepcontents〉 when inactive and put

〈stepcontents〉 into a box when active.

\nonboxedsteps makes \step ignore 〈stepcontents〉
when inactive and leave 〈stepcontents〉 alone

when active (default).

Things to pay attention to

1. The settings effected by \boxedsteps and

\nonboxedsteps are local, i. e. whenever a group

closes, the setting is restored to its previous value.

2. Putting stuff into boxes can break things like

tabulators (&). It can also mess up math spacing,

which then has to be corrected manually.

Compare the following examples:(
a+ b

c

) (
a

c

) (
a

c

)

Things to pay attention to

1. The settings effected by \boxedsteps and

\nonboxedsteps are local, i. e. whenever a group

closes, the setting is restored to its previous value.

2. Putting stuff into boxes can break things like

tabulators (&). It can also mess up math spacing,

which then has to be corrected manually.

Compare the following examples:(
a+ b

c

) (
a+b

c

) (
a+ b

c

)

2.3.2 Custom versions of \stepwise

Sometimes, it might happen that vertical spacing is

different on every page of a sequence generated by

\stepwise, making lines ‘wobble’.

This is caused by interactions between different ways

vertical spacing is added to the page. Hopefully,

problems caused this way can be reduced until the first

alpha release.

There are two custom versions of \stepwise which

should produce better vertical spacing.

\liststepwise{〈contents〉} works exactly like

\stepwise, but adds an ‘invisible rule’ before

〈contents〉. Use for list environments and aligned

equations.

\parstepwise{〈contents〉} works like \liststepwise,

but \boxedsteps is turned on by default. Use for

texts where \steps are to be filled into blank

spaces.

2.3.3 Starred versions of \stepwise commands

Usually, the first page of a sequence produced contains

only material which is not part of any 〈stepcontents〉.
The first 〈stepcontents〉 are displayed on the second

page of the sequence.

For special effects (see example 1.7), it might be

desirable to have the first 〈stepcontents〉 active even

on the first page of the sequence.

All variants of \stepwise have a starred version (e. g.

\stepwise*) which does exactly that.

2.3.4 The optional argument of \stepwise

Every variant of \stepwise takes an optional

argument, like this

\stepwise[〈settings〉]{〈contents〉} .

〈settings〉 will be placed right before the internal loop

which produces the sequence of pages. It can contain

settings of parameters which modify the behaviour of

\stepwise or \step. 〈settings〉 is placed inside a

group so all changes are local to this call of \stepwise.

Some internal macros and counters which can be

adjusted are explained in the following.

2.3.5 Customizing the way 〈stepcontents〉 is

diplayed

Internally, there are three macros (taking one

argument each) which control how 〈stepcontents〉 is

displayed: \displaystepcontents, \hidestepcontents,

and \activatestep. Virtually, every

\step{〈stepcontents〉} is replaced by

\hidestepcontents{〈stepcontents〉}
when this step is not yet active.

\displaystepcontents{\activatestep{〈stepcontents〉}
when this step is activated for the first time.

\displaystepcontents{〈stepcontents〉}
when this step has been activated before.

By redefining these macros, the behaviour of \step is

changed accordingly. You can redefine them inside

〈contents〉 to provide a change affecting one \step

only, or in the optional argument of \stepwise to

provide a change for all \steps inside 〈contents〉.

In the Examples, it is demonstrated how special effects

can be achieved by redefining these macros.

\activatestep is set to \displayidentical by default,

the default settings of \hidestepcontents and

\displaystepcontents depend on whether

\boxedsteps or \nonboxedsteps (default) is used.

texpower offers nine standard definitions.

For interpreting \displaystepcontents:

\displayidentical Simply expands to its argument.

The same as LATEXs \@ident. Used by

\nonboxedsteps (default).

\displayboxed Expands to an \mbox containing its

argument. Used by \boxedsteps.

For interpreting \hidestepcontents:

\hideignore Expands to nothing. The same as

LATEXs \@gobble. Used by \nonboxedsteps

(default).

\hidephantom Expands to a \phantom containing its

argument. Used by \boxedsteps.

\hidevanish In a colored document, makes its

argument ‘vanish’ by setting all colors to

\vanishcolor (defaults to pagecolor; compare

section 2.5.1). Note that this will give weird

results with structures backgrounds.

For monochrome documents, there is no useful

interpretation for this command, so it is disabled.

s \hidetext Produces blank space of the same

dimensions as the space that would be occupied if

its argument would be typeset in the current

paragraph. Respects automatic hyphenation and

line breaks.

This command needs the soul package to work,

which is not loaded by texpower itself. Consult

the documentation of soul concerning restrictions

on commands implemented using soul. If you

don’t load the soul package yourself, there is no

useful definition for this command, so it defaults

to \hidephantom.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html

\hidedimmed In a colored document, displays its

argument with dimmed colors (compare section

2.5.2). Note that this doesn’t make the argument

completely invisible.

For monochrome documents, there is no useful

interpretation for this command, so it is disabled.

For interpreting \activatestep:

\highlightboxed If the colorhighlight option (see

section 2.5) is set, expands to a

box with colored background containing its

argument. Otherwise, expands to an \fbox

containing its argument. It is made sure that the

resulting box has the same dimensions as the

argument (the outer frame may overlap

surrounding text).

There is a new length register \highlightboxsep

which acts like \fboxsep for the resulting box and

defaults to 0.5\fboxsep.

s \highlighttext If the colorhighlight option (see

section 2.5) is set, puts its argument on colored

background. Otherwise, underlines its argument.

It is made sure that the resulting text has the

same dimensions as the argument (the outer

frame may overlap surrounding text).

\highlightboxsep is used to determine the

extent of the coloured box(es) used as

background.

This command needs the soul package to work

(compare the description of \hidetext). If you

don’t load the soul package yourself, there is no

useful definition for this command, so it is

disabled.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html

\highlightenhanced In a colored document, displays

its argument with enhanced colors (compare

section 2.5.2).

For monochrome documents, there is no useful

interpretation for this command, so it is disabled.

2.3.6 Variants of \step

There are a couple of custom versions of \step which

make it easier to achieve special effects needed

frequently.

\bstep . Like \step, but is always boxed (see section

2.3.1). \bstep{〈stepcontents〉} is implemented in

principle as {\boxedsteps\step{〈stepcontents〉}}.
In aligned equations where \stepwise is used for

being able to put tabulators into 〈stepcontents〉,
but where nested occurrences of \step should be

boxed to assure correct sizes of growing braces or

such, this variant of \step is more convenient

than using \boxedsteps for every nested

occurrence of \step.

\switch{〈ifinactive〉}{〈ifactive〉} is a variant of

\step which, instead of making its argument

appear, switches between 〈ifinactive〉 and

〈ifactive〉 when activated.

In fact, \step{〈stepcontents〉} is in principle

implemented by

\switch{\hidestepcontents{〈stepcontents〉}}
{\displaystepcontents{〈stepcontents〉}}

This command can be used, for instance, to add

an \underbrace to a formula, which is difficult

using \step.

Beware of problems when 〈ifinactive〉 and

〈ifactive〉 have different dimensions.

\dstep . A variant of \step which takes no argument,

but simply switches colors to ‘dimmed’ (compare

section 2.5.2) if not active. Not that the scope of

this color change will last until the next outer

group closes. This command does nothing in a

monochrome document.

\vstep . A variant of \step which takes no argument,

but simply switches all colors to \vanishcolor

(defaults to pagecolor; compare section 2.5.1) if

not active. Not that the scope of this color

change will last until the next outer group closes.

This command does nothing in a monochrome

document.

\restep , \rebstep , \reswitch , \redstep , \revstep .

Frequently, it is desirable for two or more steps to

appear at the same time, for instance to fill in

arguments at several places in a formula at once

(see example 1.4).

\restep{〈stepcontents〉} is identical with

\step{〈stepcontents〉}, but is activated at the

same time as the previous occurrence of \step.

\rebstep , \reswitch , \redstep , and

\revstep do the same for \bstep, \switch,

\dstep, and \vstep.

2.3.7 Optional arguments of \step

Sometimes, letting two \steps appear at the same

time (with \restep) is not the only desirable

modification of the order in which \steps appear.

\step, \bstep and \switch take two optional

arguments for influencing the mode of activation, like

this:

\step[〈activatefirst〉][〈whenactive〉]{〈stepcontents〉

Both 〈activatefirst〉 and 〈whenactive〉 should be

conditions in the syntax of the \ifthenelse command

(see the documentation of the ifthen package for

details).

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/ifthen.html

〈activatefirst〉 checks whether this \step is to be

activated for the first time. The default value is

\value{step}=\value{stepcommand} (see section

2.3.8 for a list of internal values). By using

\value{step}=〈n〉, this \step can be forced to appear

as the nth one. See example 1.5 for a demonstration

of how this can be used to make \steps appear in

arbitrary order.

〈whenactive〉 checks whether this \step is to be

considered active at all. The default behaviour is to

check whether this \step has been activated before

(this is saved internally for every step). See example

1.8 for a demonstration of how this can be used to

make \steps appear and disappear after a defined

fashion.

If you know what you’re doing. . .

Both optional arguments allow two syntctical forms:

1. enclosed in square brackets [] like explained

above.

2. enclosed in braces (). In this case,

〈activatefirst〉 and 〈whenactive〉 are not treated

as conditions in the sense of \ifthenelse, but as

conditionals like those used internally by LATEX.

That means, 〈activatefirst〉 (when enclosed in

braces) can contain arbitrary TEX code which

then takes two arguments and expands to one of

them, depending on whether the condition is

fulfilled or not fulfilled. For instance,

\step[〈activatefirst〉]{〈stepcontents〉} could

be replaced by

\step(\ifthenelse{〈activatefirst〉}){〈stepconten
See example 1.6 for a simple application of this

syntax.

Internally, the default for the treatment of

〈whenactive〉 is (\if@first@TP@true), where

\if@first@TP@true is an internal condition checking

whether this \step has been activated before.

2.3.8 Finding out what’s going on

Inside 〈settings〉 and 〈contents〉, you can refer to the

following internal state variables which provide

information about the current state of the process

executed by \stepwise:

counter: firststep The number from which to

start counting steps (see counter step below). Is

0 by default and 1 for starred versions (section

2.3.3) of \stepwise. You can set this in

〈settings〉 for special effects (see example 1.6).

counter: totalsteps The total number of \step

commands occurring in 〈contents〉.

counter: step The number of the current iteration,

i. e. the number of the current page in the

sequence of pages produced by \stepwise. Runs

from \value{firststep} to \value{totalsteps}.

counter: stepcommand The number of the \step

command currently being executed.

boolean: firstactivation true if this \step is

active for the first time, false otherwise.

boolean: active true if this \step is currently

active, false otherwise.

stepcommand, firstactivation, and active are useful

only inside 〈stepcontents〉.

2.3.9 \afterstep

It might be neccessary to set some parameters which

affect the appearance of the page (like page

transitions) inside 〈stepcontents〉. However, the \step

commands are usually placed deeply inside some

structure, so that all local settings are likely to be

undone by groups closing before the page is

completed.

\afterstep{〈settings〉} puts 〈settings〉 right before

the end of the page, after the current step is

performed.

Things to pay attention to

1. There can be only one effective value for

〈settings〉. Every occurrence of \afterstep

overwrites this value globally.

2. \afterstep will not be executed in 〈stepcontents〉
if the corresponding \step is not active, even if

〈stepcontents〉 is displayed owing to a redefinition

of \hidestepcontents, like in example 1.7.

3. As 〈settings〉 is put immediately before the page

break, there is no means of restoring the original

value of whatever has been set. So if you set

something via \afterstep and want it to be reset

in some later step, you have to reset it explicitly

with another call of \afterstep.

2.4 Page transitions and automatic advancing

2.4.1 Page transitions

I am indepted to Marc van Dongen for allowing me to

include a suite of commands written by him and

posted to the PPower4 mailing list which set page

transitions (using hyperrefs \hypersetup).

These commands work only if the hyperref package is

loaded.

mailto:dongen@cs.ucc.ie
http://www-sp.iti.informatik.tu-darmstadt.de/software/ppower4/
ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/hyperref.html

The following page transition commands are defined:

The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.

The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.

h \pageTransitionSplitVO Split Vertically to the

outside.

The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.

h \pageTransitionSplitVO Split Vertically to the

outside.

h \pageTransitionSplitVI Split Vertically to the

inside.

The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.

h \pageTransitionSplitVO Split Vertically to the

outside.

h \pageTransitionSplitVI Split Vertically to the

inside.

h \pageTransitionBlindsH Horizontal Blinds.

The following page transition commands are defined:

h \pageTransitionSplitHO Split Horizontally to the

outside.

h \pageTransitionSplitHI Split Horizontally to the

inside.

h \pageTransitionSplitVO Split Vertically to the

outside.

h \pageTransitionSplitVI Split Vertically to the

inside.

h \pageTransitionBlindsH Horizontal Blinds.

h \pageTransitionBlindsV Vertical Blinds.

h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

wipe.

Apparently, only the values 0,

h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

wipe.

Apparently, only the values 0, 90,

h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

wipe.

Apparently, only the values 0, 90, 180,

h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

wipe.

Apparently, only the values 0, 90, 180, 270 are

supported.

h \pageTransitionBoxO Growing Box.

h \pageTransitionBoxI Shrinking Box.

h \pageTransitionWipe{〈angle〉}
Wipe from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

wipe.

Apparently, only the values 0, 90, 180, 270 are

supported.

h \pageTransitionDissolve Dissolve.

h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

glitter.

Apparently, only the values 0,

h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

glitter.

Apparently, only the values 0, 270,

h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

glitter.

Apparently, only the values 0, 270, 315 are

supported.

h \pageTransitionGlitter{〈angle〉}
Glitter from one edge of the page to the facing

edge.

〈angle〉 is a number between 0 and 360 which

specifies the direction (in degrees) in which to

glitter.

Apparently, only the values 0, 270, 315 are

supported.

h \pageTransitionReplace Simple Replace (the

default).

Things to pay attention to

1. The setting of the page transition is a property of

the page, i. e. whatever page transition is in effect

when a page break occurs, will be assigned to the

corresponding pdf page.

2. Unfortunately, the scope of the setting of the page

transition achieved by the \pageTransition...

commands (via \hypersetup) seems to be

dependent on the driver used. . .

This means, depending on the driver employed

(i. e. pdfmark or pdftex), the setting of the page

transition will be undone when a group ends, or it

will be valid until the end of the document if you

don’t explicitly set another page transition.

This means, if you want your documents to work

with different drivers, you have to take both

behaviours into account:

• Make sure no LATEX environment is ended

between a \pageTransition setting and the

next page break. In particular, in

〈stepcontents〉, \afterstep should be used

(see example 1.2).

• If you want the defalt behaviour (Replace)

back, set it explicitly with

\pageTransitionReplace.

3. Setting page transitions works well with \pause.

Here, \pause acts as a page break, i. e. a different

page transition can be set before every occurrence

of \pause.

2.4.2 Automatic advancing of pages

If you have loaded a sufficiently new version of the

hyperref package (which allows to set

pdfpageduration), then the following command is

defined which enables automatic advancing of pdf

pages.

h \pageDuration{〈dur〉} causes pages to be advanced

automatically every 〈dur〉 seconds. 〈dur〉 should be a

non-negative fixed-point number.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/hyperref.html

2.4.2 Automatic advancing of pages

If you have loaded a sufficiently new version of the

hyperref package (which allows to set

pdfpageduration), then the following command is

defined which enables automatic advancing of pdf

pages.

h \pageDuration{〈dur〉} causes pages to be advanced

automatically every 〈dur〉 seconds. 〈dur〉 should be a

non-negative fixed-point number.

Depending on the pdf viewer, this will happen only in

full-screen mode.

See example 1.8 for a demonstration of this effect.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/hyperref.html

The same restrictions as for page transitions apply. In

particular, the page duration setting is undone (for

some drivers) by the end of a group, i. e. it is useless

to set the page duration if a LATEX environment ends

before the next page break.

There is no ‘neutral’ value for 〈dur〉 (0 means advance

as fast as possible). You can make automatic

advancing stop by calling \pageDuration{}. texpower

offers the custom command

h \stopAdvancing

to do this.

2.5 Color emphasis and highlighting

texpower offers some support for text emphasis and

highlighting with colors (instead of, say, font changes).

These features are enabled by the following options:

option: coloremph Make \em and \emph switch

colors instead of fonts.

option: colormath Color all mathematical formulae.

option: colorhighlight Make new highlighting and

emphasis commands defined by texpower use

colors.

option: whitebackground (default) Set standard

colors to match a white background color.

option: lightbackground Set standard colors to

match a light (but not white) background color.

option: darkbackground Set standard colors to

match a dark (but not black) background color.

option: blackbackground Set standard colors to

match a black background color.

The effect of the options whitebackground,

lightbackground, darkbackground, and

blackbackground can also be achieved by the

commands \whitebackground, \lightbackground,

\darkbackground, and \blackbackground, respectively.

Things to pay attention to

1. You need the color package to use any of the

color features.

2. To implement the options coloremph and

colormath, it is neccessary to redefine some LATEX

internals. This can lead to problems and

incompatibilities with other packages. Use with

caution.

3. If the colorhighlight option is not given, new

highlighting and emphasis commands defined by

texpower are realized otherwise. Sometimes,

however, there is no good alternative to colors, so

different emphasis commands can become

disabled or indistinguishable.

4. Because of font changes, emphasized or

highlighted text can have different dimensions

whether or not the options coloremph, colormath,

and colorhighlight are set. Prepare for different

line and page breaks when changing one of these

options.

5. Color emphasis and highlighting is controlled by a

set of defined colors for different emphasis and

highlighting elements (described in section 2.5.2).

All these colors are redefined when one of the

options whitebackground, lightbackground,

darkbackground, and blackbackground or one of

the commands \whitebackground,

\lightbackground, \darkbackground, and

\blackbackground is given.

These definitions represent standard settings; the

colors can be redefined as convenient. See the

documentation of the color package for details.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/color.html

2.5.1 New commands for emphasis and

highlighting elements

Some things like setting the page or text color,

making emphasised text or math colored are done

automatically when the respective options are set.

There are some additional new commands for creating

emphasis and highlighting elements.

Concerning math:

\origmath When the colormath option is given,

everything which appears in math mode is colored

accordingly. Sometimes, however, math mode is

used for something besides mathematical

formulae. Some LATEX commands which internally

use math mode (like tabular or

\textsuperscript) are redefined accordingly when

the colormath option is given (this is a potential

source of trouble; beware of problems. . .).

If you need to use math mode for something

which is not to be colored (like a symbol for

itemize), you can use the \origmath command

which works exactly like \ensuremath but doesn’t

color its argument. If a nested use of math mode

should occur in the argument of \origmath, it will

again be colored.

Documenting TEX code:

\code Simple command for typesetting code (like

shell commands).

\macroname For \macro names. Like \code, but with

a \ in front.

\commandapp[〈opt arg〉]{〈command〉}{〈arg〉} For TEX

commands. 〈arg〉 stands for the command

argument, 〈opt arg〉 for an optional argument.

\carg For 〈macro arguments〉.

Additional emphasis commands:

\underl Additional emphasis command. Can be used

like \emph. Defaults to bold face if the

colorhighlight option is not given.

\concept Additional emphasis command, especially

for new concepts. Can be augmented by things

like automatic index entry creation. Also defaults

to bold face if the colorhighlight option is not

given.

\inactive Additional emphasis command, this time

for ‘de-emphasising’. There is no sensible default

if the colorhighlight option is not given, as base

LATEX doesn’t offer an appropriate font. In this

case, \inactive defaults to \monochromeinactive,

which does nothing.

You can (re-)define \monochromeinactive to

provide some sensible behaviour in the absence of

colors, for instance striking out if you’re using the

soul package.

Color Highlighting:

\present Highlighting command which puts its

argument into a box with colored background .

Defaults to an \fbox if the colorhighlight

option is not given.

ftp://ftp.dante.de/tex-archive/help/Catalogue/entries/soul.html

Helpers:

\replacecolor{〈newname〉}{〈origname〉} For some

presentation effects using colors, it is neccessary

to redefine standard colors like mathcolor. The

color package only offers the \definecolor

command for doing this, which needs a ‘raw’ color

definition, like RGB values. It can not be used to

redefine mathcolor to be the same as

inactivecolor, for instance.

\replacecolor will make 〈newname〉 have the same

definition as 〈origname〉, where 〈newname〉 and

〈origname〉 are color names as given in the first

argument of \definecolor.

See example 1.7 for a presentation effect where

this is used.

Changing color sets:

In addition to the standard colors for displaying

‘normal’ text, there exist ‘dimmed’ and ‘enhanced’

color sets especially for dynamic effects. Compare

section 2.5.2.

\dimcolors Switch to dimmed color set.

\enhancecolors Switch to enhanced color set.

\vanishcolors Replace all standard colors by one

color. This color is given by the command

\vanishcolor, which defaults to pagecolor and

can be redefined as convenient.

2.5.2 Defined colors for emphasis and

highlighting elements

The following colors are used automatically by the text

emphasis and highlighting commands:

color: pagecolor Background color of the page. Is

set automatically if you give one of the options

colorhighlight, whitebackground,

lightbackground, darkbackground, or

blackbackground.

color: textcolor Color of normal text. Is set

automatically if you give one of the options

colorhighlight, whitebackground,

lightbackground, darkbackground, or

blackbackground.

color: emcolor Color used for emphasis if the

coloremph option is set.

color: altemcolor Color used for double emphasis if

the coloremph option is set.

color: mathcolor Color used for math a2 + b2 = c2 if

the colormath option is set.

color: codecolor Color used by the \code command

if the colorhighlight option is set.

color: underlcolor Color used by the \underl

command if the colorhighlight option is set.

color: conceptcolor Color used by the \concept

command if the colorhighlight option is set.

color: inactivecolor Color used by the \inactive

command if the colorhighlight option is set.

color: presentcolor Color used as background color

by the \present command if the colorhighlight

option is set.

color: highlightcolor Color used as background

color by the \highlightboxed and \highlighttext

commands (see section 2.3.5) if the

colorhighlight option is set.

Dimmed and enhanced color sets

For every one of the colors listed above, there exists a

dimmed and an enhanced variant. The names of these

are the same as the standard colors, preceded by d for

the dimmed set and preceded by e for the enhanced

set. For instance, the dimmed variant of textcolor is

called dtextcolor and the enhanced variant of

textcolor is called etextcolor.

The standard color set is replaced by the dimmed

color set by the command \dimcolors and by the

enhanced color set by the command \enhancecolors.

Compare section 2.5.1.

Color tables

white background standard dimmed enhanced

textcolor

emcolor

altemcolor

mathcolor

codecolor

underlcolor

conceptcolor

inactivecolor

presentcolor

highlightcolor

light background standard dimmed enhanced

textcolor

emcolor

altemcolor

mathcolor

codecolor

underlcolor

conceptcolor

inactivecolor

presentcolor

highlightcolor

dark background standard dimmed enhanced

textcolor

emcolor

altemcolor

mathcolor

codecolor

underlcolor

conceptcolor

inactivecolor

presentcolor

highlightcolor

black background standard dimmed enhanced

textcolor

emcolor

altemcolor

mathcolor

codecolor

underlcolor

conceptcolor

inactivecolor

presentcolor

highlightcolor

	Examples
	Some examples for \pause
	\stepwise Example: A Picture
	\stepwise Example: A Tabular
	\stepwise Example: An Aligned Equation
	\stepwise Example: Inside A Paragraph
	\stepwise Example: Writing Backwards
	\stepwise Example: Highlighting Text
	\stepwise Example: Fooling Around

	(Preliminary) Documentation
	Usage and general options
	The \pause command
	The \stepwise command
	Page transitions and automatic advancing
	Color emphasis and highlighting

