
Computers & Graphics (2022)

Contents lists available at ScienceDirect

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Structure-aware bottle cap art

Leonardo Sacht

A R T I C L E I N F O

Article history:

Keywords: Bottle cap art, Structural sim-
ilarity, Image discretization

A B S T R A C T
We propose a new image processing problem that consists in approximating an input
image with a set of plastic bottle caps. This problem is motivated by the appreciation
caused by low resolution imaging, combined with the goal of finding a new destination
for plastic caps that would be discarded and possibly damage the environment. Our
solution consists in formulating an energy that measures how well a bottle cap art re-
produces structures and features from the reference image and maximizing it with a
simulated annealing strategy. Examples in the paper show that our method produces
high quality results in this very low spatial and color resolution setting.

c© 2022 Elsevier B.V. All rights reserved.

1. Introduction
Low resolution images such as pixel art are highly appreci-

ated by the large public. Examples include outdoor sculptures
such as the Digital Orca at the Vancouver Convention Centre,
indoor pixel art containing famous video game and movie char-
acters, and stylized icons displayed on computer and cell phone
screens. Although their use emerged in the context of low tech-
nological resources some decades ago, low resolution images
are now seen as a way to represent the most important informa-
tion of a scene in a minimalistic and pleasant way.

To the best of our knowledge, this paper is the first to inves-
tigate a new form of generating images with very low color and
spatial resolution: it tackles the problem of arranging plastic
bottle caps on a rectangular canvas to approximate a given in-
put image. Instead of using resources that are harmful to the
environment such as energy, inks, or pieces made-up for large
mosaics, our image generation process is constrained to arrange
plastic bottle caps that could otherwise be inappropriately dis-
carded and cause environmental damage, such as the death of
sea animals that ingest them [1, 2].

Despite existing initiatives to re-use bottle caps to make art,
these usually demand skilled artists, hundreds of thousands
of caps, and large spaces (on the scale of meters) to arrange
them [3]. This paper proposes a fully automatic method to gen-
erate bottle cap arts such that physically assembling them is
possible for inexperienced users. Moreover, most of the results
in this paper have a scale of one meter and use caps in a num-

ber that can be gathered by a single person or a small group of
people.

Figure 1 summarizes our method. The input for the method
is an image, a set of bottle caps with specific colors and quan-
tities (a), and the desired number of caps in the horizontal ex-
tent (32 in this example) which determines the size (101 cm
wide, 73 cm high in this example) of the final bottle cap art (c).
The first step maps the input image to the given spatial resolu-
tion (b), disregarding cap color constraints. This intermediate
full palette discretized image is used as the reference to calcu-
late the most similar bottle cap art that satisfies the given con-
straints. This similarity is measured by an adaptation of the
Structural Similarity (SSIM) metric [4] and the optimal plac-
ing of the caps is obtained using the simulated annealing strat-
egy [5]. After the optimization, the user is given a set of in-
structions to physically assemble the result (c), which contains
only caps that were given as input. In other words, our method
works with the resources that are available and does not require
the user to collect or produce additional caps.

The contributions of our paper are the following:
• A new image processing problem: given an input image

and a set of colored disks of fixed size (the bottle caps),
arrange them on a rectangular region to approximate the
input image.

• A solution for this problem: a metric to assess the similar-
ity between the desired bottle cap art and a reference image
and an optimization procedure to maximize this similarity.

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag

2 Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022)

1191
580
414
360
337
234
195
110
90
73
(a) Given bottle caps and input image (b) Spatial discretization (c) Output bottle cap art

Fig. 1. The user provides an input image and a set of plastic bottle caps (a). Our method first calculates a full palette bottle cap image (b) to then optimize
the placements of the caps and obtain a result (c) that is as similar as possible to (b), while using only the caps given in (a). Input is a cropped version of an
image by Christopher Gabbard obtained from flickr.com under CC BY-SA 2.0.

2. Related work

The problem of depicting images with limited spatial or color
resolution has a long history in computer graphics. This prob-
lem was originally approached in the context of hardware limi-
tations and then evolved to exploring the representation benefits
and artistic values of image abstraction [6, 7, 8].

The most familiar problem in this category is color quanti-
zation, which involves approximating a full-color image with
a smaller palette. It was largely explored in the 1980s and
1990s [9, 10, 11] when computer displays and data storage were
very limited. Most of those quantization techniques required
the final result to have at most a given number of levels, with-
out specifying what the final levels should be. Despite we do
perform quantization by reducing the number of colors in the
image, our problem is more limited since the final color lev-
els are given. Additionally, color quantization techniques did
not require decreasing spatial resolution, which is also an extra
difficulty in our problem and prohibits the use of dithering.

Mostly motivated by (2D) printing limitations, the problem
of depicting images with very few colors (in many cases, only
black and white) led to dithering and other halftoning tech-
niques [12, 13, 14, 15, 16, 17, 18, 19]. Although this prob-
lem is usually more limited than ours with respect to the final
palette, these techniques used the full spatial resolution of the
input image to add randomness to color values, an idea that is
not possible in our context due to the much more limited spatial
resolution our outputs must have.

ASCII art [20, 21] was primarily motivated by the limited
possibilities of image generation in the 1980s. This technique
displays black ASCII characters over a white background to ap-
proximate images. It is related to our problem, since it uses a
small number of given shapes and a single color, while ours
uses a single shape (disk) and a small number of colors.

More recently, color limitation was explored to generate non-
photorealistic approximations of images [22, 23]. For example,
Artistic Thresholding [22] gave users the possibility to tune pa-
rameters to obtain varying effects in black and white output im-
ages. Although the authors dealt with spatial limitations, such
issues were not as severe as in our case.

Pixel art generation [24, 25, 26] is a problem close to ours
in the sense that it determines images with both very limited

spatial and color resolutions. In contrast to our problem, only
the number of output color levels is given, instead of the levels
themselves, and in most cases, pixel arts have higher spatial res-
olutions. A more detailed discussion comparing our method to
pixel art is provided in Section 6.1 and Figure 14. The method
proposed in [27] physically assembles pixel art with LEGO
bricks and considers the additional constraint of a given palette,
but does not impose a limitation on the number of bricks of
each color. In contrast, our method considers the limitation on
the number of caps of each color. Image downscaling [28, 29]
is another related problem, but it does not correspond with the
color limitations that we have.

Bottle cap art calculation can be thought of as segmenting an
image into regions to fill each resulting region with caps of a
single color. Graphcut strategies [30, 31] could be considered
in this context, but we found that it is very difficult in practice to
tune their parameters to achieve good results for our problem.
The user-assisted (more precise) option [32] is out of the scope
of this research since we want bottle cap art calculation to be
fully automatic. An intermediate strategy that we follow in this
paper is to segment the input image into a larger number of seg-
ments that correspond to bottle cap regions using an adaptation
of SLIC superpixels [33] (see Figure 1 (b) for an example and
Section 4.1 for details). The resulting segmentation defines a
discretized version of the input image that is used as reference
to Structural Similarity (SSIM) metric optimization. SSIM [4]
has been used for image downscaling [28] and halftoning [18]
but, as previously emphasized, our problem involves a much
more constrained setting.

Finally, some papers in computer graphics have proposed
methodologies that took into consideration environmental im-
pact. These include saving plastic in 3D printing [34, 35, 36]
and energy in imaging and rendering [37, 38, 39]. The graphics
problem we propose is different in the sense that it is based on
environmental impact from its conception, instead of decreas-
ing the impact caused by largely disseminated high resource-
consuming technologies.

3. Problem setup

We illustrate our problem statement in Figure 2 (a,b): given
a set of bottle caps specified by their colors and quantities, the

Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022) 3

195
414
360

90
1191

110
337

73
234
580

(a) Input image and available caps (b) Bottle cap grid (c) Computer-generated
bottle cap art

(d) Physically assembled
bottle cap art

Fig. 2. Our goal is to approximate the input image by placing a selection of the available caps (a) over a rectangular canvas. We choose to arrange the caps
on a hexagonal-like lattice called bottle cap grid (b) since it has very small spaces between the caps through which the background is visible and makes the
final result (d) simpler to assemble. The physical assembling is done following a result computed automatically by our method (c). Input image obtained
from whitehouse.gov under Public Domain.

goal is to arrange them over a rectangular canvas to approximate
a given input image as closely as possible.

Notice that, except for very simple cases, this is not an easy
task for a human: the number of possible arrangements is com-
binatorially high and the very low spatial and color resolutions
make it difficult to reproduce features from the image. For ex-
ample, starting from an empty canvas, it is not clear that the
man’s face in Figure 2 (a) occupies an area of approximately
400 caps. A person could try to fill it with orange caps and no-
tice along the way that they are not sufficient. Filling part of
it with the 110 available orange caps and the rest with another
color would lead to a non-existing seam in the final result. Giv-
ing up on the orange caps and starting it over with another color
would lead to a waste of time. In addition, the reproduction of
some features such as the cheeks and the chin of the man is very
difficult for a human in practice. An automatic solution for this
problem is then crucial to make it accessible to a large public.

A key choice in this problem is how to arrange the equal-
sized caps over the rectangular canvas. We would like the union
of the non-overlapping disks to cover the largest possible area of
the canvas for the result to have as much as possible of the cap
colors and as little as possible of the canvas color. This is an in-
stance of the circle packing problem, for which the hexagonal-
like lattice in Figure 2 (b) is optimal [40, 41]. This structure,
called in our paper bottle cap grid, has the additional advan-
tage of being easy for inexperienced users to assemble: after a
careful assembling of the bottom-most row of caps, all the other
rows are assembled by simply placing caps to be supported by
the two adjacent caps on the previous row.

The resolution of the bottle cap grid is defined by the number
of caps on the horizontal extent, which is provided by the user
in our method. The number of caps on the vertical extent is
automatically determined to obtain an aspect ratio as close as
possible to the one of the input image. Given that the standard
diameter of a plastic bottle cap is approximately 3.2 cm, these
horizontal and vertical resolutions determine the size of the final
result. For instance, the one in Figure 2 (d) has 24 caps on the
horizontal extent and is 76 cm wide by 101 cm high.

We suggest the use of wasted cardboard as the rectangular
canvas, over which the caps can be glued. Placing the caps
with their bottom upward (Figure 2 (d)) has the advantages of
hiding the beverage brands and being more easily glued to the
cardboard.

The RGB values of the caps and their quantities are provided
by the user as input to our method. The assumption of constant-
colored caps simplifies the problem but makes the results gener-
ated in the computer (Figure 2 (c)) slightly different from their
physical versions (Figure 2 (d)). Different lighting conditions
can also affect the perception of the physical results. Through-
out this paper, we will use the computer-generated results for
didactic purposes and the physically assembled ones for dis-
cussions about the final results.

4. Method

A naive approach to our problem would be to loop over the
bottle cap grid and assign to each cap region the cap color that is
the closest to the average color in the corresponding area of the
input image. Even if we ignore the limited number of caps of
each color and apply this approach to the image in Figure 3 (a),
we obtain a result (b) which clearly fails to reproduce the fea-
tures from the input image.

To avoid this problem, we could maximize the Structural
Similarity (SSIM, [4]) between the full resolution input image
and the desired bottle cap art. Although this solves the problem
of missing features, it leads to another problem that is illustrated
in Figure 4 (a): the resulting bottle cap art may have geometric
distortions due to trying to reproduce statistical measures from
the input image at a much coarser spatial resolution.

For these reasons, our approach consists in first calculating
a feature-preserving discretization of the input image over the
bottle cap grid (Section 4.1) and then running an optimization
to maximize the similarity between the final result and this dis-
cretized image (Sections 4.3 through 4.5). The former is illus-
trated in Figure 4 (b, left) and the latter in Figure 4 (b, right).
We adapt the SSIM index to our problem and augment it with

4 Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022)

(a) Input image and caps (b) Naive result

Fig. 3. Result of applying a naive approach, assuming no limitation on the
number of caps of each color.

1191 580 414 360 337 234 195 110 90 73

(a) (b)

Fig. 4. Maximizing the Structural Similarity with respect to the full resolu-
tion input image (a, left) leads to results with geometric distortions (a, right).
Our result (b, right) avoids this problem by using as reference for Structural
Similarity maximization a discretized version of the input image (b, left). In-
put available under Public Domain.

(a) α = 500 (too regular). (b) α = 50 (our choice). (c) α = 5 (too adaptive).

Fig. 5. Different choices of the compactness parameters α in the SLIC algorithm. α = 500 (a) produces cells (left) that are similar to the bottle cap grid
(right), but result in washed-out colors due to lack of adaptivity. On the other hand, α = 5 (c) adheres very well to the boundaries of the input image (left)
but produces high distortions when mapped to the bottle cap grid (right). We set the intermediate value α = 50 (b) as the standard in our method due to
its adaptivity and low distortion.

a penalty term to preserve regions that were constant in the ref-
erence (discretized) image. Details of these adaptations in the
SSIM metric are provided in Section 4.2.

4.1. Spatial discretization
To avoid missing important features from the input image we

must have all its pixels contributing to the result of this step. We
then segment it in a way that each region of the segmentation
corresponds to a bottle cap region and every pixel in the input
image belongs to one region. This can be achieved by defin-
ing each cap center to be a centroid of a Voronoi diagram that
partitions the input image: the pixels from the input image are
assigned to the region defined by the (spatially) closest centroid.
This results in a regular segmentation of the input image (Fig-
ure 5(a)) that is very close to the bottle cap grid. This regularity
has a problem though: the regions often contain very different
colors and averaging them to obtain the colors for each bottle
cap leads to a loss of features. This happens in Figure 5 (a), for
example, on the interface between the face of the man and the
collar of his shirt.

To obtain a segmentation that better adapts to image bound-
aries, Achanta et al. [33] propose a method called SLIC super-
pixels that uses a color-space distance to cluster pixels. This
method calculates centroids and pixel-to-region assignments
that minimize

D =

√
d2

c + α2

(
ds

S

)2

, (1)

where dc is a color distance, ds is a position distance, S is a nor-
malization factor, and α is a parameter that determines the rel-
ative importance between these two terms (please refer to [33]
for details).

We show results for different choices of the “compactness”
parameter α in Figure 5. For each result, we present the super-
pixel segmentation obtained minimizing (1) on the left (bound-
aries between superpixels are shown in yellow) and the corre-
sponding bottle cap image on the right, obtained by assigning
to each bottle cap region the average color of the pixels belong-
ing to its corresponding converged region. As expected, a lower
value for α leads to a more adaptive segmentation (c), but the
corresponding bottle cap image has a lot of distortions, caused
by the fact that final regions differ too much from the bottle cap
grid. On the other hand, a very high α leads to a segmentation
that is very similar to the bottle cap grid (a) but the result ends
up having washed-out colors. We then set α = 50 (b) for our
results, which is a tradeoff between adaptivity and closeness to
the bottle cap grid. For a discussion about the effect of α on the
final results of our method (after the optimization described in
Section 4.5 is applied), please see Section 6.2 and Figure 15.

4.2. Structure-aware metric

In the previous section, we calculated an approximation of
the input image over the bottle cap grid (Figure 5 (b), right), but
without considering the color limitations of the problem. In this
section, we are going to adapt the SSIM metric to work with two

Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022) 5

(a) (b)

Fig. 6. (a) bottle cap grid with a window highlighted in red. (b) window
and weights.

bottle cap images: the full palette one from the previous section
(represented by X) and a bottle cap image that satisfies the con-
straints of the problem (represented by Y). Value xi (resp. yi) is
the color of the i-th bottle cap region in X (resp. Y). For sim-
plicity, we suppose that xi and yi are real values that belong to
[0, 1] and the full-color version of the metric that we optimize
for will be just the average of the metric values calculated over
the R, G, and B channels separately.

The choice of using SSIM is based on the fact that the ap-
proximation obtained in the previous section preserves features
from the input image and so does SSIM optimization. By com-
paring statistical measures such as color mean and deviation in
sliding windows of the images, this metric will be able to cap-
ture the structure of the scene, which is highly desirable for
our very limited problem. Its values range on the [0, 1] inter-
val and MSSIM(X,Y) ≈ 1 means X and Y are very similar
and MSSIM(X,Y) ≈ 0 means they are very dissimilar, i.e., the
higher this value, the better. More precisely, the Mean Struc-
tural Similarity (MSSIM, originally proposed in [4]) is given
by

MSSIM(X,Y) =
1
M

M∑
j=1

SSIM(X j,Y j), (2)

where X j is a neighborhood of the j-th cap in X, Y j is a neigh-
borhood of the j-th cap in Y, and M is the number of win-
dows over which the (local) SSIM value is calculated. This
local value is given by

SSIM(X j,Y j) =
(2µxµy + γ1)(2σxy + γ2)

(µ2
x + µ2

y + γ1)(σ2
x + σ2

y + γ2)
, (3)

where

µx =

N∑
i=1

wixi (4)

is the weighted mean color value in the neighborhood X j (µy is
defined analogously),

σx =

 N∑
i=1

wi(xi − µx)


1
2

, (5)

is the weighted color deviation within X j (σy is defined analo-
gously) and

σxy =

N∑
i=1

wi(xi − µx)(yi − µy) (6)

1191 580 414 360 337 234 195 110 90 73

(a) Input image (b) Spatial discretization

(c) Result without penalty (d) Result with penalty

Fig. 7. Maximizing SSIM with respect to the discretized image (b) may
produce wrong colors (c) due to the limited palette (top). Adding a penalty
term to avoid variations in areas that are constant in (b) leads to a result (d)
without this problem. Input image (a) obtained from wikipedia.org under
Public Domain.

is the color correlation between the two neighborhoods. The
constants γ1 = (K1L)2 and γ2 = (K2L)2 are set as in the original
paper [4] for stability reasons: K1 = 0.01, K2 = 0.03 and L = 1.

All the ingredients to compute MSSIM (2) between two bot-
tle cap images described so far are identical to the original
MSSIM formulation [4]. The only change we make is in the
weights that define the statistical measures in (4, 5, 6). The
originally proposed 11 × 11 pixel window would be too small
for our problem since its area would cover less than one bottle
cap region and then would not capture variations in the bottle
cap images. For example, the diameter of each cap in Figure 2
is approximately 18 pixels. On the other hand, 11 × 11 cap
windows would cover almost half of the image and the metric
would miss its locality.

We opt for windows centered at bottle caps and containing
all caps in a 1-ring from the central one. Figure 6 illustrates a
typical window centered at a cap that is not on the boundary of
the bottle cap grid (boundary windows have fewer caps). These
neighborhoods can capture statistical measures around a bottle
cap since 7 caps cover a considerable portion of the bottle im-
ages. They are used for both the reference image X, which is
discretized over the bottle cap grid, and the bottle cap image Y.

The weight of a cap Ci around a central cap C is given by

wi =
1
S

e−
d(Ci ,C)

2r2 , (7)

where d(Ci,C) is the distance in pixels from the center of cap
Ci to the center of cap C, r is the radius of the caps in pixels
and S is a normalization factor to have the sum of the weights
equal to 1. For example, the application of this formula to the
example in Figure 2 leads to w1 ≈ 0.55, w2 ≈ 0.075, w3 ≈

0.075, w4 ≈ 0.075, w5 ≈ 0.075, w6 ≈ 0.075, w7 ≈ 0.075.
The optimization of MSSIM (2) subject to the limited palette

we have at our disposal may lead to unexpected results such as
the one in Figure 7 (c): an interface between two constant re-
gions contains a third color that appears with the goal of approx-
imating mean and standard deviation present in the full palette
spatial discretization (b). This happens because the exact colors

6 Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022)

1191 580 414 360 337 234 195 110 90 73

(a) (b) (c)
Fig. 8. Given the reference discretized image (a), the maximization of our
energy using all available colors may lead to artificial contours in the re-
sult (b). Maximization using only an automatically selected subset of colors
(the ones in bold at the top) leads to a result (c) without this problem. Input
image obtained from publicdomainvectors.org under Public Domain.

from the constant regions in (b) are not available.
To avoid this problem, we augment the metric with a term

that encourages constant (or nearly constant) regions in the spa-
tially discretized image (Figure 7 (b)) to be constant in the final
result. This term is calculated in the following manner:

1. Run K-means on the spatially discretized image (Fig-
ure 7 (b)) to identify the K colors that best represent all the
colors in this image, where K is the number of different
cap colors available in our problem.

2. For each of the K representative colors, select the
caps in the spatially discretized image (Figure 7 (b))
with colors such that their distance to the representa-
tive color is smaller than 10% of the diameter of the
[0, 1] × [0, 1] × [0, 1] RGB cube. These caps will be
encouraged through a penalty term (8) to be constant in
the output bottle cap image.

3. For each optimization intermediate state Y, calculate the
standard deviation σ of colors within each of the K groups
and assign to every cap j in each group a penalty term
given by

Pen(j) = (1 − σ)2. (8)

The final energy that we optimize for all results in this paper
is a modification of (2) that combines SSIM with this penalty
term:

E(X,Y) =
1
M

M∑
j=1

SSIM(X j,Y j) · Pen(j). (9)

This energy penalizes regions that are nearly constant in the ref-
erence full palette bottle cap image X but have different colors
in the intermediate optimization state Y, since in this caseσ > 0
and Pen(j) < 1, making maximization of E to prefer states with
σ = 0 and Pen(j) = 1 (within the nearly constant regions).
Figure 7 (d) shows the result of maximizing this energy.

4.3. Constraints
Given the objective function to be maximized (9), we now

turn our attention to the constraints of the problem, which are
determined by the caps we have at our disposal. The optimiza-
tion cannot demand additional colors or caps in a quantity that

exceeds the available caps. In other words, the available caps
must be treated as hard constraints in our problem.

For all results in this paper, we used the following set of caps,
which consists of all caps that we were able to collect for this
work:

1191 580 414 360 337 234 195 110 90 73

The color of each disk is an approximation for each cap color
and the number close to it corresponds to the number of avail-
able caps of that color. This information is passed to the algo-
rithm as a matrix where the three first columns are the R, G, and
B coordinates of the colors and the fourth column describes the
quantity of each cap. In our case, this matrix is given by:



0.85 0.22 0.14 1191
0.08 0.22 0.67 580
0.15 0.12 0.15 414
0.15 0.55 0.82 360
0.10 0.58 0.37 337
0.87 0.83 0.84 234
0.89 0.93 0.96 195
0.85 0.40 0.30 110
0.31 0.71 0.30 90
0.79 0.82 0.29 73



(10)

The limitation on the number of caps of each color may be a
problem in cases such as the one illustrated in Figure 8 (b). The
white background of the image (a) occupies a region larger than
any of the available bright colors can cover, leading to artificial
contours when optimizing energy E (Eq. 9) using all available
caps, even with the penalty term (Eq. 8) in the energy. This
occurs because the penalty term eliminates spurious variations
only when it has at its disposal the necessary caps in sufficient
quantity, such as in Figure 7 (d). For cases such as Figure 8 (b),
maximization of E (Eq. 9) tries to fill the white background with
colors similar to the ones in the reference image (Figure 8 (a))
but fails to do so because none of these colors has caps in suffi-
cient quantity. Removing or increasing the penalty term in the
energy formulation leads to a result that is qualitatively similar
to the one in Figure 8 (b) and does not solve the problem.

We then propose a methodology to discard cap colors that
would likely be used in the result but are not available in suffi-
cient quantity. The details of this process are described in Ap-
pendix A and the colors that survive are the ones that are ac-
tually used in our optimization, i.e., some rows in (10) are re-
moved as a preprocess.

Figure 8 (c) shows the result of our optimization using only
the colors whose numbers are highlighted in bold at the top of
the figure. Notice that the artificial contours in (b) are no longer
present. Among the caps that survived the discarding process
(red, dark blue, black, and green), the red caps are the ones that
more closely approximate the white background and reproduce
color differences to the black arrows, and thus were chosen by
the maximization of Eq. (9). We adopt the boldface convention
for cap colors that are actually used in the optimization in all
the results in this paper.

Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022) 7

1191
580
414
360
337

234
195
110

90
73

(a) Bottle caps (b) Input image (c) Spatial discretization (d) Initial solution (e) Optimization result

Fig. 9. Given a set of bottle caps (a) and an input image (b), our method first calculates a spatial discretization of the image over the bottle cap grid (c), which
is taken as reference for our optimization. An initial solution (d) is quickly calculated and then improved by the optimization, leading to our result (e).
Input is a cropped version of an image by Mike Sayre obtained from flickr.com under CC BY 2.0.

4.4. Initial solution
The method we are going to use in Section 4.5 to maximize

the energy (9) demands an initial guess. The computation of
this initial solution should be fast to let most of the computa-
tional time for the actual optimization and, more importantly,
the initial solution must satisfy the constraints of the problem
to start the optimization from a feasible state.

Using the example in Figure 9 as reference, we compute the
initial solution applying the following heuristic: we loop over
all caps in the spatially discretized image (c) in random order
and determine the available cap that is the closest (in RGB co-
ordinates) to the color of that cap in (c).

This simple strategy leads to the initial solution presented
in (d), which misses some features of the fish such as the lower
part of its body, but is much closer to the optimal solution than,
for example, a random initial solution. Letting X be the refer-
ence discretized image (Figure 9, c), Y0 the initial solution (d),
Yop the solution (e) generated by the optimization to be de-
scribed in Section 4.5 and Yra some random feasible solution,
the energy values (9) are given by

E(X,Y0) ≈ 0.72, E(X,Yop) ≈ 0.75, E(X,Yra) ≈ 0. (11)

Recalling that E(X,Y) ∈ [0, 1] for all possible Y and that the
higher this value the more similar the images are, we conclude
that this heuristic is successful at getting a good initial solution.

Notice that our initial solution strategy adopts randomness
only to decide which cap index to assign the closest color first
and not to decide the color itself. When the closest colors are
available in sufficient quantity such as in Figure 9 (d), this is
equivalent to assigning to all cap regions their closest colors. In
cases such as the one in Figure 11 (c), our strategy does intro-
duce some randomness to the initial solution, but our optimiza-
tion successfully restores homogeneous regions (Figure 11, d).

4.5. Optimization
The maximization of energy E (9) is a difficult discrete opti-

mization problem: even though we work at a low resolution, the
number of possible cap arrangements is combinatorially high,
making it impossible to try all of them using a brute force ap-
proach.

To be able to solve our problem in acceptable time, we have
adopted the simulated annealing strategy [5]. To prevent this
section from getting too long, we present here the general ideas
of how we have applied this strategy to our problem and leave
the details for Appendix B.

Starting from the initial solution (Section 4.4), we update
some of the cap colors and accept the new state according to
the following criteria: if it increases the energy value (i.e, if it
is better), the new solution is accepted. If it decreases the en-
ergy value (i.e., it is worse), it may be accepted depending on a
probability that decreases as the number of iterations increases.
This acceptance of some lower value energy states is important
to prevent the optimization of getting stuck during the initial
states.

The cap color update is performed in the following manner:
we randomly pick a cap and update this cap and some of its
1-neighbors (Figure 6, b) for all to have a single color among
the available ones. In the first round of iterations, we randomly
select 7 cap indices in each neighborhood and then exclude rep-
etitions at every iteration. This process is repeated until the
simulated annealing strategy converges and the resulting state
corresponds to an energy maximization constrained to updating
larger neighborhoods. From this state, we restart the simulated
annealing procedure with the second round of iterations where
6 neighbors are randomly selected for every update. We repeat
this process with 5 additional rounds where the last one con-
sists of updating only 1 of the caps in each neighborhood at ev-
ery iteration. This multi-stage strategy is important to improve
the energy value faster at the initial stages and then reproduce
the image (finer) details in the final stages. An example with
some intermediate results of this multi-stage can be found in
Figure B.19.

The color used as a candidate to update the color of the se-
lected caps is randomly chosen according to a probability that
is higher if more caps of that color are available. This proba-
bility is defined as the ratio of the number of available caps of
that color by the total number of available caps. This approach
guarantees that colors with no more caps available will not be
used as update candidates and that the boundary of the feasible
set will be avoided. We recall that the color update is accepted
only if it satisfies a simulated annealing criterium, meaning that
the most frequent colors are more often set as candidates but
not necessarily accepted in the results.

A result of our optimization can be seen in Figure 9 (e),
which is more similar to the reference image (c) than the ini-
tial solution (d). All the details of this process and pseudocode
for it can be found in Appendix B. Timings for the optimization
are provided in Table 1.

8 Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022)

1191 580 414 360 337 234 195 110 90 73

(a) Input image (b) Spatial discretization (c) Initial solution
(d) Comupter-generated

bottle cap art
(e) Physically assembled

bottle cap art
Fig. 10. Example of all steps of our method, from the input image (a) and caps (top) to the physically assembled result (e). Input is a cropped version of an
image by Ted Murphy obtained from flickr.com under CC BY 2.0.

1191 580 414 360 337 234 195 110 90 73

(a) Input image (b) Spatial discretization (c) Initial solution
(d) Comupter-generated

bottle cap art
(e) Physically assembled

bottle cap art
Fig. 11. Result for which the initial solution (c) is far from the optimal solution (d), illustrating that our optimization successfully recovers features. The
input image is a crop from the painting Girl with a Peral Earring by Johannes Vermeer, available in the public domain.

Result Secs. 4.1 to 4.4 Section 4.5 Assembling
Figure 1 0.33 secs 192.97 secs 1h 45 min
Figure 2 0.31 secs 133.21 secs 1h 43 min

Figure 10 0.72 secs 129.51 secs 1h 43 min
Figure 11 0.72 secs 222.87 secs 1h 27 min
Figure 12 0.77 secs 18.58 secs 35 min
Figure 13 0.67 secs 83.77 secs 37 min

Table 1. Timings of our method.

5. Implementation and performance

We implemented our method as a serial Matlab program. The
inputs are an image in JPEG or PNG format, a list of RGB
colors, and cap quantities in the same format as (10), and the
number of caps on the horizontal extent of the bottle cap grid
(Figure 2, (b)). The output is a computer-generated bottle cap
art (Figure 2, (c)).

The spatial discretization (Section 4.1) is obtained running
the superpixels Matlab built-in function, with a small change
to make the coordinates of the centroids match the bottle cap
grid centers. This function is written in C++ and run on Matlab
as a MEX file. The metric calculation (Section 4.2) is coded
as a Matlab function that re-uses the SSIM(X j,Y j) values be-
tween neighborhoods that were not affected by the state update
to calculate (9) faster. Additionally, we use Matlab’s kmeans

function to compute the groups of caps that should be constant
in the result to define the penalty term Pen(j) in (9). The in-
put cap colors preprocessing (Section 4.3) and initial solution
calculation (Section 4.4) are programmed as simple loops in
Matlab and the simulated annealing process (Section 4.5 and
Appendix B) is programmed as a translation of Algorithm 1 to
Matlab.

We report in Table 1 the timings of our code for some exam-
ples recorded on a MacBook Pro Intel Core i5 2.3 Ghz com-
puter with 8 GB memory. We also present in the last column
the time taken to physically assemble the results. We can see
that the most time-consuming stage is the physical assembling
of the results. Our experience tells us that users get faster with
practice, but we do not expect them to assemble final results at
the scale of one meter in less than one hour.

6. Results

Throughout this paper, we have already presented many re-
sults with the goal of illustrating specific steps of our method.
We now turn our attention to presenting results with all steps
that generated them. Timings for these results are reported in
Table 1.

Figure 10 presents an input image in (a) and the available
caps at the top. The spatial discretization (b) reproduces well
the features from (a) since it is adaptive. The initial solution (c)
for the optimization fails to reproduce some details such as the

Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022) 9

1191 580 414 360 337 234 195 110 90 73

(a) Input image (b) Discretization (c) Bottle cap art
Fig. 12. An example for which the initial solution is identical to the result
of the optimization (c). Input image by zaphad1 obtained from flickr.com
under CC BY 2.0

1191 580 414 360 337 234 195 110 90 73

(a) Input
image

(b)
Discretization

(c) Initial
solution

(d) Bottle cap
art

Fig. 13. Result with a very low resolution. Input is a cropped version of an
image by Eric Sonstroem obtained from flickr.com under CC BY 2.0.

ears of the dog and the leash. The result of our optimization (d)
successfully recovers these features and is used to guide the
physical assembling of the final bottle cap art (e), which is
92 cm wide by 73 cm high.

We present in Figure 11 a case with a bad initial solution (c).
There were not enough black caps to reproduce the dark regions
in (b) and these caps were eliminated by the process described
in Section 4.3 and Appendix A. The method to determine the
initial solution (Section 4.4) then got confused on how to fill
these regions with green and blue caps. Nonetheless, the opti-
mization (Section 4.5) successfully recovered the homogeneity
of the dark regions and details such as the eye and the neck of
the girl, as shown in (d). The physically assembled result (e) is
73 cm wide by 98 cm high.

On the other hand, Figure 12 presents a result (c) for which
the initial solution is identical to the result of the optimiza-
tion. The simple heuristic to determine the initial solution (Sec-
tion 4.4) was capable of reproducing the features present in (b)
for this case. The physically assembled result (c) is 54 cm wide
by 55 cm high.

We also present in Figure 13 an example with a very low
resolution of only 14 caps horizontally. Despite not being able
to reproduce all details from the input image (a), our method
produces a result (d) that clearly presents the silhouette of the
dog with some of its details and again is a clear improvement
over the initial solution (c). The result (d) is 45 cm wide by
56 cm high.

6.1. Comparisons

The novelty of the problem we are approaching makes it dif-
ficult to establish comparisons to previous methods. Naive ap-

2000
2000
2000
2000
2000
2000
2000
2000

2000
2000
2000
2000
2000
2000
2000
2000

(a) Caps (b) Input image (c)
Discretization

(d) Bottle cap
art

Fig. 14. Input image used by two pixel art papers [24, 25]. Despite the
different settings we work with, our method successfully reproduces the
features these methods do. Input image by William Warby obtained from
flickr.com under CC BY 2.0.

proaches such as the one illustrated in Figure 3 and the ini-
tial solution for our optimization (Section 4.4) have clearly pro-
duced results worse than the ones produced by our method.

To establish some comparison to previous methods, we
present in Figure 14 an image (a) that was used as input in two
pixel art papers: it appears in Figure 13 of [24] and in the sup-
plementary materials of [25]. If we run our method with set-
tings similar to theirs (number of bottle caps in the grid equal
to the number of pixels used by them, a 16-color palette which,
in our case, was determined running K-means over (b), and a
very high number of caps of each color to ensure that this is not
a constraint in practice), our result (c) reproduces well features
such as the roofs and windows of the pagoda and has a quality
similar to theirs, with the advantage of less staircased diago-
nal edges due to the different structure of the bottle cap grid in
comparison to the pixel grid. Physically assembling the result
in Figure 14 (c) would lead to a 1.54 m wide and 2.05 m high
result, which is out of the scope of this paper. The point we
make here is that if we were afforded to have settings similar to
the ones used by these two methods, we would obtain similar
quality results.

6.2. Tests with other settings

This section is devoted to studying how the variation of some
settings in our method affects its results.

We present in Figure 15 the effect of changing the compact-
ness parameter α (Section 4.1) on both the spatial discretiza-
tion (left) and the final result (right). Recall that a higher value
for this parameter leads to a smoother spatial discretization.
For example, setting α = 500 (a) leads to a spatial discretiza-
tion (left) with smooth color variations between the face of the
man and the collar of his shirt. The optimization tries to re-
produce these variations with a very limited palette but obtains
green and blue caps between these regions in the final result.
A similar problem can be found in the boundary between the
shirt and the suit and between the man’s mouth and smile. De-
creasing α to 100 (b) alleviates this problem but does not solve
it. Our choice α = 50 (left) leads to a spatial discretization with
sharper transitions that can be reproduced in the final result with
the available colors. Decreasing α further would lead to a noisy
and distorted spatial discretization (Figure 5, c) that would be
taken as reference for the optimization.

10 Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022)

1191 580 414 360 337 234 195 110 90 73

(a) α = 500 (b) α = 100 (c) α = 50
Fig. 15. Different choices of compactness parameter α affect the spatial discretization (left) and the final result (right). Higher values lead to a discretization
with smoother boundaries that cannot be reproduced with the available colors (for example, the boundary between the man’s face and the collar of the
shirt). Our choice α = 50 (c) leads to sharper edges that are better reproduced in the final result.

1191
580
414
360
337
234
195
110

90
73

4764
2320
1656
1440
1348
936
780
440
360
292

19056
9280
6624
5760
5392
3744
3120
1760
1440
1168

(a) Input image (b) 1 meter by 0.75 meters (c) 2 meters by 1.5 meters (d) 4 meters by 3 meters
Fig. 16. Results with different resolutions and the number of available caps varying proportionally. Input is a cropped version of an image by Flickr user
troposa1 available under CC BY 2.0.

The low resolution we have adopted for most of the results
can be a problem when the input image has high frequency de-
tails. This can be seen in Figure 16 (b), where the result has
24 caps on the horizontal extent and, if physically assembled,
would be approximately 1 m high by 0.75 m wide. Doubling
the dimensions and multiplying by 4 the number of available
caps leads to a result (c) with some features such as the eye and
the beak of the bird better reproduced. If we double again the
dimensions to obtain a bottle cap art with approximately 4 by
3 meters, higher frequencies such as feathers around the eyes
are present in the final result. Figure 16 shows that our method
is able to reproduce more details from the input image if more
resources are available.

We also present in Figure 17 an experiment where use differ-
ent cap colors, instead of our standard set of caps (Figure 9, a).
A set of colors that are representative of the input image leads
to a result (Figure 17, a) that is very similar to the reference
image (Figure 9, c). Setting two sets of random colors (Fig-
ure 17, b, c) leads to results with less quality but still reveal-
ing the content of the image and preserving most of its fea-
tures. Denoting by X the reference image (Figure 9, c), Yst

the result with our standard set of caps (Figure 9, e), Ya the
result in Figure 17 (a), Yb the result in Figure 17 (b) and Yc

the result in Figure 17 (c) the energy values (Eq. 9) are given
by E(X,Ya) ≈ 0.86, E(X,Yst) ≈ 0.75, E(X,Yb) ≈ 0.65 and
E(X,Yc) ≈ 0.62, which shows that the metric E measures well
the similarity between the images.

We observe that the background in Figure 17 (c) is filled

by purple caps and the middle part of the body of the fish by
caps of a similar color, while the background color in the ref-
erence image (Figure 9, c) is dark blue and the middle part of
the fish is white. As a consequence, the result in Figure 17 (c)
has less contrast than the reference image. This is explained
by the terms (2µxµy+γ1)

(µ2
x+µ2

y+γ1) and (2σxy+γ2)
(σ2

x+σ2
y+γ2) in the SSIM mertic (3):

while the former prioritizes color fidelity, the latter focuses on
contrast and structures. Adjusting the constants γ1 and γ2 could
change the balance between these terms but prioritizing contrast
too much could lead to results with colors that are too different
from the reference image, even when some of these colors are
available in sufficient quantity.

Figure 17 (d) shows an additional result generated using our
standard set of cap colors but with different quantities. The new
quantities are random numbers between 1 and 700 such that
their sum is equal to our standard total number of caps (3854).
The main difference to the result using our standard setup (Fig-
ure 9, e) is the background color since there were not sufficient
dark blue caps to fill the background area. Nonetheless, the new
result Yd in Figure 17 (d) presents features similar to the ones
in Figure 9 (e) and has energy value E(X,Yd) ≈ 0.71, which
shows that its quality is superior to the results in Figure 17 (b,c).

6.3. Limitations

The main limitations of our method are related to the very
low color and spatial resolution we work with. Figure 18
presents the result of applying our method to an input with

Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022) 11

1191
580
414
360
337

234
195
110

90
73

1191
580
414
360
337

234
195
110

90
73

1191
580
414
360
337

234
195
110
90
73

571
247
443
636
480

234
195
487
472

89
(a) (b) (c) (d)

Fig. 17. Result of applying our method to the input image in Figure 9 using different sets of available bottle caps.

1191 580 414 360 337 234 195 110 90 73

(a) Input image (b) Discretization (c) Bottle cap art
Fig. 18. Applying our method to an input image with high frequencies (a)
leads to aliasing in both the discretization over the bottle cap grid (b)
and our result (c), which also has spurious color variations caused by the
very limited color resolution. Input is a cropped version of an image by
Clint Budd obtained from flickr.com under CC BY 2.0.

high spatial frequencies (a). Aliasing produced at the first step
of our method (b) is carried over all steps and leads to a re-
sult (c) where the orientation of the lines in high frequency ar-
eas is wrong. Preprocessing the input image with antialiasing
techniques [42, 43, 44] could alleviate this problem, but would
considerably modify the input to deal with the very low spatial
resolution.

Figure 18 also illustrates a problem related to the very low
color resolution imposed by the caps we have at our disposal:
smooth color transitions in the input may lead to spurious colors
in the results, such as the green caps in the buttons and the red
caps between green and black caps in the high frequency areas.
This may also lead to isolated outliers such as the white caps
in the face of the man in Figure 2 (c,d), caused by highlights in
the input image that were not properly reproduced in the final
result. Notice that postprocessing the result to remove outliers
would not be a proper solution, since this would remove impor-
tant features of the size of one cap, for example, the eye of the
fish in Figure 9 (e) and the pearl earring in Figure 11 (d,e)).

7. Conclusion

In this paper, the problem of approximating an input image
with given plastic bottle caps has been proposed and a solution
involving spatial discretization followed by a structure-aware
optimization has been presented. Despite the very limited spa-
tial and color resolution of the problem, our method is capable
of producing high quality results for a variety of input images.

As a possible future work, we consider generating bottle cap
arts for collections of images, instead of single images as in
this paper. Energy (9) would allow ranking which image in
the collection is best approximated by the given set of caps.
Looping over all input images and applying our method would
be prohibitive due to the time taken by our optimization and we
are considering ways such as a multigrid strategy to speed it up.

Other interesting directions for future work include consid-
ering assembling caps over irregular grids (including grids with
multiple layers of caps) and allowing caps of different sizes.
This would make it possible to obtain results with sharper
edges, more varied artistic effects, and occluded canvas. A pos-
sible solution in this context would be to break the problem into
two parts: the first would calculate an optimal grid for a given
input image and the second would determine the colors of the
caps to cover this optimal grid. The first part would have to
consider the practical feasibility and stability of the physically
assembled bottle cap art and the second could use an optimiza-
tion framework similar to the one we presented in this work.

This paper has also shown that it is possible to propose and
approach valuable computer graphics problems using material
that would be discarded and potentially damage the environ-
ment. We hope that it serves as an encouragement for the com-
munity to consider more of these problems in the close future.

Acknowledgments

The author thanks Joao Paulo N. Barbosa, Marianna R. Vago,
and the UFSC community for gathering caps for this project,
Joao Paulo N. Barbosa for the initial discussions, Bryce van
Ross for proofreading part of the paper, the anonymous review-
ers for their suggestions, and Flickr users for making available
their images.

References

[1] Boonstra, M, van Hest, F. The findings of the first survey into plastic
bottle cap pollution on beaches in the netherlands. Tech. Rep.; The North
Sea Foundation; 2017.

[2] noordzee TV, . The bottle cap report - north sea foundation. 2017. URL:
https://youtu.be/JmeA7UGNNEU.

[3] Independent, TS. ‘beauty through toxicity’ — sampson indepen-
dent. 2017. URL: https://www.clintonnc.com/news/23475/

beauty-through-toxicity.
[4] Wang, Z, Bovik, AC, Sheikh, HR, Simoncelli, EP. Image quality

assessment: from error visibility to structural similarity. IEEE Trans-
actions on Image Processing 2004;13(4):600–612. doi:10.1109/TIP.
2003.819861.

[5] Press, WH, Teukolsky, SA, Vetterling, WT, Flannery, BP. Numerical
Recipes in C. Second ed.; Cambridge, USA: Cambridge University Press;
1992.

[6] Haeberli, P. Paint by numbers: Abstract image representations. SIG-
GRAPH Comput Graph 1990;24(4):207–214. URL: https://doi.

org/10.1145/97880.97902.
[7] DeCarlo, D, Santella, A. Stylization and abstraction of photographs.

ACM Trans Graph 2002;21(3):769–776. URL: https://doi.org/10.
1145/566654.566650.

[8] Collomosse, J, Kyprianidis, JE. Artistic Stylisation of Images and Video.
In: Martin, R, Torres, JC, editors. Eurographics 2011 - Tutorials. The
Eurographics Association; 2011,doi:10.2312/EG2011/tutorials/t3.

https://youtu.be/JmeA7UGNNEU
https://www.clintonnc.com/news/23475/beauty-through-toxicity
https://www.clintonnc.com/news/23475/beauty-through-toxicity
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1145/97880.97902
https://doi.org/10.1145/97880.97902
https://doi.org/10.1145/566654.566650
https://doi.org/10.1145/566654.566650
http://dx.doi.org/10.2312/EG2011/tutorials/t3

12 Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022)

[9] Heckbert, P. Color image quantization for frame buffer display. SIG-
GRAPH Comput Graph 1982;16(3):297–307. URL: https://doi.

org/10.1145/965145.801294.
[10] Gervautz, M, Purgathofer, W. A simple method for color quantization:

Octree quantization. In: Magnenat-Thalmann, N, Thalmann, D, editors.
New Trends in Computer Graphics. Berlin, Heidelberg: Springer Berlin
Heidelberg. ISBN 978-3-642-83492-9; 1988, p. 219–231.

[11] Xiang, Z. Color image quantization by minimizing the maximum
intercluster distance. ACM Trans Graph 1997;16(3):260–276. URL:
https://doi.org/10.1145/256157.256159.

[12] Floyd, RW, Steinberg, L. An Adaptive Algorithm for Spatial Greyscale.
Proceedings of the Society for Information Display 1976;17(2):75–77.

[13] Knuth, DE. Digital halftones by dot diffusion. ACM Trans
Graph 1987;6(4):245–273. URL: https://doi.org/10.1145/

35039.35040.
[14] Velho, L, Gomes, JdM. Digital halftoning with space filling curves.

In: Proceedings of the 18th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’91; New York, NY, USA: As-
sociation for Computing Machinery. ISBN 0897914368; 1991, p. 81–90.
URL: https://doi.org/10.1145/122718.122727.

[15] Ostromoukhov, V, Hersch, RD. Multi-color and artistic dithering.
In: Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’99; USA: ACM Press/Addison-
Wesley Publishing Co. ISBN 0201485605; 1999, p. 425–432. URL:
https://doi.org/10.1145/311535.311605.

[16] Ostromoukhov, V. A simple and efficient error-diffusion algorithm. In:
Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques. SIGGRAPH ’01; New York, NY, USA: Associ-
ation for Computing Machinery. ISBN 158113374X; 2001, p. 567–572.
URL: https://doi.org/10.1145/383259.383326.

[17] Jodoin, PM, Ostromoukhov, V. Halftoning over a hexagonal grid. In: Es-
chbach, R, Marcu, GG, editors. Color Imaging VIII: Processing, Hard-
copy, and Applications; vol. 5008. International Society for Optics and
Photonics; SPIE; 2003, p. 443 – 454. URL: https://doi.org/10.
1117/12.473230.

[18] Pang, WM, Qu, Y, Wong, TT, Cohen-Or, D, Heng, PA. Structure-
aware halftoning. In: ACM SIGGRAPH 2008 Papers. SIGGRAPH ’08;
New York, NY, USA: Association for Computing Machinery. ISBN
9781450301121; 2008,URL: https://doi.org/10.1145/1399504.
1360688.

[19] Li, H, Mould, D. Contrast-aware halftoning. Computer Graphics
Forum 2010;29(2):273–280. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1467-8659.2009.01596.x.

[20] Xu, X, Zhang, L, Wong, TT. Structure-based ascii art. ACM Transac-
tions on Graphics (SIGGRAPH 2010 issue) 2010;29(4):52:1–52:9.

[21] O’Grady, PD, Rickard, ST. Automatic ascii art conversion of binary
images using non-negative constraints. In: IET Irish Signals and Sys-
tems Conference (ISSC 2008). 2008, p. 186–191. doi:10.1049/cp:
20080660.

[22] Xu, J, Kaplan, CS. Artistic thresholding. In: Proceedings of the
6th International Symposium on Non-Photorealistic Animation and Ren-
dering. NPAR ’08; New York, NY, USA: Association for Computing
Machinery. ISBN 9781605581507; 2008, p. 39–47. URL: https:

//doi.org/10.1145/1377980.1377990.
[23] Lai, YK, Rosin, PL. Non-photorealistic Rendering with Reduced Colour

Palettes. London: Springer London; 2013, p. 211–236.
[24] Gerstner, T, DeCarlo, D, Alexa, M, Finkelstein, A, Gingold,

Y, Nealen, A. Pixelated image abstraction with integrated user
constraints. Computers & Graphics 2013;37(5):333–347. URL:
http://www.sciencedirect.com/science/article/pii/

S0097849313000046. doi:http://dx.doi.org/10.1016/j.cag.
2012.12.007.

[25] Kopf, J, Shamir, A, Peers, P. Content-adaptive image downscaling.
ACM Trans Graph 2013;32(6). URL: https://doi.org/10.1145/
2508363.2508370.

[26] Han, C, Wen, Q, He, S, Zhu, Q, Tan, Y, Han, G, et al. Deep unsuper-
vised pixelization. ACM Transactions on Graphics (TOG) 2018;37(6):1–
11.

[27] Kuo, MH, Lin, YE, Chu, HK, Lee, RR, Yang, YL. Pixel2brick:
Constructing brick sculptures from pixel art. Comput Graph Forum
2015;34(7):339–348. URL: https://doi.org/10.1111/cgf.12772.

[28] Öztireli, AC, Gross, M. Perceptually based downscaling of images.

ACM Trans Graph 2015;34(4). doi:10.1145/2766891.
[29] Weber, N, Waechter, M, Amend, SC, Guthe, S, Goesele, M. Rapid,

detail-preserving image downscaling. ACM Trans Graph 2016;35(6).
URL: https://doi.org/10.1145/2980179.2980239.

[30] Wu, Z, Leahy, R. An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation. IEEE Trans Pattern
Anal Mach Intell 1993;15(11):1101–1113. URL: https://doi.org/
10.1109/34.244673.

[31] Shi, J, Malik, J. Normalized cuts and image segmentation. IEEE
Trans Pattern Anal Mach Intell 2000;22(8):888–905. URL: https:

//doi.org/10.1109/34.868688.
[32] Rother, C, Kolmogorov, V, Blake, A. ”grabcut”: Interactive

foreground extraction using iterated graph cuts. ACM Trans Graph
2004;23(3):309–314. URL: https://doi.org/10.1145/1015706.

1015720.
[33] Achanta, R, Shaji, A, Smith, K, Lucchi, A, Fua, P, Süsstrunk, S. Slic

superpixels compared to state-of-the-art superpixel methods. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 2012;34(11):2274–
2282. doi:10.1109/TPAMI.2012.120.

[34] Vanek, J, Garcia Galicia, J, Benes, B. Clever support: Efficient support
structure generation for digital fabrication. Computer Graphics Forum
2014;33. doi:10.1111/cgf.12437.

[35] Karasik, E, Fattal, R, Werman, M. Object partitioning for support-free
3d-printing. Computer Graphics Forum 2019;38:305–316. doi:10.1111/
cgf.13639.

[36] Wall, LW, Jacobson, A, Vogel, D, Schneider, O. Scrappy: Using scrap
material as infill to make fabrication more sustainable. In: CHI ‘21: Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing
Systems. 2021,.

[37] Wang, R, Yu, B, Marco, J, Hu, T, Gutierrez, D, Bao, H. Real-
time rendering on a power budget. ACM Trans Graph 2016;35(4). URL:
https://doi.org/10.1145/2897824.2925889.

[38] Chuang, J, Weiskopf, D, Möller, T. Energy aware color
sets. Computer Graphics Forum 2009;28(2):203–211. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.

1467-8659.2009.01359.x.
[39] Chen, H, Wang, J, Chen, W, Qu, H, Chen, W. An image-space

energy-saving visualization scheme for oled displays. Computers &
Graphics 2014;38:61 – 68. URL: http://www.sciencedirect.

com/science/article/pii/S0097849313001611. doi:https:
//doi.org/10.1016/j.cag.2013.10.020.

[40] Thue, A. Über die dichteste Zusammenstellung von kongruenten Kreisen
in einer Ebene. J. Dybwad; 1910.

[41] Chang, HC, Wang, LC. A simple proof of thue’s theorem on circle
packing. 2010. arXiv:1009.4322.

[42] Shannon, CE. Communication in the presence of noise. Proc Institute of
Radio Engineers 1949;37(1):10–21.

[43] Gastal, ESL, Oliveira, MM. Spectral remapping for image downscaling.
ACM Trans Graph 2017;36(4). URL: https://doi.org/10.1145/
3072959.3073670.

[44] Germano, RL, Oliveira, MM, Gastal, ESL. Real-time fre-
quency adjustment of images and videos. Computer Graphics
Forum 2021;40(2):23–37. URL: https://www.inf.ufrgs.br/

~eslgastal/RealTimeFrequencyAdjustment/. doi:https://doi.
org/10.1111/cgf.142612.

Appendix A. Caps preprocessing

The maximization of MSSIM (2) subject to the limited num-
ber of caps can lead to results such as in Figure 8 (b) since the
term (2µxµy+γ1)

(µ2
x+µ2

y+γ1) in (3) prioritizes color fidelity over contrast and

structures, which are present in the second term (2σxy+γ2)
(σ2

x+σ2
y+γ2) . In

this very constrained setting, the optimization may opt for color
fidelity even if this introduces variations that are inexistent in
the reference image (Figure 8 (a)). Adjusting the constants γ1
and γ2 to prioritize variances instead of mean colors is not a
solution since it may lead to the use of wrong colors when the
right ones are available. An alternative would be to increase the

https://doi.org/10.1145/965145.801294
https://doi.org/10.1145/965145.801294
https://doi.org/10.1145/256157.256159
https://doi.org/10.1145/35039.35040
https://doi.org/10.1145/35039.35040
https://doi.org/10.1145/122718.122727
https://doi.org/10.1145/311535.311605
https://doi.org/10.1145/383259.383326
https://doi.org/10.1117/12.473230
https://doi.org/10.1117/12.473230
https://doi.org/10.1145/1399504.1360688
https://doi.org/10.1145/1399504.1360688
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01596.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01596.x
http://dx.doi.org/10.1049/cp:20080660
http://dx.doi.org/10.1049/cp:20080660
https://doi.org/10.1145/1377980.1377990
https://doi.org/10.1145/1377980.1377990
http://www.sciencedirect.com/science/article/pii/S0097849313000046
http://www.sciencedirect.com/science/article/pii/S0097849313000046
http://dx.doi.org/http://dx.doi.org/10.1016/j.cag.2012.12.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.cag.2012.12.007
https://doi.org/10.1145/2508363.2508370
https://doi.org/10.1145/2508363.2508370
https://doi.org/10.1111/cgf.12772
http://dx.doi.org/10.1145/2766891
https://doi.org/10.1145/2980179.2980239
https://doi.org/10.1109/34.244673
https://doi.org/10.1109/34.244673
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://doi.org/10.1145/1015706.1015720
https://doi.org/10.1145/1015706.1015720
http://dx.doi.org/10.1109/TPAMI.2012.120
http://dx.doi.org/10.1111/cgf.12437
http://dx.doi.org/10.1111/cgf.13639
http://dx.doi.org/10.1111/cgf.13639
https://doi.org/10.1145/2897824.2925889
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01359.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01359.x
http://www.sciencedirect.com/science/article/pii/S0097849313001611
http://www.sciencedirect.com/science/article/pii/S0097849313001611
http://dx.doi.org/https://doi.org/10.1016/j.cag.2013.10.020
http://dx.doi.org/https://doi.org/10.1016/j.cag.2013.10.020
http://arxiv.org/abs/1009.4322
https://doi.org/10.1145/3072959.3073670
https://doi.org/10.1145/3072959.3073670
https://www.inf.ufrgs.br/~eslgastal/RealTimeFrequencyAdjustment/
https://www.inf.ufrgs.br/~eslgastal/RealTimeFrequencyAdjustment/
http://dx.doi.org/https://doi.org/10.1111/cgf.142612
http://dx.doi.org/https://doi.org/10.1111/cgf.142612

Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022) 13

penalty term in (9), but this would make the method rely too
much on segmentation, which demands user interactions to be
done precisely and is out of the scope of this paper since our
goal is to propose a fully automatic method to compute bottle
cap arts.

We propose a preprocessing to discard caps that would likely
be used to increase color fidelity but are not available in suffi-
cient quantity to fill large regions. The maximization of (9) is
then performed using only cap colors that are available in suffi-
cient quantity. This may lead to results with different colors for
large areas (Figure 8 (c)) but with features preserved due to the
maximization of SSIM.

Let C j be the RGB coordinates of the available cap colors
and n j their respective quantities. For all results in this paper (in
particular the one in Figure 8) we have j = 1, . . . , 10 and, for
example, the white cap color is given by C7 = (0.89, 0.93, 0.96)
and n7 = 195.

We define N j, the number of caps in the spatially discretized
image X (Figure 8 (a)) that have colors closer to C j than to any
other available cap color Ci, as

N j = # { cap colors C in X |
d(C,C j) < 0.96 · d(C,Ci), for all i , j }. (A.1)

The factor 0.96 serves to determine colors that have distances
similar to more than one color in the available palette and do
not contribute to any specific N j.

All available caps of color C j are discarded if n j < N j, i.e.,
the number of caps of this color is not sufficient to fill areas that
would likely be filled by this color. For instance, in Figure 8,
we have N7 = 376 and n7 = 195 and thus the white caps are dis-
carded. After all necessary caps are discarded by this process,
we re-apply it to the remaining caps since the same problem
can happen to them. For the example we are considering (Fig-
ure 8) a second run leads to discarding the caps of beige color
(n6 = 234), since N6 = 376 for the second run. The process is
re-applied until no more caps are discarded by it.

In the unlikely cases when all caps are discarded, we decrease
the factor 0.96 in (A.1) and run this process from the very be-
ginning with all colors. If the problem persists, we re-apply
this strategy as many times as needed, printing warnings and
suggesting the user to decrease the final bottle cap art resolu-
tion since these cases happen when there are much fewer caps
than necessary to cover large areas.

Appendix B. Optimization details

The intent of this appendix is to present additional details of
the optimization discussed in Section 4.5. We are going to base
our presentation on the pseudocode in Algorithm 1. The in-
puts for the optimization are a spatially discretized (full palette)
image X generated as described in Section 4.1, an initial solu-
tion Y0 (Section 4.4) and a matrix A0 that results from applying
the preprocessing in Appendix A to a matrix in the format de-
scribed in Section 4.3 (e.g., the one in Eq. (10)). The output is
a bottle cap art Y that satisfies the constraints of the problem.
Despite we cannot ensure its optimality due to the lack of guar-
antees of the simulated annealing strategy and local minima of

the energy (9), Y is most of the times a qualitative and quantita-
tive improvement over the initial solution Y0 (it is not for cases
such as the one presented in Figure 12).

The simulated annealing test to accept a new bottle cap
art is given in line 18 of Algorithm 1. If the energy value
Enew (line 15) for the state Ynew (line 14) is greater than the
current energy value E, then ∆E > 0 (line 16), ∆E

t > 0,
exp

(
min

(
0, ∆E

t

))
= 1 and the state is accepted, since r < 1

(line 17). Recall that we are maximizing the energy and thus in-
creasing the energy value is the main goal. Otherwise (∆E < 0),
the condition in line 18 will have a higher probability to be sat-
isfied the closer ∆E is to 0 and the higher the temperature t is.
The temperature update in line 33 makes it more difficult for
states with ∆E < 0 to be accepted as the number of iterations
increases.

To make the optimization faster, we start using the parameter
N = 7 (line 10) to update a group of caps in a neighborhood,
instead of single cap updates. When the number of unsuccess-
ful attempts using this value of N exceeds the maximum M
(line 26) we decrease it by 1 (line 27), reset the temperature
for simulated annealing (line 29) and triple the maximum num-
ber of attempts (line 30). This last update serves to give the
algorithm more chances to reproduce features at finer scales.
Figure B.19 presents intermediate states obtained after reach-
ing the maximum number of attempts for N = 5, 4, 3, 2 and 1
(N = 7 and 6 are omitted due to their similarity to the initial
solution). Notice that the result (N = 1) in Figure B.19 is not
identical to the result presented in Figure 2 (c), which was ob-
tained with the same settings. This illustrates the fact that our
method does not always return the same results, due to the ran-
dom updates in Algorithm 1 (e.g., lines 12, 13 and 17) and the
local minima of the energy. Nonetheless, these two results have
only a few different caps, and both reproduce the main features
from the reference image.

To conclude this appendix, we explain below all the func-
tions that are called during the execution of Algorithm 1:

• AvailableCaps (lines 2 and 20) returns a matrix in the
same format as A0, but with cap quantities that correspond to
the ones in A0 minus the ones used in the state Y.

• Energy (lines 3 and 15) evaluates Eq. (9). It takes as
inputs the reference image X, a state Ynew, precomputed local
SSIM values S (Eq. (3)), and the indices U of the caps that
changed with respect to the previous (accepted) state Y. The
two last arguments of this function have the purpose of speed-
ing it up since only caps around the caps in U have their local
SSIM values affected by the update. If Ynew is accepted, then
the additional output S new is used in the next energy evaluations.

• CapsToUpdate (line 12) randomly picks a cap index to
be the center of a neighborhood (Figure 6). It then runs N
draws to obtain indices in the neighborhood and excludes
repeitions, i.e., the set of output indices U has at most N
elements.

• RandomColor (line 13) determines the cap color to be

14 Preprint accepted for publication / SIBGRAPI 2022 / Computers & Graphics (2022)

1191 580 414 360 337 234 195 110 90 73

Reference image Initial solution N = 5 N = 4 N = 3 N = 2 N = 1
Fig. B.19. Reference image, initial solution, and intermediate stages of the optimization. The smaller the number of caps N that are updated at every
iteration, the more details from the reference image are reproduced. The state with N = 1 is the final result of the optimization.

used for all caps in U in the following manner: let Nk be the
number of available caps of the k-th color in A, minus the
number of elements in U (if this calculation leads to a negative
number, we impose Nk = 0). The function then returns the k-th
color according to the probability Pk = Nk∑

Nk
.

• UpdateBottleCapArt (line 14) updates the colors in state Y to
be C for all cap indices in U. In the unlikely cases when the
output Ynew is equal to the input Y, functions CapsToUpdate
and RandomColor are re-run until an actual new state is
obtained. This verification is important to base the choice
of the maximum number of unsuccessful attempts on actual
changes in the running state.

Algorithm 1: Bottle cap art simulated annealing
Inputs :

X Spatially discretized image
Y0 Initial solution
A0 Matrix with available cap colors and quantities

Outputs:
Y Bottle cap art

1 Y← Y0 // Bottle cap art initialization

2 A← AvailableCaps(A0,Y) // Update available caps

3 {E, S } ← Energy(X,Y, [], {1, . . . , #Y}) // Initial energy value

4 t0 ← 2e−4 // Initial temperature (simulated annealing parameter)

5 t ← t0 // Temperature initialization

6 ρ← 0.8 // Factor to decrease temperature during annealing

7 iteru ← 0 // Initialization of number of unsuccessful attempts

8 M ← 20 // Maximum number of unsuccessful attempts

9 iter ← 1 // Initialization of total number of iterations

10 N ← 7 // Initial cap neighborhood size

11 while N > 0 do
12 U ← CapsToUpdate(N, #Y) // Caps to have a new color

13 C ← RandomColor(A,U) // Color to use for all caps in U

14 Ynew ← UpdateBottleCapArt(Y,U,C) // New state

15 {Enew, S new} ← Energy(X,Ynew, S ,U) // New energy

16 ∆E = Enew − E // Energy difference

17 r ← Rand(0, 1) // Random number uniform in (0, 1)

18 if r < exp
(
min

(
0, ∆E

t

))
then // Accept update

19 Y← Ynew // Update bottle cap art

20 A← AvailableCaps(A0,Y) // Update available caps

21 S ← S new // Update local SSIM values

22 E ← Enew // Update energy value

23 iteru ← 0 // Reset number of unsuccessful attempts

24 else // Reject update

25 iteru ← iteru + 1 // Update unsuccessful attempts

26 if iteru > M then // Exceeded max number of attempts

27 N ← N − 1 // Decrease neighborhood size

28 iteru ← 0 // Reset number of unsuccessful attempts

29 t ← t0 // Reset temperature

30 M ← 3 ∗ M // Triple maximum number of attempts

31 iter ← iter + 1 // Update total number of iterations

32 if mod(iter, 500) = 0 then // At every 500 itearions

33 t ← ρ ∗ t // Cool temperature down

	Introduction
	Related work
	Problem setup
	Method
	Spatial discretization
	Structure-aware metric
	Constraints
	Initial solution
	Optimization

	Implementation and performance
	Results
	Comparisons
	Tests with other settings
	Limitations

	Conclusion
	Caps preprocessing
	Optimization details

