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Abstract. In this paper each coordinate of a Bézier curve B(s) of degree (n−1), n = 2m−1, is

expressed as a Hankel form applied to the vector (Be
m(s))T em, where Be

m(s) is the m×m Bernstein
matrix and em is the mth canonical vector of Cm. These expressions can be easily calculated once
we have a Vandermonde factorization of the Hankel matrices associated to the forms. To that end,
we begin presenting another proof of the existence of a Vandermonde factorization of a regular
Hankel matrix by using Pascal matrices techniques. In the cases where one or both Hankel matrices
associated to the forms are ill-conditioned with respect to inversion, we propose shifting their skew-
diagonals and counteracting them after, which is done practically without computational costs. By
comparing this way of computing a Bézier curve with other current methods, we see that the results
suggest that this approach is very promising with regard to accuracy and time of computation, even
for large values of n. Examples of the behavior of this kind of method under degree elevation and
degree reduction are also presented here.
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1. Introduction. Suppose we have a Bézier curve B of degree n− 1 defined by
n given points Q0 = (x0, y0), Q1 = (x1, y1), ..., Qn−1 = (xn−1, yn−1) in R2. That is,

B(s) = (x(s), y(s)) =

n−1∑
i=0

Qibi,n−1(s), s ∈ [0, 1],

where bi,n−1(s) =
(
n−1
i

)
si(1 − s)n−1−i for each i ∈ {0, ..., n − 1}. Let Be

n(s) be
the n × n lower triangular matrix such that (Be

n)ij (s) = bj−1,i−1(s) for each n ≥
i ≥ j ≥ 1. Be

n(s) is called a Bernstein matrix [1]. We note that the Bernstein
polynomials b0,n−1(s), ..., bn−1,n−1(s) form a basis of Pn−1(R), the vector space of the
real polynomial functions of degree less than or equal to (n− 1).

Paul de Casteljau developed a very stable algorithm to evaluate Bézier curves [7].
Since then, several algorithms for polynomial evaluation have been proposed, which
can also be used to evaluate Bézier curves. A polynomial curve C of degree n − 1
defined by n control points Z0, ..., Zn−1 is described as follows:

C(s) =

n−1∑
i=0

Ziwi,n−1(s),

where {w0,n−1(s), ..., wn−1,n−1(s)} is some basis of Pn−1(R). For instance, the VS
algorithm ([22]) uses the basis {v0,n−1(s), ..., vn−1,n−1(s)}, where vi,n−1(s) = si(1 −
s)n−1−i for each i ∈ {0, ..., n − 1}. Other examples are the Wang-Ball algorithm
([24]), the Said-Ball algorithm ([24]), and the DP-Ball algorithm ([12]). All of these
use higher degree generalizations of the Ball basis – the set {(1−s)2, 2s(1−s)2, 2s2(1−
s), s2}, which was introduced in the seventies for geometric modeling ([2]). In order
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to evaluate a Bézier curve we first make a change of coordinates from the Bernstein
system to one of these systems. Then we use the respective evaluation algorithm to
compute points on the curve (see [21]). Lately, Bézier curves have also been computed
from matrix theory. For instance, in [4] Bézier curves of degree n− 1 were computed
in O(n log n) operations from the expression of an n × n Bernstein matrix in terms
of the lower triangular Pascal matrix Pn (see [1]). However, the performance of these
so-called Pascal matrix methods becomes very unstable when n attains some level,
which depends on the computer architecture. In order to overcome the limitation on
the degree of the curve for Pascal matrix methods we created a new algorithm. This
algorithm is based on a different way of formulating Bézier curves, which involves
Hankel matrices.

Let H be a Hankel matrix of order n, i.e., (∀i, j ∈ {1, ..., n}) Hij = hi+j−1. A very
known theorem states that, if H is nonsingular, then a Vandermonde matrix V and
a diagonal matrix D exist so that H = V DV T . There is a proof of this fact in [19],
which utilizes a class of matrices arisen in the theory of root separation of algebraic
polynomials, namely the class of Bezoutians. A different proof of this theorem appears
in [16] by using classical results of matrix theory. Here we present another proof of this
theorem in §2. To that end, we first obtain some preliminary results by utilizing Pascal
matrices techniques. Then, if xγ is the solution of Hx = (hn+1 ... h2n−1 γ)

T
, γ ∈ C,

we will see that the existence of a Vandermonde factorization of a regular Hankel
matrix H depends on the non-existence of a multiple eigenvalue of the companion
matrix Cγ = compan(xγ) for some complex number γ. Here, compan(x) denotes the
matrix [eT2 ; e

T
3 ; ...; e

T
n ;x

T ], where {e1, ..., en} is the canonical basis of Cn and x ∈ Cn.
An interesting result is that Cγ has no multiple eigenvalue for all but a finite set of
complex numbers γ. Thus, it is possible to create a general algorithm that computes
a Vandermonde factorization of a nonsingular Hankel matrix. Note that even when
γ belongs to that finite set the following factorization of H from Cγ is still possible:
H = VcDV T

c , where Vc is a confluent Vandermonde matrix and D, a block diagonal
matrix [8]. From now on we will use the MATLAB notation vander([α1, ..., αn]) to
denote the following Vandermonde matrix:

1 1 · · · 1
α1 α2 · · · αn

...
... · · ·

...
αn−1
1 αn−1

2 · · · αn−1
n

 ,

which is different from the matrix generated by MATLAB with that command.
In §3, we see that we can express each coordinate of a Bézier curve of degree

n − 1, n = 2m − 1, as a Hankel form on Cm applied to the vector (Be
m(s))

T
em,

where Be
m(s) is the m × m Bernstein matrix and em is the mth canonical vector

of Cm. Still in this section we propose two algorithms to compute Bézier curves
from Vandermonde factorizations of the associated Hankel matrices. In §4, some
results of numerical experiments are presented. We see that we can compute Bézier
curves by our algorithms in a very fast and precise way, which is corroborated from
the comparisons done with other methods. Algorithm 1 computes the eigenvalues of
H−1H1, where H1 is the Hankel matrix whose first column is (h2 ... hn+1)

T and whose
last row is (hn+1 ... γ ); Algorithm 2 computes them from the equivalent generalized
eigenvalue problem H1x = λHx. On one hand the computation of these eigenvalues
certainly depends on a good value for γ. On the other hand, several experiments have
indicated that the computation of these eigenvalues is very sensitive to its condition
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with respect to inversion, and this is corroborated by some theoretical results (e.g,
see Corollary 3.1 of [3]). We have modified our methods to handle an ill-conditioned
Hankel matrix by shifting its skew-diagonal entries toward skew-diagonal dominance.
The experiments with this procedure applied to Algorithm 1 have shown that the
precision of all the computation improves. Furthermore, we have seen that it is
not expensive with respect to time. We finish the section introducing a subdivision
formula in terms of some Hankel matrices, presenting some examples to illustrate the
behavior of Algorithm 1 under degree elevation and degree reduction, and introducing
a new corner cutting system on [0, 1] for Bézier curves of degree 3. This system is
made up of functions of the type our method uses in order to compute such curves.

2. Vandermonde factorizations of a nonsingular Hankel matrix.
In this section we present a proof of the existence of a Vandermonde factorization

of a nonsingular Hankel matrix H, H = hankel([h1, ..., hm], [hm, ..., h2m−1]). That is,

H =


h1 h2 ... hm

...
...

...
...

hm−1 hm ... h2m−2

hm hm+1 ... h2m−1

 .

In order to obtain a Vandermonde matrix as a factor of H, we first compute xγ , which
is the solution of Hx = yγ , where yγ = (hm+1 ... h2m−1 γ)

T , and then we compute
the spectrum of the companion matrix Cγ = [eT2 ; ...; e

T
m;xT

γ ]. Note that such a matrix
is a non-derogatory matrix, that is, a matrix whose characteristic polynomial and
minimum polynomial are identical. This means that, if a non-derogatory matrix has
an eigenvalue whose algebraic multiplicity is greater that 1, then the matrix is not
diagonalizable. The goal of this section is to show that Cγ is diagonalizable for all
but a finite set of complex numbers γ. This fact allows a computer to generate γ by
itself.

We begin presenting some algebraic properties of Hankel matrices. To this end,
let a = (a0 ... am−1)

T be the solution of Hx = em, and let b = (b0 ... bm−1)
T be the

solution of Hx = (hm+1 ... h2m−1 0)
T . Let pγ(x) be the characteristic polynomial of

Cγ . Then pγ(x) = r(x) − γs(x), where r(x) = xm − bm−1x
m−1 − ... − b1x − b0 and

s(x) = am−1x
m−1 + ...+ a1x+ a0.

Lemma 2.1. Let H be an m×m nonsingular Hankel matrix. Let a = (a0...am−1)
T

and b = (b0...bm−1)
T be the solutions of Hx = em and Hx = (hm+1 ... h2m−1 0)

T ,
respectively. Then a0 ̸= 0 or b0 ̸= 0.

Proof.
Suppose |H(1 : m− 1, 2 : m)| ≠ 0. Therefore, from Cramer’s rule, a0 ̸= 0. Let

x1, ..., xm−1 be the unique scalars such that

x1

 h2

...
hm

+ ...+ xm−1

 hm

...
h2m−2

 =

 hm+1

...
h2m−1

 .

Hence, x = (0x1 ... xm−1)
T = γa + b is the solution of Hx = (hm+1 ... h2m−1 γ)

T iff
γ = x1hm+1+...+xm−1h2m−1. So, if γ is different from this value, the first coordinate
x0 of x is not zero. Since x0 = γa0 + b0, then we have a0 ̸= 0 or b0 ̸= 0. Observe that
a0 ̸= 0 and b0 = 0 iff x1hm+1 + ...+ xm−1h2m−1 = 0.
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Now suppose H(1 : m − 1, 2 : m) = H(2 : m, 1 : m − 1) is singular. Since H is
nonsingular, the dimension of span{H(2 : m, 1), ..., H(2 : m,m − 1), H(2 : m,m)} is
(m−1), as well as the dimension of span{H(1 : m−1, 1), ..., H(1 : m−1,m−1),H(1 :
m − 1,m)}. Hence, H(2 : m,m) /∈ span{H(2 : m, 1), ..., H(2 : m,m − 1)}, whose
dimension is m− 2. On the other side, H(2 : m,m) ∈ span{H(1 : m− 1, 1), ..., H(1 :
m− 1,m)} = span{H(1 : m− 1, 1),H(2 : m, 1), ..., H(2 : m,m− 1)}, and so, there is
only one x0, which is different from zero, such that hm+1

...
h2m−1

 = x0

 h1

...
hm−1

+ x1

 h2

...
hm

+ ...+ xm−1

 hm

...
h2m−2

 ,

for some x1, ..., xm−1. Observe in this case that x0 = b0 ̸= 0 and a0 = 0 for all γ ∈ C.

From the above proof, there can be at most one complex number γ such that
pγ(0) = −b0 − γa0 = 0. We can also conclude from Lemma 2.1 that zero is not a
common root of r(x) = xm − bm−1x

m−1 − ...− b1x− b0 and s(x) = am−1x
m−1 + ...+

a1x+ a0.

Now define Hκ
γ =


h1 ... hm hm+1

...
. . .

...
...

hm ... h2m−1 γ
hm+1 ... γ κ

. Since H is nonsingular, Hκ
γ

is also nonsingular iff κ ̸= κ0 = (hm+1 ... h2m−1 γ) H−1(hm+1 ... h2m−1 γ)T , which
is equal to (hm+1 ... h2m−1 γ)(b0 + γa0 ... bm−2 + γam−2 bm−1 + γam−1)

T .

Note that Hκ
γ


−b0 − γa0

...
−bm−1 − γam−1

1

 = (κ − κ0)


0
...
0
1

. So, Lemma 2.1 can be

restated as the following lemma:

Lemma 2.2. Let Hκ
γ =


h1 ... hm hm+1

...
. . .

...
...

hm ... h2m−1 γ
hm+1 ... γ κ

 be a Hankel matrix,

where H = Hκ
γ (1 : m, 1 : m) is nonsingular. Suppose that Hκ

γ is also nonsingular,

that is, κ ̸= (hm+1 ... h2m−1 γ) H−1(hm+1 ... h2m−1 γ)T . Let p be the solution of
Hκ

γ x = em+1. Then p0 ̸= 0 except for one possible complex number γ.

Let α be any complex number and let qγ(x) = pγ(x+α) = r(x+α)− γs(x+α).
It will be shown that r(α) and s(α) cannot be both null because there can be only
one complex number γ such that qγ(0) = 0. In order to prove this, some notations
and definitions are introduced in the following.

Definition 2.3. Let α ∈ C. Let Pm[α] be the m × m lower triangular matrix
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defined for each i, j ∈ {1, 2, . . . ,m} by

(Pm[α])ij =

{
αi−j

(
i−1
j−1

)
, for i > j;

0 , otherwise.

Pm[α] is said to be a generalized lower triangular Pascal matrix. If α = 1, Pm[1] = Pm

is called the m×m lower triangular Pascal matrix.

Some results about these matrices (see [1], [9]) are listed in the following lemma:

Lemma 2.4. Let Pm[α] be a generalized lower triangular Pascal matrix. Then
(a) Pm[0] = Im;
(b) Pm[α]Pm[β] = Pm[α+ β];
(c) (Pm[α])−1 = Pm[−α];
(d) Suppose α ̸= 0 and let Gm(α) be the m × m diagonal matrix such that

(Gm(α))kk = αk−1 for all k ∈ {1, ...,m}. Then Pm[α] = Gm(α)PmGm(α−1).
In particular, P−1

m = Gm(−1)PmGm(−1).

(e) If v =
(
1αα2 ... αm−1

)T
, then P k

mv =
(
1 (α+ k) (α+ k)2 ... (α+ k)m−1

)T
for

all integer k.

Recall the definition of the Bernstein matrix Be
m(s) for each scalar s:

[Be
m(s)]ij =

{ (
i−1
j−1

)
sj−1(1− s)i−j , for m ≥ i ≥ j ≥ 1;

0 , otherwise.

A very important fact about Bernstein matrices that will be used here is the following
proposition, whose proof can be found in [1]:

Proposition 2.5. Let s ∈ [0, 1] and let Be
m(s) be an m × m Bernstein matrix

Then, Be
m(s) = PmGm(s)P−1

m , where Pm is the m×m lower triangular Pascal matrix
and Gm(s) = diag([1, s, ..., sm−1]).

In the following, we present some relations between Pascal and Hankel matrices.

Lemma 2.6. Let H be an m×m Hankel matrix and let Pm be the m×m lower
triangular Pascal matrix. Then PmHPT

m is still a Hankel matrix.
Proof. The lemma obviously holds when m = 1. Suppose it holds for all Hankel

matrices H of order m ≥ 1. Now, let H be a (m + 1) × (m + 1) Hankel matrix and
consider Pm+1HPT

m+1. Since Pm+1HPT
m+1 is symmetric and

Pm+1HPT
m+1 =

(
PmHPT

m v
vT κ

)
for some v ∈ Cm and κ ∈ C, it suffices to show that

(Pm+1HPT
m+1)m+1,k = (Pm+1HPT

m+1)m,k+1

for all k ∈ {1, ...,m− 1}. Observe that

(Pm+1HPT
m+1)m+1,k = eTm+1Pm+1

k−1∑
j=0

(
k − 1

j

)
Hej+1 =
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=
m∑
i=0

k−1∑
j=0

(
m

i

)(
k − 1

j

)
eTi+1Hej+1 =

m+k−1∑
s=2

hs−1

s∑
i=0

(
m

i

)(
k − 1

s− i

)
.

From Vandermonde convolution ([18]), this is equal to

m+k−1∑
s=2

hs−1

s∑
i=0

(
m− 1

i

)(
k

s− i

)
=

m−1∑
i=0

k∑
j=0

(
m− 1

i

)(
k

j

)
eTi+1Hej+1 =

= eTmPm+1

k∑
j=0

(
k

j

)
Hej+1 = (Pm+1HPT

m+1)m,k+1.

Corollary 2.7. Let H be an m × m Hankel matrix. Then Pm[α]HPm[α]T is
still a Hankel matrix for any complex number α.

Proof. For α = 0 the result follows from Lemma 2.6. Let α ̸= 0. Frim Lemma
2.4, Pm[α] = Gm(α)PmGm(α−1), where Gm(α) = diag (1, α, ..., αm−1). So, it suffices
to show that Gm(α)HGm(α) is a Hankel matrix. But this is obviously true, for
(Gm(α)HGm(α))ij = hi+j−1α

i+j−2.

We see in the following proposition that r(x) and s(x) don’t have any common
root. The proof is done by using generalized Pascal matrix techniques.

Proposition 2.8. Let H be an m × m nonsingular Hankel matrix. Let a =
(a0 a1 ... am−1)

T and b = (b0 b1 ... bm−1)
T be the solutions of Ha = em and Hb =

(hm+1 ... h2m−1 0)
T , respectively. Then r(x) = xm − bm−1x

m−1 − ... − b1x − b0 and
s(x) = am−1x

m−1 + ...+ a1x+ a0 don’t have any common root.

Proof. Let γ ∈ C and let pγ = (−b0 − γa0 ... − bm−1 − γam−1 1)
T
. Let α ∈

C and let qγ be the vector of coefficients of the polynomial r(x + α) − γs(x + α).
We note that qγ = Pm+1[α]

T pγ = Pm+1[α]
T (Hκ

γ )
−1em+1 for κ = 1 + κ0. Thus,

Hκ
γPm+1[α]

−T qγ = em+1, and so,

Ĥκ
γ qγ = Pm+1[α]

−1Hκ
γPm+1[α]

−T qγ = Pm+1[−α]Hκ
γPm+1[−α]T qγ = em+1.

Observe that Ĥκ
γ is also nonsingular and, from corollary 2.7, is a Hankel matrix. Since

Hκ
γ = H0

0 +γ (em+1e
T
m+emeTm+1)+κ em+1e

T
m+1, we see that Ĥ

κ
γ = Ĥ0

0 +γ (em+1e
T
m+

emeTm+1) + (κ− 2mα) em+1e
T
m+1. That is,

Ĥκ
γ =


ĥ1 ... ĥm ĥm+1

...
. . .

...
...

ĥm ... ĥ2m−1 γ̂

ĥm+1 ... γ̂ κ̂

 ,

where Ĥκ
γ (1 : m, 1 : m) = Ĥ = Pm[−α]HPm[−α]T is nonsingular, and γ̂ = γ +

(Ĥ0
0 )m+1,m. Thus, from Lemma 2.2, (qγ)0 ̸= 0 for some complex number γ. Since

qγ)0 = r(α)− γs(α), we conclude that r(α) ̸= 0 or s(α) ̸= 0.
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Note that (qγ)0 = 0 only if s(α) ̸= 0, which means that
∣∣∣Ĥκ

γ (1 : m− 1, 2 : m)
∣∣∣ =∣∣∣Ĥ(1 : m− 1, 2 : m)

∣∣∣ ̸= 0. In this case, γ = r(α)/s(α).

Proposition 2.9. Let γ ∈ C. Let pγ(x) = r(x) − γs(x) be the characteris-
tic polynomial of Cγ = H1(γ)H

−1, where H1(γ) is the Hankel matrix defined by
H1(γ)ek = Hek+1 for k = 1, ...,m−1, and H1(γ)em = (hm+1 ... h2m−1 γ)

T . Then the
set of scalars γ such that Cγ is not diagonalizable is finite.

Proof. Cγ = [eT2 ; ...; e
T
m; (hm+1 ... h2m−1 γ)H

−1] is a companion matrix. Hence, it
is a non-derogatory matrix. That is, if Cγ has multiple eigenvalues, then Cγ is not
diagonalizable. Thus, it suffices to show that the set of scalars γ for which Cγ has
multiple eigenvalues is finite.

Let α ∈ C be an eigenvalue of Cγ , that is, a root of pγ(x). Therefore, r(α) = γs(α).
From Proposition 2.8 s(α) ̸= 0, and so there are two cases:

(i) r(α) = 0 (this occurs iff γ = 0), and in this case C0 is not diagonalizable iff
r′(α) = 0;

(ii) r(α) ̸= 0, which means that γ = r(α)/s(α) ̸= 0. In this case, p′γ(α) = 0 iff
either r′(α) = s′(α) = 0 or r′(α) = γs′(α) ̸= 0.
Therefore, since s ̸= 0 and r/s is not a constant, α is contained in the set of the
roots of r′s − rs′, which has at most 2(m − 1) elements. Hence, we conclude that
{γ ∈ C |Cγ is not diagonalizable} is finite and has at most 2(m− 1) elements.

We can now state the following theorem:

Theorem 2.10. Let H be an m × m nonsingular Hankel matrix. Let r(x) =
xm− bm−1x

m−1− ...− b0 and s(x) = am−1x
m−1+ ...+a0, where a = (a0 a1 ... am−1)

T

and b = (b0 b1 ... bm−1)
T satisfy Ha = em and Hb = (hm+1 ... h2m−1 0)

T , respectively.
Let S = {α ∈ C | (rs′ − r′s)(α) = 0 and s(α) ̸= 0 } and T = {r(α)/s(α) |α ∈ S}.
Then, for all γ ∈ C − T , H = VγDγV

T
γ , where Vγ = vander(α1, ..., αm), Dγ =

diag (V −1
γ He1), {α1, ..., αm } = λ(Cγ), and Cγ is the companion matrix whose last

row is (b0 + γa0 ... bm−1 + γam−1).
Proof. From Proposition 2.9, λ(Cγ) is simple for all γ ∈ C − T . Suppose

{α1, ..., αm } = λ(Cγ). Let v = (hm+1 ... h2m−1 γ)
T and H1 = [H(2 : m, :); vT ].

Since H1 is a symmetric matrix, H1 = [H(:, 2 : m), v]. Thus,

Cγ = H1H
−1 = Vγ diag([α1, ..., αm])V −1

γ ,

where Vγei =
(
1αi ... α

m−1
i

)T
for all i ∈ {1, ...,m}. So,

V −1
γ H1 = diag([α1, ..., αm])V −1

γ H.

Let d = (d1 ... dm)T = V −1
γ He1. Let Dγ = diag(d). Hence, for all i ∈ {1, ...,m− 1},

V −1
γ Hei+1 = V −1

γ H1ei = diag([α1, ..., αm])V −1
γ Hei =

= diag([α1, ..., αm])id =
(
d1α

i
1 ... dmαi

m

)T
= DγV

T
γ ei+1.

Therefore, H = VγDγV
T
γ .
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Theoretically speaking, this theorem allows us to compute a Vandermonde fac-
torization of a regular Hankel matrix by taking γ at random, for the probability of
choosing a complex number γ for which Cγ was not diagonalizable would be null.
However, an infinite number of values can lead to almost multiple eigenvalues, and
for these values one can expect numerical difficulties. In the next section, we see that
each coordinate of a Bézier curve of degree 2m − 2 is a Hankel form applied to the
vector (Be

m(s))
T
em for each s ∈ [0, 1].

3. Bézier curve as a Hankel form. Bézier curves of degree n − 1 ([5]) have
become fundamental tools in Computed-Aided Geometric Design area. The de Castel-
jau’s algorithm is a widespread method for the computation of these curves. But other
efficient methods have arisen for this computation, e.g., those which evaluate poly-
nomial curves expressed in generalized Ball bases ([12], [21], [24]), or use fast Pascal
matrix-multiplication ([4]). In this section, we see that each coordinate of a Bézier
curve can be represented by a Hankel form applied to a vector.

Let Q0 = (x0, y0), Q1 = (x1, y1), ..., Qn−1 = (xn−1, yn−1) be n points in R2.
Assume that the number n is odd: n = 2m− 1, m > 1. Then, for k = 0, ...,m− 1,

B(s) =
k∑

j=0

(
k

j

)
(1− s)k−jsjBQjQj+1...Qj+n−k−1

(s),

where BQjQj+1...Qj+n−k−1
(s) denotes the Bézier curve defined by the points Qj , Qj+1,

..., Qj+n−k−1 (the proof is left to the reader). Particularly for k = m− 1,

B(s) =

m−1∑
j=0

(
m− 1

j

)
(1− s)m−1−jsjBQjQj+1...Qj+m−1(s),

and so,

b1(s) =
m−1∑
j=0

(
m− 1

j

)
(1− s)m−1−jsjeTmBe

m(s)xj,...,j+m−1,

b2(s) =
m−1∑
j=0

(
m− 1

j

)
(1− s)m−1−jsjeTmBe

m(s)yj,...,j+m−1,

where xj,...,j+m−1 and yj,...,j+m−1 denote the column vectors (xj . . . xj+m−1)
T and

(yj . . . yj+m−1)
T , respectively, for j = 0, ...,m− 1. Note that

m−1∑
j=0

(
m− 1

j

)
(1− s)m−1−jsjeTmBe

m(s)xj...j+m−1 =

= eTmBe
m(s)

m−1∑
j=0

(
m− 1

j

)
(1− s)m−1−jsjxj...j+m−1

 .

Furthermore,
∑m−1

j=0

(
m−1
j

)
(1 − s)m−1−jsjxj...j+m−1 is a column vector whose first

coordinate is eTmBe
m(s) (x0 ... xm−1)

T
, the second coordinate is eTmBe

m(s) (x1 ... xm)
T
,

and so on. Thus, we can state the following lemma:
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Lemma 3.1. Let n = 2m− 1, where m is an integer greater than 1. Let B(s) =

(b1(s) b2(s))
T

be a Bézier curve of degree n − 1 defined by n control points Q0 =
(x0, y0), Q1 = (x1, y1), ..., Qn−1 = (xn−1, yn−1) in R2. Then

b1(s) = eTmBe
m(s)Hx(B

e
m(s))T em and b2(s) = eTmBe

m(s)Hy(B
e
m(s))T em,

where Hx = hankel(Cx, Rx) and Hy = hankel(Cy, Ry) are m × m Hankel matrices
whose first columns are Cx = (x0...xm−1)

T and Cy = (y0...ym−1)
T respectively, and

whose last rows are Rx = (xm−1, ..., xn−1) and Ry = (ym−1, ..., yn−1) respectively.

There is an analogous result for n even, as follows:

Lemma 3.2. Let n = 2m, where m is an integer greater than 1. Let B(s) =

(b1(s) b2(s))
T

be a Bézier curve of degree n − 1 defined by n points Q0 = (x0, y0),
Q1 = (x1, y1), ..., Qn−1 = (xn−1, yn−1) in R2. Then

b1(s) = eTm+1B
e
m(s)Hx(B

e
m(s))T em and b2(s) = eTm+1B

e
m(s)Hy(B

e
m(s))T em,

where Hx = hankel(Cx, Rx) and Hy = hankel(Cy, Ry) are (m + 1) × m Hankel
matrices whose first columns are Cx = (x0...xm)T and Cy = (y0...ym)T respectively,
and whose last rows are Rx = (xm, ..., xn−1) and Ry = (ym, ..., yn−1) respectively.

Proof. Let H0
x = hankel(C0

x, R
0
x) be an m × m Hankel matrix whose first col-

umn is C0
x = (x0...xm−1)

T and whose last row is R0
x = (xm−1, ..., xn−2). Let H1

x =
hankel(C1

x, R
1
x) be an m ×m Hankel matrix whose first column is C1

x = (x1...xm)T

and whose last row is R1
x = (xm, ..., xn−1). Now

B(s) = BQ0Q1...Qn−1(s) = (1− s)BQ0Q1...Qn−2(s) + sBQ1Q2...Qn−1(s).

Therefore,

b1(s) = (1− s)[eTmBe
m(s)H0

x(B
e
m(s))T em] + s[eTmBe

m(s)H1
x(B

e
m(s))T em] =

= [(1− s)m
(
m− 1

1

)
(1− s)m−1s ...

(
m− 1

m− 1

)
(1− s)sm−1 sm]

[
H0

x

0

]
(Be

m(s))T em+

+[(1− s)m
(
m− 1

0

)
(1− s)m−1s ... sm]

[
0
H1

x

]
(Be

m(s))T em =

= eTm+1B
e
m+1(s) diag([1, (m− 1)/m, ..., (m− (m− 1))/m, 1])

[
H0

x

0

]
(Be

m(s))T em+

+eTm+1B
e
m+1(s) diag([1, 1/m, ..., (m− 1)/m, 1])

[
0
H1

x

]
(Be

m(s))T em =

= eTm+1B
e
m+1(s)Hx(B

e
m(s))T em.

Analogously, we would prove that b2(s) = eTm+1B
e
m(s)Hy(B

e
m(s))T em.
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The next theorem gives a new description of a Bézier curve and it is central to
our paper.

Theorem 3.3. Let n = 2m−1, where m is an integer greater than 1. Let B be a
Bézier curve of degree n− 1 defined by n control points, and let x = (x0...xn−1)

T and
y = (y0...yn−1)

T be their respective vector of coordinates. Let Hx = hankel(Cx, Rx)
and Hy = hankel(Cy, Ry), where Cx = (x0...xm−1)

T , Rx = (xm−1, ..., xn−1), Cy =
(y0...ym−1)

T and Ry = (ym−1, ..., yn−1). If Hx and Hy are nonsingular, then there

are complex numbers d1, ..., dm, t1, ..., tm, d̂1, ..., d̂m and t̂1, ..., t̂m such that

b1(s) =

m∑
i=1

di(1− s+ s.ti)
n−1 and b2(s) =

m∑
i=1

d̂i(1− s+ s.t̂i)
n−1. (3.1)

Proof. Let V = vander([t1, ..., tm]) be a Vandermonde matrix and let D =
diag([d1, ..., dm]) be a diagonal matrix such that Hx = V DV T . So,

b1(s) = eTmBe
m(s)Hx(B

e
m(s))T em = eTmBe

m(s)V DV T (Be
m(s))T em =

=

m∑
i=1

di(1− s+ s.ti)
2m−2 =

m∑
i=1

di(1− s+ s.ti)
n−1,

because eTmBe
m(s)V ei =

∑m−1
j=0 (1 − s)m−1−j .sj .tji = (1 − s + s.ti)

m−1 for all i ∈
{1, ...,m}. In an analogous way, we conclude that

b2(s) =

m∑
i=1

d̂i(1− s+ s.t̂i)
n−1,

for some d̂1, ..., d̂n and t̂1, ..., t̂n.

Theorem 3.3 can be extended to any positive even integer n according to the
following corollary, whose proof is an application of Lemma 3.2 and is left for the
reader.

Corollary 3.4. Let n = 2m, where m is an integer greater than 1. Given n
control points Q0, ..., Qn−1, let BQ0Q1...Qn−1

(s) = ( b1(s) b2(s) )
T

be the Bézier curve
of degree n− 1 defined by these points. Let x = (x0...xn−1)

T and y = (y0...yn−1)
T be

their respective vector of coordinates. Suppose that H0
x = hankel(C0

x, R
0
x) and H0

y =

hankel(C0
y , R

0
y) are nonsingular, where C0

x = (x0...xm−1)
T , R0

x = (xm−1, ..., xn−2),

C0
y = (y0...ym−1)

T and R0
y = (ym−1, ..., yn−2). Then there are complex numbers

d1, ..., dm, t1, ..., tm, d̂1, ..., d̂m and t̂1, ..., t̂m such that

b1(s) =

m∑
i=1

di(1− s+ s.ti)
n−1 and b2(s) =

m∑
i=1

d̂i(1− s+ s.t̂i)
n−1. (3.2)

In the next section, we compute Bézier curves of degree n− 1, n = 2m− 1, from
this Hankel form approach. We will compare the results obtained by our methods
based on this approach with the ones obtained by de Casteljau’s method and other
methods. We will also discuss a preconditioning technique that we should use when
the Hankel matrices Hx or Hy are ill-conditioned.
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4. Numerical experiments. In this section we present results of several nu-
merical experiments. We begin with the computation of Bézier curves which has been
carried out by our methods and by four other methods. Since our methods depend on
the good conditioning ofHx andHy, we propose in 4.1 a procedure in order to improve
the performance of our methods when at least one of these matrices is ill-conditioned.

Subdivisions and degree elevations of a Bézier curve are described from the point
of view of Hankel forms in 4.2 and 4.3, respectively. In 4.4, we introduce a new way
of computing a degree reduction of a Bézier curve. Finally, in 4.5 we briefly discuss
the relationships between some basis obtained by the Hankel-matrix approach and
corner-cutting systems.

We know that a uniform scaling of the control points of a Bézier curve yields a
uniform scaling of the curve. We also note that if the control points are translated by
a vector v = (p, q), then the Bézier curve is also translated by v. Hence, without loss
of generality, we are going to assume that the coordinates of the control points are all
positive, and also less than or equal to 1. So, in order to generate n test control points
we also use here the MATLAB function rand: A = rand(n, 2). For the tests whose
results are given in Table 4.1 we only considered sets of control points that yielded
well-conditioned Hankel matrices Hx and Hy (both condition numbers less than 100).

Let Q0 = (x0, y0), Q1 = (x1, y1), ..., Qn−1 = (xn−1, yn−1) be n points of R2.
Let X be the n × 2 matrix defined by X(i, 1) = xi−1 and X(i, 2) = yi−1 for all
i ∈ {1, ..., n}. Let B = B(s) be the Bézier curve defined by these points. For each
i ∈ {1, ..., 129} let si = (i − 1)/128. Let C the 129 × 2 matrix such that C(i, :) is
the value of B(si) computed by de Casteljau’s algorithm for each i ∈ {1, ..., 129}.
In an analogous way, let H, P , V , W and S be the 129 × 2 matrices so that, for
all i ∈ {1, ..., 129}, H(i, :), P (i, :), V (i, :), W (i, :) and S(i, :) are the values of B(si)
respectively computed by

1. our Algorithm 1;
2. a Pascal matrix algorithm that was introduced in [4];
3. the VS algorithm which was introduced in [22];
4. the Wang-Ball algorithm which was described in [24];
5. the Said-Ball algorithm, which was also described in [24].

The algorithms were implemented in MATLAB and are described as follows:

1. Our algorithms are divided into two parts: first, Vandermonde factorizations
of the Hankel matrices Hx and Hy are computed; second, the expressions in
3.1 are evaluated. We will consider two algorithms in order to compute a
Vandermonde factorization of a nonsingular Hankel matrix. The first algo-
rithm, which is called Algorithm 1, solves an eigenvalue problem of the type
Cx = λx, where C is a companion matrix. Although Algorithm 1 can be
implemented in O(m2) operations, our version here demands O(m3) opera-
tions. Our second algorithm, which is called Algorithm 2, solves a generalized
eigenvalue problem of the type H0v = λH1v, where H0 and H1 are Hankel
matrices. Algorithm 2 demands O(m3) operations. Both are explained as
follows:
In the first algorithm, although we could solve our two m × m Hankel sys-
tems in O(m2) algebraic operations (see, e.g., [20]), we have preferred to use
the MATLAB \ operation in our tests, which demanded m3/3 +m2 −m/3
multiplications and m3/3 +m2/2− 5m/6 additions for each system. Since a
companion matrix is already in Hessenberg form about 20/3m3 multiplica-
tions and additions are required in order to calculate the spectrum of each
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Algorithm 1 Algorithm 1 - Vandermonde factorization of a regular Hankel matrix
H0 via companion matrix

• choose a number γ and define the vectors xγ = (hm+1 ... h2m−1 γ)
T ;

• solve the system H0zγ = xγ and consider the companion matrix Czγ ;
• find the spectrum of Czγ : λ(Czγ ) = {α1, ..., αm};
• define d = (Vγ)

−1He1, where Vγ = vander([α1, ..., αm]);

Algorithm 2 Algorithm 2 - Vandermonde factorization of a regular Hankel matrix
H0 via pencil

• choose a number γ and define the vectors xγ = (hm+1 ... h2m−1 γ)
T ;

• let H1 = [H0(:, 2 : m), xγ ];
• find the spectrum of H0v = λH1v: {α1, ..., αm};
• define d = (Vγ)

−1He1, where Vγ = vander([α1, ..., αm]);

m × m companion matrix. Note that we needed m(m − 1) multiplications
and 3/2m(m − 1) additions to solve each Vandermonde system by using an
algorithm described in [17]. After these calculations the evaluation of B(s)
demands O(m2) operations for each s ∈ (0, 1). If we solve Hankel systems
with an O(m2)-algorithm, and if the spectrum of the companion matrix is
also calculated by an O(m2)-algorithm (see, e.g., [6], [11], [23]) the complex-
ity of the whole process will be linear in m because the amount of operations
demanded in the first step is divided by the number of values s in (0, 1).
The second algorithm demands about 30m3 multiplications and additions to
compute the same eigenvalues (see [17]).

2. The VS algorithm evaluates polynomials in the form
∑n−1

i=0 Pit
i(1 − t)n−1−i

(see [14]). In order to compute points on the Bézier curve defined by the
control points Q0, ..., Qn−1, we first pre-multiply the coordinates of each Qi

by
(
n−1
i

)
. Then we apply the VS algorithm, which consists of 2n−1 products

and n− 1 additions for each s ∈ (0, 1).
3. The Wang-Ball algorithm evaluates polynomials in the Wang-Ball system (see

[12]). Hence, we first change the coordinates of the initial control points by

multiplying the vectors X = (x0 ... xn−1)
T
and Y = (y0 ... yn−1)

T
by an n×n

matrix, which is not diagonal as in VS algorithm. Then we apply the Wang-
Ball algorithm, which requires for each s ∈ (0, 1) (3n−4) multiplications and
(3n − 4)/2 additions when (n − 1) is odd, and 3(n − 1) multiplications and
3(n− 1)/2 additions when (n− 1) is even.

4. The Said-Ball algorithms evaluates polynomials in the Said-Ball system (see
[14]). Like in the Wang-Ball and the VS algorithms, we first transform the
coordinates of the control points by a change of basis matrix before applying
the algorithm. Then, for each s ∈ (0, 1) the algorithm requires n2/2 multipli-
cations and n2/4 additions for (n−1) odd, and (n−1)(n−1

2 +2) multiplications
and n−1

2
n−1
2 + 2) additions for (n− 1) even.

5. A Pascal matrix method computes a Bézier curve B(s) = eTnB
e
n(s)X of degree

n − 1 via the decomposition Be
n(s) = PnGn(−s)PnGn(−1), where Pn is the

n × n lower triangular Pascal matrix and Gn(s) = diag([1, s, ..., sn−1]). The
Pascal matrix method considered here consists of the following steps:

• compute Z = PnG(−1)X and W = PnG(−1)Y ;
• for each s ∈ (0, 1/2] evaluate both the polynomials eTnPnGn(−s)Z and
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eTnPnGn(−s)W by a Horner-like scheme;
• compute Zr = PnG(−1)Xr and Wr = PnG(−1)Yr, where Xr = X(n :
−1 : 1) and Yr = Y (n : −1 : 1);

• for each s ∈ (0, 1/2) evaluate both the polynomials eTnPnGn(−s)Zr and
eTnPnGn(−s)Wr by a Horner-like scheme;

Each Pascal matrix-vector multiplication consists of n(n−1)/2 additions. For
each s ∈ (0, 1/2) the algorithm requires 6(n− 1) multiplications and 4(n− 1)
additions.

Table 4.1
Mean run time of computation in seconds of 129 points of a Bézier curve of degree N-1 by six

different methods: our Algorithm 1 (H), VS (V), Wang-Ball (W), Said-Ball (S), a direct Pascal
matrix method (P) and de Casteljau (C). NC means non-convergence.

N Time (H) Time (V) Time (W) Time (S) Time (P) Time (C)
31 0.0056 0.0007 0.10 0.65 0.0013 0.0093
39 0.0074 0.0008 0.13 1.03 0.0015 0.014
47 0.0088 0.0010 0.15 1.46 0.0018 0.019
55 0.011 0.0011 0.18 2.00 0.0020 (NC) 0.026
63 0.013 0.0012 0.22 2.68 0.0023 (NC) 0.034
71 0.015 0.0014 0.25 3.42 0.0026 (NC) 0.042
79 0.018 0.0015 0.28 4.23 0.0029 (NC) 0.052

In Table 4.1, we can compare the average computing times of the computation
of Bézier curves of different degrees by several methods. Each result corresponds to
the smallest time among 10 elapsed times obtained from consecutive executions of the
respective procedure. They were computed by MATLAB’s built-in tic/toc functions.
For all methods the tic command is executed just after the definitions of the initial set
of control points and of the mesh of time. This means that the amount of computing
time includes the time demanded by the change of coordinates from Bernstein basis to
another basis (Vandermonde, VS, Wang, Said and Pascal). Each NC in the column
Time(P ) of the table means that ||P −C||2 ≥ 0.0005. For instance, ||P −C||2 = 0.065
for n = 55.

The VS method had the best performance in time and accuracy. Our imple-
mentation of this method has used the command abs(pascal(n, 1)) instead of the
command nchoosek(n, k) in order to evaluate ”n choose k”. This simple procedure
has substantially reduced the time of computation. We observe that this has oc-
curred even after removing the warning message about the result being only accurate
to 15 digits from the original code of the nchoosek(n, k) function. For instance,
the average computing time of the version of VS with such modified nchoosek(n, k)
function was 0.0050s for n = 79, while with abs(pascal(n, 1)) it was 0.0015s for the
same value of n (see Table 4.1). In order to better understand the VS method recall
how each coordinate of a Bézier curve B(s) of degree n − 1 is described in matrix
oriented language. For instance, x(s) is defined by eTnB

e
n(s)X, where X is the vec-

tor of abscissas of the control points. Since Be
n(s) = Gn(1 − s)PnGn(s)/(1 − s),

x(s) = (1 − s)n−1eTnPnGn(s/(1 − s))X. The VS method simply applies the Horner
scheme to evaluate at s/(1 − s) the polynomial whose coefficients are

(
n−1
0

)
X1, ...,(

n−1
n−1

)
Xn for s ≤ 1/2, and at (1−s)/s, the polynomial whose coefficients are

(
n−1
0

)
Xn,

...,
(
n−1
n−1

)
X1 for s > 1/2. According to out experiments, this method has shown to be

very accurate, at least up to n = 79. On the other hand, the Said-Ball method had
the worst performance in time, although the number of arithmetic operations required
by this method is almost the same of the one required by de Casteljau’s method. This
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bad performance in time was caused by the various conditional statements contained
in the method, which demanded a precious time. However, this method is better
suited to degree elevation than de Casteljau’s method (see [24]), as well as the Pascal
matrix method considered here. Nevertheless, the evaluation of the polynomials of
degree n − 1 in the Pascal method became unstable for n ≥ 55 when s approached
1/2: ||P − C||2 = 3.8775 for n = 63, ||P − C||2 = 2.8077e + 03 for n = 71, and
||P −C||2 = 5.2736e+05 for n = 79. The evaluation is accurate up to s = 1/4. After
this point, it becomes unstable.

With regard to Algorithm 1 that is based on Hankel forms, we can note that it
had the third best performance in time. As for accuracy, after the VS method the
Said-Ball method has obtained the best results, followed by our method and the Wang-
Ball method. For this rank we have considered the results obtained by de Casteljau’s
method as the ”true” values. However, as we have noticed before, when the two-
condition number of Hx (or Hy) is large our methods become even more dependent
on the number γ. In all the tests whose results were displayed in tables here, γ has
been generated by the MATLAB function rand. From results obtained in MATLAB
with a matrix returned by A = rand(63, 2) (some of them are displayed in Table
4.2), we could totally verify that dependence. While we had been using rand, which
generates numbers inside the interval [0, 1], the results obtained by both Algorithms 1
and 2 were very far from the results obtained by de Casteljau’s algorithm. However,
for γ = 1.3, the norm of the difference between the set of 129 points computed by
Algorithm 1 (2) and the one computed by de Casteljau’s algorithm was 1.1963e-06
(8.2370e-05).

Table 4.2
Computation of 129 points of a Bézier curve of degree N-1 by three different methods: de

Casteljau (C), Hankel form - Algorithm 1 (H1) and Hankel form - Algorithm 2 (H2). cond =
max{cond(Hx), cond(Hy)}, where cond(A) is the two-condition number of the matrix A. The results
of the second and third methods are compared to the ones obtained by de Casteljau’s method via norm
of the difference of the respective computed points. For each N there are three lines with the results
obtained from three consecutive tests. For each test a random number is generated in order to expand
an N ×N Hankel matrix into an N × (N +1), which was used by Algorithm 1 and by Algorithm 2.

N cond ||C −H1||2 ||C −H2||2

31 223.0
7.8110e-08 1.1214e-09
6.8838e-07 2.1008e-08
8.6408e-07 1.3360e-08

47 318.9
0.0033 4.4451e-04
0.0019 5.1792e-05

5.8218e-04 5.3150e-04

63 1323
7.9413e+52 1.9784e+52
5.1264e+45 4.6812e+44
3.3518e+36 3.0881e+34

79 198.4
0.0304 0.0057
0.0731 7.9959e-04
0.0340 0.0021

In order to overcome this problem we have included a procedure in our Algorithm
1 to improve the computation of points on the curves in those cases, which is explained
in the following subsection.

4.1. Preconditioning the Hankel forms. It is not rare to find out that an
m × m Hankel matrix H whose 2m − 1 entries are numbers taken at random in
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Table 4.3
Mean run time of computation in seconds of 129 points of a Bézier curve of degree N-1 by

three different methods: de Casteljau (C), Hankel form - Algorithm 1 (H) and preconditioning
Hankel form (PH). cond = max{cond(Hx), cond(Hy)}. For each N the top line of ||C − H||2,
or of ||C − PH||2, contains the minimum error among five consecutive tests; the bottom line, the
maximum error. For each test a random number is generated in order to expand an N ×N Hankel
matrix into an N × (N + 1).

N cond Time (C) Time (H) Time (PH) ||C −H||2 ||C − PH||2

31 325.1 0.0094 0.0057 0.010
1.0447 3.5573e-13

2.9059e+03 2.2654e-12

39 68.01 0.014 0.0074 0.013
2.4592e-11 1.7544e-12
1.0558e-08 4.7451e-12

47 8.181e+04 0.020 0.0090 0.017
0.0098 4.9722e-12

2.4884e+109 3.0472e-11

55 651.4 0.026 0.011 0.020
1.9364e-09 1.5026e-11
2.0254e+20 2.9898e-11

63 548.1 0.034 0.013 0.022
1.1538 1.1737e-10

2.5117e+07 3.5145e-10

71 198.8 0.042 0.015 0.027
2.1390e-09 7.7424e-11
4.1055e-08 2.2024e-09

79 2.235e+03 0.052 0.018 0.031
9.5039e+21 7.4678e-09
2.9080e+23 3.2787e-08

the interval [0,1] is an ill-conditioned matrix with respect to inversion. An attempt
to handle the ill-conditioning of the matrix with respect to our methods is to shift
its skew-diagonal in order to turn it into a skew-diagonally dominant matrix, H̃ =
H + σC, where C is the reciprocal matrix (C(:, k) = em−k+1 for k = 1, ...,m). So, let
BH and BH̃ be the Bézier curves corresponding to H and H̃ respectively. Then, for
each s ∈ [0, 1], we compute BH(s) by subtracting σ times eTmBe

m(s)Cm(Be
m(s))T em

from BH̃ . Furthermore, this quadratic form has a simple formulation as can be seen
in the next lemma.

Lemma 4.1. Let Cm = hankel(em, eT1 ), which is called the reciprocal matrix.
Then, if w = e2πi/m,

eTmBe
m(s)Cm(Be

m(s))T em =
1

m

m∑
j=1

wj−1(1− s+ s.wj−1)n−1.

Proof. It is easy to see that Cm = V DV T , where V = vander(1, w, ..., wm−1) and
D = diag(1/m,w/m, ..., wm−1/m). From the proof of Theorem 3.3,

eTmBe
m(s)V DV T (Be

m(s))T em =
1

m

m∑
j=1

wj−1(1− s+ s.wj−1)n−1.

In Table 4.3, we can see that preconditioning the Hankel forms associated to the
matrices Hx and Hy, which is done by shifting their skew-diagonal, has improved the
computation of Bézier curves. In the table cond(H) is the maximum two-condition
number between cond(Hx) and cond(Hy). For each Hankel matrix H, σ was taken
as the sum of the absolute values of its entries. Since our computation of a Vander-
monde factorization of a Hankel matrix depends on a value γ chosen at random, the
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error between the curve computed by de Casteljau and the one computed from that
factorization varies with γ, and the variation is used to be large when Hx and Hy are
ill-conditioned. In table 4.3, for each n, we can see the minimum and the maximum
errors among five consecutive experiments done. Notice that all our experiments have
been run in an AMD Athlon 64 X2 Dual Core Processor 3600+ (2.00GHz), however,
under a 32-bit MATLAB.

4.2. Subdivision. Let B(s) a Bézier curve of degree n−1 (n = 2m−1) defined
over [0, 1]. Let B̂(s) = B(cs) be the part of the curve that corresponds to [0, c],
with 0 < c ≤ 1. Let Q̂0 = B(0) = B̂(0) and Q̂n−1 = B(c) = B̂(1). Finding n − 2
points, Q̂1, ..., Q̂n−2, such that B̂(s) = B̂Q̂0Q̂1...Q̂n−1

(s) is referred to as subdivision

of B(s) ([15]). Suppose our method has calculated B(s) = (b1(s), b2(s)): b1(s) =∑m
i=1 d

(1)
i (1 − s + s.t

(1)
i )n−1 and b2(s) =

∑m
i=1 d

(2)
i (1 − s + s.t

(2)
i )n−1. Let V̂x =

vander([t̂
(1)
1 , ..., t̂

(1)
m ]), Dx = diag([d

(1)
1 , ..., d

(1)
m ]), V̂y = vander([t̂

(2)
1 , ..., t̂

(2)
m ]) and Dy =

diag([d
(2)
1 , ..., d

(2)
m ]), where t̂

(1)
i = t

(1)
i .c− c+1 and t̂

(2)
i = t

(2)
i .c− c+1 for i = 1, ...,m.

Therefore, it is not difficult to see that a new set of control points is given by (x0, y0),
..., (xn−1, yn−1), where (x0 ... xm−1)

T and (xm−1 ... xn−1) are respectively the first
column and the last row of Ĥx = V̂xDxV̂

T
x , and (y0 ... ym−1)

T and (ym−1 ... yn−1) are
respectively the first column and the last row of Ĥy = V̂yDyV̂

T
y .

4.3. Degree elevation. Applications that involve several Bézier curves can re-
quire that all these curves have the same degree. Increasing the degree of a Bézier
curve without changing its shape is referred in the literature as degree elevation.

Let n = 2m−1 for some integer m > 1. Assume we have a Bézier curve of degree
n − 1 defined by n control points Q0, ..., Qn−1. Denote by Hx and Hy the m × m
Hankel matrices associated to the respective coordinates of BQ0Q1...Qn−1 . If we want
to increase the degree of this curve to n without changing the shape we need a new set
of n+1 control points Z0, ..., Zn. It is well known that these points can be computed
as follows: Z0 = Q0 and

Zk =
k

n
Qk−1 +

(
1− k

n

)
Qk, 1 ≤ k ≤ n.

From matrix calculations we also arrive at the same result in terms of the Hankel
matrices associated to the coordinates. Our approach turns out to be interesting for
high degree elevation of the curve. In Figure 4.1 we can see the result of a degree
elevation of a Bézier curve from 10 (its original degree) to 20 by our procedure, which
will be explained in the following.

Suppose that we want to increase the degree of this curve to N −1 = n−1+2r =
2(m+r−1), r > 0, without changing its shape. Let Ĥx and Ĥy be the (m+r)×(m+r)
Hankel matrices associated to the coordinates of BZ0Z1...ZN

. Now, for all s ∈ [0, 1],

eTm+rB
e
m+r(s)Ĥx

(
Be

m+r(s)
)T

em+r =

=
m+r−1∑

i=0

m+r−1∑
j=0

(
m+ r − 1

i

)(
m+ r − 1

j

)
sisjF̂i+1,j+1,

where F̂ = P−1
m+rĤxP

−T
m+r = hankel([f̂0; ...; f̂m+r−1], [f̂m+r−1, ..., f̂N ]). Observe that
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Fig. 4.1. Degree elevation: Solid curve: Bézier curve of degree 10; dotted curve: initial set of
11 control points; dashed curve: new set of 21 control points

f̂k = 0 if k > n− 1 = 2m− 2, for the degree of the curve is n− 1. Now

eTm+rB
e
m+r(s)Ĥx(B

e
m+r(s))

T em+r =
n−1∑
k=0

 ∑
i+j=k

(
m+ r − 1

i

)(
m+ r − 1

j

) f̂ks
k =

=

n−1∑
k=0

(
N − 1

k

)
f̂ks

k,

from Vandermonde convolution ([18]). Thus, for all k ∈ {0, ..., n − 1}
(
N−1
k

)
f̂k =(

n−1
k

)
fk, where F = P−1

m HxP
−T
m . That is, we have f̂0 = f0 and

(N − 1)(N − 2)...(N − k)f̂k = (n− 1)(n− 2)...(n− k)fk, for all 0 < k ≤ n− 1.

For instance, suppose 2r = n− 1, that is, N = 2n− 1. Then,

F̂ = hankel([f̂0, ..., f̂n−1], [f̂n−1, 0, ...., 0]),

where f̂k =
1

2

1

2 +
1

n− 2

· · · 1

2 +
k − 1

n− k

fk for 1 ≤ k ≤ n − 1. So, our algorithm to

high degree elevation from degree n− 1 to degree 2(n− 1) becomes as follows:
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• first we compute Hx = V DV T . So, by defining vi = V (:, i) and αi = D(i, i)
for i ∈ {1, ...,m}, we have

F =
m∑
i=1

di
(
P−1
m vi

) )
P−1
m vi

)T
,

where P−1
m vi =

(
1 (αi − 1) (αi − 1)2...(αi − 1)m−1

)T
. That is,

fk =

m∑
i=0

di(αi − 1)k.

• Second, we find F̂ and compute a Vandermonde factorization of F̂ : F̂ =
W∆WT . Therefore, Ĥx = PnF̂PT

n = (PnW )∆(PnW )T .

• Finally, by defining wi = Wei =
(
1 βi ... β

n−1
i

)T
, we have that the abscissas

of the new set of points are given by

ĥk =
n∑

i=1

δi(βi + 1)k,

where δi = ∆ii for 1 ≤ i ≤ n.
In the next subsection we discuss our method under degree reduction procedures.

4.4. Degree reduction. Decreasing the degree of a Bézier curve is a more com-
plicated problem. In general we cannot reduce the degree of a curve without changing
its shape, that is, degree reduction cannot be done exactly as degree elevation can.
Let B(s) be a Bézier curve of degree n − 1, n = 2m − 1. Suppose that the curve is
described by the following equations as in 3.2:

b1(s) =
m∑
i=1

di(1− s+ s.ti)
n−1 and b2(s) =

m∑
i=1

d̂i(1− s+ s.t̂i)
n−1.

Let r be a positive integer, m < r < n− 1. Then the Bézier curve

b
(m)
1 (s) =

m∑
i=1

di(1− s+ s.t
n−1
r

i )r and b
(m)
2 (s) =

m∑
i=1

d̂i(1− s+ s.t̂
n−1
r

i )r

is a degree reduction of B(s). So far our experiments have led us to consider this
heuristic method in order to decrease the degree of a Bézier curve. In Figure 4.2 we
can see this method applied to a Bézier curve of degree 14 which resulted in a Bézier
curve of degree 11 very close to the original.

4.5. Corner cutting systems. Our method of computation of a Bézier curve
B(s) of degree n − 1 (n = 2m − 1) finds two sets of m numbers, {d1, ..., dm} and
{α1, ..., αm}, such that B(s) =

∑m
k=1 dk(αks+1)n−1 for each s ∈ [0, 1]. Recall that if

αk and αk+1 are complex conjugates, then so are dk and dk+1.
Now suppose α1, ..., αn are n distinct numbers, which are either real or complex

conjugate pairs. If αk and αk+1 are complex conjugates, define uk = 2Re (αks+1)n−1

and uk+1 = −2 Im (αks+1)n−1; if αk is real, let uk = (αks+1)n−1. It is not difficult to
verify that {u1, ..., un} is a linearly independent set of functions on [0, 1]. A sequence
of real functions {u1, ..., un} defined on [0, 1] will be called a system of functions.
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Fig. 4.2. Degree reduction: Solid curve: Bézier curve of degree 14; dotted curve: initial set of
15 control points; dashed curve: Bézier curve of degree 11

Definition 4.2. The collocation matrix of (u1, ..., un) at 0 ≤ s1 < ... < sk ≤ 1
is given by a k× n matrix whose ij − entry is uj(si) for all 1 ≤ i ≤ k and 1 ≤ j ≤ n.
The system (u1, ..., un) is called TP2 if all 2 × 2 minors of any collocation matrix of
(u1, ..., un) are nonnegative.

Definition 4.3. A system of functions (u1, ..., un) is monotonicity preserving if
for any β1 ≤ β2 ≤ ... ≤ βn in R, the function

∑n
i=1 βiui is increasing.

The following result is proved in [10].

Proposition 4.4. Let (u1, ..., un) be a system of functions defined on the interval
[0, 1]. Let vi =

∑n
j=i uj for i ∈ {1, ..., n}. Then (u1, ..., un) is monotonicity preserving

if and only if v1 is a constant function and the functions vi are increasing for i > 1.

When v1 = 1 we say that the system (u1, ..., un) is normalized. Moreover, if
the functions u1, ..., un are nonnegative continuous functions, the system is called
blending.

Definition 4.5. For each i ∈ {1, ..., n− 1} let ∆i(t) be the i× (i+1) bidiagonal

matrix such that (∆i(t))kk = 1−λ
(i)
k (t) and (∆i(t))k,k+1 = λ

(i)
k (t) for all k ∈ {1, .., i},

where λ
(i)
k : [0, 1] → [0, 1] is an increasing continuous function for each 1 ≤ k ≤ i ≤

n−1. We say that the 1×n matrix ∆(t) = ∆1(t).∆2(t). ... .∆n−1(t) is a corner cutting
representation on [0, 1] of the system (u1, ..., un) if ∆(t) = (u1(t) · · · un(t)) on [0, 1].
A system of functions admitting a corner cutting representation on [0, 1] is called a
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corner cutting system on [0, 1].
A corner cutting system is an example of a blending system. Note that a corner

cutting representation provides a corner cutting evaluation algorithm of a curve as

B(s) =
n∑

i=1

Piui(t) = ∆1(t). ... .∆n−1(t)

 P1

...
Pn

 .

One of the features of corner cutting systems is that they are monotonicity preserving.
This fact and the following proposition are proved in [13].

Proposition 4.6. If (u1, ..., un) is a blending TP2 system of continuous functions
on [0, 1], then it is a corner cutting system on [0, 1].

From Proposition 4.6, an example of a corner cutting system of cubic polynomial
functions on [0, 1] is v1 = 1

34 [s
3−24s+32], v2 = 1

17 [−2s3+3s+1], v3 = 3
170 [s

3−12s2+
24s] and v4 = 3

85 [2s
3+6s2+3s]. These functions correspond to 2Reβ1. Re [α1s+1]3,

2Reβ2. Re [α2s+1]3, −2 Imβ1. Im [α1s+1]3 and−2 Imβ2. Im [α2s+1]3, respectively,
where β1 = 8

17 + i2485 , β2 = 1
34 − i 3

170 , α1 = −1
4 − i14 and α2 = 1 + i.

Let Q0 = (x0, y0), Q1 = (x1, y1), Q2 = (x2, y2) and Q3 = (x3, y3). Let Hx =
hankel([x0, x1, x2], [x2, x3]) and Hy = hankel([y0, y1, y2], [y2, y3]). Suppose V1 =
vander([α1 + 1, ᾱ1 + 1]) and V2 = vander([α2 + 1, ᾱ2 + 1]). Then

Hx = [V1; (α1 + 1)2, (ᾱ1 + 1)2]D(1)
x V T

1 + [V2; (α2 + 1)2, (ᾱ2 + 1)2]D(2)
x V T

2 ,

Hy = [V1; (α1 + 1)2, (ᾱ1 + 1)2]D(1)
y V T

1 + [V2; (α2 + 1)2, (ᾱ2 + 1)2]D(2)
y V T

2 ,

where D
(1)
x = diag([a1 + b1i, a1 − b1i]), D

(2)
x = diag([c1 + d1i, c1 − d1i]), D

(1)
y =

diag([a2+b2i, a2−b2i]),D
(2)
y = diag([c2+d2i, c2−d2i]), (a1 b1 c1 d1) = (x0 x1 x2 x3)M

T ,
(a2 b2 c2 d2) = (y0 y1 y2 y3)M

T and

M =
1

170


45 −128 120 −32

−10 19 −4 −8
40 128 −120 32

−520 1056 −616 128

 .

Hence, the Bézier curve defined by these points is

B(s) =

(
a1 + b1i
a2 + b2i

)
(α1s+ 1)3 +

(
a1 − b1i
a2 − b2i

)
(ᾱ1s+ 1)3+

+

(
c1 + d1i
c2 + d2i

)
(α2s+ 1)3 +

(
c1 − d1i
c2 − d2i

)
(ᾱ2s+ 1)3 =

=
1

16

(
a1
a2

)
(s3 − 24s+ 32)− 1

16

(
b1
b2

)
(s3 − 12s2 + 24s)+

+2

(
c1
c2

)
(−2s3 + 3s+ 1)− 2

(
d1
d2

)
(2s3 + 6s2 + 3s) =
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=
34

16

(
a1
a2

)
v1 + 34

(
c1
c2

)
v2 + (−170

48
)

(
b1
b2

)
v3 + (−170

3
)

(
d1
d2

)
v4.

Therefore, we see that for n = 4 we can obtain corner cutting systems of cubic
functions on [0,1] by using pairs of conjugate complex functions like β(αs + 1)n and
β̄(ᾱs+1)n. The obtention and use of such systems for all n ≥ 3 are themes for future
works.

5. Conclusion. Through this paper, we develop a matrix approach to the com-
putation of Bézier curves from a set of n control points. We begin with our proof
of the classical theorem of the existence of a Vandermonde factorization of a regular
Hankel matrix, which is done by using Pascal matrix techniques. In the following, we
introduced our main result: each coordinate of a Bézier curve of degree n = 2m−1 at
s ∈ [0, 1] can be represented by a Hankel form applied to the mth row of the m×m
Bernstein matrix at s. From a Vandermonde factorization of these Hankel matrices,
which are denoted by Hx and Hy, we see that we can easily compute the Bézier curve
at s. However, the procedure for finding a Vandermonde factorization of a Hankel
matrix depends on a value γ that is generated at random. Hence, if Hx or Hy is
ill-conditioned, then the computation of the factors becomes even more sensitive to γ.
We have dealt with this ill-conditioning of the problem by shifting the skew-diagonal
of the ill-conditioned Hankel matrix to get a skew-diagonally dominant Hankel ma-
trix. The effect of this shifting in the computation of the respective Bézier curve can
be easily handled, according to Lemma 4.1. In Table 4.3 we can see some results of
the application of this procedure. For more than one hundred matrices generated by
rand(n, 2) commands this procedure worked very well, and we could compute Bézier
curves very close to the ones computed by de Casteljau’s method. However, we have
also seen that not only the condition numbers of Hx and Hy have to be small, but
also a good choice of γ has to be made to guarantee a good accuracy. The numerical
results have had a great variation depending on the value of γ. Strategies of choosing
γ are a subject for a future work.

We also see that a subdivision formula for Bézier curves is easily obtained by
our Hankel form approach. With respect to the behavior of our method under degree
elevation, we have seen, as in Figure 4.1, that the method can be useful to high degree
elevation. Otherwise, it is at least equivalent to de Casteljau’s method. For degree
reduction, we have proposed a new set of approximate Bézier curves of degree k,
m < k < n = 2m− 1. In Figure4.2, we can observe a degree reduction from 14 to 11
according to our proposed method: the curves are very close one to the other. In §4.5
we have presented a corner cutting basis of Pn−1([0, 1]), for n = 4, which is composed
by functions of the type our method uses on the computation of Bézier curves. We
have not yet obtained a general formula for a corner cutting system of Pn−1([0, 1])
with these functions for all n ≥ 3. A response for this problem is also left for a future
work.

Summarizing, in our paper another proof of Vandermonde factorizations of Hankel
matrices has been presented, a connection has been set up between a Bézier curve
and a Hankel form, and from these results an efficient method of computation of a
Bézier curve has been formulated. Also, we have introduced a subdivision formula
for Bézier curves based on our approach and we have illustrated its behavior under
degree reduction and degree elevation. Finally, we have introduced a corner cutting
system on [0, 1] for Bézier curves of degree 3 made up of functions of the type we have
used in order to compute such curves by our approach.
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