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RESUMO

Optimized Quasi-Interpolators for Image Reconstruction
and

Consistent Volumetric Discretizations Inside Self-Intersecting Surfaces

by

Leonardo Sacht

Orientador: Diego Nehab

Primeiro apresentamos uma revisão do problema de amostragem e reconstrução.

Esta revisão é focada principalmente nos aspectos históricos e teóricos que serão

fundamentais para apresentar nosso novo método. Nós então obtemos novos quasi-

interpoladores para reconstrução contínua de imagens amostradas ao minimizar uma

nova função objetivo que leva em conta o erro de aproximação no intervalo de Nyquist

inteiro. Para alcançar este objetivo, nós otimizamos em relação a todos os graus de

liberdade no esquema de aproximação. Consideramos três casos de estudo que ofere-

cem diferentes balanços entre qualidade e custo computacional: um esquema linear,

um quadrático e um cúbico. Experimentos com rotações e translações compostas

confirmam que nossos novos quasi-interpoladores se comportam melhor do que o

estado-da-arte por um custo computacional similar.

Nós então voltamos nossa atenção para um problema diferente no campo de pro-

cessamento geométrico: o de gerar discretizações consistentes dentro de malhas de

triângulos que se auto-intersectam. Com o objetivo de propor um algoritmo para este

problema, nós primeiro introduzimos os principais conceitos de malhas tetraedrais,

xv



fluxos geométricos, energias de deformação e parametrização. Nós então observamos

que a maioria dos passos no pipeline de processamento geométrico de superfícies como

deformação, suavização, subdivisão e decimação podem criar auto-interseções. Pro-

cessamento volumétrico de formas sólidas se torna difícil então, porque obter uma

discretização volumétrica correta é impossível: os métodos de tetraedralização exis-

tentes requerem entradas do tipo watertight. Nós propomos um algoritmo que pro-

duz uma malha tetraedral que se sobrepõe consistentemente com as auto-interseções

da superfície de entrada. Isto permite processamento volumétrico em modelos que

se auto-intersectam. Nós usamos o fluxo de curvatura média conformalizado, que

remove auto-interseçõs, e definimos um fluxo reverso intrinsicamente similar, que

previne elas. Tetraedralizamos a superfície resultante e a mapeamos para dentro da

superfície original. Nós demonstramos a efetividade de nosso método com aplicações

em computação automática de pesos para deformação, simulação baseada em física e

computação de distâncias geodésicas.

Keywords: interpolação, aproximação, tetraedralização.
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ABSTRACT

Optimized Quasi-Interpolators for Image Reconstruction
and

Consistent Volumetric Discretizations Inside Self-Intersecting Surfaces

by

Leonardo Sacht

Chair: Diego Nehab

We first provide a review on the sampling and reconstruction problem. This review

focuses mainly on theoretical and historic aspects that will be the fundamental to

present our new framework. We then obtain new quasi-interpolators for continuous

reconstruction of sampled images by minimizing a new objective function that takes

into account the approximation error over the full Nyquist interval. To achieve this

goal, we optimize with respect to all possible degrees of freedom in the approximation

scheme. We consider three study cases offering different trade-offs between quality

and computational cost: a linear, a quadratic, and a cubic scheme. Experiments with

compounded rotations and translations confirm that our new quasi- interpolators

perform better than the state-of-the-art for a similar computational cost.

We then turn our attention to a different problem on the field geometry process-

ing: the one of generating consistent tetrahedral discretizations inside self-intersecting

triangle meshes. With the goal of proposing an algorithm for this problem, we first

introduce the main concepts of tetrahedral meshes, geometric flows, deformation ener-

gies and parametrization. We then observe that most steps in the geometry process-

xvii



ing pipeline for surfaces, like deformation, smoothing, subdivision and decimation,

may create self-intersections. Volumetric processing of solid shapes then becomes

difficult, because obtaining a correct volumetric discretization is impossible: existing

tet-meshing methods require watertight input. We propose an algorithm that pro-

duces a tetrahedral mesh that overlaps itself consistently with the self-intersections

in the input surface. This enables volumetric processing on self-intersecting models.

We leverage conformalized mean-curvature flow, which removes self-intersections, and

define an intrinsically similar reverse flow, which prevents them. We tetrahedralize

the resulting surface and map the mesh inside the original surface. We demonstrate

the effectiveness of our method with applications to automatic skinning weight com-

putation, physically based simulation and geodesic distance computation.

Keywords: interpolation, approximation, tetrahedralization.
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CHAPTER I

Introduction

In this thesis we present the two most recent works of its author. More specifically,

we provide the necessary background and all the details contained in the following

references:

• Sacht and Nehab (2014): Sacht, L., and D. Nehab, Optimized quasi-interpolators

for image reconstruction, IMPA Technical Report A5739/2014, 2014.

• Sacht et al. (2013): Sacht, L., A. Jacobson, D. Panozzo, C. Schuller, and O.

Sorkine-Hornung, Consistent volumetric discretizations inside self-intersecting

surfaces, Computer Graphics Forum (SGP 2013), 32(5), 147-156.

Although these papers share common aspects, the reader can safely read chap-

ters II and III and chapters IV and V independently. Chapter VI points to future

directions on both topics.

The main aspect shared by both papers is the use of solid mathematical back-

ground to solve fundamental problems from visual computing. We are going to explore

different fields from mathematics, such as approximation theory, functional analysis,

optimization, numerical analysis, differential geometry and some others. Although

not prioritary, we also present implementation details for our new algorithms.

1



The need for a solid background in different areas made us write two additional

chapters (II and IV). The target audience of this thesis comprehends graduate stu-

dents and researchers from mathematics, computer science and engineerings.

1.1 Optimized quasi-interpolators for image reconstruction

reconstructionsampling
continuous
prefiltering

digital
filtering

input output

Figure 1.1: The sampling and reconstruction pipeline. The input f is subject to four
different stages and produces an output approximation f̃T . Chapter II
reviews the literature and presents the main results regarding how well
f̃T approximates f .

Figure 1.1 illustrates the material presented in Chapter II. We introduce the main

concepts involved in the pipeline of sampling a function and obtaining a continuous

reconstruction for it. An input function f is convolved with a prefilter ψ and sampled

in a uniform grid. The resulting samples are convolved with a digital filter q and

continuously reconstructed by a mixed convolution with a generator ϕ. This problem

is fundamental in image processing, finite elements and many others. We provide

the history of this problem including the fundamental work by Shannon (1949) and

Strang and Fix (1971), the involved theory and notations, and comparative results of

the different existing schemes.

After understanding the fundamentals of sampling and reconstruction we present

a new method that is superior to previous ones on the task of reconstructing natural

images. Figure 1.2 shows the superiority of our method compared to the best in the

literature designed for the same task. We start this chapter by explaining flaws in
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(a) Input image and detail (b) Blu et al.
(2001)

(c) Condat et al.
(2005)

(d) Our result

Figure 1.2: Comparison between state-of-the-art quadratic quasi-interpolators with
similar computational cost. The test consists of applying 40 cumulative
translations to the input. Our new quadratic is better at preserving detail.
PSNR: (a) ∞, (b) 32.938, (c) 34.149, (d) 36.443.

previous methods and presenting criteria to obtain better digital filters and generators

for the problem. This leads us to an optimization problem that we discuss and

describe a solution. We then present the resulting interpolators and comparisons

against the state-of-the-art, which clearly confirm the higher quality obtained by our

method.

1.2 Consistent volumetric discretizations inside self-intersecting

surfaces

We then present the algorithm illustrated in figure 1.3 for tetrahedralization of

self-intersecting triangle meshes. In Chapter IV we describe the fundamentals of

geometric flows, tetrahdralizations and volumetric deformation energies. In each part

we also describe our choices for the pipeline in figure 1.3 and why they are the most

appropriate for our tetrahedralization algorithm. Then in Chapter V we describe our

algorithm, its implementation and results.
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Input triangle mesh cMCF flow Intrinsic reverse flow Output tetrahedral mesh matching input

Figure 1.3: The triangle mesh of the Hand forms a closed surface, but contains nearly
2000 intersecting triangle pairs (indicated in red). Our method flows
the surface according to a geometric flow until all self-intersections are
removed. Then we reverse the flow so that shape intrinsics are restored
but self-intersections are avoided. Finally we can tet-mesh inside this
surface and map the mesh so that it matches the original surface.

1.3 Concluding Remarks

Finally, we describe in Chapter VI directions for future work on both image and

geometry processing. Some of them were already partially developed and we show

partial results for them. One of the algorithms is for real-time high quality image

processing based on the theory presented in Chapters II and III. The other algorithm

is for generation of cage meshes that enclose dense triangle meshes for the tasks of

mulitdrig computations and deformation.
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CHAPTER II

Sampling and Reconstruction

2.1 Introduction

This chapter is devoted to present the theory that we are going to use to propose

our new approximation scheme in the next chapter. This literature review has also a

historic component, since we present results in chronological order so the reader can

understand how the theory was developed through time.

We either provide a proof or point to a reference that contains the proof for

each theorem. We opted for proving the theorems that we could not find the proof

elsewhere, or that had a proof that was not clearly organized in a way we could give

a clear reference to the reader.

The results we present in the sequel apply to unidimensional functions, i.e., func-

tions f : R → C. The algorithms obtained in 1D are applied to 2D (images) in a

tensor product fashion and separately for each color channel.

Figure 2.1 shows the modern approach to sampling and reconstruction that we are

going to describe in this chapter. The precise definition of each stage in the pipeline

is given in Section 2.2. Intuitively, an approximation f̃T to f is obtained as follows.

In the first two stages, f is subjected to a continuous convolution with an analysis

filter ψ (a.k.a. prefilter), and then sampled with constant sample spacing T . The

traditional role of the prefiltering stage is to eliminate from f frequencies above the
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reconstructionsampling
continuous
prefiltering

digital
filtering

input output

Figure 2.1: All stages of the modern sampling and reconstruction pipeline. Top plots
illustrate the output of each state. The theory we are going to present in
this chapter quantifies the approximation error between f̃T and f .

Nyquist rate 0.5
T

so as to avoid aliasing in the sampled sequence. The remaining stages

apply a digital filter q to the samples (by discrete convolution), and then build f̃T by

combining shifted copies of a generating function ϕ, each scaled by a filtered sample.

2.2 Notation

Let f : R→ C be a function. We say that f ∈ L2 if

∞∫
-∞

∣∣f(x)
∣∣2 dx <∞. (2.1)

In this case, we denote the quantity in (2.1) by ‖f‖L2 .

The complex conjugate of z = a+ bi is given by z∗ = a− bi.
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The Fourier transform of f and its inverse are given by

f̂(ω) =

∞∫
-∞

f(x)e−2πixω dx, and (2.2)

f(x) =

∞∫
-∞

f̂(ω)e2πixω dω. (2.3)

A sequence q : Z→ C belongs to `2 if
∑

k∈Z |qk|2 <∞. The discrete-time Fourier

transform (DTFT) of q is defined by

q̂(ω) =
∑
k∈Z

qke
−2πiωk. (2.4)

Sampling f on a grid with spacing T amounts to obtaining

JfKT :=
[
. . . , f(−T ), f(0), f(T ), . . .

]
. (2.5)

The flip of a function f and of a digital filter q = [. . . , q-1, q0, q1, . . .] are defined

as

f ∨(x) = f(−x) and (q∨)i = q-i (2.6)

Given functions f and g, and sequences c and q, the continuous, discrete, and

mixed convolutions are given respectively by

(f ∗ g)(x) =

∞∫
-∞

f(t)g(x− t) dt, (2.7)

(c ∗ q)n =
∑
k∈Z

ck qn−k, and (2.8)

(q ∗T f)(x) =
∑
k∈Z

qk f(x− kT ). (2.9)
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With these notations, we can conveniently express the output of the pipeline

described in figure 2.1:

f̃T = Jf ∗ ψ∨(·/T)KT ∗ q ∗T ϕ(·/T) (2.10)

The auto-correlation of a function ϕ can be written equivalently as

aϕ(x) = (ϕ ∗ ϕ∨)(x) =

∞∫
-∞

ϕ(t)ϕ(t− x) dt. (2.11)

It is frequently sampled into a discrete sequence

aϕ = JaϕK. (2.12)

The convolution inverse of q, when it exists, is another sequence denoted by q-1

such that

q ∗ q-1 = δ = [. . . , 0, 0, 1, 0, 0, . . .]. (2.13)

The digital filter q is said do be FIR (for Finite Impulse Response) if it has a

finite number of non-zero entries. It is said to be IFIR (for Inverse of Finite Impulse

Response) if it is the inverse of a FIR digital filter. Finally, q is said to be FIR-IFIR

if it can be written as q = q1 ∗ q2, where q1 is FIR and q2 is IFIR.

The subspace of functions generated by shifted copies of the generator ϕ widened

to match the grid with spacing T is defined by

Vϕ,T =
{
f̃ = c ∗T ϕ(·/T)

∣∣ ∀c ∈ `2

}
. (2.14)

The B-spline is the most fundamental family of generators and will be useful to
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Figure 2.2: Plot of the spatial and Fourier representations of β0 (a.k.a. box function),
β1 (a.k.a. hat function or linear B-spline), β2 (a.k.a. quadratic B-spline)
and β3 (a.k.a. cubic B-spline).

illustrate many concepts in the following sections. It can be recursively defined as

β0(x) =


1, |x| < 0.5

0.5, |x| = 0.5

0, |x| > 0.5

, and

βn = βn−1 ∗ β0, n > 1.

(2.15)

The corresponding Fourier transforms are given by

β̂n(ω) = sinc(ω)n+1 =

(
sin(πω)

πω

)n+1

, n > 0. (2.16)

We plot some of the B-spline family members in figure 2.2.

We use several concepts when describing a function ρ : R→ R. It is symmetric if

ρ∨ = ρ; it has support W > 0 if W is the length of the smallest interval I for which

ρ(x) = 0, ∀x /∈ I; it is interpolating if JρK = δ; it has regularity R if R is the greatest

integer for which f ∈ CR. Finally, if ρ is a piecewise polynomial function, its degree

N is the greatest degree of its polynomial pieces.

We commonly use definitions such as (2.5), (2.9) and (2.14) omitting the parameter

9



T . In these cases, T = 1 should be understood.

2.3 Admissibility

We make some assumptions on the scheme described in Figure 2.1. These assump-

tions ensure that each step of the pipeline generates a suitable input for the next and

that the final output f̃T is well defined.

For a given real number r > 0 we define the Sobolev space Wr
2 as the set of

functions f that satisfy
∫∞

-∞(1 + ω2)r
∣∣f̂(ω)

∣∣2 dω <∞.

Assumption II.1. Regarding the input function f we assume

f ∈Wr
2, for some r >

1

2
. (2.17)

Example II.2. Functions f ∈ L2 that have limited band, i.e., functions for which

there exist M > 0 such that f̂(ω) = 0, ∀ω ∈ R\ [−M,M ]. Also functions f such that

f̂ has exponential decay at infinity.

Assumption II.3. Regarding the prefilter ψ we assume

max
ω∈R

∣∣ψ̂(ω)
∣∣ =

∥∥ψ̂∥∥∞ 6 K <∞, for some K ∈ R. (2.18)

Example II.4. ψ = βn, since
∣∣β̂n(ω)

∣∣ 6 1, ∀ω ∈ R. Or the Dirac’s delta δ, for which∣∣δ̂(ω)
∣∣ = 1, ∀ω ∈ R

The next theorem shows the importance of assumptions (2.17) and (2.18).

Theorem II.5. Let T > 0. If f ∈Wr
2, for some r > 1

2
, and there exists K ∈ R such

that
∥∥ψ̂∥∥∞ 6 K <∞ then Jf ∗ ψ∨(·/T)KT ∈ `2.

Proof : See (Blu and Unser , 1999b), Appendix C, part A.

�
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Assumption II.6. The digital filter q is either FIR, IFIR or FIR-IFIR (see section

2.2 for details).

Example II.7. Since βn has compact support, q = JβnK and q = JaβnK are examples

of FIR filters. On the other hand, q = JβnK-1 and q = JaβnK-1 are examples of IFIR

filters. Another example which is both FIR and IFIR is the Kronecker delta δ (2.13).

We show in the sequel that, under this assumption, the output after digital filtering

with q remains in `2.

Theorem II.8. Let c ∈ `2 and q be either FIR, IFIR or FIR-IFIR digital filters.

Then c ∗ q ∈ `2.

Proof: We start by the case where q is FIR. Using Parseval’s theorem (in the first

equality) and the product identity ĉ ∗ q(ω) = ĉ(ω) · q̂(ω) we get

∑
k∈Z

∣∣c ∗ q∣∣2
k

=
∥∥ĉ(ω) · q̂(ω)

∥∥
L2

=

1
2∫

− 1
2

∣∣ĉ(ω)q̂(ω)
∣∣2dω

=

1
2∫

− 1
2

∣∣ĉ(ω)
∣∣2∣∣∣∑ qke

−2πiωk
∣∣∣2dω.

(2.19)

Since q is FIR, there are finitely many qk’s that are nonzero, making
∑
qke
−2πiωk a

finite sum of continuous functions and hence continuous. So it does reach a maximum

in [−1, 1]. But since it is 1-periodic this maximum holds over all R. Let

M = max
ω∈R

∣∣∣∑ qke
−2πiωk

∣∣∣2. (2.20)

From (2.19) we then have

∑
k∈Z

∣∣c ∗ q∣∣2
k
6M

1
2∫

− 1
2

∣∣ĉ(ω)
∣∣2dω = M

∑
k∈Z

|ck|2 <∞, (2.21)
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where we used again Parseval’s theorem for the last equality. This proves that c∗q ∈

`2, when q is FIR. When q is IFIR, its Fourier transform is given by

q̂(ω) =
1∑

qke−2πiωk
. (2.22)

The denominator above cannot be zero, since q is IFIR and thus invertible. Then

replacing the constant M in (2.20) by

M = max
ω∈R

∣∣∣∣ 1∑
qke−2πiωk

∣∣∣∣2 (2.23)

(this maximum exists for the same reasons) leads to the same conclusion. When q

is FIR-IFIR (say q = q1 ∗ q2), where q1 is FIR and q2 is IFIR, one simply observes

that c ∗ q = c ∗ (q1 ∗ q2) = (c ∗ q1) ∗ q2 and each convolution belongs to `2.

�

Assumption II.9. Regarding the generator ϕ, we assume there exist constants A,B ∈

R such that

0 < A 6 âϕ(ω) 6 B <∞, almost everywhere, (2.24)

where aϕ = JaϕK is the sampled auto-correlation of ϕ.

Example II.10. ϕ = β1. In this case,

aϕ = β1 ∗ β1∨ = β1 ∗ β1 = β3 (2.25)

and

aϕ = JaϕK = Jβ3K = [. . . , 0, 0,
1

6
,
4

6
,
1

6
, 0, 0, . . .]. (2.26)
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Thus,

âϕ(ω) =
1

6
e−2πiω(−1) +

4

6
e2πiω·0 +

1

6
e−2πiω·1 =

4

6
+

1

3
sin(2πω). (2.27)

Since −1 6 sin(2πω) 6 1, we have

A :=
1

3
=

4

6
− 1

3
6 âϕ(ω) 6

4

6
+

1

3
= 1 := B. (2.28)

As we show in the sequel, assumption (2.24) implies that Vϕ,T (2.14) is a closed

subspace of L2. This ensures that each element in Vϕ,T has a unique stable represen-

tation and that the orthogonal projection of any f ∈ L2 on Vϕ,T exists (we elaborate

further on the orthogonal projection in section 2.5).

Theorem II.11. Let T > 0 and ϕ be a generator such that

0 < A 6 âϕ(ω) 6 B <∞, almost everywhere, (2.29)

for some A,B ∈ R. Then Vϕ,T is a closed subspace of L2.

Proof: For simplicity we assume T = 1. We use a result from (Aldroubi and Unser ,

1994b) (theorem 2 in their paper) that says that (2.29) is equivalent to

A
∥∥c∥∥2

`2
6
∥∥c ∗ ϕ∥∥2

L2
6 B

∥∥c∥∥2

`2
, ∀c ∈ `2. (2.30)

The interested reader should have knowledge on measure theory to understand their

proof. Below we provide a simpler proof of the implication (2.29) ⇒ (2.30):

A simpler expression for âϕ(ω) can be obtained using Poisson’s summation formula:

âϕ(ω)=
∑
n∈Z

(ϕ ∗ ϕ∨)(n)e−2πiωn=
∑
k∈Z

F
(
(ϕ ∗ ϕ∨)(·)e−2πiω·)(k)=

∑
k∈Z

∣∣ϕ̂(ω + k)
∣∣2 (2.31)
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We can then obtain the following expression for
∥∥c ∗ ϕ∥∥2

L2
:

∥∥c ∗ ϕ∥∥2

L2
=

∞∫
-∞

∣∣ĉ ∗ ϕ(ω)
∣∣2 dω =

∞∫
-∞

∣∣ĉ(ω)
∣∣2∣∣ϕ̂(ω)

∣∣2 dω

=
∑
k∈Z

1∫
0

∣∣ĉ(ω + k)
∣∣2∣∣ϕ̂(ω + k)

∣∣2dω =
∑
k∈Z

1∫
0

∣∣ĉ(ω)
∣∣2∣∣ϕ̂(ω + k)

∣∣2dω
=

1∫
0

∣∣ĉ(ω)
∣∣2∑

k∈Z

∣∣ϕ̂(ω + k)
∣∣2dω =

1∫
0

∣∣ĉ(ω)
∣∣2âϕ(ω)dω

(2.32)

Using the hypothesis A 6 âϕ(ω) 6 B almost everywhere we conclude the proof of

(2.29) ⇒ (2.30).

To prove that Vϕ is well-defined (as a subset of L2) we observe that all members

c ∗ ϕ ∈ Vϕ satisfy

∥∥c ∗ ϕ∥∥2

L2
6 B

∥∥c∥∥2

`2
<∞ (2.33)

and thus belong to L2. To see that Vϕ is a linear subspace of L2 we observe that the

null function 0 ∈ L2 can be expressed as 0 = 0 ∗ ϕ and thus belongs to Vϕ. Given

c1 ∗ ϕ, c2 ∗ ϕ ∈ Vϕ we have c1 ∗ ϕ + c2 ∗ ϕ = (c1 + c2) ∗ ϕ ∈ Vϕ and λ · (c1 ∗ ϕ) =

(λ · c) ∗ ϕ ∈ Vϕ.

To prove that Vϕ is closed, let {cn ∗ ϕ}n ⊆ Vϕ be a sequence that converges in L2.

We must prove that lim
n→∞

cn ∗ ϕ ∈ Vϕ. Since the inequality
∥∥cn∥∥2

`2
6 A−1

∥∥cn ∗ ϕ∥∥2

L2

holds and {cn ∗ ϕ}n is a Cauchy sequence (because it is convergent), then {cn}n is a

Cauchy sequence in `2. Since `2 is a complete metric space, then {cn}n is convergent,

say lim
n→∞

cn = c∞. Now, the inequality
∥∥c ∗ ϕ∥∥2

L2
6 B

∥∥c∥∥2

`2
implies lim

n→∞
cn ∗ ϕ =

c∞ ∗ ϕ ∈ Vϕ.

�
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2.4 Shannon’s theorem

One of the most fundamental results regarding sampling and reconstruction is due

to Shannon (1949). This result states that if the input f is band limited then it is

possible to obtain an output f̃T identical to f , as long as T is small enough and the

right choices for ψ, q and ϕ are made.

Theorem II.12. Let f be a function for which there existsW > 0 such that f̂(ω) = 0,

∀ω ∈ R\
[
−W,W

]
. Then the approximation scheme presented in figure 2.1 produces

f̃T = f , if T 6 1
2W

, ψ = δ, q = δ and ϕ(x) = sinc(x) = sin(πx)
πx

.

Proof: (Shannon, 1949), theorem 1.

�

One can check that the admissibility conditions described in section 2.3 are verified

for the choices ψ = δ, q = δ and ϕ = sinc. But this approximation scheme is not used

in practice. The first main reason is that signals usually do not have limited band.

For example, any color discontinuity in an image generate frequency content tending

to infinity. The other drawback is that ϕ = sinc does not have compact support

(and has slow decay), making a mixed convolution c ∗T ϕ (see (2.9)) impossible to be

implemented in practice.

2.5 Orthogonal projection

The computational cost of the mixed convolution c ∗T ϕ (the last step in figure

2.1) is dictated by the support of ϕ. This is why people opt for generators with small

support. The result f = f̃T for ϕ = sinc is no longer achievable (it would not be even

for ϕ = sinc when f is not band-limited, which is usually the case). Since perfect

reconstruction is not available, what would be the closest member of Vϕ to a given

function f?
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Figure 2.3: When the admissibility conditions are fulfilled, the input f ∈ L2 can be
orthogonally projected into Vϕ,T to obtain Pϕ,T (f). The residual Pϕ,T (f)−
f is orthogonal to Vϕ,T .

In terms of the L2 metric, this is the orthogonal projection, i.e., the function

c ∗T ϕ ∈ Vϕ,T that is the solution for

arg min
c∈`2

∥∥f − c ∗T ϕ∥∥L2
=: Pϕ,T (f). (2.34)

When assumption II.9 is satisfied, Vϕ,T is a closed subspace of L2 (theorem II.11)

and the orthogonal projection of a function f ∈ L2 into Vϕ,T exists. In figure 2.3, we

illustrate one of the characteristics of the orthogonal projection Pϕ,T (f): the residual

Pϕ,T (f)− f is orthogonal to Vϕ,T .

In the sequel we derive an expression for the orthogonal projection and show that

it fits the pipeline described in figure 2.1. The derivation of such expression can be

done in many ways, but we reproduce the proof by Nehab and Hoppe (2014) since it

fits and illustrates better the notation we are using in this work.

Theorem II.13. Let ϕ be a generating function that satisfies (2.24), T > 0 and

f ∈ L2. Then the orthogonal projection of f in Vϕ,T is achieved setting in the approx-

imation scheme

ψ = ϕ, q = JaϕK-1, (2.35)
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i.e.,

Pϕ,T (f) = Jf ∗ ϕ∨(·/T)KT ∗ JaϕK-1∗T ϕ(·/T). (2.36)

Proof: For simplicity we take T = 1. The property f − Pϕ(f) ⊥ Vϕ is equivalent to

〈
f − Pϕ(f), ϕ(· − k)

〉
= 0, ∀k ∈ Z, (2.37)

where the inner product is given by 〈g, h〉 =
∫∞

-∞ g(x)h(x)∗ dx. (2.37) can be rewritten

as

Jf − Pϕ(f) ∗ ϕ∨K = 0. (2.38)

If Pϕ(f) = c ∗ ϕ, the last expression is equivalent to

Jf ∗ ϕ∨K = Jc ∗ ϕ ∗ ϕ∨K⇔ Jf ∗ ϕ∨K = c ∗ Jϕ ∗ ϕ∨K⇔ c = f ∗ ϕ∨ ∗ Jϕ ∗ ϕ∨K-1 (2.39)

and we conclude that the orthogonal is obtained by setting

ψ = ϕ, q = Jϕ ∗ ϕ∨K-1 = JaϕK-1. (2.40)

�

2.6 Strang-Fix conditions

Now that we have obtained the best approximation (with respect to the L2 norm)

of a given function f ∈ L2 in Vϕ,T , a natural question arises: how close to f is this ap-

proximation? One way of characterizing this concept is by defining the approximation

order.
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The generator ϕ has approximation order L if L is the greatest positive integer

for which there exists a constant C > 0 such that

∥∥f − Pϕ,T (f)
∥∥
L2
6 C · TL ·

∥∥f (L)
∥∥
L2
,∀f ∈WL

2 . (2.41)

Intuitively, this means that as T goes to zero, the “distance” between f and its closest

function in Vϕ,T decays to zero as fast as TL. We define approximation order of the

orthogonal projection operator Pϕ,T as the same thing as the approximation order of

ϕ.

Strang and Fix presented the main characterizations for the approximation order

concept in their seminal papers (Strang , 1971) and (Strang and Fix , 1973). They

showed that approximation order L is equivalent to Vϕ,T being able to reproduce

polynomials of degree L − 1. Simple criteria on ϕ̂, the Fourier transform of the

generator ϕ, were also presented. We summarize their main equivalences below.

Theorem II.14. Let ϕ be a generating function that satisfies (2.24) and has compact

support1. The following statements are equivalent:

(i) p ∈ Vϕ,T , for all polynomials p of degree L− 1, ∀T > 0.

(ii) ∃ϕQI ∈ Vϕ such that

∀p polynomial of degree L− 1,
∑
k∈Z

p(k)ϕQI (x− k) = p(x) (2.42)

(in this case, ϕQI is called a quasi-interpolator).

(iii) ϕ̂(0) 6= 0 and ϕ̂(m)(k) = 0, ∀k ∈ Z \ {0} and ∀m ∈ {0, . . . , L− 1}.

(iv) ϕ has approximation order L.

1Strang and Fix initially assumed ϕ compactly supported, but their result was extended for
noncompact ϕ with sufficient polynomial decay at infinity (Jia and Lei , 1993).
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Proof: (ii) ⇔ (iv): See “Approximation Theorem” in (Strang , 1971).

(iii) ⇔ (iv): Theorem 1 in (Strang and Fix , 1973).

(ii) ⇒ (i): Let p(x) = a0 + a1x + . . . + aL−1x
L−1 be a polynomial of degree L − 1

and T > 0. We must prove that p ∈ Vϕ,T , assuming (ii). Observing that p(Tx) =

a0 + a1Tx + . . . + aL−1T
L−1xL−1 is also a polynomial of degree L − 1 we know that

p(Tx) =
∑

k∈Z p(Tk)ϕQI (x− k). Substituting y = Tx, we obtain the identity p(y) =∑
k∈Z p(Tk)ϕQI

(
y
T
− k
)
, ∀y ∈ R. Denoting ϕQI = c ∗ ϕ (since ϕQI ∈ Vϕ) and

pT [k] = p(Tk), ∀k ∈ Z we have

p = (pT ∗ c) ∗T ϕ(·/T) (2.43)

and thus p ∈ Vϕ,T .

(i)⇒ (ii): Let p be a polynomial of degree L−1. Hypothesis (i) implies p ∈ Vϕ,1 = Vϕ

and thus there exists c ∈ `2 such that

p = c ∗ ϕ. (2.44)

We then have

JpK ∗ ϕ = Jc ∗ ϕK ∗ ϕ = c ∗ JϕK ∗ ϕ = JϕK ∗ c ∗ ϕ = JϕK ∗ p. (2.45)

Assuming JϕK to be invertible (to be shown in the sequel) we have

JpK ∗ JϕK-1∗ ϕ = p (2.46)

and taking ϕQI = JϕK-1∗ ϕ we conclude the proof.

It is left to prove that JϕK is invertible. Assume the contrary, i.e., there exists c 6= 0
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such that

JϕK ∗ c = J0K. (2.47)

Convolving both sides with Jϕ∨K we obtain

Jϕ∨K ∗ JϕK ∗ c = Jϕ∨K ∗ 0 = 0. (2.48)

But Jϕ∨K∗JϕK = Jϕ∗ϕ∨K = JaϕK and this implies JaϕK not invertible, what contradicts
(2.24).

�

2.7 Approximation schemes

The orthogonal projection may not be achievable in practice since it assumes it

is possible to choose the prefilter as ψ = ϕ. For many image processing tasks the

prefilter ψ is part of the acquisition device and images come already discretized as

Jf ∗ ψ∨(·/T)KT . In these cases, it is possible to apply approximation schemes different

from the orthogonal projection. Although sub-optimal with respect to the L2-norm,

these schemes may have good approximation properties, as we show in the next

sections.

Oblique projection: Fixed both the prefilter ψ and the generator ϕ, we seek an

approximation Pϕ⊥ψ(f) = c∗ϕ of the input f into space Vϕ with the residual orthog-

onal to Vψ (rather than being orthogonal to Vϕ, as for the orthogonal projection). In
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terms of the notation we are using, this means:

J(f − Pϕ⊥ψ(f)) ∗ ψ∨K = 0⇔ Jf ∗ ψ∨K = JPϕ⊥ψ(f) ∗ ψ∨K
⇔ Jf ∗ ψ∨K = Jc ∗ ϕ ∗ ψ∨K (2.49)

To find the coefficient vector c, we take it out of the convolution operator (this is a

property of convolutions) and obtain

Jf ∗ ψ∨K = c ∗ Jϕ ∗ ψ∨K⇔ c = Jf ∗ ψ∨K ∗ Jϕ ∗ ψ∨K-1⇔ c = Jf ∗ ψ∨K ∗ Jaϕ,ψK-1, (2.50)

where we have assumed the sampled correlation Jaϕ,ψK is invertible. In other words,

to obtain the oblique projection we have to prefilter the input f with ψ (which was

fixed in the first place), digitally filter with Jaϕ,ψK-1 and reconstruct with ϕ. This

strategy is also known as consistent sampling (Unser and Aldroubi , 1994).

Cardinal Interpolation: Another common situation is when the input is already

sampled without any pre filtering, i.e., ψ = δ and Jf∗ψ∨K = JfK. With this information

only, we can seek an approximation f̃ = c ∗ ϕ that matches the input function f at

integers, i.e., JfK = Jf̃K. This method is known as cardinal interpolation and is

obtained as follows:

JfK = Jf̃K⇔ JfK = Jc ∗ ϕK⇔ JfK = c ∗ JϕK⇔ c = JfK ∗ JϕK-1, (2.51)

where we have assumed JϕK to be invertible. Thus, we have to sample f at integers,

convolve with the digital filter q = JϕK-1 and reconstruct with ϕ.

Quasi-Interpolation: Given a generator ϕ and ψ = δ, ϕQI = q ∗ ϕ is said to be

a quasi-interpolator of order L, if it reproduces exactly all polynomials of degree L,
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i.e.,

(JpK ∗ q ∗ ϕ)(x) = p(x), ∀x ∈ R, ∀p polynomial of degree L− 1. (2.52)

When ϕ satisfies the Strang-Fix conditions for approximation order L (theorem II.14),

such a quasi-interpolator exists (condition (ii) in the theorem). Moreover, it is possible

to prove that, under the same assumptions, the cardinal interpolator JϕK-1∗ ϕ is a

quasi-interpolator of order L. There may be more than one quasi-interpolator of

order L in Vϕ and we extensively explore this concept in the next chapter, where we

propose novel quasi-interpolators for reconstruction of images.

2.8 Quantification of the L2 error

In the previous sections we have presented different methods to produce an ap-

proximation f̃ t for an input function f based on the sampling and reconstruction

pipeline illustrated in figure 2.1. But we do not have a way of comparing the different

schemes. The only quantification of the error presented until now is the approxima-

tion order and only for the orthogonal projection.

One of the drawbacks of the approximation order concept is that it assumes the

sampling spacing T to be tuneable to be arbitrarily small. For some applications this

is not reasonable. For example, in image processing where the pixel grid is fixed.

In the sequel we present a result due to Blu and Unser (1999b) that quantifies

the error depending on T and that can be applied to different choices of ψ, q and ϕ,

such as the ones that we have presented in the previous sections. This result will also

lead us to different characterizations of the approximation error in the next sections.

Theorem II.15. Let ϕ, ψ and q satisfy the admissibility conditions in section 2.3.
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For all f ∈Wr
2 with r > 1

2
, the approximation error is given by

∥∥f − f̃T
∥∥
L2

=

 ∞∫
-∞

∣∣f̂(ω)
∣∣2E(Tω) dω

 1
2

+ e(f, T ), (2.53)

where e(f, T ) = o(T r) and

E(ω) =
∣∣∣1− (q̂(ω)∗ψ̂(ω)∗

)
ϕ̂(ω)

∣∣∣2 +
∣∣∣q̂(ω)ψ̂(ω)

∣∣∣2∑
k 6=0

∣∣ϕ̂(ω + k)
∣∣2 (2.54)

Proof: See appendix C in (Blu and Unser , 1999b).

�

2.9 Approximation order

Similarly to the approximation order for the orthogonal projection, we define the

concept of approximation order for the general scheme presented in figure 2.1. The

scheme is said to have approximation order if there exists C > 0 such that

∥∥f − f̃T
∥∥
L2
6 C · TL ·

∥∥f (L)
∥∥
L2
,∀f ∈WL

2 . (2.55)

The precise quantification of the error given by (2.53) made possible to state the

most general condition for a scheme to have approximation order L. We present this

condition in the sequel.

For the rest of this section, we denote the combination of continuous prefilter and

digital filter as

ϕ̃ = ψ ∗ q
(
⇔ ˆ̃ϕ(ω) = ψ̂(ω) · q̂(ω)

)
(2.56)

With this notation, the approximation scheme in figure 2.1 is said to be quasi-
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biorthonormal of order L if

ˆ̃ϕ(ω)∗ϕ̂(ω + k) = δk +O
(
ωL
)
, ∀k ∈ Z. (2.57)

This condition is weaker than traditional biorthonormality presented and ana-

lyzed by Unser (1996). The scheme is said to be biorthonormal of order L if ϕ has

approximation order L and

〈
ϕ(x− k), ϕ̃(x− l)

〉
= δk,l, ∀k, l ∈ Z. (2.58)

In compact notation, the latter condition is expressed simply as

Jaϕ,ϕ̃K = δ. (2.59)

Blu and Unser (1999b) show why biorthonormality of order L implies quasi-biortho-

normality of order L. Condition (2.59) gives us a simple way to check that the cardinal

interpolation scheme is biorthonormal of order L, given that the generator ϕ has order

L and is symmetric:

Jaϕ,ϕ̃K = Jϕ ∗ ϕ̃∨K = Jϕ ∗ q∨ ∗ ψ∨K = Jϕ ∗ (JϕK-1)∨ ∗ δ∨K
= Jϕ ∗ JϕK-1K = JϕK ∗ JϕK-1 = δ.

(2.60)

It is possible to prove that when ϕ has order L, then orthogonal and oblique pro-

jections are biorthonormal of order L and quasi-interpolation of order L is quasi-

biorthonormal of order L.

We now present the main theorem of this section that relates approximation order

of the general approximation scheme to quasi-biorthonormality of order L.

Theorem II.16. Let ϕ, ψ and q satisfy the admissibility conditions in section 2.3.

Additionally, we assume boudedness of ϕ and of |x|2L
∣∣ϕ(x)

∣∣, and also require that
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∫∞
-∞

∣∣ϕ̃(x)
∣∣ dx < ∞ and

∫∞
-∞ |x|2L

∣∣ϕ̃(x)
∣∣ dx < ∞. With these hypotheses we have the

equivalence

(2.55)⇔ ϕ and ϕ̃ are quasi-biorthonormal of order L. (2.61)

Proof: Appendix D in (Blu and Unser , 1999b).

�

We present another characterization for quasi-biorthonormality of order L that

will be useful for our developments in the next chapter.

Theorem II.17. Let ϕ, ψ and q satisfy the admissibility conditions in section 2.3.

Then the following conditions are equivalent:

(i) ϕ and ϕ̃ are quasi-biorthonormal of order L.

(ii) The error kernel (2.54) of the approximation scheme in figure 2.1 satisfies:

E(0) = E(1)(0) = . . . = E(2L−1)(0) = 0. (2.62)

Proof: By defining the functions

Gn(ω) = ˆ̃ϕ(ω)∗ϕ̂(ω + 2nπ), n ∈ Z (2.63)

we observe that equation (2.57) is also equivalent to

G0(0) = 1, G
(k)
0 (0) = 0, k = 1, . . . , L− 1,

G
(k)
n (0) = 0, k = 0, . . . , L− 1, n 6= 0.

(2.64)
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Also the error kernel (2.54) can now be re-written as

E(ω) =
(
1−G0(ω)

)(
1−G0(ω)∗

)
+
∑
n6=0

Gn(ω)Gn(ω)∗ (2.65)

We now prove the claimed equivalence.

(i) ⇒(ii): Let k ∈ N. Using Leibniz’s rule and (2.65) we have:

E(k)(0) =
k∑

m=0

[(
k

m

)
· d

m

dωm

[(
1−G0(ω)

)]
ω=0
· d

k−m

dωk−m

[(
1−G0(ω)∗

)]
ω=0

]
+

+
∑
n6=0

k∑
m=0

(
k

m

)
G(m)
n (0)G(k−m)

n (0)∗.

(2.66)

In the terms of the sum above, if k < 2L then either m < L or k −m < L. Using

(2.64) we obtain E(k)(0) = 0.

(ii) ⇒(i): We want to prove that equations (2.64) hold. Let us start proving for

G
(0)
n (0) = Gn(0):

0 = E(0) =
∣∣1−G0(0)

∣∣2 +
∑
n6=0

∣∣Gn(0)
∣∣2 ⇒

⇒
∣∣1−G0(0)

∣∣2 = 0,
∣∣Gn(0)

∣∣2 = 0⇒ G0(0) = 1, Gn(0) = 0.

(2.67)
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In order to prove for G(1)
n (0), we use the hipothesis on E(2)(0):

0 = E(2)(0) =
(
1−G0(0)

)︸ ︷︷ ︸
0

d2

dω2

[
1−G∗0(ω)

]
ω=0

+

+2
d

dω

[
1−G0(ω)

]
ω=0

d

dω

[
1−G∗0(ω)

]
ω=0

+

+
d2

dω2

[
1−G0(ω)

]
ω=0

(
1−G∗0(0)

)︸ ︷︷ ︸
0

+

+
∑
n6=0

Gn(0)︸ ︷︷ ︸
0

d2

dω2

[
Gn(ω)∗

]
ω=0

+

+
∑
n6=0

2
d

dω

[
Gn(ω)

]
ω=0

d

dω

[
Gn(ω)∗

]
ω=0

+

+
∑
n6=0

d2

dω2

[
Gn(ω)

]
ω=0

Gn(0)∗︸ ︷︷ ︸
0

= 2
∣∣G(1)

0 (0)
∣∣2 + 2

∑
n6=0

∣∣G(1)
n (0)

∣∣2
⇒ G

(1)
0 (0) = 0, G

(1)
n (0) = 0, n 6= 0.

(2.68)

For the rest of the proof we only need to proceed by induction: to prove that G(k)
n (0) =

0 (1 < k < L) we use E(2k)(0) = 0, expand the binomial sum as above and use the

previously obtained values for Gn(0), G
(1)
n (0), . . . G

(k−1)
n (0).

�

2.10 Asymptotic constant

The concept of approximation order gives us a way of comparing different ap-

proximation schemes. According to (2.55), the higher the approximation order, the

faster the error goes to zero as T → 0. But how can two methods with the same

approximation order be compared? One possibility is presented in the next theorem.

Theorem II.18. Let ϕ, ψ and q satisfy the admissibility conditions in section 2.3

and form an approximation scheme that has approximation order L. Also, assume

the input f to belong to W r
2 , L < r0 = brc and the error kernel E to be 2r0 times
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differentiable with bounded (2r0 + 1)-th derivative. Then

∥∥f − f̃
∥∥
L2

= Casymp

∥∥f (L)
∥∥
L2
TL + o

(
TL
)
, (2.69)

where

Casymp =

√
E(2L)(0)

(2L)!
. (2.70)

Proof: The Taylor development of the error kernel E gives us

E(ω) =

r0∑
k=0

E(2k)(0)

(2k)!
ω2k + o

(
ω2r0

)
(2.71)

(the even derivatives vanish since it is possible to prove that E(ω) = E(−ω)). Pugging

this result into the expression (2.53), we obtain:

∥∥f − f̃
∥∥2

L2
=

∞∫
-∞

∣∣f̂(ω)
∣∣2E(Tω) dω + o

(
T 2r0

)
=

∞∫
-∞

r0∑
k=0

E(2k)(0)

(2k)!
T 2k
∣∣f̂(ω)

∣∣2ω2k dω + o
(
T 2r0

)
=

r0∑
k=0

E(2k)(0)

(2k)!
T 2k

∞∫
-∞

∣∣ωkf̂(ω)
∣∣2 dω + o

(
T 2r0

)
=

r0∑
k=0

E(2k)(0)

(2k)!
T 2k

∞∫
-∞

∣∣∣f̂ (k)(ω)
∣∣∣2 dω + o

(
T 2r0

)
(2.72)

Since r0 > L and quasi-biorthonormality of order L holds (and then (2.62) holds) we

have

∥∥f − f̃
∥∥2

L2
=

E(2L)(0)

(2L)!

∥∥f (L)
∥∥2

L2
T 2L + o

(
T 2L

)
+ o
(
T 2r0

)
=

E(2L)(0)

(2L)!

∥∥f (L)
∥∥2

L2
T 2L + o

(
T 2L

) (2.73)
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and thus

∥∥f − f̃
∥∥2

L2
=

√
E(2L)(0)

(2L!)

∥∥f (L)
∥∥
L2
TL + o

(
TL
)
. (2.74)

�

This result was first proven in (Blu and Unser , 1999b) and we have simply red-

erived it here in a different way. The expression in (2.69) has a direct interpretation:

for two approximation schemes with the same order, the one with the smallest asymp-

totic constant Casymp will be the one with the error going faster to zero as T → 0.

We observe that, following the derivation in the proof of theorem II.17, it is

possible to obtain a more clear expression for Casymp since

E(2L)(0) =
∑
k∈Z

∣∣G(L)
n (0)

∣∣2, (2.75)

where the functions Gn are given by (2.63). Applying this to the particular case of

quasi-interpolation (ψ = δ, q and ϕ given digital filter and generator), we obtain

E(2L)(0) =
∑
k∈Z

∣∣ϕ̂QI
(L)(0)

∣∣2 (2.76)

where ϕ̂QI (ω) = q̂(ω) · ϕ̂(ω). This particular result was first presented by Unser and

Daubechies (1997). In the same paper the authors also derive this constant for the

orthogonal projection scheme:

E(2L)(0) =
∑
k 6=0

∣∣ϕ̂(L)(0)
∣∣2. (2.77)
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2.11 Chronology of approximation schemes

Based on the theory we have just presented, many approaches to obtain better

schemes for sampling and reconstruction were proposed. We now review the ones we

consider the most important:

• (Blu et al., 2001): As we have already pointed out, the cost of the approx-

imation scheme is mostly dictated by the support of the generator ϕ. With

this observation and the claim that higher approximation order leads to better

results the authors provide the full description of the generators ϕ that have

minimum support, for a given approximation order. They call these generators

MOMS, standing for Maximal order of minimum support.

Theorem II.19. For a given approximation order L, the smallest support gen-

erator ϕ(x) is piecewise-polynomial of degree L − 1 and its support is of size

L. Moreover, the full class of these minimum-support functions is constrained

within an L-dimensional vector space parametrized as

ϕ(x) =
L−1∑
n=0

λn
dn

dxn
βL−1(x− a) (2.78)

where λ0 = 1, and where a is an arbitrary shift parameter corresponding to the

lower extremity of the support of ϕ(x).

Proof: Appendix A from (Blu et al., 2001).

�

Then the authors plug (2.78) into (2.77) and minimize the asymptotic constant

with respect to λ1, λ2, . . ., λL−1. The resulting generators are called O-MOMS

(optimal MOMS).
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• (Thévenaz et al., 2000): The authors use the asymptotic constant to compare

cardinal interpolation schemes (see section 2.7). They conclude that, although

the O-MOMS were designed to reach optimality for the orthogonal projection,

they are also the best available for cardinal interpolation. The second best was

cardinal-interpolation with B-splines.

• (Blu et al., 2004): According to (2.78) we can shift the reconstruction scheme

by a and keep the same approximation order. This paper does this for the linear

reconstruction scheme, it shifts the hat function by a. Then it finds the opti-

mal shift by minimizing the asymptotic constant for the cardinal-interpolation

scheme. Surprisingly, this scheme reaches the orthogonal projection asymptotic

constant for reconstruction with the hat function.

• (Condat et al., 2005): The authors fix the generator ϕ = βn and pre-filter ψ = δ

(then they search for a quasi-interpolation scheme) and look for an IFIR digital

filter q. The criterium they adopt is

E(ω) ≈ Els(ω), for ω ≈ 0, (2.79)

where Els is the error kernel for the orthogonal projection scheme.

• (Dalai et al., 2006): Take an approach very similar to (Condat et al., 2005), but

search for a FIR digital filter q, instead of IFIR.

2.12 Concluding remarks

As we can see, the most important previous work adopted asymptotic criteria to

design their schemes: either high approximation order, small asymptotic constant or

error kernel small for small frequencies. Based on the observation that the asymptotic

regime is not achievable in some contexts (such as image processing applications,
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where the sampling pixel grid if fixed), we propose a new scheme in the next chapter.

Our results present higher quality when compared to all previous schemes.

The exposition in this chapter can be greatly complemented by (Nehab and Hoppe,

2014). Section 10 of this reference presents a lot of experiments qualitatively com-

paring different schemes (we focused only on quantitive and theoretical comparisons).

Implementations details such as how to perform inverse discrete convolution (their

section 4.2) are also given. Other practical details are presented in section 8.
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CHAPTER III

Optimized Quasi-Interpolators for Image

Reconstruction

(a) Input image and detail (b) Blu et al.
(2001)

(c) Condat et al.
(2005)

(d) Our result

Figure 3.1: Comparison between state-of-the-art quadratic quasi-interpolators with
similar computational cost. The test consists of applying 40 cumulative
translations to the input. Our new quadratic is better at preserving detail.
PSNR: (a) ∞, (b) 32.938, (c) 34.149, (d) 36.443.

3.1 Introduction

The problem of obtaining an estimate for the value of a function at an arbitrary

point, when given only a discrete set of sampled values, has a long history in applied

mathematics (Meijering , 2002). A variety of operations commonly performed on

images, such as rotations, translations, warps, and resolution change, require resam-

pling. Efficient, high-quality reconstruction is therefore of fundamental importance

in computer graphics and image processing applications.
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reconstructionsampling
continuous
prefiltering

digital
filtering

input output

Figure 3.2: The sampling pipeline. The input f is first convolved with a scaled pre-
filter ψ and then sampled on a grid with fixed spacing T . We assume the
image is available to us after sampling and we optimize for the quality of
the reconstruction f̃T using all the degrees of freedom of the digital filter
q and of the generator ϕ.

In this paper, we leverage recent results from the intersection of image processing

and approximation theory to optimize for a new family of reconstruction schemes.

Figure 3.1 shows a typical benchmark used to evaluate reconstruction quality. An

input image is repeatedly translated so as to accumulate the errors due to multi-

ple compound reconstruction steps. The figure compares the two best performing

quadratic reconstruction schemes with the result of our method. Visual inspection

suggests our method is better at preserving high-frequency content, and this is con-

firmed quantitatively by the perceptual SSIM (Wang et al., 2004) metric as well as the

PSNR metric. This success is the result of the greater number of degrees of freedom

and the more realistic objective function we use in our optimization framework.

Figure 3.2 shows the modern approach to sampling and reconstruction (Blu et al.,

1999). The precise definition of each stage in the pipeline was given in section 2.2.

Intuitively, an approximation f̃T to f is obtained as follows. In the first two stages, f

is subjected to a continuous convolution with an analysis filter ψ (a.k.a. prefilter), and

then sampled with constant sample spacing T . The traditional role of the prefiltering

stage is to eliminate from f frequencies above the Nyquist rate 0.5
T

so as to avoid

aliasing in the sampled sequence. In the applications we discuss in this paper, we

assume no knowledge or control over the prefilter ψ. In other words, either there was
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no prefilter (equivalently, ψ = δ, the Dirac delta) or our goal is to approximate a

previously prefiltered signal f ∗ ψ∨ instead of f itself.

The remaining stages apply a digital filter q to the samples (by discrete convo-

lution), and then build f̃T by combining shifted copies of a generating function ϕ,

each scaled by a filtered sample. The digital filtering stage q is a recent addition to

the sampling pipeline (Unser , 2000). It brings several advantages: it increases the

range of approximation techniques that can be expressed, and gives more freedom to

the design of generators ϕ with desirable approximation properties. Furthermore, it

incurs no significant performance penalty.

The ideal sampling of Shannon (1949) is represented in the sampling pipeline by

setting both the prefilter and generating function to the ideal low-pass filter (i.e., ψ =

ϕ = sinc, the sinus cardinalis), and omitting the digital filtering stage (or equivalently,

setting q = δ, the Kronecker delta). For reasons that include its wide support even

when windowed, its high computational cost, and results with an excessive amount of

ringing, sinc has progressively lost favor to narrowly supported piecewise polynomial

kernels, which bring performance and quality advantages (Meijering et al., 2001).

A typical use for the digital filtering stage is in interpolation. Absent q, the

interpolation property eliminates degrees of freedom from ϕ that could be used for

better purposes. These constraints can be moved to q instead (Thévenaz et al.,

2000), as in the case of interpolation by B-splines (Unser et al., 1991). Another

use for the digital filtering stage is in obtaining the best approximation of f for a

given choice of generator ϕ. Since the functions of interest in many applications have

considerable bandwidth outside the Nyquist interval (−0.5
T
, 0.5
T

), there is no hope of

reaching an exact reconstruction. The goal is instead to minimize the L2 norm of the

residual
∥∥f − f̃T

∥∥
L2
, and this goal uniquely determines both ψ and q. Setting q∨∗ψ =

ϕ̊, the dual of the generator ϕ, we obtain the orthogonal projection of f into the space

of functions spanned by shifted copies of the generator ϕ.
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The order with which the residual of the orthogonal projection vanishes as we

progressively reduce the sample spacing T is a property of the generating func-

tion ϕ (Strang and Fix , 1971). Piecewise polynomial generators with minimal support

and optimal approximation order were completely characterized by Blu et al. (2001).

To achieve the same approximation order as the orthogonal projection without ac-

cess to ψ, as is our assumption, we must wisely select q (de Boor , 1990; Blu and

Unser , 1999b). The results are quasi-interpolators. Optimal order digital filters q for

a given ϕ have also been obtained (Blu and Unser , 1999a; Condat et al., 2005; Dalai

et al., 2006).

Previous work has either assumed orthogonal projection and optimized for the

generator, or assumed a given generator and optimized for the digital filter. As far

as we know, our work is the first to jointly optimize all degrees of freedom in q and ϕ

for the best quasi-interpolating scheme. Furthermore, inspired by Schaum (1993),

our optimization framework takes into account the entire Nyquist interval. This is

in contrast to the dominant strategy of focusing on the asymptotic behavior of the

residual in the limit as T → 0.

Our work results in a new family of piecewise polynomial quasi-interpolating

schemes. Each scheme is given by a combination of digital filter q and generating

function ϕ, and is optimal with regard to our metric. We run a variety of empirical

tests to demonstrate that the resulting schemes yield superior reconstruction quality

in typical tasks, when compared to the state-of-the-art, while maintaining competitive

performance.

In addition to a historical review of related work, section 3.2 presents important

concepts from approximation theory and the motivation for our work. Section 3.3

delves deeper into theory and substantiates our motivation with concrete examples.

Section 3.4 presents our optimization framework. The resulting interpolators and

comparisons against the state-of-the-art appear in section 3.5. We conclude in sec-
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tion 3.7 with directions for future research on this topic.

3.2 Related work

The classic result by Shannon (1949) states that the scheme described in figure 3.2

can result in f̃T = f when f ’s bandwidth is restricted to the Nyquist interval (-0.5
T
, 0.5
T

)

when we select ψ = δ, q = δ and ϕ = sinc. In the practical setting, when input

functions are not necessarily band-limited and ϕ is required to be piecewise polynomial

and compactly supported, Shannon’s result does not apply and f 6= f̃T .

For such cases, Strang and Fix (1971) established conditions under which the

error ‖f − f̃T‖L2 goes to zero as a power of the sampling spacing T , when f̃T is the

orthogonal projection of f into Vϕ. They prove that f̃T has approximation order L

if and only if Vϕ contains all polynomials up to degree L − 1. They also prove that

interpolating f in Vϕ has the same approximation order. Unser (1996) proved that if

ψ is q ∗ϕ are bi-orthogonal then the scheme in figure 3.2 has the same approximation

order of ϕ. Blu and Unser (1999b) completed the characterization of approximation

order L by proving it to be equivalent to ψ and q ∗ ϕ being quasi-biorthonormal of

order L.

Over the years, many different approaches have been proposed for designing good

generators ϕ. When only samples of f are available (ψ = δ), the typical choice is

to design interpolating generators ϕ, with the claim that this would lead to better

approximations (Keys , 1981; Schaum, 1993; Dodgson, 1997; German, 1997). These

early works did not include the digital filter q in the approximation scheme (equivalent

to taking q = δ).

Interpolation has the same approximation order L as ϕ (Strang and Fix , 1971).

Unser et al. (1991) and Blu et al. (1999) advocate that the interpolation condition

f̃T (k) = f(k),∀k ∈ Z is best enforced by the introduction of a digital filter q =

JϕK-1 to the sampling pipeline. This digital filtering stage can be performed very
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efficiently (Unser et al., 1991; Nehab et al., 2011). The addition of the digital filtering

stage leaves more freedom to design ϕ for increased approximation quality (Thévenaz

et al., 2000). The popular example is interpolation using B-splines (ϕ = βn). B-

splines have high approximation order, short support, and high regularity (Unser ,

1999). The cardinal B-splines βnint = JβnK-1∗ βn converge to sinc as n goes to infinity

(Aldroubi and Unser , 1994a). Additionally, they are very efficient to use as pre-

filters (Heckbert , 1986), digital filters (Unser et al., 1993), and generators (Sigg and

Hadwiger , 2005).

Explicit formulas for the asymptotic constant Casymp (2.70) , associated with an

approximation scheme were developed (Möller et al., 1997; Blu and Unser , 1999b).

Blu et al. (2001) parametrized all generators with minimum support and optimal ap-

proximation order in terms of B-splines and their derivatives. Using this parametriza-

tion, they obtained excellent generators that minimize the asymptotic constant of the

orthogonal projection scheme (the O-MOMS). Although designed to be optimal for

orthogonal projection, the O-MOMS were shown to be good cardinal interpolators as

well (Thévenaz et al., 2000). Blu et al. (2003) later provided a complete parametriza-

tion for generators ϕ in terms of their degree R, supportW , regularity R, and order L.

The general expression is a linear combination of B-splines and their convolution with

certain distributions. Along this line of research, Blu et al. (2004) determined an op-

timal shift in the linear interpolation scheme such that it reaches the asymptotic

constant of the orthogonal projection.

Interpolation is too strong a constraint. It completely defines the digital fil-

ter q = JϕK-1. Giving up interpolation allows us to use the digital filter to improve

reconstruction quality even further. These so called quasi-interpolation schemes were

shown to have approximation order L whenever they exactly reproduce polynomials

up to degree L− 1 (i.e., f̃T (x) = f(x),∀x ∈ R if f is a polynomial of degree less than

L) (de Boor , 1990; Chui and Diamond , 1990). This in turn will be true whenever the
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combination of prefilter and digital filter ψ∨∗q have the same moments as the dual ϕ̊∨

up to order L− 1 (Blu and Unser , 1999b). This equivalence was explored in the de-

sign of digital filters for quasi-interpolators based on B-spline generators ϕ = βn:

Condat et al. (2005) proposes an IFIR design, Dalai et al. (2006) an FIR design, and

Blu and Unser (1999a) propose a combination of FIR and IFIR filters.

The approximation order L and constant Caymp describe the asymptotic behavior

of the residual as T → 0. In practice, this will be the dominant effect only when we

are able to reduce T arbitrarily, or when the input signal has a narrow band around

zero. The main motivation for our work is our belief that neither of these conditions

apply in typical image processing and computer graphics applications. A better goal

is to minimize the residual under some appropriate metric. Although a perceptual

metric would be ideal in some applications (Zhang and Wandell , 1996; Wang et al.,

2004), more powerful tools are available to work with the L2 metric.

Error kernels E(ω) allow us to separate, in the computation of the value of the

residual ‖f−f̃T‖L2 , the influence of the input f and the influence of the approximation

scheme. The general result states

‖f − f̃T‖2
L2
≈

∞∫
-∞

∣∣f̂(ω)
∣∣2E(ω) dω. (3.1)

Park and Schowengerdt (1983) obtained an expression for the error kernel when ψ = δ,

q = δ, and used it to determine optimal generators ϕ in the family of interpolating

cubics. Schaum (1993) obtained a similar expression, but searched for more general

generators ϕ and considered different classes of input spectra f̂ . A complete result in

the form (3.1) for arbitrary ψ, q, ϕ and f̂ was obtained by Blu and Unser (1999b)

using multiple generators, proving the equivalence between approximation order and

quasi-biorthonormality. A version of (3.1) for a single generator ϕ (the case of interest

in our work) was further detailed and analyzed by Blu and Unser (1999a).
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Different works have had some success in optimizing for high approximation or-

der L and low approximation constant C (which control the behavior of the residual

in the limit T → 0) as a proxy for lowering the magnitude of the error kernel in

(3.1) (e.g., (Thévenaz et al., 2000; Blu et al., 2004)). In our work (see section 3.3)

we provide concrete examples that show there is no direct connection between these

goals. This is why we define our objective functions to minimize the expression in

(3.1).

Unlike previous work, we obtain optimal quasi-interpolators by optimizing for, in

addition to the degrees of freedom in the generator parametrization by (Blu et al.,

2003), all degrees of freedom in the digital filter. In other words, we jointly optimize

for both ϕ and q. Our generators and digital filters do not change depending on

the input f , nor on the image-processing operation being performed. Interpolation

schemes that are input-dependent include (El-Khamy et al., 2005; Kopf et al., 2013).

3.3 Theory and motivation

We base our optimization problem on the error kernel theorem presented in sec-

tion 2.8, which we re-state below. It quantifies the L2-error between the input and

output functions in the approximating scheme of figure 3.2:

Theorem III.1. Let ϕ, ψ and q satisfy the admissibility conditions in section 2.3.

For all f ∈Wr
2 with r > 1

2
, the approximation error is given by

‖f − f̃T‖L2 =

 ∞∫
-∞

|f̂(ω)|2E(Tω) dω

 1
2

+ e(f, T ), (3.2)

where e(f, T ) = o(T r) and

E(ω) =
∣∣∣1− (q̂(ω)∗ψ̂(ω)∗

)
ϕ̂(ω)

∣∣∣2 +
∣∣∣q̂(ω)ψ̂(ω)

∣∣∣2∑
k 6=0

|ϕ̂(ω + k)|2 (3.3)
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Proof: See appendix C in (Blu and Unser , 1999b).

�

The residual term e(f, T ) vanishes in many situations such as in the case where

f is band-limited in the Nyquist interval (Blu and Unser , 1999a). Setting this term

aside, formula (3.2) tells us that when most of the energy of the input is concentrated

at low frequencies relative to the sampling spacing (i.e., for frequencies such that

Tω → 0), we can obtain a small residual by simply requiring the error kernel E to

vanish near Tω → 0.

This condition is satisfied by schemes with L > 0. Indeed, approximation order L

is equivalent to all derivatives of E up to degree 2L − 1 vanishing at zero (theo-

rem II.17). In turn, this causes the error kernel to behave as a polynomial of degree

2L near ω = 0. This intuition led to significant effort being devoted towards the de-

velopment of high approximation order schemes (Keys , 1981; Unser , 1996; German,

1997; Blu et al., 2001).

When two different schemes have the same approximation order, the same intu-

ition suggests using the asymptotic constant Casymp that appears in (2.70) to select

the best ones (Blu et al., 2001; Thévenaz et al., 2000; Blu et al., 2004). This can

again be related to the error kernel (3.3), since this constant is proportional to the

coefficient of the leading (2L)th power of the polynomial approximation of the error

kernel around ω = 0 (Blu and Unser , 1999a).

We agree that a higher approximation order and small asymptotic constant can

be important in many applications. However, as we show in figures 3.3 and 3.4, it

is possible to find counter-examples for both criteria for exactly the applications that

are typically used to showcase the approximation quality achieved by following them.

Figure 3.3 compares the 3rd-order (cardinal) quadratic interpolator OMOMS-2

(Blu et al., 2001) with the 4th-order cubic local Lagrangian interpolator (Schaum,

1993) in an experiment that consists of 30 compounded rotations. At each rota-

41



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.1  0.2  0.3  0.4  0.5
ω

E
(ω

)

O-MOMS
Schaum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  0.01  0.02  0.03
ω

E
(ω

) 
x
 1

0
9

O-MOMS
Schaum

Input Quadr. O-MOMS Cubic Schaum
(a) PSNR = ∞,

SSIM =1.0
(b) PSNR = 32.21,

SSIM = 0.94
(c) PSNR = 29.86,

SSIM = 0.90

Figure 3.3: Comparison between the quadratic O-MOMS, a 3rd-order interpolator
proposed by (Blu et al., 2001), and a 4th-order cubic by Schaum (1993).
Even with its lower order, O-MOMS’s error kernel shows a better behavior
overall in most of the Nyquist interval (top left). Detail (top right) shows
that Schaum’s is only better for a tiny portion of the spectrum near
the origin. Comparison of 30 consecutive rotations confirm the better
approximation qualities of the O-MOMS interpolator.

tion step, the input image is interpolated, and sampled at a 360o

30
= 12o angle. The

result is used as input for next rotation step and so on until the image is back to

its initial position, at which point it is compared to the original input. The PSNR

and SSIM (Wang et al., 2004) measures are higher (meaning higher quality) for the

result with OMOMS-2 (Figure 3.3b), that has a lower order. The plot of the error

kernels for both approximation schemes (Figure 3.3 top left) show that OMOMS-2

has a smaller value overall in the full Nyquist interval although it is worse for low

frequencies (Figure 3.3 top right), the latter behavior being expected since it has

lower approximation order.

In figure 3.4, we compare the performance of the quadratic interpolator designed
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Figure 3.4: Comparison between a quadratic interpolator proposed
by Dodgson (1997) and the cubic by Mitchell and Netravali (1988)
(not interpolating), both with approximation order 2. Error kernels
show the overall better behaviour of Dodgson’s interpolator in the full
Nyquist interval. This is despite its poorer behaviour near the origin (top
right), as predicted by its higher asymptotic constant. Comparison of 15
consecutive translations show the higher quality achieved by Dodgson’s
interpolator.

by Dodgson (1997) with the (non-interpolating) cubic proposed by Mitchell and Ne-

travali (1988). Both these kernels have approximation order 2, so we would expect the

one with smaller asymptotic constant to be better (the formula for the constant is pro-

vided in (Blu and Unser , 1999b)). In this case the constant for Dodgson’s interpolator

is slightly larger than Mitchell-Netravali’s cubic’s (by about 0.0004). Nevertheless,

the compounded 15-translations in figure 3.4 show that Dodgson’s interpolator gen-

erates a better result (Figure 3.4b). This is again due to a better behaviour in the full

Nyquist interval (Figure 3.4 top left), although it is a bit worse for low frequencies

(Figure 3.4 top right).
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These counter-examples exist because the benchmarks violate the underlying as-

sumption that the input frequency content is concentrated around Tω → 0. As is

obvious from the images, they have significant frequency content away from ω → 0.

Indeed, the input power spectrum for natural images tend to behave as

∣∣f̂(ω)
∣∣2 ≈ 1

ωp
, (3.4)

where p varies from 1.6 to 3.0 (Field and Brady , 1997; Ruderman, 1997; Hsiao and

Millane, 2005). A photograph taken underwater tends to be blurrier, so p will be

higher. A photograph taken in the woods, where foliage produces high-frequency

content, will have a smaller p. While the idea of taking T → 0 is valid for numerical

analysis applications that control the sampling spacing, we are not afforded the same

freedom in most image-processing applications: we must therefore analyze the error

kernel E over the entire frequency domain.

Recall we assume we only have access to the samples of f . If f was filtered by a

good prefilter prior to sampling, the frequency content outside the Nyquist interval

is close to zero. If not, whatever frequencies were outside the Nyquist interval have

already been aliased back into it when the image was sampled. Therefore, rather

than integrating on the real line as in (3.2), we focus on the Nyquist interval:

‖f − f̃T‖2
L2
≈

0.5
T∫

− 0.5
T

∣∣f̂(ω)
∣∣2E(Tω) dω. (3.5)

Since T is fixed, we may assume T = 1 with no loss of generality (see section 3.9 for

proof).
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We can now define our minimization problem:

arg min

0.5∫
−0.5

∣∣f̂(ω)
∣∣2E(ω) dω. (3.6)

Assuming f̂ known (to be detailed in section 3.4) and no prefiltering in the quasi-

interpolation scheme (ψ = δ or ψ̂ ≡ 1), the degrees of freedom lie in the definitions

of the digital filter q and the generator ϕ.

We explore three options for the form of digital filter q, FIR, IFIR, and FIR-IFIR.

Formally,

FIR : q = [. . . , 0, d-j, . . . , d0, . . . , dj, 0, . . .], (3.7)

IFIR : q = [. . . , 0, e-k, . . . , e0, . . . , ek, 0, . . .]
-1, and (3.8)

FIR-IFIR : q = d ∗ e. (3.9)

These formulations provide us with 2j+1, 2k+1, and 2(j+k+1) degrees of freedom,

respectively.

To isolate the degrees of freedom in the generator in a meaningful way, we use the

parametrization by Blu et al. (2003) in terms of its degreeN , supportW , regularity R,

and approximation order L (for simplicity, we write ϕ ∈ {N,W,L,R}).

Theorem III.2. Given W > N, ϕ ∈ {N,W,R, L} if and only if there exists a unique

set of coefficients ak,`, bk,`, and ck,` such that

ϕ
(
x− W

2

)
=

M∑
`=1

N -L-`∑
k=0

ak,`
(
βL+k-1
nc ∗ γN -L-k

`

)
(x)

+
M∑
`=0

W -N+`-1∑
k=0

bk,` β
N -`
nc (x− k)

+
W -L∑
k=0

L-R-2∑
`=0

ck,` ∆∗` βL-`-1
nc (x− k),

(3.10)
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where M = N −max(R + 1, L).

Proof: See (Blu et al., 2003).

�

In the formulas above,

βnnc(x) = βn
(
x− n+1

2

)
, (3.11)

is the non-centered B-spline, ∆∗` is the `th-order finite difference, and γn` are distri-

butions (e.g., derivatives and shifts).

For example, setting N = 1, W = 2, R = −1 (meaning ϕ is bounded), and L = 1

in the decomposition theorem produces

ϕ(x) = b0,0β
1(x) + c0,0β

0
(
x+ 1

2

)
+ c1,0β

0
(
x− 1

2

)
(3.12)

This gives us 3 additional degrees of freedom, relative to the common choice of ϕ =

β1(x) (Condat et al., 2005; Dalai et al., 2006), with which we minimize our objective

function.

3.4 Optimization

We now state the minimization problem that will result in optimal quasi-interpolators.

Before the objective function itself, we detail the constraints.

Degree and width of ϕ The degree N is the guiding parameter in our method.

We set the width to W = N + 1 to match the run-time efficiency of generators such

as B-splines and O-MOMS.

46



Regularity of ϕ The only restriction we impose is boundedness (R = −1). Several

authors have observed that regularity is not fundamental for good approximation

quality Schaum (1993); Blu et al. (2001). Our results confirm this. Applications

requiring more regularity (e.g., for derivatives) can change this parameter in the

optimization.

Approximation order of ϕ In stark contrast to previous work, we only require

first-order approximation (L = 1). This means that frequency ω = 0 (i.e., DC or the

average input value) will be preserved, but nothing else. In analogy to the regularity

constraint, our results show that these additional degrees of freedom are better left

to the discretion of the optimizer.

These constraints determine the coefficients in (3.10) that are available for mini-

mization. We encapsulate them into lists of coefficients A, B and C:

A = {ak,`}, B = {bk,`}, C = {ck,`}. (3.13)

Symmetry of ϕ and q To guarantee linear phase, we require our quasi-interpolators

q ∗ ϕ to be symmetric. The condition imposes simple linear relationships between the

coefficients ak,`, bk,`, and ck,`, and sets di = d-i, and ei = e-i, for all i.

Unit scale for ϕ and q There is a scale ambiguity within the remaining degrees

of freedom. Scaling ϕ by s and q by 1
s leaves the quasi-interpolator q ∗ ϕ unchanged.

We therefore impose

∞∫
-∞

ϕ(x) dx = 1, and
∑
i∈Z

di =
∑
i∈Z

ei = 1. (3.14)

Approximation order of the scheme We also require the scheme as a whole

to have first order of approximation. The generator ϕ satisfies the restriction by
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construction, but a misguided choice of q could ruin it. The equivalent condition on

the error kernel is

E(0) = 0. (3.15)

See theorem II.17 for the proof.

Objective function Recall the spectrum of natural images tend to follow (3.4).

Since we seek input-independent quasi-interpolators, we set p to the intermediate

value of p = 2:

∣∣f̂(ω)
∣∣2 ≈ 1

ω2
. (3.16)

This choice has an extra advantage in our formulation. Since we are imposing E(0) =

0 and since E ′(0) = 0 is automatically satisfied due to the symmetry of the error

kernel, we have E(ω) proportional to ω2 near the origin. This causes the integrand

in (3.6) to converge to a finite value at the origin.

The optimization problem Given a degree N :

arg min
q,A,B,C

F (d) :=

d∫
0

1

ω2
E(ω) dω (3.17)

subject to ϕ ∈ {N,N + 1,−1, 1}, (3.18)

ϕ∨ = ϕ, q∨ = q, (3.19)∫
ϕ(x)dx = 1,

∑
qk = 1, (3.20)

E(0) = 0. (3.21)

(We can restrict the integral to positive ω because of symmetry.)
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Figure 3.5: Quadratic interpolation result for 20 compounded translations. Mini-
mizing F (0.5) leads to a quasi-interpolator ϕqi that overshoots high fre-
quencies (b). This problem is avoided by minimizing F (0.34) (d), where
d = 0.34 is automatically obtained by a binary search. Plots in figures (c)
and (e) show the frequency response of the associated quasi-interpolators
compared with the frequency response of the ideal interpolator.

Controlling overshoot and aliasing The natural choice for the integration limit d

in (3.17) is 0.5, since we only have access to samples of f . Unfortunately, this often

results in quasi-interpolators with highly oscillating spectra, such as the one presented

in figure 3.5c.

By minimizing (3.17) with d = 0.5 we are requiring the error kernel to be small

near ω = 0.5, say E(0.5− ε) ≈ 0. As shown in section 3.9, this implies

ϕ̂qi(0.5− ε) ≈ 1, ϕ̂qi(0.5 + ε) ≈ 0,

ϕ̂qi(-0.5 + ε) ≈ 1, ϕ̂qi(-0.5− ε) ≈ 0.

(3.22)
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(a) DTFT (Jf ∗ ψ∨K)(ω) (b) ϕ̂qi(ω) (c) DTFT (Jf ∗ ψ∨K)(ω) ·
ϕ̂qi(ω)

(d) DTFT (
qJf ∗ ψ∨K ∗

ϕqi
y
)(ω)

Figure 3.6: By imposing ϕ̂qi(ω) 6 1.0025, ∀ω ∈ [−0.5, 0.5] and |ϕ̂qi(ω)| 6
0.025, ∀ω ∈ [−∞,−0.75] ∪ [0.75,∞] we control overshoot and aliasing
in the re-sampled image. The DTFT of the input Jf ∗ ψ∨K (a) is multi-
plied by ϕ̂qi (b) and results in a spectrum with small out-band (aliasing)
spectrum and non-amplified in-band spectrum (c). Resampling it leads
to

qJf ∗ ψ∨K ∗ ϕqi
y
(whose DTFT is shown in figure d) with controlled

frequency amplification.

Thus E(0.5 − ε) ≈ 0 leads to ϕ̂qi(ω) = q̂(ω)ϕ̂(ω) that approximates a function with

discontinuities near ω = ±0.5. Since ϕ̂(ω) cannot oscillate much (see (Blu et al.,

2003) for the expression), q̂(ω) is responsible for approximating the discontinuities

near ω = ±0.5. Since the filter has a finite support in the form of (2.4) or its

reciprocal, this leads to the Gibbs phenomenon in q̂(ω), which is modulated by ϕ̂(ω)

and manifests itself as ringing in the reconstructed images (figure 3.5b).

To prevent this issue, we only consider quasi-interpolators that satisfy the follow-

ing admissibility conditions:

ϕ̂qi(ω) 6 1.0025, ∀ω ∈ [−0.5, 0.5] and (3.23)

|ϕ̂qi(ω)| 6 0.025, ∀ω ∈ [−∞,−0.75] ∪ [0.75,∞] . (3.24)

Intuitively, condition (3.23) prevents overshoot and condition (3.24) prevents aliasing.

The values 1.0025, 0.025 and 0.75 were empirically determined. To solve the opti-

mization problem, we relax the objective function by performing a binary search for

the largest value of d ∈ [0, 0.5] in (3.17) that leads to an admissible quasi-interpolator.

Figure 3.6 illustrates the importance of conditions (3.23) and (3.24) by following

the effects of each stage of the sampling pipeline, in the frequency domain. The DTFT
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of the input Jf ∗ ψ∨K is modulated by the spectrum of the quasi-interpolator ϕ̂qi. The

resampling step then replicates this spectrum. Conditions (3.23) and (3.24) control

magnification of both in-band and out-band spectra.

Note that condition (3.24) skips interval (0.5, 0.75). In fact, for N = 1, even this

relaxed condition is too restrictive. We therefore test only condition (3.23). Degrees

N = 2 and 3 have larger parameter spaces, and we can find a value for d that satisfies

both constraints.

The practical effect of the admissibility conditions can be seen in the example of

figure 3.5. There, the quasi-interpolator that results from the optimization with d =

0.5 leads to overshoot in high frequencies (note ringing surrounding thorns). The

binary search finds the value d ≈ 0.34. The resulting quasi-interpolator is softer, but

is still sharp enough. The overshooting is mostly gone.

Length and type of q We solve (3.17)–(3.21) using FIR, IFIR and FIR-IFIR dig-

ital filters. FIR filters led to the worst results, both w.r.t. the objective function (3.6)

and our interpolation experiments. Since IFIR and FIR-IFIR formulations lead to

similar results, we prefer the lower cost IFIR. The wider q is (i.e., the more degrees

of freedom it offers), the lower objective function values are obtained. However, very

little is gained for widths greater than 5. All our results assume a width 5 and an

IFIR formulation for the digital filter.

3.5 Results and discussion

We have implemented this optimization framework in Mathematica, selecting the

optimization method by Nelder and Mead (1965). This method is suitable for con-

strained non-linear problems, and worked best in practice with our objective function.

To reduce the risk of finding poor local minima, we solve each optimization problem

40 times and select the best result.
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The objective function is somewhat brittle, due to the integrand in (3.17) being

unstable near the origin. We were careful to keep the error kernel in its simplest

possible form to avoid numerical round-off errors. All calculations were performed

with 20-digit precision. The Quasi-Monte Carlo method gave the most robust results

for the numerical integration of (3.17).

The values for all arguments in the solution to the optimization problem of de-

grees 1, 2, and 3 are given in section 3.8. For convenience, we also provide the

source-code for the generators in the supplemental materials and the digital filter

entries. We compare the practical performance of our reconstruction schemes against

previous quasi-interpolators by performing a variety of experiments.

Figure 3.7 shows a plot of our quadratic generator ϕ (a) and the quasi-interpolator

ϕqi = q ∗ ϕ (b). As has been observed in previous work, regularity is not fundamen-

tal for achieving good approximation quality. Like the local Lagrangian interpola-

tors of Schaum (1993) and the OMOMS-2 of Blu et al. (2001), our quadratic quasi-

interpolator is not even continuous. The figure also shows a comparison between the

frequency response ϕ̂qi of our quasi-interpolator with the state-of-the art in quadrat-

ics (c). It is clear our interpolator is sharper. Furthermore, the error kernel plots (d)

show that our quasi-interpolator has a lower error overall in the Nyquist interval.

Figure 3.8 shows the same analysis, this time for our cubic quasi-interpolator. Sim-

ilar conclusions can be drawn. Please note that the improvements due to our new

quasi-interpolators is more marked than the quality differences between the previous

state-of-the-art.

Figure 3.9 shows results for our linear quasi-interpolator. The tests add a random

perturbation to each compounded translation offset in order to rule out the possi-

bility of errors being cancelled by negative correlations. Our results are significantly

sharper than those obtained by state-of-the art linear quasi-interpolator proposed

by Condat et al. (2005). In fact, our results compare favourably even against the
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Figure 3.7: Impulse responses of our quadratic generator (a) and quasi-interpolator
(b). We compare the frequency response of our quasi-interpolator with
the best quadratics (c), showing ours to be closer to the ideal interpolator.
Plot in (d) shows that the error kernel associated to our method is smaller
in most of the Nyquist interval.

cardinal quadratic B-spline.

The example in figure 3.10 shows that our quadratic quasi-interpolator performs

better than the one proposed by Condat et al. (2005). In fact, our quadratic compares

favourably against the cardinal cubic O-MOMS, which is the state-of-the-art in cubic

interpolation (Thévenaz et al., 2000).

Figure 3.11 tests the performance of our cubic quasi-interpolator with a challeng-

ing task of rotating a high-frequency pattern consisting of parallel lines. Our result

shows almost perfect reconstruction. The cubic quasi-interpolator proposed by Blu

and Unser (1999a) (which uses a wider FIR-IFIR formulation) and, to a lesser extent,

the quintic cardinal B-spline, show aliasing in the form of spurious slanted lines. This
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Figure 3.8: Impulse responses of our cubic generator (a) and quasi-interpolator (b).
Its frequency response compared with best cubics (c) and the associated
error kernels are shown in (d).

final example helps emphasize one of the key points in our paper: the quintic cardinal

B-spline has approximation order 6, and our cubic has only approximation order 1.

Nevertheless, our cubic performs better.

To put all these results in context, we ran an additional experiment. We applied

90 randomized translations to the images in (Kodak , 2010) in such a way that after

every 3 translations it goes back to the initial position. At these points, we can

measure PSNR against the input. To obtain a single number, we average the PSNR

results over the 24 input images. Results can be seen in figure 3.12. Our cubic quasi-

interpolator performs best, even when compared to quintic quasi-interpolators. Our

quadratic quasi-interpolator performed better than any other quadratic and cubic.

We recommend the use of our solutions for degrees 2 and 3, given their superior
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Input Linear (Condat et al., 2005)

(a) PSNR = ∞, SSIM = 1.0 (b) PSNR = 25.873,
SSIM = 0.862

Cardinal Quadratic B-spline Our linear

(c) PSNR = 27.000,
SSIM = 0.898

(d) PSNR = 27.642,
SSIM = 0.913

Figure 3.9: Result of 9 repeated (randomized) translations. Our linear quasi-
interpolator (d) produces a result sharper than the one produced by one
of the best linear quasi-interpolators (Condat et al., 2005) (b). The out-
put by our method is also slightly better than the one produced with the
cardinal quadratic B-spline (c).

performance and moderate computational cost. Tasks requiring even more speed can

use the degree 1 solution, which we take as a proof-of-concept. We refer the reader

to the supplemental material for full resolution images of all these experiments. We

also provide additional videos containing other interpolation sequences.

3.5.1 Limitations

One limitation of our method can be seen in figure 3.13, which uses our linear

quasi-interpolator (b). The figure shows the result of 4 compound translations by
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Input Quadr. (Condat et al., 2005)

(a) PSNR = ∞,
SSIM =1.0

(b) PSNR = 30.429,
SSIM = 0.932

Cardinal Cubic O-MOMS Our quadratic

(c) PSNR = 32.221,
SSIM = 0.951

(d) PSNR = 33.291,
SSIM = 0.960

Figure 3.10: Comparison of 30 (randomized) rotations for different quasi-
interpolators. The quadratic proposed by Condat et al. (2005) distorts
the vertical aspect of the fence, while ours better preserves the geometry
of the scene. Our result is competitive even if compared with the one
produces by the cardinal cubic O-MOMS (considered the best cubic in
the literature).

exactly half a pixel. It is clear that high-frequencies have been excessively magnified.

This limitation is not specific to our approach (c). The plots in figure 3.13 explain

the problem: for each translation τ , the shaded region illustrates the minimum and

maximum possible frequency amplitude scaling. The worst behavior happens in the

unfortunate case τ = 0.5. This problem practically disappears when random transla-

tions are applied. As future work, we will incorporate new criteria in our optimization

framework to reduce this effect.
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Input Cubic (Blu and Unser , 1999a)

(a) PSNR = ∞,
SSIM = 1.0

(b) PSNR = 13.013,
SSIM = 0.749

Quintic Cardinal B-spline Our cubic

(c) PSNR = 13.047,
SSIM = 0.775

(d) PSNR = 13.044,
SSIM = 0.784

Figure 3.11: 40 compounded rotations. The result produced by one of the best cubic
quasi-interpolators (Blu and Unser , 1999a) has aliasing of high frequen-
cies. Using the cardinal quintic B-spline presents the same problem at a
smaller magnitude. Our cubic almost completely removes the artefacts,
while keeping the result sharp.

We have also noticed that the sharpness of our results comes at the cost additional

mild ringing (for instance, see figure 3.1d). For hundreds of repeated translations,

our linear and quadratic quasi-interpolators showed excessive ringing. In this extreme

case, other methods presented either a similar behavior or excessive blurring.
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Figure 3.12: Average PSNR of applying 90 randomized translations to 24 input im-
ages. Translations were applied in a way that after every 3 translations,
the image was back to its initial position and we could measure PSNR.
The best quasi-interpolators in the literature were compared. Our new
cubic quasi-interpolator (solid red) reaches the best quality, better than
the quintic O-MOMS (dashed purple). Our new quadratic (dotted red)
reaches higher quality than any other quadratic and cubic.

3.6 Performance

We need to obtain the reconstruction

f̃ = c ∗T ϕ, (3.25)

where

c = JfKT ∗ q (3.26)

and q is an IFIR digital filter. To produce an output image, we need to sample this

reconstruction.
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Figure 3.13: Result of 4 repeated translations by exactly half pixel. Our linear quasi-
interpolator (b) and the one proposed by Condat et al. (2005) magnify
frequencies too much. Shaded regions in the plots show the range of
frequency amplitude scaling for each translation τ . The worst case is
τ = 0.5.

We calculate the mixed convolution in (3.25) as described by Nehab and Hoppe

(2014) (section 8.2), since this is the most efficient way we know.

The discrete convolution in (3.26) amounts to solving a linear system

Ac = JfKT . (3.27)

Since all our digital filters are symmetric and have length five they can be written

as

q =
[
. . . , 0, r, q, p, q, r, 0, . . .

]-1
. (3.28)

Assuming mirrored infinite extension for the images involved, the matrix A has the
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following form:

A =



p+ q q + r r 0

q + r p q r 0

r q p q r 0

0 r q p q r 0

. . . . . . . . . . . . . . . . . .

0 r q p q r 0

0 r q p q r

0 r q p q + r

0 r q + r p+ q



. (3.29)

We factor A into A = LU, where U is tridiagonal lower triangular and U is tridi-

agonal upper triangular and then solve the system (3.27) by backward and forward

substitutions. We noticed that the entries of the diagonals of L converge very quickly

and the entries of U are determined in terms of the entries of L. Thus, we have to

store and prescribe only the first entries of the diagonals of L.

For the other methods shown in figures 3.14 and 3.15, the associated IFIR digital

filters have only three entries. So we do what we have just described, but with A

tridiagonal, L and U bidiagonal.

We report the timings of performing upsampling of a 1D image with 101 entries

in figure 3.14 and downsampling of an image with 10001 entries in figure 3.15. We

compare our cubic quasi-interpolator with other cubic ones, box and hat. We notice

that our method has a slightly worse performance (around 10%) when compared to

cubic Condat and cubic O-MOMS. This was expected since our IFIR digital filter has

more entries and we think this additional cost pays off for the higher quality achieved

by our method.
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Figure 3.14: Upsampling a 1D input image with 101 samples with different methods.
The performance of our cubic (solid red line) is around 10% worse.

3.7 Conclusion

We have presented a new class of quasi-interpolators for image processing that are

optimal with respect to a non-asymptotic criterion. In contrast, previous strategies

focused on making them optimal only around ω = 0. Additionally, we used all

available degrees of freedom in the approximation problem to reach higher quality.

An improvement to our optimization would be to consider a metric other than L2.

On one hand, it could lead to a more natural treatment for the overshoot problem,

but it could also add additional difficulties to the optimization.

In this work we have considered a 1D formulation of the approximation problem,

but applied it to images in a separable fashion. We believe that considering non-

separable 2D quasi-interpolators will increase approximation quality, and we also

consider this direction for future work.
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Figure 3.15: Downsampling a 1D input image with 10001 samples with different meth-
ods. Our cubic quasi-interpolator presents a slightly worse performance.

3.8 Quasi-Interpolators

Linear d = 0.5.

b0,0 = 0.79076352 c0,0 = c1,0 = 0.10461824,

e0 = 0.77412669, e1 = e-1 = 0.11566267,

e2 = e-2 = −0.00272602
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Quadratic d ≈ 0.34.

a0,1 = 0, b0,0 = 0.75627421,

b0,1 = b1,1 = 0.11798097, c0,0 = c2,0 = 0.01588197,

c1,0 = −0.02400002, e0 = 0.65314970,

e1 = e-1 = 0.17889730, e2 = e-2 = −0.00547216

Cubic d ≈ 0.35.

a0,1 = 0.07922533, a0,2 = 0,

a1,1 = −2.25 a0,1 = −0.17825701, b0,0 = 0.53954836,

b0,1 = 0.32092636, b0,2 = b2,2 = 0.02593862,

b1,1 = −1.5 a0,1 + b0,1 = 0.20208835, b1,2 = −0.01871558,

c0,0 = c3,0 = 0.001940114, c1,0 = c2,0 = −0.00028665,

e0 = 0.56528428, e1 = e-1 = 0.21523558,

e2 = e-2 = 0.00212228.
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3.9 Proofs

We can take T = 1 in (3.5) because, for any fixed T > 0, and assuming input

spectra as (3.4):

‖f − f̃T‖2
L2
≈
∫ 0.5/T

−0.5/T

∣∣f̂(ω)
∣∣2E(Tω) dω

= T
∫ 0.5

−0.5

∣∣f(ω/T)
∣∣2E(ω) dω

= T p+1
∫ 0.5

−0.5
1/ωpE(ω) dω

= T p+1
∫ 0.5

−0.5

∣∣f̂(ω)
∣∣2E(ω) dω.

(3.30)

To see why E(0.5−ε) ≈ 0 implies ϕ̂qi(0.5−ε) ≈ 1, ϕ̂qi(0.5+ε) ≈ 0, ϕ̂qi(-0.5+ε) ≈ 1,

ϕ̂qi(-0.5−ε) ≈ 0, recall ψ̂ = 1, and both q̂ and ϕ̂ are real due to symmetry. The error

kernel simplifies to:

E(ω) = 1− ϕ(ω)2

âϕ(ω)
+âϕ(ω)

(
q̂(ω)2−2

q̂(ω)ϕ̂(ω)

âϕ(ω)
+
ϕ̂(ω)2

âϕ(ω)2

)
= 1−2q̂(ω)ϕ̂(ω)+q̂(ω)2âϕ(ω)

=
(
1−q̂(ω)ϕ̂(ω)

)2−q̂(ω)2ϕ̂(ω)2+q̂(ω)2
∑
n

ϕ̂(ω+n)2

=
(
1−q̂(ω)ϕ̂(ω)

)2
+
∑
n6=0

q̂(ω+n)2ϕ̂(ω+n)2

=
(
1−ϕ̂qi(ω)

)2
+
∑
n6=0

ϕ̂qi(ω+n)2.

(3.31)

Above, we used the following equalities

ϕ̂qi(ω) = q̂(ω)ϕ̂(ω) (3.32)

q̂(ω) = q̂(ω + n),∀n ∈ N, and (3.33)

âϕ(ω) =
∑
n

ϕ̂(ω + n)2. (3.34)
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The sum of non-negative terms in (3.31) shows us that

E(0.5− ε) ≈ 0⇒ ϕ̂qi(0.5− ε) ≈ 1, ϕ̂qi(-0.5− ε) ≈ 0. (3.35)

The symmetry of E implies E(-0.5 + ε) ≈ 0. From (3.31), we have

E(-0.5 + ε) ≈ 0⇒ ϕ̂qi(-0.5 + ε) ≈ 1, ϕ̂qi(0.5 + ε) ≈ 0. (3.36)
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CHAPTER IV

Foundations for the Tetrahedralization Algorithm

Geometric
flow

Input surface
Self-intersections

removed
Self-intersection free

similar to input

Deformation
preventing

self-intersections

Standard
tetrahedralization

Self-intersection free
volumetric mesh

Volumetric
mapping

Volumetric mesh
inside the input

Figure 4.1: Overview of our new tetrahedralization algorithm. The input for it is a
self-intersecting triangle mesh that cannot be tetrahedralized with pre-
vious algorithms. The first step is to apply a geometric flow until all
self-intersections are removed. We then reverse the flow to get a surface
similar to the input one, but free of self-intersections. This resulting sur-
face can then be tetrahedralized with existing methods. To obtain an
output tetrahedral mesh, we define a volumetric mapping with boundary
conditions being the input surface.
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4.1 Introduction

This chapter is devoted to explain the main concepts to understand our new

tetrahedralization algorithm, to be detailed in the next chapter.

We introduce here a summarized description and motivation for it, so the reader

can understand where each of the algorithms described in this chapter fit in our

pipeline, and why is the problem itself relevant.

The input for our method is a self-intersecting closed orientable triangle mesh.

These surfaces arise quite often as output of (surface-based) geometry processing al-

gorithms, such as deformation, smoothing, subdivision and decimation (many exam-

ples are provided in the next chapter). These algorithms may create self-intersections,

even if their input is a clean (closed, orientable) mesh. A self-intersecting model can

also be a design choice, when an artist wants to model a self-intersecting solid that

would naturally self-intersect and does not care about the volume that is inside it

(for example, see input in figure 4.1).

Current tetrahedralization methods and available software do not handle self-

intersecting input, because all of them assume watertight input, i.e., surfaces embed-

ded in R3 whose underlying space is the same as the boundary of the closure of a

3-manifold in R3. We refer the reader to (Shewchuk , 2012) for a complete survey on

existing tetrahedralization methods.

To the best of our knowledge, our method is the first to consistently mesh the

interior of self-intersecting triangle meshes, i.e., we output a tetrahedral mesh whose

boundary is the input triangle mesh and that overlaps itself respecting the overlaps

in the input.

A description for our method is provided in figure 4.1. We start by applying

a geometric flow to the input surface to remove its self-intersections. This flow is

described in section 4.2. We then restore the shape of the original mesh by minimizing

a deformation energy, while preventing self-intersections. The deformation energy we
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use is described in section 4.3. Given this self-intersection free surface similar to

the input, we tetrahedralize its interior using (Si , 2003). The last step consists of

mapping this resulting tetrahedral mesh to the interior of the input surface. We do it

in a locally injective way to prevent inverted elements. The method we use to obtain

locally injective mappings is described in section 4.4.

4.2 Geometric Flows

We present in this section the geometric flows we considered for the task of re-

moving self-intersections from the input mesh.

4.2.1 Mean-Curvature Flow

This flow has been long studied both under theoretical and applied perspectives.

It has the effect of pushing a point on a surface towards the average position of its

neighbors, smoothing out the geometry surface.

Let M be a two-dimensional manifold, let Φt : M → R3 be a smooth family of

immersions, and let gt(·, ·) be the metric induced by the immersion at time t. We say

that Φt is a solution to the mean-curvature flow if

∂Φt

∂t
= ∆tΦt (4.1)

where ∆t is th Laplace-Beltrami operator defined with respect to the metric gt.

We can implement it using a semi-implicit finite-element discretization (please see

details in (Kazhdan et al., 2012)). This formulation relates the vector of positions at

the next time step x(t+ δ) to the current positions x(t) by the linear system

(Dt − δLt)x(t+ δ) = Dtx(t). (4.2)
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Figure 4.2: Top: Mean curvature flow (MCF) using time step δ = 10−4. We show
the input surface, the result after 4 steps and 8 steps. This last sur-
face presents neck pinching singularities on the tale and ears, causing
singularities in the associated linear system and preventing the flow from
progressing. Bottom: conformalized mean curvature flow (cMCF) using
the same time step δ = 10−4. We show the input surface, the result af-
ter 4 steps, 8 steps, 300 steps and 1000 steps. This modification of the
traditional mean curvature flow avoids instabilities and converges to the
sphere for this example.

The entries of Dt and Lt depend on the triangle mesh at time t and are given by

Dij =


area(T 1

ij) + area(T 2
ij)

12
, if j ∈ N(i)∑

k∈N(i)

Dik, if j = i
(4.3)

and

Lij =


cot(β1

ij) + cot(β2
ij)

2
, if j ∈ N(i)

−
∑
k∈N(i)

Lik, if j = i
(4.4)

where N(i) are the indices of the vertices adjacent to vertex i, T 1
ij and T 2

ij are the two
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triangles sharing edge (i, j), and β1
ij and β2

ij are the two angles opposite to edge (i, j).

D is called mass matrix and L is called stiffness matrix or cotangent matrix.

We show in figure 4.2 (top) the result of applying this discretization of the flow

to the Armadillo mesh. After each time step, we re-normalize the resulting surface

to have unit area, otherwise it would shrink towards a point. After some iterations,

the mesh develops neck pinching singularities on the tale and the ears. This prevents

the flow from progressing, since the pinches correspond to zero area triangles and the

matrix in (4.2) becomes singular. We discuss the causes of this problem in the next

subsection.

4.2.2 Conformalized Mean-Cruvature Flow

Kazhdan et al. (2012) noticed that the (local) anisotropic scaling caused by the

evolution of the flow makes the entries of Lt (4.4) to blow up, and this leads to

singularities of the linear system (4.2). To overcome this problem, they suggest to

solve a modified version of the linear system:

(Dt − δL0)x(t+ δ) = Dtx(t). (4.5)

The only change is that the cotangent matrix L is fixed to be the one calculated based

on the initial (input) mesh.

The authors show that this modified linear system corresponds to the semi-implicit

finite element discretization of the following flow:

∂Φt

∂t
=
√
|g−1
t g0|∆g0Φt (4.6)

This modified flow is called conformalized mean-curvature flow (cMCF). It has an

important convergence result that will be useful for us:

Theorem IV.1. If cMCF converges, than it converges to a map onto the sphere if
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Figure 4.3: Conformalized mean curvature flow applied to remove self-intersections
(shown in red). Intersections are removed much earlier before reaching
the limit surface.

and only if the limit map is conformal.

Proof: The only proposition in (Kazhdan et al., 2012).

�

The authors present a number of examples for genus zero surfaces showing that

the limit map is conformal, but the theoretical question is still open. If this is always

true, then cMCF always converges to the sphere for genus zero input.

The example in figure 4.2 (bottom) illustrates both practical and theoretical ad-

vantages of this new flow. In the practical side, we can see that the singularities that

arise for the standard mean curvature flow are not developed, and the flow can take

many time steps without having numerical problems. After 1000 steps it reaches the

(sphere) limit surface.

The convergence to the sphere is of fundamental importance to our application.

We have a theoretical guarantee that all self-intersections present in the input surface

will be removed by the flow. In the worst case, this will happen at the limit state.

But many of our experiments show that intersections are removed after a few steps

of the flow, making it an efficient option for this task. Figure 4.3 shows an example

of the conformalized mean-curvature flow removing intersections.
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4.2.3 Conformal Willmore Flow

The mean-curvature flow in (4.1) has an alternative interpretation as being the

gradient descent step for the minimization of the membrane energy

EA(Φ) =

∫
M

dA, (4.7)

where dA denotes the area element. In other words, mean-curvature flow progresses

towards area-minimizing surfaces. The reason why our results do not shrink is that

we renormalize the resulting surfaces at each step.

Another well-known energy for surface fairing purposes is the Willmore energy. It

is defined as

EW (Φ) =

∫
M

H2dA, (4.8)

where H is the pointwise mean-curvature of the surface. Its gradient descent formu-

lation is not as simple as for the membrane energy due to non-linearities involved

(Crane et al., 2013a).

Crane et al. (2013a) (please see details in their paper) noticed that (4.8) can be

rewritten in terms of the mean-curvature half density µ as

EW (µ) =

∫
M

µ2 = ‖µ‖2. (4.9)

This change of variables turns the gradient descent formulation into

µ̇ = −2µ (4.10)

They then apply forward Euler to (4.10) and recover positions in terms of half-

curvature density as described in (Crane et al., 2011). Moreover, the way they recover
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Figure 4.4: Conformal Willmore flow takes too many steps to remove self-intersection
(shown in red). The intersections are only removed near the sphere for
this example.

positions from curvatures results in a conformal transformation from the surface from

the previous step.

Even using a forward discretization for (4.10) the authors illustrate the remarkable

stability of their method with many examples. Unfortunately for our application this

flow takes very long to remove self-intersections (see figure 4.4). Another issue is that

it does not have a convergence proof analogous to Theorem IV.1.

4.3 Deformation Energies

We opted for using the conformalized mean-curvature flow to remove self-intersections

from the input mesh due to its stability and theoretical guarantees. After applying the

flow until all self-intersections are removed we could (at least in theory) tetrahedralize

its interior with standard methods.

But in the practical setting, a problem appears (see figure 5.7 for an example):

the flow shrinks elongated parts of the mesh towards its main body. These shrunk

regions lead to triangle areas that are too small for the tetrahedralization method to

handle.

Motivated by this problem we proposed a reverse flow to restore the triangle areas

on the mesh, while preventing self-intersections (to be able to tetrahedralize it in the

end). In the next section we present the energy we minimize and the constraints are

presented in the next chapter.
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Initial guess Rest pose
Constrained ARAP

solution

Figure 4.5: We restore the shape of the triangles minimising ARAP energy subject
to non-penetration constraints. The surface resulting from the flow is
treated as initial guess and the input mesh is treated as rest pose.

4.3.1 As-Rigid-As-Possible Deformation

We show in figure 4.5 the setting for the ARAP minimization. A reference mesh

(center) contains all triangles with good shape (a.k.a. rest pose). In our case, this

mesh corresponds to the input before the flow was applied. We denote all vertices of

the rest pose by p. We want to find a configuration of vertices p′ that has triangles

shapes similar to p.

One way of doing this is to find p′ that is a locally rigid transformation of p, i.e.,

each vertex in p′ is a composition of rotation and translation from the corresponding

vertex in p. Shearing and scaling are penalized. The as-rigid-as-possible (ARAP)

energy provides a way of quantifying rigidity between p and p′:

EARAP(p,p′) =
∑
j∈N(i)

wij‖(p′i − p′j)−Ri(pi − pj)‖2 (4.11)

Above Ri are unknown rotations and p′i, p′j are unknown positions, N(i) denotes the

neighboring vertices of vertex i and wij are weights (see (Sorkine and Alexa, 2007)

for details).

Assuming p′i, p′j known, we follow the development by Sorkine and Alexa (2007)
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to obtain optimal rotations Ri. For each vertex i we define the covariance matrix

Si =
∑
j∈N(i)

wij(pi − pj)(p
′
i − p′j)

T (4.12)

Sorkine and Alexa (2007) prove that if the SVD factorization of Si is given by

Si = UiΣiV
T
i (4.13)

then the optimal rotations are given by

Ri = ViU
T
i . (4.14)

This optimal rotation calculation is called local step of the ARAP minimization.

If the rotations Ri are known, finding the optimal configuration of the vertices

p′ is just a quadratic minimization problem that is equivalent to solving the linear

system

Lp′ = b (4.15)

where L is the cotangent matrix and bi =
∑
j∈N(i)

wij
2

(Ri + Rj)(pi − pj). This calcu-

lation of optimal positions is called global step.

To minimize the non-linear energy (4.11), Sorkine and Alexa (2007) propose to

alternate between local and global steps. Given an initial guess for positions p0 (the

mesh on the left in figure 4.5) and a rest pose p, optimal rotations are determined

by (4.14). Once this optimal rotations are calculated, then optimal positions are

determined by (4.15). This alternation between local and global steps is performed

until convergence is reached.

Although formulated in a discretized setting, it is possible to show that (4.11) has
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a close relation to a continuous energy presented by Chao et al. (2010) in section 4.2.

4.3.2 Other energies

We can restate the ARAP energy in an alternative way so it can be generalized to

other elements such as tetrahedra (in the previous section we presented the ARAP

energy for triangular meshes only).

Let d be the dimension of the problem (2 or 3) and let Fj ∈ Rd×d be the deforma-

tion gradient, which is defined as the mapping that takes the rest-pose vertices of an

element j to their deformed positions. A (similar) version of the ARAP energy can

be written as

EARAP(p′) =
∑
j∈E

λj(p)‖Fj −Rj‖2
F (4.16)

where λj(p) are areas or volumes of the rest pose elements, Rj are the optimal

rotations, E is the set of all elements in the mesh and ‖A‖F =

√∑
i

∑
j

|aij|2 is the

Frobenius norm.

With this same notation, other energies can be defined. A simpler way of quanti-

fying deformations is given by the Dirichlet Energy :

EDIR(p′) =
∑
j∈E

λj(p)‖Fj − I‖2
F . (4.17)

The Dirichlet energy penalizes rotations. An alternative energy that is rotation-

invariant is the Green’s strain energy, given by:

EGS (p′) =
∑
j∈E

λj(p)‖FT
j Fj − I‖2

F (4.18)
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Self-intersection free
similar to input

Self-intersection free
tetrahedral mesh (cut)

Self-intersecting
tetraheral mesh (cut)

Figure 4.6: After minimizing the ARAP energy subject to non-penetration con-
straints we obtain a surface mesh similar to the input but without self-
intersections. This mesh can be tetrahedralized with standard algorithm
(left-center). The last step consists of mapping this volumetric mesh to
inside the initial surface, leading to the self-overlapping volumetric mesh
on the right. To prevent inverted elements, we use locally injective map-
pings (Schüller et al., 2013) for this last step.

4.4 Locally Injective Mappings

After restoring the shapes of the triangles in the surface mesh, we obtain a mesh

similar to the input one but free of self-intersections. This mesh can be tetrahedralized

with standard algorithms such as (Si , 2003), leading to the volumetric mesh in figure

4.6 (left-center). We want to map this tetrahedral mesh to the interior of the input

mesh (“Input surface” in figure 4.1).

Let E be one of the energies presented in the previous section, d be the boundary

conditions (positions of the input mesh) and v the (unknown) vertices of the final

tetrahedral mesh. One way to minimize E imposing the boundary conditions is by

solving the unconstrained problem

arg min
v

E(v) + α‖Cv − d‖2, (4.19)

where α > 0 is a parameter specifying the weight of the boundary conditions and C

is a matrix that selects the boundary vertices from v.
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If we define the solution of (4.19) as our final mesh it would contain inverted

elements. This unconstrained energy does not punish element inversion. Inverted

elements are undesired in many applications and in some of them they are not allowed.

To solve this problem we apply the method proposed by Schüller et al. (2013): let

λj(v) be the volume of tetrahedron j. We define a constraint function as

cj(v) = λj(v)− ε, (4.20)

where ε > 0 is a small constant that takes into account numerical inaccuracies.

A barrier function φ : R→ R is a function such that

lim
x→0

φ(x) =∞, and φ(x) =∞, for x 6 0. (4.21)

To enforce non-inverted elements (as hard constraints) the authors solve the fol-

lowing unconstrained problem:

arg min
v

E(v) + α‖Cv − d‖2 + β
∑
j∈E

φj(cj(v)), (4.22)

where β > 0 is a scalar specifying the barriers strength, E is the set of all tetrahedra

in the mesh and φj are barriers defined for each element.

Numerical issues aside, solving (4.22) guarantees a tetrahedral mesh with no in-

verted elements. To solve (4.22) efficiently and to consider the complicated numerics

in the problem, Schüller et al. (2013) present a new solver specific to this problem.

We refer to their work for details.

Their work also contains many results illustrating that their formulation is effec-

tive. Specifically, they show a tetrahedral mesh with no inverted elements in their

figure 13. Another example is the tet-mesh we present in figure 4.6. Many more

examples are provided in the next chapter.
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CHAPTER V

Consistent Volumetric Discretizations Inside

Self-Intersecting Surfaces

Input triangle mesh cMCF flow Intrinsic reverse flow Output tetrahedral mesh matching input

Figure 5.1: The triangle mesh of the Hand forms a closed surface, but contains nearly
2000 intersecting triangle pairs. Our method flows the surface according
to conformalized mean-curvature flow (cMCF) until all self-intersections
are removed. Then we reverse the flow so that shape intrinsics are restored
but self-intersections are avoided. Finally we can tet-mesh inside this
surface and map the mesh so that it matches the original surface. We
may then solve PDEs, such as this biharmonic function.

5.1 Introduction

Recent years have shown leaping advancements in surface-based shape processing,

in particular polygonal mesh processing (Botsch et al., 2010). Volumetric shape pro-

cessing, on the other hand, lags behind. One significant obstacle is the inability to
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Clean, high-res original Self-intersecting, decimation

Figure 5.2: Even simple geometric operations like boundary decimation can introduce
self-intersections (red dots).

convert boundary representations of solid shapes into explicit volumetric representa-

tions at any given stage of the geometry processing pipeline. Robust tools for creating

tetrahedral meshes from watertight input surfaces do exist, e.g. Si (2003). However,

the presence of self-intersections in the surface mesh invalidates the otherwise clean

(closed, orientable) input to volume meshing algorithms. Unfortunately, most—if not

nearly all—steps in the surface-based geometry processing pipeline (such as decima-

tion, smoothing, subdivision, remeshing, surface-based deformations) may invalidate

watertightness by creating self-intersections (Harmon et al., 2011) (see Figure 5.2).

As a consequence, attempts at further volumetric processing reveal artifacts result-

ing from ignoring or deleting self-intersecting regions (see figure 5.10), and therefore

geometry processing remains limited to the surface.

Volumetric processing has a lot of valuable advantages. While surface meshes are

appropriate representations for some shapes, such as thin shells (e.g. an automobile

fender), many interesting shapes are solids. For a solid shape, like a deformable human

character, we may sometimes get away with a surface-only representation thanks to

its intrinsic, though indirect, relationship to the underlying volume and because we

often will only render the surface. However, many processing tasks perform drastically

differently when treating a solid shape as a surface rather than a volume, e.g. the

bending of scanned clay statuette (see Figure 10 in (Botsch et al., 2007)), rendering

shapes made of translucent material, like an amber jewel (Li et al., 2012), registering
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two poses of a dancing human (Litman et al., 2012), or even simple shape smoothing

(see figure 5.3). Notably, volumetric representations facilitate volume preservation

and internal geodesic distance computation. Ubiquitous techniques like finite element

analysis and solving PDEs typically require an explicit representation of a shape’s

volume: most commonly, a tetrahedral mesh.

We propose a method to construct a tetrahedral mesh for self-intersecting input.

Instead of gluing overlapping regions together, our output volume mesh overlaps

itself consistently with the self-intersections in the input surface (see figure 5.1). This

enables correct geodesic information necessary for shape-aware volumetric processing

at any stage in the geometry processing pipeline.

We begin with a key observation: For sphere-topology surfaces, conformalized

mean-curvature flow (cMCF) converges to the unit sphere (Kazhdan et al., 2012) and

removes all intersections. Given an input surface, we follow this flow until all self-

intersections are removed; typically long before reaching the sphere (see figure 5.5).

Meshing techniques like constrained Delaunay tessellation (CDT) should in theory

work on this resulting surface. We could try to mesh its interior and then try to map

this mesh back inside the original surface as an exercise in volumetric parameteriza-

tion. However, exponential scaling of the triangles during cMCF introduces numerical

issues for existing CDT software. This large distortion also makes the subsequent vol-

umetric parameterization difficult or impossible, even with state-of-the-art methods

(Schüller et al., 2013).

We solve this problem in two steps. We first reverse the flow in an intrinsic

way, while maintaining absence of self-intersections as an invariant. For each step

backward in the flow, we minimize a surface-distortion energy subject to safe contact

constraints. Because cMCF is smooth (even conformal in the limit), this may be

interpreted as an intersection-free, surface simulation regularized by the flow. When

we have returned to time zero, our surface is similar to the original input surface
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Overlapping input curve Smoothed curve

Overlapping triangle mesh Smoothed triangle mesh

Figure 5.3: Geometric operations perform drastically differently on boundary versus
region representations. Compare the results of Laplacian smoothing for
these eyeglasses as a curve and as a region.

intrinsically, but self-intersection free (see figure 5.6). Now, we may safely apply

existing CDT methods. As a final step, we map the surface of this volume to the

original, self-intersecting input surface and propagate the map to the interior. We

show the success of our method for applications including solving PDEs, volumetric

elastic deformation and simulation, automatic skinning weight definition and geodesic

distance computation.

5.2 Related Work

Volumetric discretizations of watertight shapes have greatly improved in the past

years (Shewchuk , 2012). State-of-the-art methods provide guarantees on element

quality and have rich feature sets like the ability to specify spatially-varying den-

sity fields or exactly conforming to a given piecewise-linear surface mesh (CGAL;

Si , 2003; Labelle and Shewchuk , 2007; Geuzaine and Remacle, 2009). However, they

all assume that the input is a representation (implicit function, triangle mesh) of a
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watertight surface1. We bootstrap these methods in order to discretize volumes of

self-intersecting solids, which of course have self-intersecting surfaces. We heavily em-

ploy the CDT and mesh refinement routines of the award-winning TetGen software

(Si , 2003). By leveraging locally injective volumetric parameterization, we prevent

inverted elements in our output, so we may further post-process our output by other

mesh refinement techniques to achieve gradations or even higher quality (Shewchuk ,

2012).

Some surface repair techniques eliminate self-intersections, outputting a water-

tight mesh which may then be meshed. But these repairs either delete (Shen et al.,

2004; Attene, 2010) or fuse intersecting pieces (Jacobson et al., 2013). Our method ac-

commodates self-intersections without any modification to the original surface—local

or otherwise (see Figure 5.10).

Naive methods are generally not an option. Having meshed the entire convex hull,

one could segment based on the winding number (analogous to the “nonzero-rule” of

SVG and OpenGL, (Foley et al., 1990; Jacobson et al., 2013)). This not only leads to

incorrectly deleting or joining entire regions, but also easily results in non-manifold

output. It is also tempting to consider decomposing the input into intersection-free

pieces, meshing each independently and reconnecting them. Constructing, let alone

combinatorially reconnecting, such a decomposition is not obvious for complicated

or multiple overlaps. Further, one must ensure discretization coherency across cuts.

Luo et al. (2012) consider planar cuts to decompose shapes for 3D printing, but even

assuming self-intersection free input they show that managing these requires care.

Our method avoids combinatorial decisions.

Instead of decomposing or modifying the input surface, we find a new embedding

for it via conformalized mean-curvature flow (cMCF), which removes self-intersections

(Kazhdan et al., 2012). Several common flows converge to the sphere, e.g. the Will-
1Formally, a watertight surface is “a 2-[manifold] embedded in R3 whose underyling space is same

[sic] as the boundary of the closure of a 3-manifold in R3” (Dey and Goswami , 2003).
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more flow, volume-preserving mean-curvature flow, heat diffusion flow, etc. (Will-

more, 2000). Unlike mean-curvature flow, many of these flows are known to create

new self-intersections even in their absence in the input (Mayer and Simonett , 2000,

2003), making them unsuitable for our purposes. We also enjoy the simplicity, per-

formance and robustness of cMCF for triangle mesh discretizations.

We optimize a surface-based, elastic energy with dynamics to reverse the flow

while preventing self-intersections with safe contact constraints and repulsion forces

at the vertex level. Harmon et al. (2011) similarly prevent self-intersections during

interactive deformation, speeding up computation by grouping collision responses.

Alternatively, we could employ this method, but grouping runs the risk of locking

early on during the reverse flow. Further, our simulation conveniently does not require

expensive and complicated gradient computation for the deformation energy. There

is a large amount of literature in physically-based simulation on robust and efficient

handling of collisions (Harmon, 2010). Given our intersection-free state we could

treat the original surface as a rest-state and run any off-the-shelf surface simulation

with safe collision handling (e.g. (Bridson et al., 2002)). However, this quickly results

in locking (see Figure 5.7). Our use of the forward flow surfaces at intermediary

time steps avoids this. Another option would be to avoid the flow altogether and

attempt to untangle the self-intersections (Baraff et al., 2003). Tailored to open

cloth surfaces, this heuristic appears to succeed for small overlaps, but purposefully

assumes no knowledge of a possible intersection-free state (e.g. a previous frame in

their simulation). It relies instead on heuristic global topological analysis of the input.

A few works have defined similar problems in R2: discretizing or charting the area

inside an overlapping curve in the plane. Unfortunately their solutions are slow and do

not extend to R3 (Shor and Van Wyk , 1989; Eppstein and Mumford , 2009; Mukherjee

et al., 2011). It is very difficult to have a definition of valid input that is not based on

the existence of valid output, or in other words, defining what valid input is such that
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Figure 5.4: Left (with winding numbers indicated): contrary to Mukherjee et al.
(2011), this curve is not a “self-crossing loop”. Middle: This elbow case is
also not a self-crossing loop, and so it is not considered by any existing 2D
method. Our method succeeds by allowing the mapping to not be locally
injective on the boundary (at the yellow dot), visualized in a hypothetical
untangled state (right).

validity is easy to verify. The observations in Section 2.4 of (Mukherjee et al., 2011)

make use of the winding number, the signed number of times a curve wraps around a

point. Unfortunately, these observations are necessary but not sufficient, since they

would accept the infeasible curve in Figure 5.4 (left). This curve is not even a valid

“self-crossing loop”, i.e. the boundary curve of a locally-injectively deformed circular

disc (Shor and Van Wyk , 1989). Interestingly, the existence-of-output definition of

self-crossing loops used in (Shor and Van Wyk , 1989) and all following works does

not include the elbow case (Figure 3b of (Shor and Van Wyk , 1989)), which arises

frequently during surface deformations (see Figure 5.4, right). Our formulation is

more general and handles this case by allowing a zero-measure subset of the boundary

where the computed map is not locally injective. A similar situation in 3D is shown

in Figure 5.9.

5.3 Problem description

Let our input beM, a closed, orientable (d− 1)-manifold embedded in Rd, with

possible self-intersections. From now on we assume d = 3, but our problem and
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V0 Vt∗

Figure 5.5: We evolve a self-intersecting surface (intersections are shown in red) with
the conformalized Mean Curvature Flow. After some time t∗ the surface
reaches a self-intersection free state. The limit is a conformal mapping to
the unit sphere.

solution generalize for d ≥ 2. Our goal is to chart the volume inside M. That is, we

wish to find a continuous map Ω : D → R3 where D is an abstract 3-manifold with

boundary and our mapping Ω meets the following requirements:

Ω(∂D) =M, (5.1)

Ω(D \ ∂D) is differentiable, (5.2)∣∣JΩ(p)
∣∣ > 0 ∀p ∈ D \ ∂D, (5.3)

where
∣∣JΩ(p)

∣∣ is the determinant of the Jacobian matrix of the map Ω evaluated

at point p. The first requirement states that Ω should map the boundary of D to

the input surface M. The second and third requirements ensure local injectivity

on the interior. We do not require local injectivity on the boundary. This allows

isolated “hinge points” on ∂D to appear, necessary for handling elbow cases (see Fig-

ure 5.4). With the local injectivity requirement on the boundary our definition would

be equivalent to “self-crossing loops” (Shor and Van Wyk , 1989). In practice, these

requirements imply that our output tetrahedral mesh conforms to the input boundary,

has no flipped (negative signed volume) tetrahedra, and has proper connectivity.

Forward flow. As in (Kazhdan et al., 2012), we define the conformalized mean-

curvature flow (cMCF) Φt :M→ R3 to be a smooth family of immersions, each the
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Figure 5.6: We evolve the intersection-free surface obtained with cMCF to a one that
is similar to the input surface intrinsically, but without self-intersections.

solution to the partial differential equation:

∂Φt

∂t
=
√∣∣g−1

t g0

∣∣∆g0Φt, (5.4)

where g(·, ·)t is the metric induced by the immersion at time t, and ∆g0 is the Laplace-

Beltrami operator defined with respect to the original metric g0 ofM.

Kazhdan et al. (2012) prove that “if cMCF converges, than [sic] it converges to a

map on the sphere if and only if the limit map is conformal”. This is of special impor-

tance to us because the mapping to the sphere will have removed all self-intersections.

They observed this convergence in all their tests with sphere-topology examples, and

we confirm this empirically, too. In general, self-intersections disappear long before

reaching the sphere. Let t∗ and Φt∗ be the time at which this occurs and the corre-

sponding immersion, respectively (see Figure 5.5).

Reverse flow. In the discrete setting, the exponential scaling in Φt introduces

numerical issues that prevent us from directly mapping the volumetric closure of

Φt∗(M) back to M. We alleviate this by finding an intrinsic reverse flow. Let

Ψt : M → R3 be a family of immersions defined as the optimum of the nonlinear,
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constrained optimization problem:

arg min
Ψt

Esurf(gt, g̃t), (5.5)

subject to: Ψt is injective (5.6)

where g̃(·, ·)t is the metric induced by Ψt and Esurf(gt, g̃t) measures the similarity of the

metrics gt and g̃t. In this way, our optimization finds a non-self-intersecting immersion

Ψt which is as close as possible to Φt (see Figure 5.6). Since Ψt is defined w.r.t.

discontinuous constraints, we cannot write that it is a smooth family of immersions

w.r.t. t, but this is not an issue for us as we are only concerned with the quality of

Ψ0.

We can immediately notice that if cMCF converges, the feasible set of solutions

is non-empty: the sphere and thus also Ψt∗ are intersection-free. In the ideal world,

Esurf would measure the similarity of the volumes within Φt and Ψt, but of course

without the unknown discretization of the volume within Φt this is elusive in practice.

Hence, we choose Esurf to be a cumulative measure of local surface rigidity, namely

the surface-based elastic energy discussed in (Chao et al., 2010).

For our purposes, we are only concerned with the final reversed flow Ψ0, but

in practice we compute Ψt at the same samples in time as Φt. These intermediary

solutions will be essential as feasible, initial guesses to the subsequent steps back in

time (t− δ) until reaching time 0.

Volumetric parameterization. Now we no longer need to treat D as an abstract

domain: let D be the closure of Ψ0(M). The problem of finding a suitable volumetric

mapping Ω reduces to a volumetric parameterization problem with a fixed boundary.
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We can write this volumetric parameterization Ω as the optimum of:

arg min
Ω

Evol(Ω), (5.7)

subject to:
∣∣JΩ(p)

∣∣ > 0 ∀p ∈ D \ ∂D, (5.8)

Ω(∂D) =M, (5.9)

where Evol is an arbitrary non-negative energy. In fact, since we only care about the

map Ω insofar as we care about the constraints (5.8-5.9), it is helpful conceptually to

consider simply Evol(Ω) = 0. This is in contrast to the typical, variational parame-

terization or deformation problems, where energies are carefully crafted to minimize

distortion or satisfy problem-specific needs.

5.4 Discretization

We have described our solution in the continuous case, and now we must discretize

it in order to mesh self-intersecting input surfaces. Let us restrict our input shape

in R3 to be a closed, orientable, triangle mesh described by a list of n vertices V =

{v1,v2, . . . ,vn} , vi ∈ R3 and a list of m triangle facets F = {f1, f2, . . . , fm} where

fi ∈ {1, 2, . . . , n}3. Our goal is then to find a set of tetrahedral elements E ⊂

{1, . . . , k}4 defined over a set of vertices VE ⊇ V which represent the overlapping

volume of (V,F). In general, k > n since we may add Steiner points.

The discrete analogs to the requirements (5.1-5.3) are:

1. all triangles in F appear as faces of boundary tets in E,

2. the signed volume of each tet in E is positive, and

3. E forms a combinatorial 3-manifold with boundary.
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area = 1e-28
Vt∗Input Ut∗ → U0 Ut∗ → · · · → U0

Figure 5.7: cMCF removes intersections on the Dog producing Vt∗ , but also intro-
duces enormous scaling: flowed tail shown in nested insets. Attempt-
ing to optimize directly back to the original metric (Ut∗ → U0) finds a
self-intersection free immersion, but with heavy distortion. Our reverse
flow using intermediary steps (Ut∗ → · · · → U0) instead finds a self-
intersection free and low distortion solution. Purple histogram overlays
show the distribution of triangle areas.

Forward flow. Discretizing the cMCF Φt follows exactly as described in (Kazhdan

et al., 2012). We compute the cotangent Laplacian of the original mesh (V,F) and

then for each discrete step δ forward in time we update the mass matrix according

to vertex positions Vt of the current immersion Φt. In addition to updating the

flow, at each time step we detect if any self-intersections remain. We do this by

computing all triangle-triangle intersections using the exact predicates (but inexact

construction) kernel in CGAL. We, of course, stop early as soon as an intersection

is found (see Figure 5.5). To efficiently compute the intersections we use the box

intersection implementation provided by CGAL that exploits spatial hierarchies.

Reverse flow. We follow forward in time by discrete steps δ (∼ 10−4) until no

self-intersections remain, resulting in Vt∗ (see Figure 5.5). Then, we flow in reverse.

Starting with t = t∗ and initializing Ut∗ ← Vt∗ , we minimize the surface-based

elastic energy, which treats Vt−δ as the rest-state, using Ut as the initial guess of the

unknown positions Ut−δ (see Figure 5.6).

We implement this in a fashion similar to the dynamics method of Chao et al.

(2010) with three notable differences. Instead of a volumetric energy we use a surface-
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based as-rigid-as-possible (ARAP) energy, in particular the “spokes-and-rims” energy

described in their Section 4.2. Instead of the Newton solver proposed by Chao et al.,

we use a “local-global” solver as described by Sorkine and Alexa (2007). This is simpler

to implement and avoids expensive Hessian computations. Finally, we need absolutely

safe collision detection and response. To handle this we detect all intersecting triangles

for each time step in the simulation, again using CGAL. All vertices of each offending

triangle are fixed to their previous positions, and the solution for that time step is

resolved recursively until no intersections remain. For all vertices of each intersecting

pair of triangles we also accumulate repulsion forces to be used for the next time step.

These force vectors are the difference between the barycenters of the triangles times

a scalar weighting term (for all results in this paper we have defined this weight as

1000, but good results are obtained for the range [1, 1000]). The accumulated forces

for each vertex are defined as the external forces only for the next time step.

We opt for dynamics, rather than worry about fixing enough vertices in Ut to

remove the translational and rotational degrees of freedom in the under-constrained

ARAP energy. Adding dynamics to an ARAP energy optimization is simple. Suppose

our unknown positions at simulation time i are Ui
t, then we begin with Netwon’s

second law:

fext + fint =Mai (5.10)

fext +∇EARAP
(
Ui
t

)
=Mai (5.11)

where fext ∈ Rn×3 and fint ∈ Rn×3 are the external and internal forces respectively,

M ∈ R3 is the (diagonalized) mass matrix, and the unknown accelerations are dis-

cretized with finite differences in simulation time ai =
(
Ui
t−2Ui−1

t +Ui−2
t

)
/ε2, where

ε is the simulation time step (not to be confused with the flow time step δ). We

immediately treat the gradient of our ARAP energy EARAP as an internal force. The
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anti-derivative of Equation (5.11) w.r.t. Ui
t
T results in a time dependent energy:

Edyn
(
Ui
t,U

i−1
t ,Ui−2

t

)
=
ε

2
ai

T
Mai −Ui

t

T
fext + EARAP

(
Ui
t

)
.

Notice that in terms of the implementation of a local-global solver, the addition of

dynamics only affects the global Poisson solve, and only the right-hand side changes as

simulation time i advances. Thus a Cholesky decomposition may still be prefactored.

The local step (SVDs for best-fit rotations) is not affected. More details may be

found in (Jacobson et al., 2012). Intuitively, the dynamic simulation corresponds

to introducing an energy term at each iteration that gently pulls the current guess

toward the previous guess. This creates drag, but also regularizes the Poisson solve

at the “global” step and enables the aforementioned repulsion forces. Finally, after

each simulation is completed, we register Ut to Vt with a globally optimal rigid

transformation (Sorkine, 2009).

We repeat this simulation for each discrete flow time t, resulting in a sequence

of self-intersection free immersions {Ut∗ , . . .Ut, . . . ,U0} (see Figure 5.6). Most im-

portantly, U0 is intrinsically similar to our original mesh geometry V0, but free of

self-intersections. We mesh the interior of (U0,F) using TetGen (Si , 2003), setting

parameters to achieve slightly graded elements, but with sufficient circumradius-to-

edge ratio (∼ 2). This produces a tet-mesh with elements E and vertex positions

UE ⊇ U0.

Though only auxillary, the intermediary steps Ut are essential as initial guesses

for each step backward in the flow. Immediately optimizing for U0 treating Vt∗ as an

initial guess results in many collisions early on, locking the surface in an unsatisfactory

shape (see Figure 5.7).

Volumetric parameterization. The ill-posed energy optimization in Equation (5.7)

could be discretized into a piecewise-linear mapping Ω : (UE,E)→ R3 in a variety of
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ways. We examine two choices. First we could consider treating the local injectivity

constraint in Equation (5.8) as a weak constraint, translating it into an energy term

which punishes flipped elements. One available energy is the elastic energy for tetra-

hedral meshes described in (Chao et al., 2010). We can minimize this energy (subject

to the boundary constraints implied by Equation (5.9)) with the same local-global

solver used earlier, only now the energy is volumetric, defined with (UE,E) as the

rest state.

This discretized energy punishes flipped elements, but only with finite energy2. For

most applications, flipped elements are undesired, leading to inaccuracies. For some

applications like physically based simulation or mesh refinement, flipped elements are

a deal-breaker. While mesh untangling methods such as (Freitag and Plassmann,

2000; Knupp, 2001) could be employed, they are slow and ignore our extra informa-

tion of a self-intersection free state (UE,E). Therefore, we consider another option:

treating the constraints Equation (5.8) as hard constraints.

We employ a solver for exactly this problem: finding locally injective maps (Schüller

et al., 2013). Rather than use an arbitrary constant energy for Evol, we notice that,

while we do not care about the distortion of the mapping (we can always refine as

a post process), choosing an energy that punishes tetrahedra with degenerating un-

signed volumes assists (Schüller et al., 2013) in finding a locally injective map. To

this end, we employ Green’s strain energy (refer to (Schüller et al., 2013) for the

definition).

Additionally, since we do not care about the distortion of the internal mapping,

we may further assist (Schüller et al., 2013) by refining our tet mesh during opti-

mization. For the volume parameterization and deformation problems considered by

Schüller et al. (2013), this is in general not possible or desired. In our case, we no-

tice that this greatly improves the chances of finding a feasible solution. We refine
2In terms of the derivation in (Chao et al., 2010), this can be chalked up to discretization error

as the continuous energy should be infinite.
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every 100 iterations using TetGen’s coarsen-then-refine option. This first removes

existing internal Steiner points and then adds new points, ensuring the same quality

as discussed earlier and avoiding an explosion in the mesh size. Refining the current

solution to a new mesh (U′E,E
′) effectively redefines the domain of our mapping,

Ω : (U′E,E
′) → R3, but by abuse of notation we are still finding a solution to our

original problem.

The problem in R2 is far more studied, and many options for locally injective

mappings exist. While the method of Schüller et al. (2013) outperforms other methods

such as (Lipman, 2012), (Xu et al., 2011) present an even faster solution, guaranteed

to detect feasibility. Unfortunately, while extending the implementation of Xu et al.

(2011) to R3 is straightforward, there is no proof (yet) that the guarantees extend

as well. In our experiments, we found that for simple examples extending (Xu et al.,

2011) to R3 succeeds, but for more complicated inputs numerical issues arose before

convergence could be reached or infeasibility could be determined.

5.5 Experiments and results

We report statistics in Table 5.1. Timings were obtained on an iMac Intel Core

i7 3.4GHz computer with 16GB memory. We implement our method primarily as

a serial program in MATLAB. Self-intersections are determined using the CGAL

C++ library, and meshing is performed with Tetgen. Neither are a bottle-neck.

The locally injective mapping method of Schüller et al. (2013) is also implemented

as a serial subroutine written in C++.

We use (Schüller et al., 2013) for all of our examples, except the Dog in Figure 5.7

for which it does not find a solution. Finding locally injective mappings is a difficult

and unsolved problem, but as new methods appear in these areas, our approach will

immediate see benefits. Switching to ARAP for this example is a possibility though

doing so produces 654 flipped tetrahedra out of 147588. We also tried ARAP on other
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Input model Computation time Output

Name |F| #s.i. Φt∗ Ψ0 Ω |E|
Decimated 500 7 0.1 1 0.8 694
Leg 13230 239 0.4 125 30 23968
Cheese 15944 368 0.4 340 1 24447
Male 30788 1133 0.9 200 223 78647
Hand 44000 1924 1.6 435 1922 86000
Dog 50576 1042 2.2 523 - -
Polygirl 65800 679 0.6 140 1642 122118

Table 5.1: Statistics for the various examples. |F| is the number of facets in the input
3D surface and #s.i. the number of intersecting pairs of facets. We report
timings for each stage of our algorithm in seconds: (Φt∗) computing the
cMCF flow until self-intersections are removed, (Ψ0) computing reverse
flow preventing self-intersections, (Ω) computing volumetric map. The
number of elements in the output tet mesh is |E|.

examples where (Schüller et al., 2013) succeeds: for the Hand in Figure 5.1, ARAP

flips 325 out of 86000. Both the Dog and the Hand highlight the intrinsic quality of

our final reverse flow surface.

The Dog model in Figure 5.7 contains multiple self-overlapping parts, all resolved

by cMCF. However, flowing with cMCF comes at a cost: the entire tail has shrunk

around a small point on the Dog ’s behind. The smallest triangle area is far too small

for TetGen to deal with. Instead, our reverse flow restores the intrinsic shape of the

dog. This surface, and a tet-mesh generated in it, is ready to use for physically based

simulation applications.

In Figure 5.1, the Hand is also restored well by our reverse flow. As desired, when

mapped to match the input surface, the generated tetrahedral mesh has overlapping

tetrahedra on the fingers: this is made obvious when solving the biharmonic equation

with alternating Dirichlet boundary conditions on the finger tips.

Geodesic distance computation is a cornerstone of geometry processing. In Fig-

ure 5.8, we compare surface geodesic distances computed on a self-intersecting input

with volumetric geodesic distances computed on our consistently overlapping output
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Input Surface [JKS13] volume Our volume

Geodesic distance

Figure 5.8: Polygirl ’s hands intersect her waist (left). Geodesic distance to a point
on her back computed on the surface correctly separates the hands, but
measures around the waist instead of through it. The positive winding
number mesh of Jacobson et al. (2013) [JKS13] has the opposite situation.
Using our output volume mesh, both are correct.

Input Volume weights, deformationU0

Figure 5.9: Our method enables automatic skinning weight computation with (Ja-
cobson et al., 2011).

tet mesh and the fused mesh of Jacobson et al. (2013). Our mesh reveals the semanti-

cally distant waist and hands, without compromising the volumetric distance through

the body.

The Leg in Figure 5.9 overlaps itself non-trivially in a 3D analog to the elbow

case in Figure 5.4. Our method resolves this and volumetric skinning weights for a

manually defined skeleton are generated using Bounded Biharmonic Weights (BBW)

(Jacobson et al., 2011). Each weight function correctly controls the corresponding

portion of the Leg, despite the spacial overlap. Deforming the mesh with linear blend
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Input mesh [Att10] Our BBW [JKS13] BBWU0Vt∗

Figure 5.10: Left to right: the limbs of the Male intersect each other and the body
(front and sideview). MeshFix of Attene (2010) [Att10] successfully
removes these intersections, but local modifications are too aggressive.
The cMCF flow removes intersections, resulting in Vt∗ , and our reverse
flow restores the original shape intrinsics U0. We use Schüller et al.
(2013) to map this to the interior of the input surface and compute
BBW weights for point handles at each extremity (left foot visualized).
Meshing according to positive winding number (Jacobson et al., 2013)
[JKS13] glues the limbs together, producing unsatisfactory weights.

skinning reveals this as the Leg extends without artifacts.

Mesh repairing algorithms can be used to resolve intersections from a surface

mesh, such that it can be subsequently tetrahedralized. We show in Figure 5.10

the watertight output of MeshFix (Attene, 2010). Although a tet-mesh could be

generated, much of the surface of the Male has been deleted or altered (see inside

red rectangles). Instead, our method resolves self-intersection without modifying the

input’s connectivity. The result of our reverse flow is meshed and the mesh is mapped

back to the original surface, where BBWs may be computed for each extremity. An

alternative, is to consider the interior as defined by the positive winding number

(Jacobson et al., 2013). This glues semantically distant regions together resulting in

poor BBWs.

Reduced elastic simulations (Jacobson et al., 2012) are computed for these two tet-

mesh and BBW results and compared in Figure 5.11. Notably the limbs in our mesh

separate freely, while those of Jacobson et al. (2013) are awkwardly stuck together.
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Elastic simulation with our tet mesh

Elastic simulation with tet mesh of [JKS13]

Figure 5.11: Our output tetmesh is consistent with the self-intersections of the orig-
inal shape. This allows limbs to move freely during elastic simulation
of the Male (top). Meshing according to positive winding number glues
semantically distant regions together Jacobson et al. (2013) [JKS13],
causing the legs to stick together and the arms to stick to the belly and
head (bottom).

Original
Mesh

Decimated
Mesh

Volumetric
PDE shown

on the surface

Figure 5.12: A dense mesh is decimated, and the result presents self-intersections.
Our method successfully defines a tet-mesh for its interior, on which we
can solve the bi-harmonic PDE.
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Input

Vt∗

U0 Volumetric PDE

Figure 5.13: We observe that for some cases—such as this thick slice of Cheese—
self-intersections are also removed from high genus shapes before cMCF
converges.

Figure 5.14: Conformalized mean curvature flow (top) removes self-intersections
much earlier than conformal Willmore flow (bottom).

To perform complex volumetric physical simulations, it is common to first dec-

imate surface meshes to a very coarse level and then tetrahedralize their interior.

We show in Figure 5.12 that decimation can introduce self-intersections and that our

method is able to define a tet-mesh for the interior of the decimated surface.

5.5.1 Limitations and future work

We would like to improve the computational performance of our reverse flow dy-

namics in future work, perhaps by employing a subspace reduction method such as

(Jacobson et al., 2012), though the incorporation of safe contact response is not ob-

vious.

cMCF and other flows such as Willmore, do not, in general, converge to self-

intersection free surfaces. Thus we have no guarantee that our method will work for

high-genus shapes. However, we found that self-intersections are often removed by

cMCF early on, even for high genus shapes (see Figure 5.13). This is in contrast
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U 0V 0 V t∗

Figure 5.15: The input surface V0 is taken to a self-intersection-free state Vt∗ , but
the reverse flow cannot restore the original shape due to the lock caused
by the external torus on the bristles. Histograms below each surface
show the triangle area distribution and confirm that the result of the
reverse flow was not able to restore the original areas.

to the conformal Willmore flow (Crane et al., 2013b). Our experiments show that

this method removes all intersections at a much later state (see Figure 5.14). Using

(Crane et al., 2013b) as the forward flow in our pipeline would make it difficult for the

reverse flow to restore the shape. Although it seems that this new flow works better

for high-genus surfaces, there is no guarantee of convergence to a self-intersection free

shape. Investigating other flows or modifications of existing flows for removing and

preventing self-intersections is an interesting direction for future work.

Although we use the state-of-the-art locally-injective mapping method of Schüller

et al. (2013), the optimization may sometimes get stuck, unable to satisfy the bound-

ary conditions. Their method treats local injectivity as hard constraints using a

barrier method, but the positional constraints on the boundary are only enforced

with quadratic penalty terms. We do not report the result for the Dog model since

(Schüller et al., 2013) was not able to satisfy all the soft constraints.

In some cases the reverse flow does not succeed in restoring the original shape. In

Figure 5.15 we show an example where the bristles inside a torus need more space to

restore their original geometry and get locked by the torus. Histograms of triangle

areas (bottom) show that the geometry of the result of the reverse flow is not similar

to the input shape.

Finally, even some sphere-topology shapes will not work with our method. Shapes

implying regions of negative winding number (see Figure 5.16) are ill posed as they do
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Figure 5.16: This Flying Saucer shape is created by pulling one side through the
other (back-faces are purple). The region in the middle has negative
winding number: meshing it is ill-posed, so this is not valid input for
our method. Interestingly, cMCF does remove all self-intersections, but
flips the entire shape inside-out in the process.

not define a clear “interior.” Our method can reject these immediately, but it remains

to prove the sufficient conditions for invalid input to our problem.

5.6 Conclusion

Our discretized formulation proves to be a powerful tool for consistently meshing,

previously unmeshable models. Our reverse flow takes maximal advantage of the

cMCF, which is computed anyway to remove self-intersections. This complements

modern tet-meshing software and state-of-the-art bijective parameterization, forming

a useful tool to assist in a variety of geometry processing tasks. We hope that by

providing a method to recover volumetric discretizations for self-intersecting surfaces

of solid shapes we will encourage volumetric processing at every applicable stage in

the geometry processing pipeline.
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CHAPTER VI

Conclusion and Future Work

In this thesis we presented new algorithms for two distinct fields of visual comput-

ing: image processing and geometry processing. We also presented the theory behind

both algorithms. This theoretical background involved many areas of mathematics,

including functional analysis, differential geometry, optimization, numerical analysis

and others.

The first method proposed new digital filters and generators for the sampling

and reconstruction modern pipeline. Our experiments showed that our approach is

superior when compared to previous methods for a similar computational cost.

The second part of the thesis presented the first method to tetrahedralize the

interior of self-intersecting triangle meshes. We illustrated how useful this method can

be with many examples from practical tasks such as physical simulation, deformation

and geodesic distance computations.

The background for both methods is going to be useful for proposing other new

algorithms in visual computing. In fact, we have already been working on them and

show some preliminary results on the sequel.
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Input Discrete processing Ideal Our method

(a) (b) (c) (d)

Figure 6.1: A continuous function f (a scene) is prefiltered and sampled, resulting in
an image shown in (a), on which we wish to apply, for example, a thre-
holding operation T . (b) When the transformation is applied directly to
image samples, aliasing artifacts are visible. (c) Ideally, we should have
prefiltered T (f), but f may no longer be available. (d) Our continuous
image-processing algorithm first reconstructs the image, then transforms
it in the continuous domain, before finally prefiltering the result to gen-
erate the output. Artifacts are eliminated.

6.1 Approximation theory for real-time image processing

We start with an input image f that has been prefiltered with a good anti-aliasing

prefilter ξ before being sampled ((a) in figure 6.1). In the notation introduced in

chapter II, this input is given by

i = Jf ∗ ξ∨K. (6.1)

We now want to apply some image operation T to this image, such as contrast

enhancement, thresholding, bilateral filtering, laplacian edge-enhancement, etc. Most

of these operations are highly nonlinear, even discontinuous in many cases.

Due to simplicity current image processing software define the output of applying
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T to i as

[. . . , T (i−2), T (i−1), T (i0), T (i1), T (i2), . . .], (6.2)

i.e., simply evaluate T at the samples of f . This results in aliasing artefacts such as

the jagged edges shown in figure 6.1 (b).

Our method consists of defining a continuous reconstructions f̃ using the tech-

niques presented in chapter II, applying the operator T to it, prefiltering the result

with some good prefilter ρ and then sampling to obtain the output. Thus, the result

of our method is given by

JT (f̃) ∗ ρ∨K. (6.3)

We show one of our results in figure 6.1 (d).

Of course this process is more expensive than the usual approach but we leverage

new methods for function reconstruction (with B-splines) in the GPU. This allows us

to produce high-quality results at real time.

6.2 Physical simulation for the generation of cage meshes

Given a fine mesh we want to automatically calculate a cage mesh to be used in

multigrid computations and deformation. A cage is a mesh that encloses the input

one.

Figure 6.2 illustrate our 2D prototype. We first calculate a simplification of the

input mesh (blue mesh in figure 6.2 (left)) to be an initial guess for the output cage.

The input mesh (dashed in figure 6.2 (left)) is shrunk using the conformalized mean-

curvature flow presented in section 4.2.1, but now without renormalizing at each step.

Once the fine mesh no longer intersects the coarse one, we stop shrinking. The result
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collision attempt: 0/1000, #constraints = 26, vel. change = 0.000000 
 simulation step: 2/3, flow step: 2/2, energy:displacement_step 
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collision attempt: 1/1000, #constraints = 34, vel. change = 0.025386 
 simulation step: 3/3, flow step: 2/2, energy: displacement_step

Figure 6.2: The 2D prototype of our method for automatic cage generation. Left: an
input mesh is first shrunk until it no longer intersects its coarse simplified
version. Center: the fine mesh is grown back to its initial position. When
it hits the coarse mesh, collision normals are defined and the coarse mesh
moves away responding to these collision. Left: final blue mesh is the
output cage.

of this shrinking is the red mesh in figure 6.2 (left).

We then step back in the flow and every time a collision between red and blue

meshes happens, we define a collision normal and an energy to push the blue mesh

away (figure 6.2 (center)). The physical simulation guarantees that the coarse (blue)

mesh always encloses the fine (red) mesh. When the fine mesh is back to its initial

position, the blue mesh is a cage for it.
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