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Abstract—Input data for geometry processing is commonly
problematic: the discretization of the volume of a surface may
contain self-intersections or noise. These problems are related to
curvature. In this work we review some concepts in differential
geometry, geometry processing and present the Mean Curvature
Flow to solve those problems. We review some modifications in
the discrete case to improve the discrete flow. Then we analyse
an implementation of the Conformalized Mean Curvature Flow.

I. INTRODUCTION

During the physical scanning process that we perform to
create 3D digital surface models, high-frequency noise can
occur [1]. We increase the quality of a scanned real surface
reducing the noise in the data by smoothing the surface
(2-manifold) (Figure 1). To minimize the noise we reduce
changes in curvature. Intuitively, we want to change the
curvature of our surface like heat changes in an object (actually
we specifically use the heat equation); the heat flow from
warmer to cooler regions, a process that we call diffusion.
In our case, the neighborhood of high curvature points is
moved to produce the new surface. The idea is to choose a
suitable velocity vector for each point and obtain a geometric
continuous evolution time for the surface.

Another recent application of the Mean Curvature Flow
(MCF) is to remove self-intersections in surfaces for which we
want to calculate the volume [2]. The MCF can be modified
to converge to unit sphere [3], i.e., a surface without self-
intersections. An example of this flow is in Figure 2, where
all intersections in the input mesh were removed.

In this paper we show how the Mean Curvature Flow
can solve these problems in geometry processing, as well
as providing didactic materials with formal definitions. We
recommend knowledge in Linear Algebra [4], Calculus of
Several Variables [5] and introductory ideas in Differential
Geometry (Chapter 2 and 3 of [6]).

To understand these problems we review the concept of
curvature in 2-manifolds. So we can start to talk about the
continuous MCF. To deal with the discrete case we first
show how the surface is represented in discrete data using
a polygon mesh. Finally we present the discrete MCF (and its
variations), showing its difficulties and discussing MATLAB
implementations.

Fig. 1. On the left a 3D scan of a statue’s face corrupted by typical
measurement noise. The color-coded visualization of mean curvature flow on
the right shows the difference before (top) and after (bottom) the denoising
process around the eye region. This image was taken from [7].

Fig. 2. The Hand on the left has self-intersections in the fingers. We flow
the surface according to the Conformalized Mean Curvature Flow to obtain
a new surface without self-intersections (right).

II. MEAN CURVATURE FLOW

A. Mean Curvature Flow - Continuous case

1) Curvature: The Curvature of a curve measures how
far the curve is from being a straight line and we use
second derivatives to measure it. Surfaces have an analogous
approach: the normal curvature of a surface measures how
far it is from being a flat plane and also uses partial second
derivatives to measure it. However, a point in a surface can
have more than one normal curvature.

Let S be a surface, C a curve on S passing through p.
Denote k = ‖C ′′‖ and n the normal vector of the curve.
The normal curvature kn in p ∈ S relative to C is obtained
projecting the second derivative vector kn over the normal N
of the surface at p and getting its norm (Figure 3). But which
curve should we use? We have infinite options. In differential
geometry there is only two most important normal curvatures
(for a more in-depth discussion see [6]).

Definition 1 (Principal Curvature). Let k1 and k2 be the
maximum and the minimum respectively of the normal cur-
vature in a point p on a surface S. We call k1 and k2



Fig. 3. We project the second derivative vector kn of a curve C in some
surface S and take the norm to obtain the normal curvature kn at p ∈ S. The
vectors N and n are normals of the surface and the curve respectively. This
image was taken from [6].

principal curvatures in p; the correspondent directions are
called principal directions in p.

A proof to existence of maximum, minimum can be found in
Chapter 3 of [6].

We define the Mean Curvature (at some point) as the
average of the principal curvatures

H :=
k1 + k2

2
.

The Mean Curvature Vector is defined as
−→
H = HN .

Now we will discuss the Laplace Beltrami Operator, which
plays an important role in the Mean Curvature Flow, and
understand its connection with Mean Curvature.

2) Laplace-Beltrami Operator: It can be seen as a second
derivative of a multiple variable function. Let f : U ⊂ R2 →
R, U be open subset. The Laplacian of f , denoted by ∆f , is
defined as the divergence of the gradient of f :

∆f = div(∇f) = div

(
∂f

∂u
,
∂f

∂v

)
=
∂2f

∂u2
+
∂2f

∂u2

Let us get some intuition: the gradient at a point (u, v) ∈ R3

points in the direction of greatest rate of increase of f . So if
f(u, v) is a local maximum, the gradient at the neighborhood
of (u, v) will always point to (u, v). Then the divergent of
the gradient will be negative. If f(u, v) is a local minimum,
the opposite occurs and the divergent will be positive. So the
Laplacian measures how much of a minimum point is (u, v)
and it is an analogous to the second derivative in ordinary
calculus. Summing up, ∆f(u, v) is, intuitively, the average
difference f(x, y)− f(u, v) over small circles around (u, v).

The Laplace-Beltrami Operator is a generalization of the
Laplace Operator to operate in functions defined on surfaces.
This depends on the metric used and can be extended to
operate in other geometric objects. For our purposes we keep
the same notation and use the Euclidian metric.

Making a parallel with the heat equation, let S ⊂ R3 be a
surface and g : S → R the temperature at a point p ∈ S. The
heat equation is given by

∂g

∂t
= a2∆g, a ∈ R.

If the average temperature over small spheres around a point
p is hotter than at p, then in the next time the temperature
at that point will rise. What happens if we use this equation
to move points? In the place of heat, what properties are we
altering?

3) Mean Curvature Flow: We want to evolve an initial
surface M0 throughout time t obtaining a family of surfaces
{Mt}t∈[0,T ) with the respective parametrization ϕt : U ⊂
R2 →Mt ⊂ R3. To find those surfaces we solve the geometric
diffusion equation, a linear partial differential equation (PDE)

∂ϕ

∂t
= ∆ϕ (1)

where the Laplacian of ϕ is the vector formed by the Laplacian
with respect to each coordinate of ϕ. The parametrization ϕ
also depends on the time t and each ϕt is found fixing t. If p =
(p1, p2, p3) ∈Mt is local maximum point at the coordinate x,
then the Laplacian at x will be negative and p1 will reduce
in the next time. Therefore the Mean Curvature Flow reduces
curvature locally.

Finally we can see the connection between the Mean
Curvature and the Mean Curvature Flow (until now it was
just the name). A theorem by Weierstraβ (see [8]) that states
that, given an orientable1 surface in Euclidean space, one has:

∆ϕ = 2
−→
H.

Then according to equation (1) the velocity of each point at
the surface will be given by the mean curvature vector. The
existence and uniqueness of a solution to (1), i.e., a family
of immersions {ϕt}t∈[0,T ), can be proved for compact 2-
manifolds. In case of interest, the proof can be found in [9].

This Flow has some interesting properties, namely, it is
the flow of steepest decrease of surface area (for results see
[10]) and also reduces volume [11]; besides that, every convex,
embedded, compact surface converge to a single point q ∈ R3.
If we rescale to keep the area constant, the surface converges to
spheres [9] . But if the surface is not convex, the MCF form
singularities. In the discrete case, the flow can be modified
(Equation 4) to avoid their formation (see [3]). In Figure 4 we
show the formation of singularities (top) in convex regions
(fingers of armadillo man) and the evolved surface following
the proposed Conformalized Mean Curvature Flow without
singularities. We provide more details on these flows in the
next sections.

B. Mean Curvature Flow to discrete surface

When an object is represented in the computer the storage
is limited, so we use discrete data to represent the digital
surface. Due to its simplicity and flexibility piecisewise linear

1In this work we use only orientable, embedded, compact surfaces.



Fig. 4. The initial surface (armadilo man) on the left is evolved with
the traditional semi-implicit MCF (top) and the cMCF (bottow). The hand
of armadilo, that is a non convex region, evolves and forms neck pinch
singularities on the top; the cMCF avoid their formation. Image from [3].

Fig. 5. The parametrization f maps vertex from the domain Ω to the triangle
mesh S. Image from [13].

approximations (polygonal meshes) are used: a collection of
vertices, edges and faces. In Figure 5 we have a triangular
mesh which is extensively used in Computer Graphics [12]
and also the only one used in this work. For more information
about polygonal meshes and data structure see [7].

The parametrization ϕ of a polygonal mesh (discrete sur-
face) is now defined by its vertices ϕ(vi) where vi is a vertice
of the mesh on the domain in R2 (Figure 5). So we represent
the parametrization as a vector ϕ := (ϕ(v1), . . . , ϕ(vm))
(note that the entries are vertex positions of the triangle
mesh in R3) and the Laplacian becomes the vector ∆ϕ =
(∆ϕ(v1), . . . ,∆ϕ(vn)).

Note that the geometric diffusion equation (1) is a contin-
uous time-dependent PDE, so we have to discretize both in
space and time, i.e., discretize the Laplace-Beltrami Operator
and the partial derivative using finite element method [14].

1) Discrete Laplace-Beltrami Operator: Consider the sur-
face S discretized by a triangular mesh. Let ϕ : U ⊂ R3 → S
be the discrete parametrization. To compute the Laplacian
at some vertex vi ∈ U we use information at a local
neighborhood Nn(vi) of the vertex called n-ring. The distance
between two vertices vi and vj on the 2D domain mesh is
given by the minimum number of edges between them. Define
Nn(vi) as the the set of vertices with distance less than n from
vi (analogous to an open ball). From now on we fix n = 1.

We also consider an average region defined on vertex one-
ring neighborhoods that we call cell. There are three variants
(Figure 6): the Barycentric cell connect the triangle barycenter
with the edge midpoints; in place of barycenter we can use
the circumcenters to obtain the Voronoi cell. As Figure 6
illustrates, the circumcenter can be outside of the triangle
generating a worse approximation [7]. We can replace the
circumcenter of obtuse triangles by the midpoint of the edge

Fig. 6. The local average regions are indicated with blue color, they are used
to compute discrete differential operators at the central vertex of the one-ring
neighborhood. Image from [7].

opposed to the central vertex, obtaining the Mixed Voronoi
cell.

There are different ways to discretize the Laplacian operator
and none of them keep every natural property of the continuous
case [15]. In this work the only discretization used is the
Cotangent Formula (2) that is one of the most widely used
for triangle meshes applied to smoothing processing [7]. We
denote Ai as the area of the cell. For more discrete operators
see [12].

∆ϕ(vi) :=
1

2Ai

∑
vj∈N1(vi)

(cotαi,j + cotβi,j)(ϕ(vj)− ϕ(vi))

(2)
If wi = 1/2Ai and wi,j = cotαi,j + cotβi,j , then we have

∆ϕ =

∆ϕ(v1)
...

∆ϕ(vm)

 = DM︸︷︷︸
L

ϕ(v1)
...

ϕ(vm)

 = Lϕ (3)

where D = diag(w1, . . . , wm) is a diagonal matrix and M is
a symmetric matrix with edges weights wij :

Mij =


−
∑

vk∈N1(vi)
wik, i = j,

wij , vj ∈ N1(vi),
0, otherwise.

.

We can modify the system matrix L to obtain some desirable
properties [7]. Note that M is a sparse matrix, since the
Laplacian is defined locally in terms of the 1-ring. Thus L is
also sparse. The Laplacian matrix is not symmetric in general,
because of the scale matrix D. We can turn into a symmetric
system multiplying by the inverse D−1 getting

Mϕ = D−1 ∆ϕ. (4)

Including some constrains and changing signs of the Laplacian
system, we also obtain a positive definite system. These 3
properties are beneficial to solve the Laplacian system [7].

2) Discrete partial derivative: To discretize the time deriva-
tive in (1) we use the Euler Method [16]. We split the
interval of time in regular intervals of size h obtaining
{t, t + h, t + 2h, . . .} and use the finite difference approxi-

mation. Let ϕt = (ϕt(v1), . . . , ϕt(vm)) for each t,
∂ϕ

∂t
=(

∂ϕ

∂t
(t, v1), . . . ,

∂ϕ

∂t
(t, vm)

)
and

∂ϕ

∂t
≈ ϕt+h − ϕt

h
. Solving

for ϕt+h yields the explicit Euler integration



ϕt+h = ϕt + h
∂ϕ

∂t
.

We now use equations (1) and (3) to obtain the discretization
of the MCF

ϕt+h = ϕt + hLt ϕt.

Note that the matrix Lt change each time. If we evaluate the
Laplacian ∆ϕ at the next time step (t + h) instead of the
current time t we obtain the implicit Euler integration

ϕt+h = ϕt + hLt+h ϕt+h,

The implicit MCF is more stable to be computed: we can
increase the time step h. On the other hand in the implicit
case we have to solve a linear system at each step, while
in the explicit formulation we have a matrix-vector product.
Another formulation of MCF, the one we use, is the semi-
implicit formula [3]

ϕt+h = ϕt + hLt ϕt+h

We can write the above equation as

(D−1t − hMt)ϕt+h = D−1t ϕt

The work [3] suggests the following discrete formulation (5)
called Conformalized Mean Curvature Flow (cMCF) to avoid
singularities, where the matrix M0 is fixed, and only the
matrix Dt is updated at each time.

(D−1t − hM0)ϕt+h = D−1t ϕt (5)

With some evidences in [3] we can conjecture that the cMCF
has a stable convergence for genus-zero meshes and converges
to a conformal parametrization of the surface onto sphere.

III. IMPLEMENTATION OF THE CONFORMALIZED MEAN
CURVATURE FLOW

We now analyze an implementation in MATLAB of the
Conformalized Mean Curvature Flow (5). The algorithm is
available in the toolbox [17] for Geometry Processing in
MATLAB. In this section we explain the general structure
of the algorithm and show some results. For a more complete
analysis of the cMCF and comparison with others flows see
[3] and [18].

A triangle mesh in MATLAB is represented by two matrices
V of vertex positions and F of the triangle indices (form the
faces). We provide these two matrices in the cMCF function
and it returns two matrices U , with new vertex positions, and
Usteps with the vertex positions at each time step obtained
solving (5). Some adjustment are available such as change of
the time step h and the number of maximum iterations. The
default cell is Barycentric but the Voronoi is also available.

The program stops when the surface converge to a sphere
or exceeds the maximum number of iterations. We evolve the
surface in Figure 2 to remove self-intersections. The algorithm
has the option to run until we have a self-intersection free
surface. In Figure 7 we show the evolution of a surface with
genus 1 and h=0.017 that converges in 89 iterations. See that
the most expressive changes occur before the time step 25.

Fig. 7. The evolution of a surface using cMCF. The respective time steps are
1,2,5,25 and 89, when it converged. Image generated using MATLAB.

IV. CONCLUSION

This work describes and apply the Mean Curvature Flow
and show some applications in Geometry Processing. We
approached the continuous and discrete cases and discussed
an implementation in MATLAB. This flow has a couple of
discrete variations to achieve some properties.

The most expressive variation of MCF presented is the
Conformalized Mean Curvature Flow that avoid singularities
in non-convex regions and is conjectured to converge to
conformal parametrization onto the sphere. It is an efficient
flow that can reduce noise and remove auto-intersections.
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