Structure-aware bottle cap art

Leonardo Sacht

UFSC

SIBGRAPI 2022 / C&G paper

Motivation: plastic bottle caps

- Long time to degenerate.

- Small to be mistaken for food by sea animals.

Image source: diveagainstdebris.org

Motivation: plastic bottle caps

- Long time to degenerate.

 Small to be mistaken for food by sea animals.

- Top 5 ocean trash items that are deadly for sea life (North Sea Foundation, 2017).

Image source: diveagainstdebris.org

Motivation: low resolution images

Source: flickr.com

Source: pngitem.com

Contributions

New image processing problem

Caps

Input image Source: whitehouse.gov Canvas

Contributions

Input image Source: whitehouse.gov

New image processing problem

Optimization: simulated annealing strategy

Output bottle cap art

Related work

Color quantization [Xiang 1997] Halftoning [Velho and Gomes 1991]

Related work

Color quantization [Xiang 1997]

Halftoning [Velho and Gomes 1991] Pixel art [Gerstner et al. 2013]

Input image

580 •

414 •

195 •

360 •

234 •

337 •

110 •

90 •

73 •

Canvas

580 •

414 •

195 •

360 •

1191 •

234 •

337 •

110 •

90 •

73 •

user

Bottle cap grid

Bottle cap grid

Input image

580 •

414 •

195 •

360 •

1191 •

234 •

337 •

110 •

90 •

73 •

Computer-generated bottle cap art

Input image

580 •

414 •

195 •

360 •

1191 •

234 •

337 •

110 •

90 •

73 •

0.75 m В

Physically assembled bottle cap art

Naive solution

Input image

Naive solution

Full resolution input

Bottle cap grid

Full resolution input

Voronoi diagram

Discretization

Full resolution input

SLIC with alpha=50 [Achanta et al. 2012]

Discretization

Full resolution input

SLIC with alpha=5 [Achanta et al. 2012]

Discretization

Full resolution input

SLIC with alpha=50 [Achanta et al. 2012]

Reference image

Reference **X**

Window and weights

Local color mean $\mu_x = \sum_{i=1}^7 w_i \mathbf{x}_i$

Local color deviation $\sigma_x = \left(\sum_{i=1}^7 w_i(\mathbf{x}_i - \mu_x)\right)^{\frac{1}{2}}$

$$\mu_x = \sum_{i=1}^7 w_i \mathbf{x}_i \qquad \sigma_x = \left(\sum_{i=1}^7 w_i (\mathbf{x}_i - \mu_x)\right)^{\frac{1}{2}}$$

$$\mu_y = \sum_{i=1}^7 w_i \mathbf{y}_i \qquad \sigma_y = \left(\sum_{i=1}^7 w_i (\mathbf{y}_i - \mu_y)\right)^{\frac{1}{2}}$$

$$\sigma_{xy} = \sum_{i=1}^{7} w_i (\mathbf{x}_i - \mu_x) (\mathbf{y}_i - \mu_y)$$

SSIM =
$$\frac{(2\mu_x\mu_y + \gamma_1)}{(\mu_x^2 + \mu_y^2 + \gamma_1)} \cdot \frac{(2\sigma_{xy} + \gamma_2)}{(\sigma_x^2 + \sigma_y^2 + \gamma_2)}$$

Loop over all windows $MSSIM(\mathbf{X}, \mathbf{Y}) = \frac{1}{M} \sum_{j=1}^{M} SSIM(\mathbf{X}_j, \mathbf{Y}_j)$

Our final energy
$$E(\mathbf{X}, \mathbf{Y}) = \frac{1}{M} \sum_{j=1}^{M} \mathrm{SSIM}(\mathbf{X}_j, \mathbf{Y}_j) \cdot \mathrm{Pen}(j)$$

has a penalty term to encourage constant regions in the reference to be constant in the result.

Reference **X**

1191

580

$$E(\mathbf{X}, \mathbf{Y}) = \frac{1}{M} \sum_{j=1}^{M} \mathrm{SSIM}(\mathbf{X}_j, \mathbf{Y}_j) \cdot \mathrm{Pen}(j)$$

- Caps given by user

Reference **X**

- Caps given by user
- Some cap colors are discarded as a

preprocess

$$E(\mathbf{X}, \mathbf{Y}) = \frac{1}{M} \sum_{j=1}^{M} \text{SSIM}(\mathbf{X}_j, \mathbf{Y}_j) \cdot \text{Pen}(j)$$

1191

580

414

360

337

Initial solution Y₀

- Caps given by user
- Some cap colors are discarded as a preprocess
- Naive initial solution _

$$E(\mathbf{X}, \mathbf{Y}) = \frac{1}{M} \sum_{j=1}^{M} \text{SSIM}(\mathbf{X}_j, \mathbf{Y}_j) \cdot \text{Pen}(j)$$

Intermediate Y

- Simulated annealing strategy -
- Update neighborhood with a single color -

580

414

360 337

195

Intermediate Y

- Simulated annealing strategy -
- Update neighborhood with a single color -

580

195

Initial solution \mathbf{Y}_0

Intermediate Y

Initial solution \mathbf{Y}_0

Final result

• 1191
• 580
• 414
• 360
• 337
• 234
• 195
• 110
• 90
• 73

Input image

Girl with a Pearl Earring by Johannes Vermeer

• 1191
• 580
• 414
• 360
• 337
• 234
• 195
• 110
• 90
• 73

Input image

Girl with a Pearl Earring by Johannes Vermeer

Spatial discretization

■ 337 ○ 234 ○ 195 ■ 110 ■ 90 • **1191** • **580** • **414** • **360** • 73

Girl with a Pearl Earring by Johannes Vermeer

• 1191 • 580 • 414 • 360 • 337 ○ 234 ○ 195 • 110 • 90 • 73

bottle cap art

• 1191 • 580 • 414 • 360 • 337 ○ 234 ○ 195 • 110 • 90 • 73

bottle cap art

• 1191 • 580 • 414 • 360 • 337 ○ 234 ○ 195 • 110 • 90 • 73

Input image

By Flickr user zaphad1

Spatial discretization

(Assembled) initial/final solution

• 1191 • 580 • 414 • 360 • 337 ○ 234 ○ 195 • 110 • 90 • 73

Input image

Spatial discretization

Computer-generated bottle cap art

By Flickr user Mike Sayre

• 1191 • 580 • 414 • 360 • 337 ○ 234 ○ 195 • 110 • 90 • 73

Input image

Spatial discretization

Physically assembled bottle cap art

By Flickr user Christopher Gabbard

Pixel art methods

Implementation: Matlab program

- Modification of Matlab's slic built-in function

- Vectorization

- Re-use of local SSIM values

Matlab's logo (Mathworks)

Timings

	(Preprocessing)	(Optimization)	(Physical)
Result	Secs. 4.1 to 4.4	Section 4.5	Assembling
Figure 1	0.33 secs	192.97 secs	1h 45 min
Figure 2	0.31 secs	133.21 secs	1h 43 min
Figure 10	0.72 secs	129.51 secs	1h 43 min
Figure 11	0.72 secs	222.87 secs	1h 27 min
Figure 12	0.77 secs	18.58 secs	35 min
Figure 13	0.67 secs	83.77 secs	37 min

Figure 2

Figure 1

Figure 10

Figure 12

Figure 13

Limitation

• 1191 • 580 • 414

Input image

By Flickr user Clint Budd

• 360 • 337 ∘ 234 ∘ 195 • 110 • 90 • 73

Spatial discretization

Computer-generated bottle cap art

Future works

- Faster optimization and run the method on image collections

(Optimization) Section 4.5 192.97 secs 133.21 secs 129.51 secs 222.87 secs 18.58 secs 83.77 secs

Future works

- Faster optimization and run the method on image collections
- Other cap grids and cap sizes

Mandela, by artist Denise Hugues

Future works

- Faster optimization and run the method on image collections
- Other cap grids and cap sizes
- Other graphics problems that use wasted material

Thank you!

For more, visit the website:

mtm.ufsc.br/~leo/bottle_cap_art/

Backup slides

Varying sizes

Input image

By Flickr user troposa1

Other caps

Input image

Discretization

Optimization with full and low resolution reference

Optimization with full resolution reference

Optimization with low resolution reference

Varying alpha

• 1191 • 580 • 414 • 360 • 337 ◦ 234 ◦ 195 • 110 • 90 • 73

alpha = 500

alpha = 100

alpha = 50 (our choice)

Penalty term

