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In this work, we propose a framework that performs a number of popular image-processing operations
in the continuous domain. This is in contrast to the standard practice of defining them as operations
over discrete sequences of sampled values. The guiding principle is that, in order to prevent aliasing,
non-linear image-processing operations should ideally be performed prior to prefiltering and sampling.
This is of course impractical, as we may not have access to the continuous input. Even so, we show that
it is best to apply image-processing operations over the continuous reconstruction of the input. This
transformed continuous representation is then prefiltered and sampled to produce the output. The use
of high-quality reconstruction strategies brings this alternative much closer to the ideal than directly
operating over discrete values. We illustrate the advantages of our framework with several popular
effects. In each case, we demonstrate the quality difference between continuous image-processing,
their discrete counterparts and previous anti-aliasing alternatives. Finally, our GPU implementation
shows that current graphics hardware has enough computational power to perform continuous image
processing in real-time.
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1. Introduction

Figure 1a shows an input image to which we want to apply an image-processing operation.
Directly applying the operation to discrete samples can lead to objectionable artifacts, such
as jagged-edges, that are clearly visible in figure 1b. Although the ideal solution to this
problem would require access to the continuous scene from which the image was produced
(see figure 1c for an approximation), figure 1d shows that our method can produce results
that are closer to the ideal, even though it uses the same amount of information as the
discrete method.

The generation of a properly antialiased image—be it captured by a real camera or
synthesized by computer—is akin to evaluating a convolution integral between a function f
(i.e., the scene), and a prefilter kernel ξ (i.e., a low-pass filter), at uniformly spaced positions.
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Input Discrete processing Ideal Our method

(a) (b) (c) (d)

Figure 1. A continuous function f (a scene) is prefiltered and sampled, resulting in an image shown in (a), on
which we wish to apply, for example, a threholding operation T . (b) When the transformation is applied directly to
image samples, aliasing artifacts are visible. (c) Ideally, we should have prefiltered T (f), but the continuous f
may no longer be available. (d) Continuous image-processing reduces artifacts by first reconstructing the image,
then transforming it in the continuous domain, before finally prefiltering the result to generate the output.

Working in 1D for simplicity, this process generates a discrete image with the following
entries:

i[k] = (f ∗ ξ)(k) =
∫ ∞
−∞

f(x)ξ(x− k) dx, k ∈ Z. (1)

This is how the input image in figure 1a was generated.
Image reconstruction happens naturally when images are reproduced in computer

monitors or printed on paper, and we often need to reconstruct them for further processing
by computer. Whichever the case may be, the process can be modeled by mixed convolution
between the samples and a continuous reconstruction kernel ϕ:

f̃(x) = (i ∗ ϕ)(x) def
=
∑
k∈Z

i[k]ϕ(x− k). (2)

It is important to select prefilter ξ carefully in order to minimize pre- and post-aliasing in
the results of reconstruction with ϕ.

Unfortunately, since the discrete representation is so convenient to manipulate, a large
number of image processing operations have traditionally been defined to operate directly
over it. For example, a typical thresholding operation may be defined as:

(Ta,b(i))[k] = ta,b(i[k]), k ∈ Z, where (3)

ta,b(x) =

{
0, x < a or x > b,

1, otherwise.
(4)

Convenience aside, this definition does not correspond to the image formation model
described by (1). This is not a technicality: the transformation breaks the “contract” between
the prefilter ξ and the reconstruction kernel ϕ, so that the reconstruction of the samples
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in Ta,b(i) with ϕ exhibits a number of post-aliasing artifacts. This is the source of the
jagged-edges in figure 1b.

To produce antialiased results, the thresholding operation should instead be applied to
the original continuous f, prior to prefiltering and sampling:

ti[k] =

∫ ∞
−∞

(ta,b ◦ f)(x)ψ(x− k) dx, k ∈ Z. (5)

This formulation matches equation (1) perfectly, and consequently produces the ideal results
shown in figure 1c. (We allow for a different prefilter ψ since we may not have access to the
original prefilter ξ.)

There are two difficulties in realizing this ideal formulation. One is that we may not have
access to the continuous f, i.e., when presented with a digital image captured by camera, or
previously rendered by computer. The other is that formulating the desired image-processing
operation in the continuous domain may not be a trivial matter. This is the case of gradient
domain operations, for example.

In this work, we address the first problem by reconstructing f̃ from the image samples
in i prior to image processing. Except in extreme conditions, the approximations produced
by modern reconstruction strategies1,2,3,4,5 capture the essence of the continuous f so well
that the most objectionable artifacts are gone. The second problem, that of reformulating
standard image-processing operations to the continuous domain, is addressed in a case-by-
case basis.

We believe that our real-time realization of this continuous image processing framework
will encourage practitioners that seek high-quality results to think of their algorithms directly
on the continuous domain, instead of adotping the discrete framework. Making an analogy
with numerical solution of differential equations, the higher accuracy and flexibility of
finite elements makes it more useful than finite differences. This is likely to be the case
of continuos image processing versus discrete image processing and we are taking a step
towards this direction with our paper.

The remaining text is outlined as follows. Section 2 discusses related work. In section 3
we present the method and analyze different possibilities for reconstruction strategies,
prefilters and sampling patterns. Continuous image processing operations are described in
section 4. Details of our real-time implementation are presented in section 5, and finally
results and comparisons appear in section 6.

2. Related Work

The work most related to ours can be categorized according to the amount and type of
information that is assumed to be available for image processing. As a general rule, the
more information used, the higher the quality of results. Our method fits nicely into an
underexplored niche, as can be seen from the discussion that follows.

Complete access to the input function f and operator T : In this ideal scenario, both the
input function f and the image-processing operator T are available in the continuous domain.
The rendering task simply samples the convolution T (f) ∗ψ between the transformed input
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Figure 2. Comparison between our method and approaches that try to correct artifacts that appear in figure 1(b)
(post-processing). All such methods can become confused when edges are too close together. Our method robustly
handles such cases.

and the prefilter kernel at each pixel, as if rendering from the function g = T (f). This
method can be simulated when rendering from procedural scenes, or when the input image
is available at much higher resolution than the desired output resolution (e.g., the ideal
result in figure 1c).

Access to the sampled image i and operator T : In our work, we assume the continuous
input f is unavailable. We are left with input values sampled at the same resolution as the
desired output. From this, we reconstruct a high-quality approximation f̃ to the continuous
input f . Since we assume access to the continuous operator T , we sample the convolution
integral T (f̃ )∗ψ between the continuous transformed reconstruction and the prefilter kernel
at each pixel.

Access to the sampled image i and sampled processed image T (i): The assumption in
antialiasing recovery6 is that the operator T has been lost as well. Only the original sampled
input i and the transformed sampled input T (i) are available. The goal is to find a sampled
output with the overall aspect of the transformed sampled input, but with edges that are as
nicely antialiased as those in the sampled input.

One of the main advantages is that antialiasing recovery is agnostic to the non-linear
effect in T , whereas our method requires a continuous definition of the same effect. This is
not always easy to formulate. The other main advantage is speed. Note, however, that this
tells more about the simplicity of their method than about the complexity of ours, which
also runs in real-time. Additionally, our method excels in a number of scenarios where
antialiasing recovery fails (see figure 2a). First, antialiasing recovery assumes a pixel-to-
pixel correspondences between the original and transformed inputs. This imposes a difficulty
if there is any kind of warp in the transformation. Second, it employs edge detection to select
the pixels for recovery. This detection can become confused when edges are close to each
other. Third, it assumes that edge pixels can be modeled as a linear combination of the two
colors across the edge. This assumption breaks down at corners and other high-frequency
regions.
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Access only to the sampled processed image T (i): This scenario is treated by a series
of algorithms collectively known as post-processing antialiasing7,8,9. These assume that
not even the sampled input is available anymore. Only the sampled transformed input
remains. Such methods have recently received much attention from the real-time rendering
community for their ability to virtually eliminate the jagged edges associated to point-
sampling. Besides bringing performance and quality improvements to older hardware (i.e.,
gaming consoles), post-processing is the only practical antialiasing alternative for deferred-
shading effects. (Both AMD and NVIDIA now offer these solutions.) Nevertheless, results
show that the restricted amount of input available to these methods prevents them from
matching the quality of our method (see figures 2b,c).

Reconstruction and prefiltering strategies: The naı̈ve threholding operation described
by (4) can be interpreted within our framework as first reconstructing the input f̃ with a
box kernel, and then using the same kernel as a prefilter. Although the box kernel is not a
particularly good prefilter, it is not responsible for the artifacts visible in figure 1b. These
artifacts are instead associated to box reconstruction.

High-quality reconstruction is therefore fundamental to our work. Here we benefit
from recent progress on different fronts. In particular, contributions from approximation
theory have guided the field toward increased approximation order (for quality), and narrow
support (for reconstruction efficiency).2 Most recently, Sacht and Nehab5 showed that
approximation order is not the key criterium for approximation quality in image-processing
and minimized the approximation error over the full Nyquist range. Their experiments
showed improved reconstruction quality over all previous methods that fit into the sampling
and reconstruction pipeline. In our work, we make a series of experiments in section 3.1
that corroborate the higher quality of their quasi-interpolators in our context. To implement
them, we first transform the input image with the associated digital recursive filter during a
preprocessing step. The resulting “image” is then reconstructed as usual, with the narrowly-
supported continuous kernel. Both these operations can be efficiently performed on modern
GPUs. For the digital filtering stage, we use the parallel recursive filter algorithm of Nehab
et al.10

Although there is significant freedom in the choice of prefilter, we favor the B-spline
family. In particular, we follow the suggestion of McCool11 and Nehab and Hoppe12 to
prefilter with fundamental splines (a.k.a. cardinal splines). These are efficient to evaluate
and produce high quality results (see section 3.2 for comparisons to other alternatives).
The same factorization applies: the integration is performed against the basic B-Spline
continuous kernel, after which the result undergoes a postprocessing stage that applies the
associated digital filter.

3. Method and choices

The continuous image processing operations described in the next section can be all per-
formed by following the same steps. Given an input sampled image i, a reconstruction
kernel ϕ with associated digital filter r, an image processing operator T , and a prefilter ψ
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with associated digital filter p, we perform the following steps:

(1) Preprocess the input sampled image with the reconstruction digital filter:

c = i ∗ r. (6)

In the case when the digital filter r has finite impulse response (FIR) this computa-
tion corresponds to a discrete convolution. When it is the inverse of a FIR filter,
the result of equation (6) is obtained by solving a linear system.

(2) Prefilter the transformed reconstruction:

dk = (T (f̃) ∗ ψ)(k). (7)

I.e., entry dk of the vector d is given by the integral:

dk =

∫ ∞
-∞

(
T (f̃)

)
(x)ψ(x− k) dx, (8)

where the reconstructed input is given by

f̃(x) = c ∗ ϕ def
=
∑
k∈Z

ck ϕ(x− k). (9)

(3) Postprocess with the prefilter digital-filter to obtain the output:

ti = d ∗ p. (10)

As in equation (6), this computation depends on the type of the digital filter p.

Since the integral in (8) can rarely be computed in closed form, we use Monte-Carlo
integration (i.e., supersampling) to compute the value of each dk in all our experiments.

Different choices of reconstruction kernel ϕ, prefilter ψ and sampling pattern to approx-
imate (8) lead to different results ti in (10). We now analyze these different choices and
select the best options. Implementation details are provided in Section 5.

3.1. Reconstruction

The choice of the reconstruction kernel ϕ is the one that has the greatest impact on the
quality of the output image. The literature on interpolators for image-processing has evolved
a lot in the last decades and offers a huge variety of possibilities for the reconstruction
kernel ϕ: B-splines13, Windowed-sinc approximations14, MOMS2, quasi-interpolators3,4,5

and the kernels proposed by Keys15, Mitchell and Netravali16, Schaum17 and Dodgson18.
We compare all these possibilities with an experiment. First, a ground-truth result is

generated from a high-resolution input in the follwing manner: starting from an image I

sampled at a very high resolution (4× to 8× denser than the final output over each dimen-
sion), we reconstruct it with the best kernels in the literature2,3,5 to obtain a reconstruction
F̃ . At this point, the choice of the kernel does not make much difference, since the best
ones generate a reconstruction F̃ very close to the continuous scene. We then sample the
convolution between T (F̃ ) and a prefilter ξ at a lower resolution just as in (8), using a dense
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Ground truth Reconstruction with Hat Reconstruction with
cubic by Keys 15

Reconstruction with
cubic by Sacht and Nehab 5

(a) SSIM = 1.0 (b) SSIM = 0.968 (c) SSIM = 0.977 (d) SSIM = 0.981

Figure 3. The choice of the generator ϕ in our method affects the quality of the final result, as shown in this
unsharp masking example. Subpixel oscilations in (a) are more faithfully reproduced by high-quality interpolators
such as in (d), as corroborated by the SSIM values (the higher the better).

sampling pattern to approximate the integral. This result is post-processed by the digital
filter p in equation (10) to generate the output G. This process was used to generate the
ideal result in Figure 1c.

We then generate a low resolution discrete image i in the same way, with the only
difference of replacing the operator T by identity, to be the input for our method. This
low resolution image i is processed by equations (6) to (10) to generate the output g = ti,
using the different possibilities for the reconstruction kernel ϕ. The prefilter ψ and the
sampling pattern are the same used to generate the output discrete images G and i. Finally,
we compare g to the ground-truth G using the SSIM metric19.

Figure 3 shows the result of this experiment for the unsharp masking (sharpening)
operation, defining the prefilter ξ to be the cardinal cubic B-spline for all images. While
subpixel details are lost by lower quality interpolators—see linear reconstruction (b), and
the widely used cubic by Keys15 (c)—the best ones in the literature5 are able to reconstruct
more details. This is corroborated by the SSIM results comparing the output images to the
ground truth.

We repeated the experiment above for five different high-resolution images, using
five different image-processing operations (thresholding, contrast and brightness change,
quantization,unsharp masking and embossing). We favored highly non-linear operations to
test the robustness of the different reconstruction kernels ϕ. We also tested five different
prefilters ξ varying from smooth to sharp: quintic B-spline, cubic B-Spline, hat, cardinal
cubic B-Spline and cardinal quintic B-spline. The goal is investigating different settings
that could appear in real scenes, for which we have no control over the prefilter.

Averaging the SSIM values over all these tests revealed that the best results are achieved
setting the reconstruction kernel ϕ to be the cubic quasi-interpolator proposed by Sacht and
Nehab5, and we adopt it as the default of our method. Higher speed and good quality can be
achieved with the linear quasi-interpolator proposed by Sacht and Nehab5 and the cardinal
version of the linear interpolator proposed by Blu et al.20
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Prefiltering with cubic
cardinal B-spline 11

Prefiltering with kernel
proposed by Mitchell and

Netravali 16

Figure 4. Different choices of prefilter ψ lead to different results, as illustrated in this quantization example. For
sharper results (with mild ringing) we recommend to prefilter with cubic cardinal B-splines (left). The user that
prefers smoother results can opt for prefiltering with the kernel proposed by Mitchell and Netravali (right).

We opted for a practical experiment rather than a theoretical argumentation for two
reasons: first, in the real setting, we do not have control over the prefilter ξ used to generate
the discrete input i in equation (1). Second, even if we did know the prefilter ξ, the literature
is focused on producing a high quality approximation f̃ for the original function f , and
this does not guarantee that T (f̃) will be a good approximation for T (f). Nonetheless, our
experiments show that T (f̃) is, in fact, closer to T (f) than the results obtained by other
methods.

3.2. Prefiltering

The fact that we do not know the original prefilter ξ makes it impossible to replicate the
image generation process employed to obtain the input image. On the other hand, we
can make different choices to fulfill different goals, such as balance between ringing and
aliasing.

We give the user the possibility of choosing between two prefilters: cardinal cubic
B-splines (as suggested by McCool11) and the kernel proposed by Mitchell and Netravali16.
Both have a good balance between efficiency and quality. As shown in figure 4, the former
produces sharper results, at the cost of mild ringing, and the latter produces blurrier results
with no visible ringing. Both results were generated using the reconstruction method defined
in the previous subsection and sampling pattern chosen in the next one. We set as default
prefilter in our method the cardinal cubic B-spline.

3.3. Sampling pattern

To approximate the integral in (8), we tested different sampling patterns with varying
densities inside a pixel region. Fixing the reconstruction kernel and prefilter as the ones
obtained in sections 3.1 and 3.2, we generated results in a low resolution changing the
sampling patterns and compared to a ground truth image, generated with a much higher
resolution.
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Figure 5. Quantization.
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Figure 6. Laplacian.

The distribution of samples tested were: regularly distributed, uniformly distributed,
stratified sampling, blue noise21, and two jittered sampling strategies proposed by Halton22

and Kensler23. For each of these patterns, we obtained results with 4, 8, 16, 32, 64, 128 and
256 samples per pixel.

As expected, the worst results were obtained by regular and uniform sampling. In some
cases, stratified sampling needed more samples to achieve the same quality of the best
patterns, which were blue noise21, and the ones proposed by Halton22 and23. These three
strategies produced results with equal SSIM up to the fourth decimal and visually identical.
We also observed small increase of quality varying the number of samples per pixel from 4
to 32, and no difference from 32 to 256 samples. Thus, we define as default of our method
blue noise sampling with 32 samples per pixel.

4. Image processing operations

We now describe basic transformation categories. The classification serves an organization
purpose only: complex image-processing operations will in general combine many of these
categories.

4.1. Pointwise operations

Pointwise operations modify the value of the input at a single point:

T : f −→ g ◦ f. (11)

Dozens of common image processing operations are pointwise in this sense. Examples in-
clude typical image adjustment tools that modify brightness and contrast, hue and saturation,
levels and curves, gamma, white balance etc. The category also encompasses less common
effects, such as posterization, thresholding, color replacement, histogram equalization, and
many others.
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Pointwise operations can be highly non-linear (discontinuous, even) and significantly
change the frequency content of the input. It is in such cases that the advantages of our
method are most clearly visible: the prefiltering stage prevents aliasing artifacts from
appearing in the results. See section 6 for the results of pointwise operations rendered with
our method.

4.2. Warping operations

Warping operations modify where the input is evaluated:

T : f −→ f ◦ g. (12)

The obvious examples are projective transformations that encompass scaling, rotation,
translation, as well as perspective warps. Image editing programs often provide creative
warps in a variety of distortion filters. Warps are also very common in rendering tasks that
project texture-mapped geometry to the screen.

Many techniques have been designed to enable efficient prefiltered access to warped
functions, most notably mipmaps24 and its many anisotropic variants. In a sense, these
methods are shortcuts for the computation of the integral (8). Therefore, they are all
applicable to our framework as long as the image-processing operation does not involve
a significant non-linear function value transformation. Otherwise, we simply resort to
supersampling.

We emphasize that the idea of continuos processing applied to warpings has been long
discussed, such as in the book by Wolberg25. Our contribution is to fit it into a more general
image processing framework and to show that it can produce high quality results in real-time
(see sections 5 and 6).

4.3. Integral operations

Integral operations involve entire neighborhoods of function values. The quintessential
example of integral operation is the convolution. However, in order to capture a wider range
of operations, we include a normalization term:

T : f −→
∫∞
−∞ g

(
f(t− ·)

)
dt∫∞

−∞ w
(
f(t− ·)

)
dt

(13)

The most popular integral operator is the Gaussian blur. Since this is a low-pass filter, there
is no benefit from continuous image processing. Nevertheless, Gaussian blur is often used
as a component of more sophisticated techniques that do benefit from our work.

One example is unsharp masking. Here, we lose nothing in quality when computing the
Gaussian blur in the discrete domain. However, the remaining operations are non-linear and
must be performed in the continuous domain. Fortunately, these are all pointwise operations
and therefore we do not face any performance impact. The same is true for the embossing
effect.

An example where this optimization does not apply is the bilateral filter 26, which
often produces jagged-edges characteristic of non-linear image processing. The brute-force
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Figure 7. Unsharp masking.

Discrete

Our method

AArec 6 MLAA 7 FXAA 8

Figure 8. Brightness and contrast.

approach is to nest the integral operator with the convolution integral in (8), leading to a
double integral. Although this is significantly more expensive to compute than other effects,
our implementation can still run interactively.

Naturally, not all non-linear neighborhood operations can be expressed as in (13). A
popular example that is particularly challenging to define in the continuous domain is the
median filter. This is an interesting area for future research.

4.4. Derivatives

In the continuos setting, derivatives (of any order) can be seen as pointwise operations
instead of neighborhood ones. We calculate derivatives by taking the derivatives of the
reconstruction in (9), which is equivalent to recontructing with the derivative of the gen-
erator ϕ. This requires the generator to be differentiable, which is not the case for the one
proposed by Sacht and Nehab5.

Thus, for operations such as edge detection and Laplacian sharpening (figures 6 and 11),
we replace ϕ to be the interpolating cubic B-spline, which is twice differentiable, and
reconstruct with its derivative. We refer the reader to the work by Nehab and Hoppe12 for
details about the approximation properties of this approach.

5. Implementation details

A few details that make our implementation very efficient are worth mentioning. Among
them is our approach to evaluating the convolution integrals in (8). It scales to any number
of samples per unit area, since the amount of memory required depends only on the prefilter
kernel support. The input function is evaluated only once per sample, which is important
since input function evaluation can be arbitrarily costly. Yet, each evaluated function value
contributes to all neighboring pixels whose kernels overlap with the sample, which is
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Figure 9. Integration scheme. The 2× 2 support of prefilter kernels centered at each of pixels A, B, C, and D
overlap the same unit area η. In the first phase, we loop over these unit areas, evaluate the function at each sample
position in the area, and accumulate a weighted sum for each of the 2 × 2 kernels overlapping the area. In the
second phase, we loop over the pixels, gathering the corresponding partial sums from each unit area its kernel
overlaps.

important for variance reduction. Finally, it is massively parallel, with no read- or write-
hazards.

Without loss of generality, figure 9 illustrates the integration process with a prefilter
kernel of support 2 × 2 (e.g. the hat kernel). In this case, every unit area is covered by
exactly 2× 2 neighboring kernels. In the figure, unit area η is covered by kernels centered at
pixels A, B, C, and D. We split integration into two stages. In the first stage, we loop over
unit areas. Each unit area keeps one partial sum for each of the 2× 2 kernels that overlap
with it. For each sample in the area, we evaluate the function once, and then for each partial
sum we compute the appropriate kernel value and accumulate its product with the sampled
function value. When the partial sums in every unit area are finished computing, we start
the second stage. Here, we loop over the output pixels. For each pixel, we simply gather the
partial sums from the 2× 2 unit areas its kernel overlaps and add them together to produce
the final pixel value. In the first stage, all unit areas are independent. In the second stage, all
pixels are independent. The process is therefore embarrassingly parallel. As discussed in
subsections 3.2 and 3.3, we use the 4× 4 cubic B-spline prefilter and blue-noise patterns21.
This technique allows us to quickly compute all required convolution integrals.

Pre and post-digital filtering in equations (6) and (10) are efficiently performed using
the method of Nehab et al.10 We also leverage the GPU’s bilinear filtering hardware during
reconstruction (9), as per Sigg and Hadwiger27 and Ruijters et al.28

6. Results

Figures 5, 6, 7, 8, 10, and 11 compare the quality of the methods discussed in section 2,
on different images and under different transformations. These results are all available in
supplemental material for easier comparison. Although we believe the results speak for
themselves, some comments are warranted.

Naturally, the shortcomings of any image-processing operation become the most evident
when “strong” effects are applied. Results in figures 8 and 11 show that, even in those cases,



May 3, 2018

Real-time continuous image processing 13

Discrete

Our method

AArec 6 MLAA 7 FXAA 8

Figure 10. Embossing.
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Figure 11. Excessive sharpening.

0

5

10

15

20

25

30

35

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

P
re

p
ro

ce
ss

in
g 

+
 R

un
tim

e 
(m

s)

Samples per unit pixel area
SharpeningLaplacianEmbossBrightnessUnsharpThresholding

Figure 12. Timings for six different effects, running on 1920×1080 (full HD) input images. These effects run
in real-time with up to 64 samples per unit area on a GeForce TITAN X (Pascal). This is more than enough for
excellent quality. “Thresholding” is the effect in figure 1, unsharp in figure 7, “brightness” (& contrast) in 8,
“emboss” in 10, “laplacian” in 6, and “sharpening” is the effect in figure 11.

our method robustly prevents objectionable artifacts from appearing in the output images.
All examples show that our method is better at dealing with small features. This is because
we do not rely on the edge-detection stage used by the other methods. This is particularly
evident in figures 5 and 6. Finally, our method prevents the appearance of jagged edges
throughout all tests, without undoing the work of the image-processing operation. This is
most visible in figures 7 and 10. These operations enhance edges by design, and methods
that attempt to attenuate these edges end up destroying them along with other relevant fine
detail.
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Original horizon Posterized horizon

Figure 13. Warp combined with the posterization effect.

The graph in figure 12 shows performance numbers for our GPU implementation. These
numbers refer to the processing of 1920×1080 images. (Our method scales linearly with the
number of output pixels.) For each effect, preprocessing time is shown in the bottom (e.g.,
digital filtering or blurring of input images), while interaction times are shown above them
(i.e., time taken to provide feedback to a user changing a slider). Although in section 3.3
we defined the defalut resolution of the sampling pattern as 32 samples per pixel, we show
peformance numbers up to 64 samples per pixel for completeness. At these rates, our
implementation running on a GeForce TITAN X (Pascal) can provide users with real-time
feedback (at least 30 frames per second) for all effects in figure 12.

Finally, figure 13 shows a continuous image processing example involving spatial warp.
We show an infinite plane in perspective, where we have tiled copies of an image that
was subjected to posterization with 3 levels. This is a trivial application that presents no
problems to the image-processing pipeline we propose.

7. Conclusions

In this paper, we identified the common practice of performing image-processing operations
in the discrete domain as a potential source of undesirable artifacts. Instead, our continuous
image processing approach reformulates image-processing operations in the continuous
domain, and apply them over the continuous reconstruction of the input. This transformed
continuous representation is then prefiltered and sampled as if in a rendering system.
Continuous image processing increases the creative power of artists by making image-
processing tasks more robust to extreme settings.
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